MdeModulePkg VariableDxe: Update it supports normal format variable storage
[mirror_edk2.git] / MdeModulePkg / Universal / Variable / RuntimeDxe / Variable.c
1 /** @file
2 The common variable operation routines shared by DXE_RUNTIME variable
3 module and DXE_SMM variable module.
4
5 Caution: This module requires additional review when modified.
6 This driver will have external input - variable data. They may be input in SMM mode.
7 This external input must be validated carefully to avoid security issue like
8 buffer overflow, integer overflow.
9
10 VariableServiceGetNextVariableName () and VariableServiceQueryVariableInfo() are external API.
11 They need check input parameter.
12
13 VariableServiceGetVariable() and VariableServiceSetVariable() are external API
14 to receive datasize and data buffer. The size should be checked carefully.
15
16 VariableServiceSetVariable() should also check authenticate data to avoid buffer overflow,
17 integer overflow. It should also check attribute to avoid authentication bypass.
18
19 Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
20 (C) Copyright 2015 Hewlett Packard Enterprise Development LP<BR>
21 This program and the accompanying materials
22 are licensed and made available under the terms and conditions of the BSD License
23 which accompanies this distribution. The full text of the license may be found at
24 http://opensource.org/licenses/bsd-license.php
25
26 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
27 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
28
29 **/
30
31 #include "Variable.h"
32
33 VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
34
35 ///
36 /// Define a memory cache that improves the search performance for a variable.
37 ///
38 VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
39
40 ///
41 /// Memory cache of Fv Header.
42 ///
43 EFI_FIRMWARE_VOLUME_HEADER *mNvFvHeaderCache = NULL;
44
45 ///
46 /// The memory entry used for variable statistics data.
47 ///
48 VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
49
50 ///
51 /// The flag to indicate whether the platform has left the DXE phase of execution.
52 ///
53 BOOLEAN mEndOfDxe = FALSE;
54
55 ///
56 /// It indicates the var check request source.
57 /// In the implementation, DXE is regarded as untrusted, and SMM is trusted.
58 ///
59 VAR_CHECK_REQUEST_SOURCE mRequestSource = VarCheckFromUntrusted;
60
61 //
62 // It will record the current boot error flag before EndOfDxe.
63 //
64 VAR_ERROR_FLAG mCurrentBootVarErrFlag = VAR_ERROR_FLAG_NO_ERROR;
65
66 VARIABLE_ENTRY_PROPERTY mVariableEntryProperty[] = {
67 {
68 &gEdkiiVarErrorFlagGuid,
69 VAR_ERROR_FLAG_NAME,
70 {
71 VAR_CHECK_VARIABLE_PROPERTY_REVISION,
72 VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY,
73 VARIABLE_ATTRIBUTE_NV_BS_RT,
74 sizeof (VAR_ERROR_FLAG),
75 sizeof (VAR_ERROR_FLAG)
76 }
77 },
78 };
79
80 AUTH_VAR_LIB_CONTEXT_IN mAuthContextIn = {
81 AUTH_VAR_LIB_CONTEXT_IN_STRUCT_VERSION,
82 //
83 // StructSize, TO BE FILLED
84 //
85 0,
86 //
87 // MaxAuthVariableSize, TO BE FILLED
88 //
89 0,
90 VariableExLibFindVariable,
91 VariableExLibFindNextVariable,
92 VariableExLibUpdateVariable,
93 VariableExLibGetScratchBuffer,
94 VariableExLibCheckRemainingSpaceForConsistency,
95 VariableExLibAtRuntime,
96 };
97
98 AUTH_VAR_LIB_CONTEXT_OUT mAuthContextOut;
99
100 /**
101 Routine used to track statistical information about variable usage.
102 The data is stored in the EFI system table so it can be accessed later.
103 VariableInfo.efi can dump out the table. Only Boot Services variable
104 accesses are tracked by this code. The PcdVariableCollectStatistics
105 build flag controls if this feature is enabled.
106
107 A read that hits in the cache will have Read and Cache true for
108 the transaction. Data is allocated by this routine, but never
109 freed.
110
111 @param[in] VariableName Name of the Variable to track.
112 @param[in] VendorGuid Guid of the Variable to track.
113 @param[in] Volatile TRUE if volatile FALSE if non-volatile.
114 @param[in] Read TRUE if GetVariable() was called.
115 @param[in] Write TRUE if SetVariable() was called.
116 @param[in] Delete TRUE if deleted via SetVariable().
117 @param[in] Cache TRUE for a cache hit.
118
119 **/
120 VOID
121 UpdateVariableInfo (
122 IN CHAR16 *VariableName,
123 IN EFI_GUID *VendorGuid,
124 IN BOOLEAN Volatile,
125 IN BOOLEAN Read,
126 IN BOOLEAN Write,
127 IN BOOLEAN Delete,
128 IN BOOLEAN Cache
129 )
130 {
131 VARIABLE_INFO_ENTRY *Entry;
132
133 if (FeaturePcdGet (PcdVariableCollectStatistics)) {
134
135 if (AtRuntime ()) {
136 // Don't collect statistics at runtime.
137 return;
138 }
139
140 if (gVariableInfo == NULL) {
141 //
142 // On the first call allocate a entry and place a pointer to it in
143 // the EFI System Table.
144 //
145 gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
146 ASSERT (gVariableInfo != NULL);
147
148 CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
149 gVariableInfo->Name = AllocateZeroPool (StrSize (VariableName));
150 ASSERT (gVariableInfo->Name != NULL);
151 StrCpyS (gVariableInfo->Name, StrSize(VariableName)/sizeof(CHAR16), VariableName);
152 gVariableInfo->Volatile = Volatile;
153 }
154
155
156 for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
157 if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
158 if (StrCmp (VariableName, Entry->Name) == 0) {
159 if (Read) {
160 Entry->ReadCount++;
161 }
162 if (Write) {
163 Entry->WriteCount++;
164 }
165 if (Delete) {
166 Entry->DeleteCount++;
167 }
168 if (Cache) {
169 Entry->CacheCount++;
170 }
171
172 return;
173 }
174 }
175
176 if (Entry->Next == NULL) {
177 //
178 // If the entry is not in the table add it.
179 // Next iteration of the loop will fill in the data.
180 //
181 Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
182 ASSERT (Entry->Next != NULL);
183
184 CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
185 Entry->Next->Name = AllocateZeroPool (StrSize (VariableName));
186 ASSERT (Entry->Next->Name != NULL);
187 StrCpyS (Entry->Next->Name, StrSize(VariableName)/sizeof(CHAR16), VariableName);
188 Entry->Next->Volatile = Volatile;
189 }
190
191 }
192 }
193 }
194
195
196 /**
197
198 This code checks if variable header is valid or not.
199
200 @param Variable Pointer to the Variable Header.
201 @param VariableStoreEnd Pointer to the Variable Store End.
202
203 @retval TRUE Variable header is valid.
204 @retval FALSE Variable header is not valid.
205
206 **/
207 BOOLEAN
208 IsValidVariableHeader (
209 IN VARIABLE_HEADER *Variable,
210 IN VARIABLE_HEADER *VariableStoreEnd
211 )
212 {
213 if ((Variable == NULL) || (Variable >= VariableStoreEnd) || (Variable->StartId != VARIABLE_DATA)) {
214 //
215 // Variable is NULL or has reached the end of variable store,
216 // or the StartId is not correct.
217 //
218 return FALSE;
219 }
220
221 return TRUE;
222 }
223
224
225 /**
226
227 This function writes data to the FWH at the correct LBA even if the LBAs
228 are fragmented.
229
230 @param Global Pointer to VARAIBLE_GLOBAL structure.
231 @param Volatile Point out the Variable is Volatile or Non-Volatile.
232 @param SetByIndex TRUE if target pointer is given as index.
233 FALSE if target pointer is absolute.
234 @param Fvb Pointer to the writable FVB protocol.
235 @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
236 structure.
237 @param DataSize Size of data to be written.
238 @param Buffer Pointer to the buffer from which data is written.
239
240 @retval EFI_INVALID_PARAMETER Parameters not valid.
241 @retval EFI_SUCCESS Variable store successfully updated.
242
243 **/
244 EFI_STATUS
245 UpdateVariableStore (
246 IN VARIABLE_GLOBAL *Global,
247 IN BOOLEAN Volatile,
248 IN BOOLEAN SetByIndex,
249 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
250 IN UINTN DataPtrIndex,
251 IN UINT32 DataSize,
252 IN UINT8 *Buffer
253 )
254 {
255 EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
256 UINTN BlockIndex2;
257 UINTN LinearOffset;
258 UINTN CurrWriteSize;
259 UINTN CurrWritePtr;
260 UINT8 *CurrBuffer;
261 EFI_LBA LbaNumber;
262 UINTN Size;
263 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
264 VARIABLE_STORE_HEADER *VolatileBase;
265 EFI_PHYSICAL_ADDRESS FvVolHdr;
266 EFI_PHYSICAL_ADDRESS DataPtr;
267 EFI_STATUS Status;
268
269 FwVolHeader = NULL;
270 DataPtr = DataPtrIndex;
271
272 //
273 // Check if the Data is Volatile.
274 //
275 if (!Volatile) {
276 if (Fvb == NULL) {
277 return EFI_INVALID_PARAMETER;
278 }
279 Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
280 ASSERT_EFI_ERROR (Status);
281
282 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
283 //
284 // Data Pointer should point to the actual Address where data is to be
285 // written.
286 //
287 if (SetByIndex) {
288 DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
289 }
290
291 if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
292 return EFI_INVALID_PARAMETER;
293 }
294 } else {
295 //
296 // Data Pointer should point to the actual Address where data is to be
297 // written.
298 //
299 VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
300 if (SetByIndex) {
301 DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
302 }
303
304 if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
305 return EFI_INVALID_PARAMETER;
306 }
307
308 //
309 // If Volatile Variable just do a simple mem copy.
310 //
311 CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
312 return EFI_SUCCESS;
313 }
314
315 //
316 // If we are here we are dealing with Non-Volatile Variables.
317 //
318 LinearOffset = (UINTN) FwVolHeader;
319 CurrWritePtr = (UINTN) DataPtr;
320 CurrWriteSize = DataSize;
321 CurrBuffer = Buffer;
322 LbaNumber = 0;
323
324 if (CurrWritePtr < LinearOffset) {
325 return EFI_INVALID_PARAMETER;
326 }
327
328 for (PtrBlockMapEntry = mNvFvHeaderCache->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
329 for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
330 //
331 // Check to see if the Variable Writes are spanning through multiple
332 // blocks.
333 //
334 if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
335 if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
336 Status = Fvb->Write (
337 Fvb,
338 LbaNumber,
339 (UINTN) (CurrWritePtr - LinearOffset),
340 &CurrWriteSize,
341 CurrBuffer
342 );
343 return Status;
344 } else {
345 Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
346 Status = Fvb->Write (
347 Fvb,
348 LbaNumber,
349 (UINTN) (CurrWritePtr - LinearOffset),
350 &Size,
351 CurrBuffer
352 );
353 if (EFI_ERROR (Status)) {
354 return Status;
355 }
356
357 CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
358 CurrBuffer = CurrBuffer + Size;
359 CurrWriteSize = CurrWriteSize - Size;
360 }
361 }
362
363 LinearOffset += PtrBlockMapEntry->Length;
364 LbaNumber++;
365 }
366 }
367
368 return EFI_SUCCESS;
369 }
370
371
372 /**
373
374 This code gets the current status of Variable Store.
375
376 @param VarStoreHeader Pointer to the Variable Store Header.
377
378 @retval EfiRaw Variable store status is raw.
379 @retval EfiValid Variable store status is valid.
380 @retval EfiInvalid Variable store status is invalid.
381
382 **/
383 VARIABLE_STORE_STATUS
384 GetVariableStoreStatus (
385 IN VARIABLE_STORE_HEADER *VarStoreHeader
386 )
387 {
388 if ((CompareGuid (&VarStoreHeader->Signature, &gEfiAuthenticatedVariableGuid) ||
389 CompareGuid (&VarStoreHeader->Signature, &gEfiVariableGuid)) &&
390 VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
391 VarStoreHeader->State == VARIABLE_STORE_HEALTHY
392 ) {
393
394 return EfiValid;
395 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
396 ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
397 ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
398 ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
399 VarStoreHeader->Size == 0xffffffff &&
400 VarStoreHeader->Format == 0xff &&
401 VarStoreHeader->State == 0xff
402 ) {
403
404 return EfiRaw;
405 } else {
406 return EfiInvalid;
407 }
408 }
409
410 /**
411 This code gets the size of variable header.
412
413 @return Size of variable header in bytes in type UINTN.
414
415 **/
416 UINTN
417 GetVariableHeaderSize (
418 VOID
419 )
420 {
421 UINTN Value;
422
423 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
424 Value = sizeof (AUTHENTICATED_VARIABLE_HEADER);
425 } else {
426 Value = sizeof (VARIABLE_HEADER);
427 }
428
429 return Value;
430 }
431
432 /**
433
434 This code gets the size of name of variable.
435
436 @param Variable Pointer to the Variable Header.
437
438 @return UINTN Size of variable in bytes.
439
440 **/
441 UINTN
442 NameSizeOfVariable (
443 IN VARIABLE_HEADER *Variable
444 )
445 {
446 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
447
448 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
449 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
450 if (AuthVariable->State == (UINT8) (-1) ||
451 AuthVariable->DataSize == (UINT32) (-1) ||
452 AuthVariable->NameSize == (UINT32) (-1) ||
453 AuthVariable->Attributes == (UINT32) (-1)) {
454 return 0;
455 }
456 return (UINTN) AuthVariable->NameSize;
457 } else {
458 if (Variable->State == (UINT8) (-1) ||
459 Variable->DataSize == (UINT32) (-1) ||
460 Variable->NameSize == (UINT32) (-1) ||
461 Variable->Attributes == (UINT32) (-1)) {
462 return 0;
463 }
464 return (UINTN) Variable->NameSize;
465 }
466 }
467
468 /**
469 This code sets the size of name of variable.
470
471 @param[in] Variable Pointer to the Variable Header.
472 @param[in] NameSize Name size to set.
473
474 **/
475 VOID
476 SetNameSizeOfVariable (
477 IN VARIABLE_HEADER *Variable,
478 IN UINTN NameSize
479 )
480 {
481 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
482
483 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
484 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
485 AuthVariable->NameSize = (UINT32) NameSize;
486 } else {
487 Variable->NameSize = (UINT32) NameSize;
488 }
489 }
490
491 /**
492
493 This code gets the size of variable data.
494
495 @param Variable Pointer to the Variable Header.
496
497 @return Size of variable in bytes.
498
499 **/
500 UINTN
501 DataSizeOfVariable (
502 IN VARIABLE_HEADER *Variable
503 )
504 {
505 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
506
507 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
508 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
509 if (AuthVariable->State == (UINT8) (-1) ||
510 AuthVariable->DataSize == (UINT32) (-1) ||
511 AuthVariable->NameSize == (UINT32) (-1) ||
512 AuthVariable->Attributes == (UINT32) (-1)) {
513 return 0;
514 }
515 return (UINTN) AuthVariable->DataSize;
516 } else {
517 if (Variable->State == (UINT8) (-1) ||
518 Variable->DataSize == (UINT32) (-1) ||
519 Variable->NameSize == (UINT32) (-1) ||
520 Variable->Attributes == (UINT32) (-1)) {
521 return 0;
522 }
523 return (UINTN) Variable->DataSize;
524 }
525 }
526
527 /**
528 This code sets the size of variable data.
529
530 @param[in] Variable Pointer to the Variable Header.
531 @param[in] DataSize Data size to set.
532
533 **/
534 VOID
535 SetDataSizeOfVariable (
536 IN VARIABLE_HEADER *Variable,
537 IN UINTN DataSize
538 )
539 {
540 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
541
542 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
543 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
544 AuthVariable->DataSize = (UINT32) DataSize;
545 } else {
546 Variable->DataSize = (UINT32) DataSize;
547 }
548 }
549
550 /**
551
552 This code gets the pointer to the variable name.
553
554 @param Variable Pointer to the Variable Header.
555
556 @return Pointer to Variable Name which is Unicode encoding.
557
558 **/
559 CHAR16 *
560 GetVariableNamePtr (
561 IN VARIABLE_HEADER *Variable
562 )
563 {
564 return (CHAR16 *) ((UINTN) Variable + GetVariableHeaderSize ());
565 }
566
567 /**
568 This code gets the pointer to the variable guid.
569
570 @param Variable Pointer to the Variable Header.
571
572 @return A EFI_GUID* pointer to Vendor Guid.
573
574 **/
575 EFI_GUID *
576 GetVendorGuidPtr (
577 IN VARIABLE_HEADER *Variable
578 )
579 {
580 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
581
582 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
583 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
584 return &AuthVariable->VendorGuid;
585 } else {
586 return &Variable->VendorGuid;
587 }
588 }
589
590 /**
591
592 This code gets the pointer to the variable data.
593
594 @param Variable Pointer to the Variable Header.
595
596 @return Pointer to Variable Data.
597
598 **/
599 UINT8 *
600 GetVariableDataPtr (
601 IN VARIABLE_HEADER *Variable
602 )
603 {
604 UINTN Value;
605
606 //
607 // Be careful about pad size for alignment.
608 //
609 Value = (UINTN) GetVariableNamePtr (Variable);
610 Value += NameSizeOfVariable (Variable);
611 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
612
613 return (UINT8 *) Value;
614 }
615
616 /**
617 This code gets the variable data offset related to variable header.
618
619 @param Variable Pointer to the Variable Header.
620
621 @return Variable Data offset.
622
623 **/
624 UINTN
625 GetVariableDataOffset (
626 IN VARIABLE_HEADER *Variable
627 )
628 {
629 UINTN Value;
630
631 //
632 // Be careful about pad size for alignment
633 //
634 Value = GetVariableHeaderSize ();
635 Value += NameSizeOfVariable (Variable);
636 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
637
638 return Value;
639 }
640
641 /**
642
643 This code gets the pointer to the next variable header.
644
645 @param Variable Pointer to the Variable Header.
646
647 @return Pointer to next variable header.
648
649 **/
650 VARIABLE_HEADER *
651 GetNextVariablePtr (
652 IN VARIABLE_HEADER *Variable
653 )
654 {
655 UINTN Value;
656
657 Value = (UINTN) GetVariableDataPtr (Variable);
658 Value += DataSizeOfVariable (Variable);
659 Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
660
661 //
662 // Be careful about pad size for alignment.
663 //
664 return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
665 }
666
667 /**
668
669 Gets the pointer to the first variable header in given variable store area.
670
671 @param VarStoreHeader Pointer to the Variable Store Header.
672
673 @return Pointer to the first variable header.
674
675 **/
676 VARIABLE_HEADER *
677 GetStartPointer (
678 IN VARIABLE_STORE_HEADER *VarStoreHeader
679 )
680 {
681 //
682 // The end of variable store.
683 //
684 return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
685 }
686
687 /**
688
689 Gets the pointer to the end of the variable storage area.
690
691 This function gets pointer to the end of the variable storage
692 area, according to the input variable store header.
693
694 @param VarStoreHeader Pointer to the Variable Store Header.
695
696 @return Pointer to the end of the variable storage area.
697
698 **/
699 VARIABLE_HEADER *
700 GetEndPointer (
701 IN VARIABLE_STORE_HEADER *VarStoreHeader
702 )
703 {
704 //
705 // The end of variable store
706 //
707 return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
708 }
709
710 /**
711 Record variable error flag.
712
713 @param[in] Flag Variable error flag to record.
714 @param[in] VariableName Name of variable.
715 @param[in] VendorGuid Guid of variable.
716 @param[in] Attributes Attributes of the variable.
717 @param[in] VariableSize Size of the variable.
718
719 **/
720 VOID
721 RecordVarErrorFlag (
722 IN VAR_ERROR_FLAG Flag,
723 IN CHAR16 *VariableName,
724 IN EFI_GUID *VendorGuid,
725 IN UINT32 Attributes,
726 IN UINTN VariableSize
727 )
728 {
729 EFI_STATUS Status;
730 VARIABLE_POINTER_TRACK Variable;
731 VAR_ERROR_FLAG *VarErrFlag;
732 VAR_ERROR_FLAG TempFlag;
733
734 DEBUG_CODE (
735 DEBUG ((EFI_D_ERROR, "RecordVarErrorFlag (0x%02x) %s:%g - 0x%08x - 0x%x\n", Flag, VariableName, VendorGuid, Attributes, VariableSize));
736 if (Flag == VAR_ERROR_FLAG_SYSTEM_ERROR) {
737 if (AtRuntime ()) {
738 DEBUG ((EFI_D_ERROR, "CommonRuntimeVariableSpace = 0x%x - CommonVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonRuntimeVariableSpace, mVariableModuleGlobal->CommonVariableTotalSize));
739 } else {
740 DEBUG ((EFI_D_ERROR, "CommonVariableSpace = 0x%x - CommonVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonVariableSpace, mVariableModuleGlobal->CommonVariableTotalSize));
741 }
742 } else {
743 DEBUG ((EFI_D_ERROR, "CommonMaxUserVariableSpace = 0x%x - CommonUserVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonMaxUserVariableSpace, mVariableModuleGlobal->CommonUserVariableTotalSize));
744 }
745 );
746
747 if (!mEndOfDxe) {
748 //
749 // Before EndOfDxe, just record the current boot variable error flag to local variable,
750 // and leave the variable error flag in NV flash as the last boot variable error flag.
751 // After EndOfDxe in InitializeVarErrorFlag (), the variable error flag in NV flash
752 // will be initialized to this local current boot variable error flag.
753 //
754 mCurrentBootVarErrFlag &= Flag;
755 return;
756 }
757
758 //
759 // Record error flag (it should have be initialized).
760 //
761 Status = FindVariable (
762 VAR_ERROR_FLAG_NAME,
763 &gEdkiiVarErrorFlagGuid,
764 &Variable,
765 &mVariableModuleGlobal->VariableGlobal,
766 FALSE
767 );
768 if (!EFI_ERROR (Status)) {
769 VarErrFlag = (VAR_ERROR_FLAG *) GetVariableDataPtr (Variable.CurrPtr);
770 TempFlag = *VarErrFlag;
771 TempFlag &= Flag;
772 if (TempFlag == *VarErrFlag) {
773 return;
774 }
775 Status = UpdateVariableStore (
776 &mVariableModuleGlobal->VariableGlobal,
777 FALSE,
778 FALSE,
779 mVariableModuleGlobal->FvbInstance,
780 (UINTN) VarErrFlag - (UINTN) mNvVariableCache + (UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
781 sizeof (TempFlag),
782 &TempFlag
783 );
784 if (!EFI_ERROR (Status)) {
785 //
786 // Update the data in NV cache.
787 //
788 *VarErrFlag = TempFlag;
789 }
790 }
791 }
792
793 /**
794 Initialize variable error flag.
795
796 Before EndOfDxe, the variable indicates the last boot variable error flag,
797 then it means the last boot variable error flag must be got before EndOfDxe.
798 After EndOfDxe, the variable indicates the current boot variable error flag,
799 then it means the current boot variable error flag must be got after EndOfDxe.
800
801 **/
802 VOID
803 InitializeVarErrorFlag (
804 VOID
805 )
806 {
807 EFI_STATUS Status;
808 VARIABLE_POINTER_TRACK Variable;
809 VAR_ERROR_FLAG Flag;
810 VAR_ERROR_FLAG VarErrFlag;
811
812 if (!mEndOfDxe) {
813 return;
814 }
815
816 Flag = mCurrentBootVarErrFlag;
817 DEBUG ((EFI_D_INFO, "Initialize variable error flag (%02x)\n", Flag));
818
819 Status = FindVariable (
820 VAR_ERROR_FLAG_NAME,
821 &gEdkiiVarErrorFlagGuid,
822 &Variable,
823 &mVariableModuleGlobal->VariableGlobal,
824 FALSE
825 );
826 if (!EFI_ERROR (Status)) {
827 VarErrFlag = *((VAR_ERROR_FLAG *) GetVariableDataPtr (Variable.CurrPtr));
828 if (VarErrFlag == Flag) {
829 return;
830 }
831 }
832
833 UpdateVariable (
834 VAR_ERROR_FLAG_NAME,
835 &gEdkiiVarErrorFlagGuid,
836 &Flag,
837 sizeof (Flag),
838 VARIABLE_ATTRIBUTE_NV_BS_RT,
839 0,
840 0,
841 &Variable,
842 NULL
843 );
844 }
845
846 /**
847 Is user variable?
848
849 @param[in] Variable Pointer to variable header.
850
851 @retval TRUE User variable.
852 @retval FALSE System variable.
853
854 **/
855 BOOLEAN
856 IsUserVariable (
857 IN VARIABLE_HEADER *Variable
858 )
859 {
860 VAR_CHECK_VARIABLE_PROPERTY Property;
861
862 //
863 // Only after End Of Dxe, the variables belong to system variable are fixed.
864 // If PcdMaxUserNvStorageVariableSize is 0, it means user variable share the same NV storage with system variable,
865 // then no need to check if the variable is user variable or not specially.
866 //
867 if (mEndOfDxe && (mVariableModuleGlobal->CommonMaxUserVariableSpace != mVariableModuleGlobal->CommonVariableSpace)) {
868 if (VarCheckLibVariablePropertyGet (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &Property) == EFI_NOT_FOUND) {
869 return TRUE;
870 }
871 }
872 return FALSE;
873 }
874
875 /**
876 Calculate common user variable total size.
877
878 **/
879 VOID
880 CalculateCommonUserVariableTotalSize (
881 VOID
882 )
883 {
884 VARIABLE_HEADER *Variable;
885 VARIABLE_HEADER *NextVariable;
886 UINTN VariableSize;
887 VAR_CHECK_VARIABLE_PROPERTY Property;
888
889 //
890 // Only after End Of Dxe, the variables belong to system variable are fixed.
891 // If PcdMaxUserNvStorageVariableSize is 0, it means user variable share the same NV storage with system variable,
892 // then no need to calculate the common user variable total size specially.
893 //
894 if (mEndOfDxe && (mVariableModuleGlobal->CommonMaxUserVariableSpace != mVariableModuleGlobal->CommonVariableSpace)) {
895 Variable = GetStartPointer (mNvVariableCache);
896 while (IsValidVariableHeader (Variable, GetEndPointer (mNvVariableCache))) {
897 NextVariable = GetNextVariablePtr (Variable);
898 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
899 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
900 if (VarCheckLibVariablePropertyGet (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &Property) == EFI_NOT_FOUND) {
901 //
902 // No property, it is user variable.
903 //
904 mVariableModuleGlobal->CommonUserVariableTotalSize += VariableSize;
905 }
906 }
907
908 Variable = NextVariable;
909 }
910 }
911 }
912
913 /**
914 Initialize variable quota.
915
916 **/
917 VOID
918 InitializeVariableQuota (
919 VOID
920 )
921 {
922 if (!mEndOfDxe) {
923 return;
924 }
925
926 InitializeVarErrorFlag ();
927 CalculateCommonUserVariableTotalSize ();
928 }
929
930 /**
931
932 Variable store garbage collection and reclaim operation.
933
934 @param[in] VariableBase Base address of variable store.
935 @param[out] LastVariableOffset Offset of last variable.
936 @param[in] IsVolatile The variable store is volatile or not;
937 if it is non-volatile, need FTW.
938 @param[in, out] UpdatingPtrTrack Pointer to updating variable pointer track structure.
939 @param[in] NewVariable Pointer to new variable.
940 @param[in] NewVariableSize New variable size.
941
942 @return EFI_SUCCESS Reclaim operation has finished successfully.
943 @return EFI_OUT_OF_RESOURCES No enough memory resources or variable space.
944 @return Others Unexpect error happened during reclaim operation.
945
946 **/
947 EFI_STATUS
948 Reclaim (
949 IN EFI_PHYSICAL_ADDRESS VariableBase,
950 OUT UINTN *LastVariableOffset,
951 IN BOOLEAN IsVolatile,
952 IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
953 IN VARIABLE_HEADER *NewVariable,
954 IN UINTN NewVariableSize
955 )
956 {
957 VARIABLE_HEADER *Variable;
958 VARIABLE_HEADER *AddedVariable;
959 VARIABLE_HEADER *NextVariable;
960 VARIABLE_HEADER *NextAddedVariable;
961 VARIABLE_STORE_HEADER *VariableStoreHeader;
962 UINT8 *ValidBuffer;
963 UINTN MaximumBufferSize;
964 UINTN VariableSize;
965 UINTN NameSize;
966 UINT8 *CurrPtr;
967 VOID *Point0;
968 VOID *Point1;
969 BOOLEAN FoundAdded;
970 EFI_STATUS Status;
971 UINTN CommonVariableTotalSize;
972 UINTN CommonUserVariableTotalSize;
973 UINTN HwErrVariableTotalSize;
974 VARIABLE_HEADER *UpdatingVariable;
975 VARIABLE_HEADER *UpdatingInDeletedTransition;
976
977 UpdatingVariable = NULL;
978 UpdatingInDeletedTransition = NULL;
979 if (UpdatingPtrTrack != NULL) {
980 UpdatingVariable = UpdatingPtrTrack->CurrPtr;
981 UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr;
982 }
983
984 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
985
986 CommonVariableTotalSize = 0;
987 CommonUserVariableTotalSize = 0;
988 HwErrVariableTotalSize = 0;
989
990 if (IsVolatile) {
991 //
992 // Start Pointers for the variable.
993 //
994 Variable = GetStartPointer (VariableStoreHeader);
995 MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
996
997 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
998 NextVariable = GetNextVariablePtr (Variable);
999 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
1000 Variable != UpdatingVariable &&
1001 Variable != UpdatingInDeletedTransition
1002 ) {
1003 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1004 MaximumBufferSize += VariableSize;
1005 }
1006
1007 Variable = NextVariable;
1008 }
1009
1010 if (NewVariable != NULL) {
1011 //
1012 // Add the new variable size.
1013 //
1014 MaximumBufferSize += NewVariableSize;
1015 }
1016
1017 //
1018 // Reserve the 1 Bytes with Oxff to identify the
1019 // end of the variable buffer.
1020 //
1021 MaximumBufferSize += 1;
1022 ValidBuffer = AllocatePool (MaximumBufferSize);
1023 if (ValidBuffer == NULL) {
1024 return EFI_OUT_OF_RESOURCES;
1025 }
1026 } else {
1027 //
1028 // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache
1029 // as the buffer to reduce SMRAM consumption for SMM variable driver.
1030 //
1031 MaximumBufferSize = mNvVariableCache->Size;
1032 ValidBuffer = (UINT8 *) mNvVariableCache;
1033 }
1034
1035 SetMem (ValidBuffer, MaximumBufferSize, 0xff);
1036
1037 //
1038 // Copy variable store header.
1039 //
1040 CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
1041 CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
1042
1043 //
1044 // Reinstall all ADDED variables as long as they are not identical to Updating Variable.
1045 //
1046 Variable = GetStartPointer (VariableStoreHeader);
1047 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
1048 NextVariable = GetNextVariablePtr (Variable);
1049 if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) {
1050 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1051 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
1052 CurrPtr += VariableSize;
1053 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1054 HwErrVariableTotalSize += VariableSize;
1055 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1056 CommonVariableTotalSize += VariableSize;
1057 if (IsUserVariable (Variable)) {
1058 CommonUserVariableTotalSize += VariableSize;
1059 }
1060 }
1061 }
1062 Variable = NextVariable;
1063 }
1064
1065 //
1066 // Reinstall all in delete transition variables.
1067 //
1068 Variable = GetStartPointer (VariableStoreHeader);
1069 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
1070 NextVariable = GetNextVariablePtr (Variable);
1071 if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1072
1073 //
1074 // Buffer has cached all ADDED variable.
1075 // Per IN_DELETED variable, we have to guarantee that
1076 // no ADDED one in previous buffer.
1077 //
1078
1079 FoundAdded = FALSE;
1080 AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
1081 while (IsValidVariableHeader (AddedVariable, GetEndPointer ((VARIABLE_STORE_HEADER *) ValidBuffer))) {
1082 NextAddedVariable = GetNextVariablePtr (AddedVariable);
1083 NameSize = NameSizeOfVariable (AddedVariable);
1084 if (CompareGuid (GetVendorGuidPtr (AddedVariable), GetVendorGuidPtr (Variable)) &&
1085 NameSize == NameSizeOfVariable (Variable)
1086 ) {
1087 Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
1088 Point1 = (VOID *) GetVariableNamePtr (Variable);
1089 if (CompareMem (Point0, Point1, NameSize) == 0) {
1090 FoundAdded = TRUE;
1091 break;
1092 }
1093 }
1094 AddedVariable = NextAddedVariable;
1095 }
1096 if (!FoundAdded) {
1097 //
1098 // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
1099 //
1100 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1101 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
1102 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1103 CurrPtr += VariableSize;
1104 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1105 HwErrVariableTotalSize += VariableSize;
1106 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1107 CommonVariableTotalSize += VariableSize;
1108 if (IsUserVariable (Variable)) {
1109 CommonUserVariableTotalSize += VariableSize;
1110 }
1111 }
1112 }
1113 }
1114
1115 Variable = NextVariable;
1116 }
1117
1118 //
1119 // Install the new variable if it is not NULL.
1120 //
1121 if (NewVariable != NULL) {
1122 if (((UINTN) CurrPtr - (UINTN) ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) {
1123 //
1124 // No enough space to store the new variable.
1125 //
1126 Status = EFI_OUT_OF_RESOURCES;
1127 goto Done;
1128 }
1129 if (!IsVolatile) {
1130 if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1131 HwErrVariableTotalSize += NewVariableSize;
1132 } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1133 CommonVariableTotalSize += NewVariableSize;
1134 if (IsUserVariable (NewVariable)) {
1135 CommonUserVariableTotalSize += NewVariableSize;
1136 }
1137 }
1138 if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) ||
1139 (CommonVariableTotalSize > mVariableModuleGlobal->CommonVariableSpace) ||
1140 (CommonUserVariableTotalSize > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
1141 //
1142 // No enough space to store the new variable by NV or NV+HR attribute.
1143 //
1144 Status = EFI_OUT_OF_RESOURCES;
1145 goto Done;
1146 }
1147 }
1148
1149 CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize);
1150 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1151 if (UpdatingVariable != NULL) {
1152 UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
1153 UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
1154 }
1155 CurrPtr += NewVariableSize;
1156 }
1157
1158 if (IsVolatile) {
1159 //
1160 // If volatile variable store, just copy valid buffer.
1161 //
1162 SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
1163 CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) CurrPtr - (UINTN) ValidBuffer);
1164 *LastVariableOffset = (UINTN) CurrPtr - (UINTN) ValidBuffer;
1165 Status = EFI_SUCCESS;
1166 } else {
1167 //
1168 // If non-volatile variable store, perform FTW here.
1169 //
1170 Status = FtwVariableSpace (
1171 VariableBase,
1172 (VARIABLE_STORE_HEADER *) ValidBuffer
1173 );
1174 if (!EFI_ERROR (Status)) {
1175 *LastVariableOffset = (UINTN) CurrPtr - (UINTN) ValidBuffer;
1176 mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
1177 mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
1178 mVariableModuleGlobal->CommonUserVariableTotalSize = CommonUserVariableTotalSize;
1179 } else {
1180 mVariableModuleGlobal->HwErrVariableTotalSize = 0;
1181 mVariableModuleGlobal->CommonVariableTotalSize = 0;
1182 mVariableModuleGlobal->CommonUserVariableTotalSize = 0;
1183 Variable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
1184 while (IsValidVariableHeader (Variable, GetEndPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase))) {
1185 NextVariable = GetNextVariablePtr (Variable);
1186 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1187 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1188 mVariableModuleGlobal->HwErrVariableTotalSize += VariableSize;
1189 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1190 mVariableModuleGlobal->CommonVariableTotalSize += VariableSize;
1191 if (IsUserVariable (Variable)) {
1192 mVariableModuleGlobal->CommonUserVariableTotalSize += VariableSize;
1193 }
1194 }
1195
1196 Variable = NextVariable;
1197 }
1198 *LastVariableOffset = (UINTN) Variable - (UINTN) VariableBase;
1199 }
1200 }
1201
1202 Done:
1203 if (IsVolatile) {
1204 FreePool (ValidBuffer);
1205 } else {
1206 //
1207 // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back.
1208 //
1209 CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
1210 }
1211
1212 return Status;
1213 }
1214
1215 /**
1216 Find the variable in the specified variable store.
1217
1218 @param[in] VariableName Name of the variable to be found
1219 @param[in] VendorGuid Vendor GUID to be found.
1220 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1221 check at runtime when searching variable.
1222 @param[in, out] PtrTrack Variable Track Pointer structure that contains Variable Information.
1223
1224 @retval EFI_SUCCESS Variable found successfully
1225 @retval EFI_NOT_FOUND Variable not found
1226 **/
1227 EFI_STATUS
1228 FindVariableEx (
1229 IN CHAR16 *VariableName,
1230 IN EFI_GUID *VendorGuid,
1231 IN BOOLEAN IgnoreRtCheck,
1232 IN OUT VARIABLE_POINTER_TRACK *PtrTrack
1233 )
1234 {
1235 VARIABLE_HEADER *InDeletedVariable;
1236 VOID *Point;
1237
1238 PtrTrack->InDeletedTransitionPtr = NULL;
1239
1240 //
1241 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1242 //
1243 InDeletedVariable = NULL;
1244
1245 for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
1246 ; IsValidVariableHeader (PtrTrack->CurrPtr, PtrTrack->EndPtr)
1247 ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
1248 ) {
1249 if (PtrTrack->CurrPtr->State == VAR_ADDED ||
1250 PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
1251 ) {
1252 if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
1253 if (VariableName[0] == 0) {
1254 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1255 InDeletedVariable = PtrTrack->CurrPtr;
1256 } else {
1257 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1258 return EFI_SUCCESS;
1259 }
1260 } else {
1261 if (CompareGuid (VendorGuid, GetVendorGuidPtr (PtrTrack->CurrPtr))) {
1262 Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
1263
1264 ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
1265 if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
1266 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1267 InDeletedVariable = PtrTrack->CurrPtr;
1268 } else {
1269 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1270 return EFI_SUCCESS;
1271 }
1272 }
1273 }
1274 }
1275 }
1276 }
1277 }
1278
1279 PtrTrack->CurrPtr = InDeletedVariable;
1280 return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
1281 }
1282
1283
1284 /**
1285 Finds variable in storage blocks of volatile and non-volatile storage areas.
1286
1287 This code finds variable in storage blocks of volatile and non-volatile storage areas.
1288 If VariableName is an empty string, then we just return the first
1289 qualified variable without comparing VariableName and VendorGuid.
1290 If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
1291 at runtime when searching existing variable, only VariableName and VendorGuid are compared.
1292 Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
1293
1294 @param[in] VariableName Name of the variable to be found.
1295 @param[in] VendorGuid Vendor GUID to be found.
1296 @param[out] PtrTrack VARIABLE_POINTER_TRACK structure for output,
1297 including the range searched and the target position.
1298 @param[in] Global Pointer to VARIABLE_GLOBAL structure, including
1299 base of volatile variable storage area, base of
1300 NV variable storage area, and a lock.
1301 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1302 check at runtime when searching variable.
1303
1304 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
1305 VendorGuid is NULL.
1306 @retval EFI_SUCCESS Variable successfully found.
1307 @retval EFI_NOT_FOUND Variable not found
1308
1309 **/
1310 EFI_STATUS
1311 FindVariable (
1312 IN CHAR16 *VariableName,
1313 IN EFI_GUID *VendorGuid,
1314 OUT VARIABLE_POINTER_TRACK *PtrTrack,
1315 IN VARIABLE_GLOBAL *Global,
1316 IN BOOLEAN IgnoreRtCheck
1317 )
1318 {
1319 EFI_STATUS Status;
1320 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
1321 VARIABLE_STORE_TYPE Type;
1322
1323 if (VariableName[0] != 0 && VendorGuid == NULL) {
1324 return EFI_INVALID_PARAMETER;
1325 }
1326
1327 //
1328 // 0: Volatile, 1: HOB, 2: Non-Volatile.
1329 // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
1330 // make use of this mapping to implement search algorithm.
1331 //
1332 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
1333 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
1334 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
1335
1336 //
1337 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1338 //
1339 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
1340 if (VariableStoreHeader[Type] == NULL) {
1341 continue;
1342 }
1343
1344 PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
1345 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
1346 PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
1347
1348 Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
1349 if (!EFI_ERROR (Status)) {
1350 return Status;
1351 }
1352 }
1353 return EFI_NOT_FOUND;
1354 }
1355
1356 /**
1357 Get index from supported language codes according to language string.
1358
1359 This code is used to get corresponding index in supported language codes. It can handle
1360 RFC4646 and ISO639 language tags.
1361 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
1362 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
1363
1364 For example:
1365 SupportedLang = "engfraengfra"
1366 Lang = "eng"
1367 Iso639Language = TRUE
1368 The return value is "0".
1369 Another example:
1370 SupportedLang = "en;fr;en-US;fr-FR"
1371 Lang = "fr-FR"
1372 Iso639Language = FALSE
1373 The return value is "3".
1374
1375 @param SupportedLang Platform supported language codes.
1376 @param Lang Configured language.
1377 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1378
1379 @retval The index of language in the language codes.
1380
1381 **/
1382 UINTN
1383 GetIndexFromSupportedLangCodes(
1384 IN CHAR8 *SupportedLang,
1385 IN CHAR8 *Lang,
1386 IN BOOLEAN Iso639Language
1387 )
1388 {
1389 UINTN Index;
1390 UINTN CompareLength;
1391 UINTN LanguageLength;
1392
1393 if (Iso639Language) {
1394 CompareLength = ISO_639_2_ENTRY_SIZE;
1395 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
1396 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
1397 //
1398 // Successfully find the index of Lang string in SupportedLang string.
1399 //
1400 Index = Index / CompareLength;
1401 return Index;
1402 }
1403 }
1404 ASSERT (FALSE);
1405 return 0;
1406 } else {
1407 //
1408 // Compare RFC4646 language code
1409 //
1410 Index = 0;
1411 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
1412
1413 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
1414 //
1415 // Skip ';' characters in SupportedLang
1416 //
1417 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
1418 //
1419 // Determine the length of the next language code in SupportedLang
1420 //
1421 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
1422
1423 if ((CompareLength == LanguageLength) &&
1424 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
1425 //
1426 // Successfully find the index of Lang string in SupportedLang string.
1427 //
1428 return Index;
1429 }
1430 }
1431 ASSERT (FALSE);
1432 return 0;
1433 }
1434 }
1435
1436 /**
1437 Get language string from supported language codes according to index.
1438
1439 This code is used to get corresponding language strings in supported language codes. It can handle
1440 RFC4646 and ISO639 language tags.
1441 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
1442 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
1443
1444 For example:
1445 SupportedLang = "engfraengfra"
1446 Index = "1"
1447 Iso639Language = TRUE
1448 The return value is "fra".
1449 Another example:
1450 SupportedLang = "en;fr;en-US;fr-FR"
1451 Index = "1"
1452 Iso639Language = FALSE
1453 The return value is "fr".
1454
1455 @param SupportedLang Platform supported language codes.
1456 @param Index The index in supported language codes.
1457 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1458
1459 @retval The language string in the language codes.
1460
1461 **/
1462 CHAR8 *
1463 GetLangFromSupportedLangCodes (
1464 IN CHAR8 *SupportedLang,
1465 IN UINTN Index,
1466 IN BOOLEAN Iso639Language
1467 )
1468 {
1469 UINTN SubIndex;
1470 UINTN CompareLength;
1471 CHAR8 *Supported;
1472
1473 SubIndex = 0;
1474 Supported = SupportedLang;
1475 if (Iso639Language) {
1476 //
1477 // According to the index of Lang string in SupportedLang string to get the language.
1478 // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
1479 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1480 //
1481 CompareLength = ISO_639_2_ENTRY_SIZE;
1482 mVariableModuleGlobal->Lang[CompareLength] = '\0';
1483 return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
1484
1485 } else {
1486 while (TRUE) {
1487 //
1488 // Take semicolon as delimitation, sequentially traverse supported language codes.
1489 //
1490 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
1491 Supported++;
1492 }
1493 if ((*Supported == '\0') && (SubIndex != Index)) {
1494 //
1495 // Have completed the traverse, but not find corrsponding string.
1496 // This case is not allowed to happen.
1497 //
1498 ASSERT(FALSE);
1499 return NULL;
1500 }
1501 if (SubIndex == Index) {
1502 //
1503 // According to the index of Lang string in SupportedLang string to get the language.
1504 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
1505 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1506 //
1507 mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
1508 return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
1509 }
1510 SubIndex++;
1511
1512 //
1513 // Skip ';' characters in Supported
1514 //
1515 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1516 }
1517 }
1518 }
1519
1520 /**
1521 Returns a pointer to an allocated buffer that contains the best matching language
1522 from a set of supported languages.
1523
1524 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1525 code types may not be mixed in a single call to this function. This function
1526 supports a variable argument list that allows the caller to pass in a prioritized
1527 list of language codes to test against all the language codes in SupportedLanguages.
1528
1529 If SupportedLanguages is NULL, then ASSERT().
1530
1531 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1532 contains a set of language codes in the format
1533 specified by Iso639Language.
1534 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1535 in ISO 639-2 format. If FALSE, then all language
1536 codes are assumed to be in RFC 4646 language format
1537 @param[in] ... A variable argument list that contains pointers to
1538 Null-terminated ASCII strings that contain one or more
1539 language codes in the format specified by Iso639Language.
1540 The first language code from each of these language
1541 code lists is used to determine if it is an exact or
1542 close match to any of the language codes in
1543 SupportedLanguages. Close matches only apply to RFC 4646
1544 language codes, and the matching algorithm from RFC 4647
1545 is used to determine if a close match is present. If
1546 an exact or close match is found, then the matching
1547 language code from SupportedLanguages is returned. If
1548 no matches are found, then the next variable argument
1549 parameter is evaluated. The variable argument list
1550 is terminated by a NULL.
1551
1552 @retval NULL The best matching language could not be found in SupportedLanguages.
1553 @retval NULL There are not enough resources available to return the best matching
1554 language.
1555 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1556 language in SupportedLanguages.
1557
1558 **/
1559 CHAR8 *
1560 EFIAPI
1561 VariableGetBestLanguage (
1562 IN CONST CHAR8 *SupportedLanguages,
1563 IN BOOLEAN Iso639Language,
1564 ...
1565 )
1566 {
1567 VA_LIST Args;
1568 CHAR8 *Language;
1569 UINTN CompareLength;
1570 UINTN LanguageLength;
1571 CONST CHAR8 *Supported;
1572 CHAR8 *Buffer;
1573
1574 if (SupportedLanguages == NULL) {
1575 return NULL;
1576 }
1577
1578 VA_START (Args, Iso639Language);
1579 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1580 //
1581 // Default to ISO 639-2 mode
1582 //
1583 CompareLength = 3;
1584 LanguageLength = MIN (3, AsciiStrLen (Language));
1585
1586 //
1587 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1588 //
1589 if (!Iso639Language) {
1590 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1591 }
1592
1593 //
1594 // Trim back the length of Language used until it is empty
1595 //
1596 while (LanguageLength > 0) {
1597 //
1598 // Loop through all language codes in SupportedLanguages
1599 //
1600 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1601 //
1602 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1603 //
1604 if (!Iso639Language) {
1605 //
1606 // Skip ';' characters in Supported
1607 //
1608 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1609 //
1610 // Determine the length of the next language code in Supported
1611 //
1612 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1613 //
1614 // If Language is longer than the Supported, then skip to the next language
1615 //
1616 if (LanguageLength > CompareLength) {
1617 continue;
1618 }
1619 }
1620 //
1621 // See if the first LanguageLength characters in Supported match Language
1622 //
1623 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1624 VA_END (Args);
1625
1626 Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
1627 Buffer[CompareLength] = '\0';
1628 return CopyMem (Buffer, Supported, CompareLength);
1629 }
1630 }
1631
1632 if (Iso639Language) {
1633 //
1634 // If ISO 639 mode, then each language can only be tested once
1635 //
1636 LanguageLength = 0;
1637 } else {
1638 //
1639 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1640 //
1641 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1642 }
1643 }
1644 }
1645 VA_END (Args);
1646
1647 //
1648 // No matches were found
1649 //
1650 return NULL;
1651 }
1652
1653 /**
1654 This function is to check if the remaining variable space is enough to set
1655 all Variables from argument list successfully. The purpose of the check
1656 is to keep the consistency of the Variables to be in variable storage.
1657
1658 Note: Variables are assumed to be in same storage.
1659 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1660 so follow the argument sequence to check the Variables.
1661
1662 @param[in] Attributes Variable attributes for Variable entries.
1663 @param[in] Marker VA_LIST style variable argument list.
1664 The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1665 A NULL terminates the list. The VariableSize of
1666 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1667 It will be changed to variable total size as output.
1668
1669 @retval TRUE Have enough variable space to set the Variables successfully.
1670 @retval FALSE No enough variable space to set the Variables successfully.
1671
1672 **/
1673 BOOLEAN
1674 EFIAPI
1675 CheckRemainingSpaceForConsistencyInternal (
1676 IN UINT32 Attributes,
1677 IN VA_LIST Marker
1678 )
1679 {
1680 EFI_STATUS Status;
1681 VA_LIST Args;
1682 VARIABLE_ENTRY_CONSISTENCY *VariableEntry;
1683 UINT64 MaximumVariableStorageSize;
1684 UINT64 RemainingVariableStorageSize;
1685 UINT64 MaximumVariableSize;
1686 UINTN TotalNeededSize;
1687 UINTN OriginalVarSize;
1688 VARIABLE_STORE_HEADER *VariableStoreHeader;
1689 VARIABLE_POINTER_TRACK VariablePtrTrack;
1690 VARIABLE_HEADER *NextVariable;
1691 UINTN VarNameSize;
1692 UINTN VarDataSize;
1693
1694 //
1695 // Non-Volatile related.
1696 //
1697 VariableStoreHeader = mNvVariableCache;
1698
1699 Status = VariableServiceQueryVariableInfoInternal (
1700 Attributes,
1701 &MaximumVariableStorageSize,
1702 &RemainingVariableStorageSize,
1703 &MaximumVariableSize
1704 );
1705 ASSERT_EFI_ERROR (Status);
1706
1707 TotalNeededSize = 0;
1708 VA_COPY (Args, Marker);
1709 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1710 while (VariableEntry != NULL) {
1711 //
1712 // Calculate variable total size.
1713 //
1714 VarNameSize = StrSize (VariableEntry->Name);
1715 VarNameSize += GET_PAD_SIZE (VarNameSize);
1716 VarDataSize = VariableEntry->VariableSize;
1717 VarDataSize += GET_PAD_SIZE (VarDataSize);
1718 VariableEntry->VariableSize = HEADER_ALIGN (GetVariableHeaderSize () + VarNameSize + VarDataSize);
1719
1720 TotalNeededSize += VariableEntry->VariableSize;
1721 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1722 }
1723 VA_END (Args);
1724
1725 if (RemainingVariableStorageSize >= TotalNeededSize) {
1726 //
1727 // Already have enough space.
1728 //
1729 return TRUE;
1730 } else if (AtRuntime ()) {
1731 //
1732 // At runtime, no reclaim.
1733 // The original variable space of Variables can't be reused.
1734 //
1735 return FALSE;
1736 }
1737
1738 VA_COPY (Args, Marker);
1739 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1740 while (VariableEntry != NULL) {
1741 //
1742 // Check if Variable[Index] has been present and get its size.
1743 //
1744 OriginalVarSize = 0;
1745 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
1746 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
1747 Status = FindVariableEx (
1748 VariableEntry->Name,
1749 VariableEntry->Guid,
1750 FALSE,
1751 &VariablePtrTrack
1752 );
1753 if (!EFI_ERROR (Status)) {
1754 //
1755 // Get size of Variable[Index].
1756 //
1757 NextVariable = GetNextVariablePtr (VariablePtrTrack.CurrPtr);
1758 OriginalVarSize = (UINTN) NextVariable - (UINTN) VariablePtrTrack.CurrPtr;
1759 //
1760 // Add the original size of Variable[Index] to remaining variable storage size.
1761 //
1762 RemainingVariableStorageSize += OriginalVarSize;
1763 }
1764 if (VariableEntry->VariableSize > RemainingVariableStorageSize) {
1765 //
1766 // No enough space for Variable[Index].
1767 //
1768 VA_END (Args);
1769 return FALSE;
1770 }
1771 //
1772 // Sub the (new) size of Variable[Index] from remaining variable storage size.
1773 //
1774 RemainingVariableStorageSize -= VariableEntry->VariableSize;
1775 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1776 }
1777 VA_END (Args);
1778
1779 return TRUE;
1780 }
1781
1782 /**
1783 This function is to check if the remaining variable space is enough to set
1784 all Variables from argument list successfully. The purpose of the check
1785 is to keep the consistency of the Variables to be in variable storage.
1786
1787 Note: Variables are assumed to be in same storage.
1788 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1789 so follow the argument sequence to check the Variables.
1790
1791 @param[in] Attributes Variable attributes for Variable entries.
1792 @param ... The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1793 A NULL terminates the list. The VariableSize of
1794 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1795 It will be changed to variable total size as output.
1796
1797 @retval TRUE Have enough variable space to set the Variables successfully.
1798 @retval FALSE No enough variable space to set the Variables successfully.
1799
1800 **/
1801 BOOLEAN
1802 EFIAPI
1803 CheckRemainingSpaceForConsistency (
1804 IN UINT32 Attributes,
1805 ...
1806 )
1807 {
1808 VA_LIST Marker;
1809 BOOLEAN Return;
1810
1811 VA_START (Marker, Attributes);
1812
1813 Return = CheckRemainingSpaceForConsistencyInternal (Attributes, Marker);
1814
1815 VA_END (Marker);
1816
1817 return Return;
1818 }
1819
1820 /**
1821 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
1822
1823 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
1824
1825 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
1826 and are read-only. Therefore, in variable driver, only store the original value for other use.
1827
1828 @param[in] VariableName Name of variable.
1829
1830 @param[in] Data Variable data.
1831
1832 @param[in] DataSize Size of data. 0 means delete.
1833
1834 @retval EFI_SUCCESS The update operation is successful or ignored.
1835 @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime.
1836 @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation.
1837 @retval Others Other errors happened during the update operation.
1838
1839 **/
1840 EFI_STATUS
1841 AutoUpdateLangVariable (
1842 IN CHAR16 *VariableName,
1843 IN VOID *Data,
1844 IN UINTN DataSize
1845 )
1846 {
1847 EFI_STATUS Status;
1848 CHAR8 *BestPlatformLang;
1849 CHAR8 *BestLang;
1850 UINTN Index;
1851 UINT32 Attributes;
1852 VARIABLE_POINTER_TRACK Variable;
1853 BOOLEAN SetLanguageCodes;
1854 VARIABLE_ENTRY_CONSISTENCY VariableEntry[2];
1855
1856 //
1857 // Don't do updates for delete operation
1858 //
1859 if (DataSize == 0) {
1860 return EFI_SUCCESS;
1861 }
1862
1863 SetLanguageCodes = FALSE;
1864
1865 if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) {
1866 //
1867 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
1868 //
1869 if (AtRuntime ()) {
1870 return EFI_WRITE_PROTECTED;
1871 }
1872
1873 SetLanguageCodes = TRUE;
1874
1875 //
1876 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
1877 // Therefore, in variable driver, only store the original value for other use.
1878 //
1879 if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
1880 FreePool (mVariableModuleGlobal->PlatformLangCodes);
1881 }
1882 mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1883 ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
1884
1885 //
1886 // PlatformLang holds a single language from PlatformLangCodes,
1887 // so the size of PlatformLangCodes is enough for the PlatformLang.
1888 //
1889 if (mVariableModuleGlobal->PlatformLang != NULL) {
1890 FreePool (mVariableModuleGlobal->PlatformLang);
1891 }
1892 mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
1893 ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
1894
1895 } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) {
1896 //
1897 // LangCodes is a volatile variable, so it can not be updated at runtime.
1898 //
1899 if (AtRuntime ()) {
1900 return EFI_WRITE_PROTECTED;
1901 }
1902
1903 SetLanguageCodes = TRUE;
1904
1905 //
1906 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
1907 // Therefore, in variable driver, only store the original value for other use.
1908 //
1909 if (mVariableModuleGlobal->LangCodes != NULL) {
1910 FreePool (mVariableModuleGlobal->LangCodes);
1911 }
1912 mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1913 ASSERT (mVariableModuleGlobal->LangCodes != NULL);
1914 }
1915
1916 if (SetLanguageCodes
1917 && (mVariableModuleGlobal->PlatformLangCodes != NULL)
1918 && (mVariableModuleGlobal->LangCodes != NULL)) {
1919 //
1920 // Update Lang if PlatformLang is already set
1921 // Update PlatformLang if Lang is already set
1922 //
1923 Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1924 if (!EFI_ERROR (Status)) {
1925 //
1926 // Update Lang
1927 //
1928 VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME;
1929 Data = GetVariableDataPtr (Variable.CurrPtr);
1930 DataSize = DataSizeOfVariable (Variable.CurrPtr);
1931 } else {
1932 Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1933 if (!EFI_ERROR (Status)) {
1934 //
1935 // Update PlatformLang
1936 //
1937 VariableName = EFI_LANG_VARIABLE_NAME;
1938 Data = GetVariableDataPtr (Variable.CurrPtr);
1939 DataSize = DataSizeOfVariable (Variable.CurrPtr);
1940 } else {
1941 //
1942 // Neither PlatformLang nor Lang is set, directly return
1943 //
1944 return EFI_SUCCESS;
1945 }
1946 }
1947 }
1948
1949 Status = EFI_SUCCESS;
1950
1951 //
1952 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
1953 //
1954 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
1955
1956 if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) {
1957 //
1958 // Update Lang when PlatformLangCodes/LangCodes were set.
1959 //
1960 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1961 //
1962 // When setting PlatformLang, firstly get most matched language string from supported language codes.
1963 //
1964 BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
1965 if (BestPlatformLang != NULL) {
1966 //
1967 // Get the corresponding index in language codes.
1968 //
1969 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
1970
1971 //
1972 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
1973 //
1974 BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
1975
1976 //
1977 // Check the variable space for both Lang and PlatformLang variable.
1978 //
1979 VariableEntry[0].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
1980 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
1981 VariableEntry[0].Name = EFI_LANG_VARIABLE_NAME;
1982
1983 VariableEntry[1].VariableSize = AsciiStrSize (BestPlatformLang);
1984 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
1985 VariableEntry[1].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
1986 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
1987 //
1988 // No enough variable space to set both Lang and PlatformLang successfully.
1989 //
1990 Status = EFI_OUT_OF_RESOURCES;
1991 } else {
1992 //
1993 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1994 //
1995 FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1996
1997 Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang,
1998 ISO_639_2_ENTRY_SIZE + 1, Attributes, 0, 0, &Variable, NULL);
1999 }
2000
2001 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a Status: %r\n", BestPlatformLang, BestLang, Status));
2002 }
2003 }
2004
2005 } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) {
2006 //
2007 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
2008 //
2009 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
2010 //
2011 // When setting Lang, firstly get most matched language string from supported language codes.
2012 //
2013 BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
2014 if (BestLang != NULL) {
2015 //
2016 // Get the corresponding index in language codes.
2017 //
2018 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
2019
2020 //
2021 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
2022 //
2023 BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
2024
2025 //
2026 // Check the variable space for both PlatformLang and Lang variable.
2027 //
2028 VariableEntry[0].VariableSize = AsciiStrSize (BestPlatformLang);
2029 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
2030 VariableEntry[0].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
2031
2032 VariableEntry[1].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
2033 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
2034 VariableEntry[1].Name = EFI_LANG_VARIABLE_NAME;
2035 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
2036 //
2037 // No enough variable space to set both PlatformLang and Lang successfully.
2038 //
2039 Status = EFI_OUT_OF_RESOURCES;
2040 } else {
2041 //
2042 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
2043 //
2044 FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2045
2046 Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang,
2047 AsciiStrSize (BestPlatformLang), Attributes, 0, 0, &Variable, NULL);
2048 }
2049
2050 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status));
2051 }
2052 }
2053 }
2054
2055 if (SetLanguageCodes) {
2056 //
2057 // Continue to set PlatformLangCodes or LangCodes.
2058 //
2059 return EFI_SUCCESS;
2060 } else {
2061 return Status;
2062 }
2063 }
2064
2065 /**
2066 Compare two EFI_TIME data.
2067
2068
2069 @param FirstTime A pointer to the first EFI_TIME data.
2070 @param SecondTime A pointer to the second EFI_TIME data.
2071
2072 @retval TRUE The FirstTime is not later than the SecondTime.
2073 @retval FALSE The FirstTime is later than the SecondTime.
2074
2075 **/
2076 BOOLEAN
2077 VariableCompareTimeStampInternal (
2078 IN EFI_TIME *FirstTime,
2079 IN EFI_TIME *SecondTime
2080 )
2081 {
2082 if (FirstTime->Year != SecondTime->Year) {
2083 return (BOOLEAN) (FirstTime->Year < SecondTime->Year);
2084 } else if (FirstTime->Month != SecondTime->Month) {
2085 return (BOOLEAN) (FirstTime->Month < SecondTime->Month);
2086 } else if (FirstTime->Day != SecondTime->Day) {
2087 return (BOOLEAN) (FirstTime->Day < SecondTime->Day);
2088 } else if (FirstTime->Hour != SecondTime->Hour) {
2089 return (BOOLEAN) (FirstTime->Hour < SecondTime->Hour);
2090 } else if (FirstTime->Minute != SecondTime->Minute) {
2091 return (BOOLEAN) (FirstTime->Minute < SecondTime->Minute);
2092 }
2093
2094 return (BOOLEAN) (FirstTime->Second <= SecondTime->Second);
2095 }
2096
2097 /**
2098 Update the variable region with Variable information. If EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set,
2099 index of associated public key is needed.
2100
2101 @param[in] VariableName Name of variable.
2102 @param[in] VendorGuid Guid of variable.
2103 @param[in] Data Variable data.
2104 @param[in] DataSize Size of data. 0 means delete.
2105 @param[in] Attributes Attributes of the variable.
2106 @param[in] KeyIndex Index of associated public key.
2107 @param[in] MonotonicCount Value of associated monotonic count.
2108 @param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
2109 @param[in] TimeStamp Value of associated TimeStamp.
2110
2111 @retval EFI_SUCCESS The update operation is success.
2112 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
2113
2114 **/
2115 EFI_STATUS
2116 UpdateVariable (
2117 IN CHAR16 *VariableName,
2118 IN EFI_GUID *VendorGuid,
2119 IN VOID *Data,
2120 IN UINTN DataSize,
2121 IN UINT32 Attributes OPTIONAL,
2122 IN UINT32 KeyIndex OPTIONAL,
2123 IN UINT64 MonotonicCount OPTIONAL,
2124 IN OUT VARIABLE_POINTER_TRACK *CacheVariable,
2125 IN EFI_TIME *TimeStamp OPTIONAL
2126 )
2127 {
2128 EFI_STATUS Status;
2129 VARIABLE_HEADER *NextVariable;
2130 UINTN ScratchSize;
2131 UINTN MaxDataSize;
2132 UINTN VarNameOffset;
2133 UINTN VarDataOffset;
2134 UINTN VarNameSize;
2135 UINTN VarSize;
2136 BOOLEAN Volatile;
2137 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
2138 UINT8 State;
2139 VARIABLE_POINTER_TRACK *Variable;
2140 VARIABLE_POINTER_TRACK NvVariable;
2141 VARIABLE_STORE_HEADER *VariableStoreHeader;
2142 UINTN CacheOffset;
2143 UINT8 *BufferForMerge;
2144 UINTN MergedBufSize;
2145 BOOLEAN DataReady;
2146 UINTN DataOffset;
2147 BOOLEAN IsCommonVariable;
2148 BOOLEAN IsCommonUserVariable;
2149 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
2150
2151 if (mVariableModuleGlobal->FvbInstance == NULL) {
2152 //
2153 // The FVB protocol is not ready, so the EFI_VARIABLE_WRITE_ARCH_PROTOCOL is not installed.
2154 //
2155 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2156 //
2157 // Trying to update NV variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
2158 //
2159 DEBUG ((EFI_D_ERROR, "Update NV variable before EFI_VARIABLE_WRITE_ARCH_PROTOCOL ready - %r\n", EFI_NOT_AVAILABLE_YET));
2160 return EFI_NOT_AVAILABLE_YET;
2161 } else if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
2162 //
2163 // Trying to update volatile authenticated variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
2164 // The authenticated variable perhaps is not initialized, just return here.
2165 //
2166 DEBUG ((EFI_D_ERROR, "Update AUTH variable before EFI_VARIABLE_WRITE_ARCH_PROTOCOL ready - %r\n", EFI_NOT_AVAILABLE_YET));
2167 return EFI_NOT_AVAILABLE_YET;
2168 }
2169 }
2170
2171 //
2172 // Check if CacheVariable points to the variable in variable HOB.
2173 // If yes, let CacheVariable points to the variable in NV variable cache.
2174 //
2175 if ((CacheVariable->CurrPtr != NULL) &&
2176 (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) &&
2177 (CacheVariable->StartPtr == GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase))
2178 ) {
2179 CacheVariable->StartPtr = GetStartPointer (mNvVariableCache);
2180 CacheVariable->EndPtr = GetEndPointer (mNvVariableCache);
2181 CacheVariable->Volatile = FALSE;
2182 Status = FindVariableEx (VariableName, VendorGuid, FALSE, CacheVariable);
2183 if (CacheVariable->CurrPtr == NULL || EFI_ERROR (Status)) {
2184 //
2185 // There is no matched variable in NV variable cache.
2186 //
2187 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0)) || (Attributes == 0)) {
2188 //
2189 // It is to delete variable,
2190 // go to delete this variable in variable HOB and
2191 // try to flush other variables from HOB to flash.
2192 //
2193 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, FALSE, TRUE, FALSE);
2194 FlushHobVariableToFlash (VariableName, VendorGuid);
2195 return EFI_SUCCESS;
2196 }
2197 }
2198 }
2199
2200 if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
2201 Variable = CacheVariable;
2202 } else {
2203 //
2204 // Update/Delete existing NV variable.
2205 // CacheVariable points to the variable in the memory copy of Flash area
2206 // Now let Variable points to the same variable in Flash area.
2207 //
2208 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
2209 Variable = &NvVariable;
2210 Variable->StartPtr = GetStartPointer (VariableStoreHeader);
2211 Variable->EndPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->EndPtr - (UINTN)CacheVariable->StartPtr));
2212
2213 Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
2214 if (CacheVariable->InDeletedTransitionPtr != NULL) {
2215 Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
2216 } else {
2217 Variable->InDeletedTransitionPtr = NULL;
2218 }
2219 Variable->Volatile = FALSE;
2220 }
2221
2222 Fvb = mVariableModuleGlobal->FvbInstance;
2223
2224 //
2225 // Tricky part: Use scratch data area at the end of volatile variable store
2226 // as a temporary storage.
2227 //
2228 NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
2229 ScratchSize = mVariableModuleGlobal->ScratchBufferSize;
2230 SetMem (NextVariable, ScratchSize, 0xff);
2231 DataReady = FALSE;
2232
2233 if (Variable->CurrPtr != NULL) {
2234 //
2235 // Update/Delete existing variable.
2236 //
2237 if (AtRuntime ()) {
2238 //
2239 // If AtRuntime and the variable is Volatile and Runtime Access,
2240 // the volatile is ReadOnly, and SetVariable should be aborted and
2241 // return EFI_WRITE_PROTECTED.
2242 //
2243 if (Variable->Volatile) {
2244 Status = EFI_WRITE_PROTECTED;
2245 goto Done;
2246 }
2247 //
2248 // Only variable that have NV attributes can be updated/deleted in Runtime.
2249 //
2250 if ((CacheVariable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
2251 Status = EFI_INVALID_PARAMETER;
2252 goto Done;
2253 }
2254
2255 //
2256 // Only variable that have RT attributes can be updated/deleted in Runtime.
2257 //
2258 if ((CacheVariable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) {
2259 Status = EFI_INVALID_PARAMETER;
2260 goto Done;
2261 }
2262 }
2263
2264 //
2265 // Setting a data variable with no access, or zero DataSize attributes
2266 // causes it to be deleted.
2267 // When the EFI_VARIABLE_APPEND_WRITE attribute is set, DataSize of zero will
2268 // not delete the variable.
2269 //
2270 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0))|| ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0)) {
2271 if (Variable->InDeletedTransitionPtr != NULL) {
2272 //
2273 // Both ADDED and IN_DELETED_TRANSITION variable are present,
2274 // set IN_DELETED_TRANSITION one to DELETED state first.
2275 //
2276 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2277 State = CacheVariable->InDeletedTransitionPtr->State;
2278 State &= VAR_DELETED;
2279 Status = UpdateVariableStore (
2280 &mVariableModuleGlobal->VariableGlobal,
2281 Variable->Volatile,
2282 FALSE,
2283 Fvb,
2284 (UINTN) &Variable->InDeletedTransitionPtr->State,
2285 sizeof (UINT8),
2286 &State
2287 );
2288 if (!EFI_ERROR (Status)) {
2289 if (!Variable->Volatile) {
2290 CacheVariable->InDeletedTransitionPtr->State = State;
2291 }
2292 } else {
2293 goto Done;
2294 }
2295 }
2296
2297 State = CacheVariable->CurrPtr->State;
2298 State &= VAR_DELETED;
2299
2300 Status = UpdateVariableStore (
2301 &mVariableModuleGlobal->VariableGlobal,
2302 Variable->Volatile,
2303 FALSE,
2304 Fvb,
2305 (UINTN) &Variable->CurrPtr->State,
2306 sizeof (UINT8),
2307 &State
2308 );
2309 if (!EFI_ERROR (Status)) {
2310 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
2311 if (!Variable->Volatile) {
2312 CacheVariable->CurrPtr->State = State;
2313 FlushHobVariableToFlash (VariableName, VendorGuid);
2314 }
2315 }
2316 goto Done;
2317 }
2318 //
2319 // If the variable is marked valid, and the same data has been passed in,
2320 // then return to the caller immediately.
2321 //
2322 if (DataSizeOfVariable (CacheVariable->CurrPtr) == DataSize &&
2323 (CompareMem (Data, GetVariableDataPtr (CacheVariable->CurrPtr), DataSize) == 0) &&
2324 ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) &&
2325 (TimeStamp == NULL)) {
2326 //
2327 // Variable content unchanged and no need to update timestamp, just return.
2328 //
2329 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
2330 Status = EFI_SUCCESS;
2331 goto Done;
2332 } else if ((CacheVariable->CurrPtr->State == VAR_ADDED) ||
2333 (CacheVariable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
2334
2335 //
2336 // EFI_VARIABLE_APPEND_WRITE attribute only effects for existing variable.
2337 //
2338 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0) {
2339 //
2340 // NOTE: From 0 to DataOffset of NextVariable is reserved for Variable Header and Name.
2341 // From DataOffset of NextVariable is to save the existing variable data.
2342 //
2343 DataOffset = GetVariableDataOffset (CacheVariable->CurrPtr);
2344 BufferForMerge = (UINT8 *) ((UINTN) NextVariable + DataOffset);
2345 CopyMem (BufferForMerge, (UINT8 *) ((UINTN) CacheVariable->CurrPtr + DataOffset), DataSizeOfVariable (CacheVariable->CurrPtr));
2346
2347 //
2348 // Set Max Common/Auth Variable Data Size as default MaxDataSize.
2349 //
2350 if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
2351 MaxDataSize = mVariableModuleGlobal->MaxAuthVariableSize - DataOffset;
2352 } else {
2353 MaxDataSize = mVariableModuleGlobal->MaxVariableSize - DataOffset;
2354 }
2355
2356 //
2357 // Append the new data to the end of existing data.
2358 // Max Harware error record variable data size is different from common/auth variable.
2359 //
2360 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2361 MaxDataSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - DataOffset;
2362 }
2363
2364 if (DataSizeOfVariable (CacheVariable->CurrPtr) + DataSize > MaxDataSize) {
2365 //
2366 // Existing data size + new data size exceed maximum variable size limitation.
2367 //
2368 Status = EFI_INVALID_PARAMETER;
2369 goto Done;
2370 }
2371 CopyMem ((UINT8*) ((UINTN) BufferForMerge + DataSizeOfVariable (CacheVariable->CurrPtr)), Data, DataSize);
2372 MergedBufSize = DataSizeOfVariable (CacheVariable->CurrPtr) + DataSize;
2373
2374 //
2375 // BufferForMerge(from DataOffset of NextVariable) has included the merged existing and new data.
2376 //
2377 Data = BufferForMerge;
2378 DataSize = MergedBufSize;
2379 DataReady = TRUE;
2380 }
2381
2382 //
2383 // Mark the old variable as in delete transition.
2384 //
2385 State = CacheVariable->CurrPtr->State;
2386 State &= VAR_IN_DELETED_TRANSITION;
2387
2388 Status = UpdateVariableStore (
2389 &mVariableModuleGlobal->VariableGlobal,
2390 Variable->Volatile,
2391 FALSE,
2392 Fvb,
2393 (UINTN) &Variable->CurrPtr->State,
2394 sizeof (UINT8),
2395 &State
2396 );
2397 if (EFI_ERROR (Status)) {
2398 goto Done;
2399 }
2400 if (!Variable->Volatile) {
2401 CacheVariable->CurrPtr->State = State;
2402 }
2403 }
2404 } else {
2405 //
2406 // Not found existing variable. Create a new variable.
2407 //
2408
2409 if ((DataSize == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0)) {
2410 Status = EFI_SUCCESS;
2411 goto Done;
2412 }
2413
2414 //
2415 // Make sure we are trying to create a new variable.
2416 // Setting a data variable with zero DataSize or no access attributes means to delete it.
2417 //
2418 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
2419 Status = EFI_NOT_FOUND;
2420 goto Done;
2421 }
2422
2423 //
2424 // Only variable have NV|RT attribute can be created in Runtime.
2425 //
2426 if (AtRuntime () &&
2427 (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
2428 Status = EFI_INVALID_PARAMETER;
2429 goto Done;
2430 }
2431 }
2432
2433 //
2434 // Function part - create a new variable and copy the data.
2435 // Both update a variable and create a variable will come here.
2436 //
2437 NextVariable->StartId = VARIABLE_DATA;
2438 //
2439 // NextVariable->State = VAR_ADDED;
2440 //
2441 NextVariable->Reserved = 0;
2442 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
2443 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) NextVariable;
2444 AuthVariable->PubKeyIndex = KeyIndex;
2445 AuthVariable->MonotonicCount = MonotonicCount;
2446 ZeroMem (&AuthVariable->TimeStamp, sizeof (EFI_TIME));
2447
2448 if (((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) &&
2449 (TimeStamp != NULL)) {
2450 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) {
2451 CopyMem (&AuthVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2452 } else {
2453 //
2454 // In the case when the EFI_VARIABLE_APPEND_WRITE attribute is set, only
2455 // when the new TimeStamp value is later than the current timestamp associated
2456 // with the variable, we need associate the new timestamp with the updated value.
2457 //
2458 if (Variable->CurrPtr != NULL) {
2459 if (VariableCompareTimeStampInternal (&(((AUTHENTICATED_VARIABLE_HEADER *) CacheVariable->CurrPtr)->TimeStamp), TimeStamp)) {
2460 CopyMem (&AuthVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2461 }
2462 }
2463 }
2464 }
2465 }
2466
2467 //
2468 // The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned
2469 // Attributes bitmask parameter of a GetVariable() call.
2470 //
2471 NextVariable->Attributes = Attributes & (~EFI_VARIABLE_APPEND_WRITE);
2472
2473 VarNameOffset = GetVariableHeaderSize ();
2474 VarNameSize = StrSize (VariableName);
2475 CopyMem (
2476 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
2477 VariableName,
2478 VarNameSize
2479 );
2480 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
2481
2482 //
2483 // If DataReady is TRUE, it means the variable data has been saved into
2484 // NextVariable during EFI_VARIABLE_APPEND_WRITE operation preparation.
2485 //
2486 if (!DataReady) {
2487 CopyMem (
2488 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
2489 Data,
2490 DataSize
2491 );
2492 }
2493
2494 CopyMem (GetVendorGuidPtr (NextVariable), VendorGuid, sizeof (EFI_GUID));
2495 //
2496 // There will be pad bytes after Data, the NextVariable->NameSize and
2497 // NextVariable->DataSize should not include pad size so that variable
2498 // service can get actual size in GetVariable.
2499 //
2500 SetNameSizeOfVariable (NextVariable, VarNameSize);
2501 SetDataSizeOfVariable (NextVariable, DataSize);
2502
2503 //
2504 // The actual size of the variable that stores in storage should
2505 // include pad size.
2506 //
2507 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
2508 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2509 //
2510 // Create a nonvolatile variable.
2511 //
2512 Volatile = FALSE;
2513
2514 IsCommonVariable = FALSE;
2515 IsCommonUserVariable = FALSE;
2516 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0) {
2517 IsCommonVariable = TRUE;
2518 IsCommonUserVariable = IsUserVariable (NextVariable);
2519 }
2520 if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
2521 && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
2522 || (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonVariableSpace))
2523 || (IsCommonVariable && AtRuntime () && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonRuntimeVariableSpace))
2524 || (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace))) {
2525 if (AtRuntime ()) {
2526 if (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
2527 RecordVarErrorFlag (VAR_ERROR_FLAG_USER_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2528 }
2529 if (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonRuntimeVariableSpace)) {
2530 RecordVarErrorFlag (VAR_ERROR_FLAG_SYSTEM_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2531 }
2532 Status = EFI_OUT_OF_RESOURCES;
2533 goto Done;
2534 }
2535 //
2536 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2537 //
2538 Status = Reclaim (
2539 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2540 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2541 FALSE,
2542 Variable,
2543 NextVariable,
2544 HEADER_ALIGN (VarSize)
2545 );
2546 if (!EFI_ERROR (Status)) {
2547 //
2548 // The new variable has been integrated successfully during reclaiming.
2549 //
2550 if (Variable->CurrPtr != NULL) {
2551 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2552 CacheVariable->InDeletedTransitionPtr = NULL;
2553 }
2554 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE);
2555 FlushHobVariableToFlash (VariableName, VendorGuid);
2556 } else {
2557 if (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
2558 RecordVarErrorFlag (VAR_ERROR_FLAG_USER_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2559 }
2560 if (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonVariableSpace)) {
2561 RecordVarErrorFlag (VAR_ERROR_FLAG_SYSTEM_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2562 }
2563 }
2564 goto Done;
2565 }
2566 //
2567 // Four steps
2568 // 1. Write variable header
2569 // 2. Set variable state to header valid
2570 // 3. Write variable data
2571 // 4. Set variable state to valid
2572 //
2573 //
2574 // Step 1:
2575 //
2576 CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
2577 Status = UpdateVariableStore (
2578 &mVariableModuleGlobal->VariableGlobal,
2579 FALSE,
2580 TRUE,
2581 Fvb,
2582 mVariableModuleGlobal->NonVolatileLastVariableOffset,
2583 (UINT32) GetVariableHeaderSize (),
2584 (UINT8 *) NextVariable
2585 );
2586
2587 if (EFI_ERROR (Status)) {
2588 goto Done;
2589 }
2590
2591 //
2592 // Step 2:
2593 //
2594 NextVariable->State = VAR_HEADER_VALID_ONLY;
2595 Status = UpdateVariableStore (
2596 &mVariableModuleGlobal->VariableGlobal,
2597 FALSE,
2598 TRUE,
2599 Fvb,
2600 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2601 sizeof (UINT8),
2602 &NextVariable->State
2603 );
2604
2605 if (EFI_ERROR (Status)) {
2606 goto Done;
2607 }
2608 //
2609 // Step 3:
2610 //
2611 Status = UpdateVariableStore (
2612 &mVariableModuleGlobal->VariableGlobal,
2613 FALSE,
2614 TRUE,
2615 Fvb,
2616 mVariableModuleGlobal->NonVolatileLastVariableOffset + GetVariableHeaderSize (),
2617 (UINT32) (VarSize - GetVariableHeaderSize ()),
2618 (UINT8 *) NextVariable + GetVariableHeaderSize ()
2619 );
2620
2621 if (EFI_ERROR (Status)) {
2622 goto Done;
2623 }
2624 //
2625 // Step 4:
2626 //
2627 NextVariable->State = VAR_ADDED;
2628 Status = UpdateVariableStore (
2629 &mVariableModuleGlobal->VariableGlobal,
2630 FALSE,
2631 TRUE,
2632 Fvb,
2633 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2634 sizeof (UINT8),
2635 &NextVariable->State
2636 );
2637
2638 if (EFI_ERROR (Status)) {
2639 goto Done;
2640 }
2641
2642 mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2643
2644 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
2645 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
2646 } else {
2647 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
2648 if (IsCommonUserVariable) {
2649 mVariableModuleGlobal->CommonUserVariableTotalSize += HEADER_ALIGN (VarSize);
2650 }
2651 }
2652 //
2653 // update the memory copy of Flash region.
2654 //
2655 CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
2656 } else {
2657 //
2658 // Create a volatile variable.
2659 //
2660 Volatile = TRUE;
2661
2662 if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
2663 ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
2664 //
2665 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2666 //
2667 Status = Reclaim (
2668 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
2669 &mVariableModuleGlobal->VolatileLastVariableOffset,
2670 TRUE,
2671 Variable,
2672 NextVariable,
2673 HEADER_ALIGN (VarSize)
2674 );
2675 if (!EFI_ERROR (Status)) {
2676 //
2677 // The new variable has been integrated successfully during reclaiming.
2678 //
2679 if (Variable->CurrPtr != NULL) {
2680 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2681 CacheVariable->InDeletedTransitionPtr = NULL;
2682 }
2683 UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE);
2684 }
2685 goto Done;
2686 }
2687
2688 NextVariable->State = VAR_ADDED;
2689 Status = UpdateVariableStore (
2690 &mVariableModuleGlobal->VariableGlobal,
2691 TRUE,
2692 TRUE,
2693 Fvb,
2694 mVariableModuleGlobal->VolatileLastVariableOffset,
2695 (UINT32) VarSize,
2696 (UINT8 *) NextVariable
2697 );
2698
2699 if (EFI_ERROR (Status)) {
2700 goto Done;
2701 }
2702
2703 mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2704 }
2705
2706 //
2707 // Mark the old variable as deleted.
2708 //
2709 if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
2710 if (Variable->InDeletedTransitionPtr != NULL) {
2711 //
2712 // Both ADDED and IN_DELETED_TRANSITION old variable are present,
2713 // set IN_DELETED_TRANSITION one to DELETED state first.
2714 //
2715 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2716 State = CacheVariable->InDeletedTransitionPtr->State;
2717 State &= VAR_DELETED;
2718 Status = UpdateVariableStore (
2719 &mVariableModuleGlobal->VariableGlobal,
2720 Variable->Volatile,
2721 FALSE,
2722 Fvb,
2723 (UINTN) &Variable->InDeletedTransitionPtr->State,
2724 sizeof (UINT8),
2725 &State
2726 );
2727 if (!EFI_ERROR (Status)) {
2728 if (!Variable->Volatile) {
2729 CacheVariable->InDeletedTransitionPtr->State = State;
2730 }
2731 } else {
2732 goto Done;
2733 }
2734 }
2735
2736 State = Variable->CurrPtr->State;
2737 State &= VAR_DELETED;
2738
2739 Status = UpdateVariableStore (
2740 &mVariableModuleGlobal->VariableGlobal,
2741 Variable->Volatile,
2742 FALSE,
2743 Fvb,
2744 (UINTN) &Variable->CurrPtr->State,
2745 sizeof (UINT8),
2746 &State
2747 );
2748 if (!EFI_ERROR (Status) && !Variable->Volatile) {
2749 CacheVariable->CurrPtr->State = State;
2750 }
2751 }
2752
2753 if (!EFI_ERROR (Status)) {
2754 UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
2755 if (!Volatile) {
2756 FlushHobVariableToFlash (VariableName, VendorGuid);
2757 }
2758 }
2759
2760 Done:
2761 return Status;
2762 }
2763
2764 /**
2765
2766 This code finds variable in storage blocks (Volatile or Non-Volatile).
2767
2768 Caution: This function may receive untrusted input.
2769 This function may be invoked in SMM mode, and datasize is external input.
2770 This function will do basic validation, before parse the data.
2771
2772 @param VariableName Name of Variable to be found.
2773 @param VendorGuid Variable vendor GUID.
2774 @param Attributes Attribute value of the variable found.
2775 @param DataSize Size of Data found. If size is less than the
2776 data, this value contains the required size.
2777 @param Data The buffer to return the contents of the variable. May be NULL
2778 with a zero DataSize in order to determine the size buffer needed.
2779
2780 @return EFI_INVALID_PARAMETER Invalid parameter.
2781 @return EFI_SUCCESS Find the specified variable.
2782 @return EFI_NOT_FOUND Not found.
2783 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2784
2785 **/
2786 EFI_STATUS
2787 EFIAPI
2788 VariableServiceGetVariable (
2789 IN CHAR16 *VariableName,
2790 IN EFI_GUID *VendorGuid,
2791 OUT UINT32 *Attributes OPTIONAL,
2792 IN OUT UINTN *DataSize,
2793 OUT VOID *Data OPTIONAL
2794 )
2795 {
2796 EFI_STATUS Status;
2797 VARIABLE_POINTER_TRACK Variable;
2798 UINTN VarDataSize;
2799
2800 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
2801 return EFI_INVALID_PARAMETER;
2802 }
2803
2804 if (VariableName[0] == 0) {
2805 return EFI_NOT_FOUND;
2806 }
2807
2808 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2809
2810 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2811 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2812 goto Done;
2813 }
2814
2815 //
2816 // Get data size
2817 //
2818 VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
2819 ASSERT (VarDataSize != 0);
2820
2821 if (*DataSize >= VarDataSize) {
2822 if (Data == NULL) {
2823 Status = EFI_INVALID_PARAMETER;
2824 goto Done;
2825 }
2826
2827 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
2828 if (Attributes != NULL) {
2829 *Attributes = Variable.CurrPtr->Attributes;
2830 }
2831
2832 *DataSize = VarDataSize;
2833 UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
2834
2835 Status = EFI_SUCCESS;
2836 goto Done;
2837 } else {
2838 *DataSize = VarDataSize;
2839 Status = EFI_BUFFER_TOO_SMALL;
2840 goto Done;
2841 }
2842
2843 Done:
2844 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2845 return Status;
2846 }
2847
2848 /**
2849 This code Finds the Next available variable.
2850
2851 Caution: This function may receive untrusted input.
2852 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
2853
2854 @param[in] VariableName Pointer to variable name.
2855 @param[in] VendorGuid Variable Vendor Guid.
2856 @param[out] VariablePtr Pointer to variable header address.
2857
2858 @retval EFI_SUCCESS The function completed successfully.
2859 @retval EFI_NOT_FOUND The next variable was not found.
2860 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while VendorGuid is NULL.
2861 @retval EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name and
2862 GUID of an existing variable.
2863
2864 **/
2865 EFI_STATUS
2866 EFIAPI
2867 VariableServiceGetNextVariableInternal (
2868 IN CHAR16 *VariableName,
2869 IN EFI_GUID *VendorGuid,
2870 OUT VARIABLE_HEADER **VariablePtr
2871 )
2872 {
2873 VARIABLE_STORE_TYPE Type;
2874 VARIABLE_POINTER_TRACK Variable;
2875 VARIABLE_POINTER_TRACK VariableInHob;
2876 VARIABLE_POINTER_TRACK VariablePtrTrack;
2877 EFI_STATUS Status;
2878 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
2879
2880 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2881 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2882 //
2883 // For VariableName is an empty string, FindVariable() will try to find and return
2884 // the first qualified variable, and if FindVariable() returns error (EFI_NOT_FOUND)
2885 // as no any variable is found, still go to return the error (EFI_NOT_FOUND).
2886 //
2887 if (VariableName[0] != 0) {
2888 //
2889 // For VariableName is not an empty string, and FindVariable() returns error as
2890 // VariableName and VendorGuid are not a name and GUID of an existing variable,
2891 // there is no way to get next variable, follow spec to return EFI_INVALID_PARAMETER.
2892 //
2893 Status = EFI_INVALID_PARAMETER;
2894 }
2895 goto Done;
2896 }
2897
2898 if (VariableName[0] != 0) {
2899 //
2900 // If variable name is not NULL, get next variable.
2901 //
2902 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2903 }
2904
2905 //
2906 // 0: Volatile, 1: HOB, 2: Non-Volatile.
2907 // The index and attributes mapping must be kept in this order as FindVariable
2908 // makes use of this mapping to implement search algorithm.
2909 //
2910 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
2911 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2912 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
2913
2914 while (TRUE) {
2915 //
2916 // Switch from Volatile to HOB, to Non-Volatile.
2917 //
2918 while (!IsValidVariableHeader (Variable.CurrPtr, Variable.EndPtr)) {
2919 //
2920 // Find current storage index
2921 //
2922 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
2923 if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
2924 break;
2925 }
2926 }
2927 ASSERT (Type < VariableStoreTypeMax);
2928 //
2929 // Switch to next storage
2930 //
2931 for (Type++; Type < VariableStoreTypeMax; Type++) {
2932 if (VariableStoreHeader[Type] != NULL) {
2933 break;
2934 }
2935 }
2936 //
2937 // Capture the case that
2938 // 1. current storage is the last one, or
2939 // 2. no further storage
2940 //
2941 if (Type == VariableStoreTypeMax) {
2942 Status = EFI_NOT_FOUND;
2943 goto Done;
2944 }
2945 Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
2946 Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
2947 Variable.CurrPtr = Variable.StartPtr;
2948 }
2949
2950 //
2951 // Variable is found
2952 //
2953 if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2954 if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
2955 if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2956 //
2957 // If it is a IN_DELETED_TRANSITION variable,
2958 // and there is also a same ADDED one at the same time,
2959 // don't return it.
2960 //
2961 VariablePtrTrack.StartPtr = Variable.StartPtr;
2962 VariablePtrTrack.EndPtr = Variable.EndPtr;
2963 Status = FindVariableEx (
2964 GetVariableNamePtr (Variable.CurrPtr),
2965 GetVendorGuidPtr (Variable.CurrPtr),
2966 FALSE,
2967 &VariablePtrTrack
2968 );
2969 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
2970 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2971 continue;
2972 }
2973 }
2974
2975 //
2976 // Don't return NV variable when HOB overrides it
2977 //
2978 if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
2979 (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
2980 ) {
2981 VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
2982 VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
2983 Status = FindVariableEx (
2984 GetVariableNamePtr (Variable.CurrPtr),
2985 GetVendorGuidPtr (Variable.CurrPtr),
2986 FALSE,
2987 &VariableInHob
2988 );
2989 if (!EFI_ERROR (Status)) {
2990 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2991 continue;
2992 }
2993 }
2994
2995 *VariablePtr = Variable.CurrPtr;
2996 Status = EFI_SUCCESS;
2997 goto Done;
2998 }
2999 }
3000
3001 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
3002 }
3003
3004 Done:
3005 return Status;
3006 }
3007
3008 /**
3009
3010 This code Finds the Next available variable.
3011
3012 Caution: This function may receive untrusted input.
3013 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3014
3015 @param VariableNameSize The size of the VariableName buffer. The size must be large
3016 enough to fit input string supplied in VariableName buffer.
3017 @param VariableName Pointer to variable name.
3018 @param VendorGuid Variable Vendor Guid.
3019
3020 @retval EFI_SUCCESS The function completed successfully.
3021 @retval EFI_NOT_FOUND The next variable was not found.
3022 @retval EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.
3023 VariableNameSize has been updated with the size needed to complete the request.
3024 @retval EFI_INVALID_PARAMETER VariableNameSize is NULL.
3025 @retval EFI_INVALID_PARAMETER VariableName is NULL.
3026 @retval EFI_INVALID_PARAMETER VendorGuid is NULL.
3027 @retval EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name and
3028 GUID of an existing variable.
3029 @retval EFI_INVALID_PARAMETER Null-terminator is not found in the first VariableNameSize bytes of
3030 the input VariableName buffer.
3031
3032 **/
3033 EFI_STATUS
3034 EFIAPI
3035 VariableServiceGetNextVariableName (
3036 IN OUT UINTN *VariableNameSize,
3037 IN OUT CHAR16 *VariableName,
3038 IN OUT EFI_GUID *VendorGuid
3039 )
3040 {
3041 EFI_STATUS Status;
3042 UINTN MaxLen;
3043 UINTN VarNameSize;
3044 VARIABLE_HEADER *VariablePtr;
3045
3046 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
3047 return EFI_INVALID_PARAMETER;
3048 }
3049
3050 //
3051 // Calculate the possible maximum length of name string, including the Null terminator.
3052 //
3053 MaxLen = *VariableNameSize / sizeof (CHAR16);
3054 if ((MaxLen == 0) || (StrnLenS (VariableName, MaxLen) == MaxLen)) {
3055 //
3056 // Null-terminator is not found in the first VariableNameSize bytes of the input VariableName buffer,
3057 // follow spec to return EFI_INVALID_PARAMETER.
3058 //
3059 return EFI_INVALID_PARAMETER;
3060 }
3061
3062 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3063
3064 Status = VariableServiceGetNextVariableInternal (VariableName, VendorGuid, &VariablePtr);
3065 if (!EFI_ERROR (Status)) {
3066 VarNameSize = NameSizeOfVariable (VariablePtr);
3067 ASSERT (VarNameSize != 0);
3068 if (VarNameSize <= *VariableNameSize) {
3069 CopyMem (VariableName, GetVariableNamePtr (VariablePtr), VarNameSize);
3070 CopyMem (VendorGuid, GetVendorGuidPtr (VariablePtr), sizeof (EFI_GUID));
3071 Status = EFI_SUCCESS;
3072 } else {
3073 Status = EFI_BUFFER_TOO_SMALL;
3074 }
3075
3076 *VariableNameSize = VarNameSize;
3077 }
3078
3079 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3080 return Status;
3081 }
3082
3083 /**
3084
3085 This code sets variable in storage blocks (Volatile or Non-Volatile).