]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/Variable/RuntimeDxe/Variable.c
d68dfbe648ce570bf614f717f251e44c0293075b
[mirror_edk2.git] / MdeModulePkg / Universal / Variable / RuntimeDxe / Variable.c
1 /** @file
2 The common variable operation routines shared by DXE_RUNTIME variable
3 module and DXE_SMM variable module.
4
5 Caution: This module requires additional review when modified.
6 This driver will have external input - variable data. They may be input in SMM mode.
7 This external input must be validated carefully to avoid security issue like
8 buffer overflow, integer overflow.
9
10 VariableServiceGetNextVariableName () and VariableServiceQueryVariableInfo() are external API.
11 They need check input parameter.
12
13 VariableServiceGetVariable() and VariableServiceSetVariable() are external API
14 to receive datasize and data buffer. The size should be checked carefully.
15
16 VariableServiceSetVariable() should also check authenticate data to avoid buffer overflow,
17 integer overflow. It should also check attribute to avoid authentication bypass.
18
19 Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
20 (C) Copyright 2015 Hewlett Packard Enterprise Development LP<BR>
21 This program and the accompanying materials
22 are licensed and made available under the terms and conditions of the BSD License
23 which accompanies this distribution. The full text of the license may be found at
24 http://opensource.org/licenses/bsd-license.php
25
26 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
27 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
28
29 **/
30
31 #include "Variable.h"
32
33 VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
34
35 ///
36 /// Define a memory cache that improves the search performance for a variable.
37 ///
38 VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
39
40 ///
41 /// Memory cache of Fv Header.
42 ///
43 EFI_FIRMWARE_VOLUME_HEADER *mNvFvHeaderCache = NULL;
44
45 ///
46 /// The memory entry used for variable statistics data.
47 ///
48 VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
49
50 ///
51 /// The flag to indicate whether the platform has left the DXE phase of execution.
52 ///
53 BOOLEAN mEndOfDxe = FALSE;
54
55 ///
56 /// It indicates the var check request source.
57 /// In the implementation, DXE is regarded as untrusted, and SMM is trusted.
58 ///
59 VAR_CHECK_REQUEST_SOURCE mRequestSource = VarCheckFromUntrusted;
60
61 //
62 // It will record the current boot error flag before EndOfDxe.
63 //
64 VAR_ERROR_FLAG mCurrentBootVarErrFlag = VAR_ERROR_FLAG_NO_ERROR;
65
66 VARIABLE_ENTRY_PROPERTY mVariableEntryProperty[] = {
67 {
68 &gEdkiiVarErrorFlagGuid,
69 VAR_ERROR_FLAG_NAME,
70 {
71 VAR_CHECK_VARIABLE_PROPERTY_REVISION,
72 VAR_CHECK_VARIABLE_PROPERTY_READ_ONLY,
73 VARIABLE_ATTRIBUTE_NV_BS_RT,
74 sizeof (VAR_ERROR_FLAG),
75 sizeof (VAR_ERROR_FLAG)
76 }
77 },
78 };
79
80 AUTH_VAR_LIB_CONTEXT_IN mAuthContextIn = {
81 AUTH_VAR_LIB_CONTEXT_IN_STRUCT_VERSION,
82 //
83 // StructSize, TO BE FILLED
84 //
85 0,
86 //
87 // MaxAuthVariableSize, TO BE FILLED
88 //
89 0,
90 VariableExLibFindVariable,
91 VariableExLibFindNextVariable,
92 VariableExLibUpdateVariable,
93 VariableExLibGetScratchBuffer,
94 VariableExLibCheckRemainingSpaceForConsistency,
95 VariableExLibAtRuntime,
96 };
97
98 AUTH_VAR_LIB_CONTEXT_OUT mAuthContextOut;
99
100 /**
101 Routine used to track statistical information about variable usage.
102 The data is stored in the EFI system table so it can be accessed later.
103 VariableInfo.efi can dump out the table. Only Boot Services variable
104 accesses are tracked by this code. The PcdVariableCollectStatistics
105 build flag controls if this feature is enabled.
106
107 A read that hits in the cache will have Read and Cache true for
108 the transaction. Data is allocated by this routine, but never
109 freed.
110
111 @param[in] VariableName Name of the Variable to track.
112 @param[in] VendorGuid Guid of the Variable to track.
113 @param[in] Volatile TRUE if volatile FALSE if non-volatile.
114 @param[in] Read TRUE if GetVariable() was called.
115 @param[in] Write TRUE if SetVariable() was called.
116 @param[in] Delete TRUE if deleted via SetVariable().
117 @param[in] Cache TRUE for a cache hit.
118
119 **/
120 VOID
121 UpdateVariableInfo (
122 IN CHAR16 *VariableName,
123 IN EFI_GUID *VendorGuid,
124 IN BOOLEAN Volatile,
125 IN BOOLEAN Read,
126 IN BOOLEAN Write,
127 IN BOOLEAN Delete,
128 IN BOOLEAN Cache
129 )
130 {
131 VARIABLE_INFO_ENTRY *Entry;
132
133 if (FeaturePcdGet (PcdVariableCollectStatistics)) {
134
135 if (AtRuntime ()) {
136 // Don't collect statistics at runtime.
137 return;
138 }
139
140 if (gVariableInfo == NULL) {
141 //
142 // On the first call allocate a entry and place a pointer to it in
143 // the EFI System Table.
144 //
145 gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
146 ASSERT (gVariableInfo != NULL);
147
148 CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
149 gVariableInfo->Name = AllocateZeroPool (StrSize (VariableName));
150 ASSERT (gVariableInfo->Name != NULL);
151 StrCpyS (gVariableInfo->Name, StrSize(VariableName)/sizeof(CHAR16), VariableName);
152 gVariableInfo->Volatile = Volatile;
153 }
154
155
156 for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
157 if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
158 if (StrCmp (VariableName, Entry->Name) == 0) {
159 if (Read) {
160 Entry->ReadCount++;
161 }
162 if (Write) {
163 Entry->WriteCount++;
164 }
165 if (Delete) {
166 Entry->DeleteCount++;
167 }
168 if (Cache) {
169 Entry->CacheCount++;
170 }
171
172 return;
173 }
174 }
175
176 if (Entry->Next == NULL) {
177 //
178 // If the entry is not in the table add it.
179 // Next iteration of the loop will fill in the data.
180 //
181 Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
182 ASSERT (Entry->Next != NULL);
183
184 CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
185 Entry->Next->Name = AllocateZeroPool (StrSize (VariableName));
186 ASSERT (Entry->Next->Name != NULL);
187 StrCpyS (Entry->Next->Name, StrSize(VariableName)/sizeof(CHAR16), VariableName);
188 Entry->Next->Volatile = Volatile;
189 }
190
191 }
192 }
193 }
194
195
196 /**
197
198 This code checks if variable header is valid or not.
199
200 @param Variable Pointer to the Variable Header.
201 @param VariableStoreEnd Pointer to the Variable Store End.
202
203 @retval TRUE Variable header is valid.
204 @retval FALSE Variable header is not valid.
205
206 **/
207 BOOLEAN
208 IsValidVariableHeader (
209 IN VARIABLE_HEADER *Variable,
210 IN VARIABLE_HEADER *VariableStoreEnd
211 )
212 {
213 if ((Variable == NULL) || (Variable >= VariableStoreEnd) || (Variable->StartId != VARIABLE_DATA)) {
214 //
215 // Variable is NULL or has reached the end of variable store,
216 // or the StartId is not correct.
217 //
218 return FALSE;
219 }
220
221 return TRUE;
222 }
223
224
225 /**
226
227 This function writes data to the FWH at the correct LBA even if the LBAs
228 are fragmented.
229
230 @param Global Pointer to VARAIBLE_GLOBAL structure.
231 @param Volatile Point out the Variable is Volatile or Non-Volatile.
232 @param SetByIndex TRUE if target pointer is given as index.
233 FALSE if target pointer is absolute.
234 @param Fvb Pointer to the writable FVB protocol.
235 @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
236 structure.
237 @param DataSize Size of data to be written.
238 @param Buffer Pointer to the buffer from which data is written.
239
240 @retval EFI_INVALID_PARAMETER Parameters not valid.
241 @retval EFI_SUCCESS Variable store successfully updated.
242
243 **/
244 EFI_STATUS
245 UpdateVariableStore (
246 IN VARIABLE_GLOBAL *Global,
247 IN BOOLEAN Volatile,
248 IN BOOLEAN SetByIndex,
249 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
250 IN UINTN DataPtrIndex,
251 IN UINT32 DataSize,
252 IN UINT8 *Buffer
253 )
254 {
255 EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
256 UINTN BlockIndex2;
257 UINTN LinearOffset;
258 UINTN CurrWriteSize;
259 UINTN CurrWritePtr;
260 UINT8 *CurrBuffer;
261 EFI_LBA LbaNumber;
262 UINTN Size;
263 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
264 VARIABLE_STORE_HEADER *VolatileBase;
265 EFI_PHYSICAL_ADDRESS FvVolHdr;
266 EFI_PHYSICAL_ADDRESS DataPtr;
267 EFI_STATUS Status;
268
269 FwVolHeader = NULL;
270 DataPtr = DataPtrIndex;
271
272 //
273 // Check if the Data is Volatile.
274 //
275 if (!Volatile) {
276 if (Fvb == NULL) {
277 return EFI_INVALID_PARAMETER;
278 }
279 Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
280 ASSERT_EFI_ERROR (Status);
281
282 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
283 //
284 // Data Pointer should point to the actual Address where data is to be
285 // written.
286 //
287 if (SetByIndex) {
288 DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
289 }
290
291 if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
292 return EFI_INVALID_PARAMETER;
293 }
294 } else {
295 //
296 // Data Pointer should point to the actual Address where data is to be
297 // written.
298 //
299 VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
300 if (SetByIndex) {
301 DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
302 }
303
304 if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
305 return EFI_INVALID_PARAMETER;
306 }
307
308 //
309 // If Volatile Variable just do a simple mem copy.
310 //
311 CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
312 return EFI_SUCCESS;
313 }
314
315 //
316 // If we are here we are dealing with Non-Volatile Variables.
317 //
318 LinearOffset = (UINTN) FwVolHeader;
319 CurrWritePtr = (UINTN) DataPtr;
320 CurrWriteSize = DataSize;
321 CurrBuffer = Buffer;
322 LbaNumber = 0;
323
324 if (CurrWritePtr < LinearOffset) {
325 return EFI_INVALID_PARAMETER;
326 }
327
328 for (PtrBlockMapEntry = mNvFvHeaderCache->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
329 for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
330 //
331 // Check to see if the Variable Writes are spanning through multiple
332 // blocks.
333 //
334 if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
335 if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
336 Status = Fvb->Write (
337 Fvb,
338 LbaNumber,
339 (UINTN) (CurrWritePtr - LinearOffset),
340 &CurrWriteSize,
341 CurrBuffer
342 );
343 return Status;
344 } else {
345 Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
346 Status = Fvb->Write (
347 Fvb,
348 LbaNumber,
349 (UINTN) (CurrWritePtr - LinearOffset),
350 &Size,
351 CurrBuffer
352 );
353 if (EFI_ERROR (Status)) {
354 return Status;
355 }
356
357 CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
358 CurrBuffer = CurrBuffer + Size;
359 CurrWriteSize = CurrWriteSize - Size;
360 }
361 }
362
363 LinearOffset += PtrBlockMapEntry->Length;
364 LbaNumber++;
365 }
366 }
367
368 return EFI_SUCCESS;
369 }
370
371
372 /**
373
374 This code gets the current status of Variable Store.
375
376 @param VarStoreHeader Pointer to the Variable Store Header.
377
378 @retval EfiRaw Variable store status is raw.
379 @retval EfiValid Variable store status is valid.
380 @retval EfiInvalid Variable store status is invalid.
381
382 **/
383 VARIABLE_STORE_STATUS
384 GetVariableStoreStatus (
385 IN VARIABLE_STORE_HEADER *VarStoreHeader
386 )
387 {
388 if ((CompareGuid (&VarStoreHeader->Signature, &gEfiAuthenticatedVariableGuid) ||
389 CompareGuid (&VarStoreHeader->Signature, &gEfiVariableGuid)) &&
390 VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
391 VarStoreHeader->State == VARIABLE_STORE_HEALTHY
392 ) {
393
394 return EfiValid;
395 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
396 ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
397 ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
398 ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
399 VarStoreHeader->Size == 0xffffffff &&
400 VarStoreHeader->Format == 0xff &&
401 VarStoreHeader->State == 0xff
402 ) {
403
404 return EfiRaw;
405 } else {
406 return EfiInvalid;
407 }
408 }
409
410 /**
411 This code gets the size of variable header.
412
413 @return Size of variable header in bytes in type UINTN.
414
415 **/
416 UINTN
417 GetVariableHeaderSize (
418 VOID
419 )
420 {
421 UINTN Value;
422
423 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
424 Value = sizeof (AUTHENTICATED_VARIABLE_HEADER);
425 } else {
426 Value = sizeof (VARIABLE_HEADER);
427 }
428
429 return Value;
430 }
431
432 /**
433
434 This code gets the size of name of variable.
435
436 @param Variable Pointer to the Variable Header.
437
438 @return UINTN Size of variable in bytes.
439
440 **/
441 UINTN
442 NameSizeOfVariable (
443 IN VARIABLE_HEADER *Variable
444 )
445 {
446 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
447
448 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
449 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
450 if (AuthVariable->State == (UINT8) (-1) ||
451 AuthVariable->DataSize == (UINT32) (-1) ||
452 AuthVariable->NameSize == (UINT32) (-1) ||
453 AuthVariable->Attributes == (UINT32) (-1)) {
454 return 0;
455 }
456 return (UINTN) AuthVariable->NameSize;
457 } else {
458 if (Variable->State == (UINT8) (-1) ||
459 Variable->DataSize == (UINT32) (-1) ||
460 Variable->NameSize == (UINT32) (-1) ||
461 Variable->Attributes == (UINT32) (-1)) {
462 return 0;
463 }
464 return (UINTN) Variable->NameSize;
465 }
466 }
467
468 /**
469 This code sets the size of name of variable.
470
471 @param[in] Variable Pointer to the Variable Header.
472 @param[in] NameSize Name size to set.
473
474 **/
475 VOID
476 SetNameSizeOfVariable (
477 IN VARIABLE_HEADER *Variable,
478 IN UINTN NameSize
479 )
480 {
481 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
482
483 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
484 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
485 AuthVariable->NameSize = (UINT32) NameSize;
486 } else {
487 Variable->NameSize = (UINT32) NameSize;
488 }
489 }
490
491 /**
492
493 This code gets the size of variable data.
494
495 @param Variable Pointer to the Variable Header.
496
497 @return Size of variable in bytes.
498
499 **/
500 UINTN
501 DataSizeOfVariable (
502 IN VARIABLE_HEADER *Variable
503 )
504 {
505 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
506
507 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
508 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
509 if (AuthVariable->State == (UINT8) (-1) ||
510 AuthVariable->DataSize == (UINT32) (-1) ||
511 AuthVariable->NameSize == (UINT32) (-1) ||
512 AuthVariable->Attributes == (UINT32) (-1)) {
513 return 0;
514 }
515 return (UINTN) AuthVariable->DataSize;
516 } else {
517 if (Variable->State == (UINT8) (-1) ||
518 Variable->DataSize == (UINT32) (-1) ||
519 Variable->NameSize == (UINT32) (-1) ||
520 Variable->Attributes == (UINT32) (-1)) {
521 return 0;
522 }
523 return (UINTN) Variable->DataSize;
524 }
525 }
526
527 /**
528 This code sets the size of variable data.
529
530 @param[in] Variable Pointer to the Variable Header.
531 @param[in] DataSize Data size to set.
532
533 **/
534 VOID
535 SetDataSizeOfVariable (
536 IN VARIABLE_HEADER *Variable,
537 IN UINTN DataSize
538 )
539 {
540 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
541
542 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
543 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
544 AuthVariable->DataSize = (UINT32) DataSize;
545 } else {
546 Variable->DataSize = (UINT32) DataSize;
547 }
548 }
549
550 /**
551
552 This code gets the pointer to the variable name.
553
554 @param Variable Pointer to the Variable Header.
555
556 @return Pointer to Variable Name which is Unicode encoding.
557
558 **/
559 CHAR16 *
560 GetVariableNamePtr (
561 IN VARIABLE_HEADER *Variable
562 )
563 {
564 return (CHAR16 *) ((UINTN) Variable + GetVariableHeaderSize ());
565 }
566
567 /**
568 This code gets the pointer to the variable guid.
569
570 @param Variable Pointer to the Variable Header.
571
572 @return A EFI_GUID* pointer to Vendor Guid.
573
574 **/
575 EFI_GUID *
576 GetVendorGuidPtr (
577 IN VARIABLE_HEADER *Variable
578 )
579 {
580 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
581
582 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) Variable;
583 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
584 return &AuthVariable->VendorGuid;
585 } else {
586 return &Variable->VendorGuid;
587 }
588 }
589
590 /**
591
592 This code gets the pointer to the variable data.
593
594 @param Variable Pointer to the Variable Header.
595
596 @return Pointer to Variable Data.
597
598 **/
599 UINT8 *
600 GetVariableDataPtr (
601 IN VARIABLE_HEADER *Variable
602 )
603 {
604 UINTN Value;
605
606 //
607 // Be careful about pad size for alignment.
608 //
609 Value = (UINTN) GetVariableNamePtr (Variable);
610 Value += NameSizeOfVariable (Variable);
611 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
612
613 return (UINT8 *) Value;
614 }
615
616 /**
617 This code gets the variable data offset related to variable header.
618
619 @param Variable Pointer to the Variable Header.
620
621 @return Variable Data offset.
622
623 **/
624 UINTN
625 GetVariableDataOffset (
626 IN VARIABLE_HEADER *Variable
627 )
628 {
629 UINTN Value;
630
631 //
632 // Be careful about pad size for alignment
633 //
634 Value = GetVariableHeaderSize ();
635 Value += NameSizeOfVariable (Variable);
636 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
637
638 return Value;
639 }
640
641 /**
642
643 This code gets the pointer to the next variable header.
644
645 @param Variable Pointer to the Variable Header.
646
647 @return Pointer to next variable header.
648
649 **/
650 VARIABLE_HEADER *
651 GetNextVariablePtr (
652 IN VARIABLE_HEADER *Variable
653 )
654 {
655 UINTN Value;
656
657 Value = (UINTN) GetVariableDataPtr (Variable);
658 Value += DataSizeOfVariable (Variable);
659 Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
660
661 //
662 // Be careful about pad size for alignment.
663 //
664 return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
665 }
666
667 /**
668
669 Gets the pointer to the first variable header in given variable store area.
670
671 @param VarStoreHeader Pointer to the Variable Store Header.
672
673 @return Pointer to the first variable header.
674
675 **/
676 VARIABLE_HEADER *
677 GetStartPointer (
678 IN VARIABLE_STORE_HEADER *VarStoreHeader
679 )
680 {
681 //
682 // The end of variable store.
683 //
684 return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
685 }
686
687 /**
688
689 Gets the pointer to the end of the variable storage area.
690
691 This function gets pointer to the end of the variable storage
692 area, according to the input variable store header.
693
694 @param VarStoreHeader Pointer to the Variable Store Header.
695
696 @return Pointer to the end of the variable storage area.
697
698 **/
699 VARIABLE_HEADER *
700 GetEndPointer (
701 IN VARIABLE_STORE_HEADER *VarStoreHeader
702 )
703 {
704 //
705 // The end of variable store
706 //
707 return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
708 }
709
710 /**
711 Record variable error flag.
712
713 @param[in] Flag Variable error flag to record.
714 @param[in] VariableName Name of variable.
715 @param[in] VendorGuid Guid of variable.
716 @param[in] Attributes Attributes of the variable.
717 @param[in] VariableSize Size of the variable.
718
719 **/
720 VOID
721 RecordVarErrorFlag (
722 IN VAR_ERROR_FLAG Flag,
723 IN CHAR16 *VariableName,
724 IN EFI_GUID *VendorGuid,
725 IN UINT32 Attributes,
726 IN UINTN VariableSize
727 )
728 {
729 EFI_STATUS Status;
730 VARIABLE_POINTER_TRACK Variable;
731 VAR_ERROR_FLAG *VarErrFlag;
732 VAR_ERROR_FLAG TempFlag;
733
734 DEBUG_CODE (
735 DEBUG ((EFI_D_ERROR, "RecordVarErrorFlag (0x%02x) %s:%g - 0x%08x - 0x%x\n", Flag, VariableName, VendorGuid, Attributes, VariableSize));
736 if (Flag == VAR_ERROR_FLAG_SYSTEM_ERROR) {
737 if (AtRuntime ()) {
738 DEBUG ((EFI_D_ERROR, "CommonRuntimeVariableSpace = 0x%x - CommonVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonRuntimeVariableSpace, mVariableModuleGlobal->CommonVariableTotalSize));
739 } else {
740 DEBUG ((EFI_D_ERROR, "CommonVariableSpace = 0x%x - CommonVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonVariableSpace, mVariableModuleGlobal->CommonVariableTotalSize));
741 }
742 } else {
743 DEBUG ((EFI_D_ERROR, "CommonMaxUserVariableSpace = 0x%x - CommonUserVariableTotalSize = 0x%x\n", mVariableModuleGlobal->CommonMaxUserVariableSpace, mVariableModuleGlobal->CommonUserVariableTotalSize));
744 }
745 );
746
747 if (!mEndOfDxe) {
748 //
749 // Before EndOfDxe, just record the current boot variable error flag to local variable,
750 // and leave the variable error flag in NV flash as the last boot variable error flag.
751 // After EndOfDxe in InitializeVarErrorFlag (), the variable error flag in NV flash
752 // will be initialized to this local current boot variable error flag.
753 //
754 mCurrentBootVarErrFlag &= Flag;
755 return;
756 }
757
758 //
759 // Record error flag (it should have be initialized).
760 //
761 Status = FindVariable (
762 VAR_ERROR_FLAG_NAME,
763 &gEdkiiVarErrorFlagGuid,
764 &Variable,
765 &mVariableModuleGlobal->VariableGlobal,
766 FALSE
767 );
768 if (!EFI_ERROR (Status)) {
769 VarErrFlag = (VAR_ERROR_FLAG *) GetVariableDataPtr (Variable.CurrPtr);
770 TempFlag = *VarErrFlag;
771 TempFlag &= Flag;
772 if (TempFlag == *VarErrFlag) {
773 return;
774 }
775 Status = UpdateVariableStore (
776 &mVariableModuleGlobal->VariableGlobal,
777 FALSE,
778 FALSE,
779 mVariableModuleGlobal->FvbInstance,
780 (UINTN) VarErrFlag - (UINTN) mNvVariableCache + (UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
781 sizeof (TempFlag),
782 &TempFlag
783 );
784 if (!EFI_ERROR (Status)) {
785 //
786 // Update the data in NV cache.
787 //
788 *VarErrFlag = TempFlag;
789 }
790 }
791 }
792
793 /**
794 Initialize variable error flag.
795
796 Before EndOfDxe, the variable indicates the last boot variable error flag,
797 then it means the last boot variable error flag must be got before EndOfDxe.
798 After EndOfDxe, the variable indicates the current boot variable error flag,
799 then it means the current boot variable error flag must be got after EndOfDxe.
800
801 **/
802 VOID
803 InitializeVarErrorFlag (
804 VOID
805 )
806 {
807 EFI_STATUS Status;
808 VARIABLE_POINTER_TRACK Variable;
809 VAR_ERROR_FLAG Flag;
810 VAR_ERROR_FLAG VarErrFlag;
811
812 if (!mEndOfDxe) {
813 return;
814 }
815
816 Flag = mCurrentBootVarErrFlag;
817 DEBUG ((EFI_D_INFO, "Initialize variable error flag (%02x)\n", Flag));
818
819 Status = FindVariable (
820 VAR_ERROR_FLAG_NAME,
821 &gEdkiiVarErrorFlagGuid,
822 &Variable,
823 &mVariableModuleGlobal->VariableGlobal,
824 FALSE
825 );
826 if (!EFI_ERROR (Status)) {
827 VarErrFlag = *((VAR_ERROR_FLAG *) GetVariableDataPtr (Variable.CurrPtr));
828 if (VarErrFlag == Flag) {
829 return;
830 }
831 }
832
833 UpdateVariable (
834 VAR_ERROR_FLAG_NAME,
835 &gEdkiiVarErrorFlagGuid,
836 &Flag,
837 sizeof (Flag),
838 VARIABLE_ATTRIBUTE_NV_BS_RT,
839 0,
840 0,
841 &Variable,
842 NULL
843 );
844 }
845
846 /**
847 Is user variable?
848
849 @param[in] Variable Pointer to variable header.
850
851 @retval TRUE User variable.
852 @retval FALSE System variable.
853
854 **/
855 BOOLEAN
856 IsUserVariable (
857 IN VARIABLE_HEADER *Variable
858 )
859 {
860 VAR_CHECK_VARIABLE_PROPERTY Property;
861
862 //
863 // Only after End Of Dxe, the variables belong to system variable are fixed.
864 // If PcdMaxUserNvStorageVariableSize is 0, it means user variable share the same NV storage with system variable,
865 // then no need to check if the variable is user variable or not specially.
866 //
867 if (mEndOfDxe && (mVariableModuleGlobal->CommonMaxUserVariableSpace != mVariableModuleGlobal->CommonVariableSpace)) {
868 if (VarCheckLibVariablePropertyGet (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &Property) == EFI_NOT_FOUND) {
869 return TRUE;
870 }
871 }
872 return FALSE;
873 }
874
875 /**
876 Calculate common user variable total size.
877
878 **/
879 VOID
880 CalculateCommonUserVariableTotalSize (
881 VOID
882 )
883 {
884 VARIABLE_HEADER *Variable;
885 VARIABLE_HEADER *NextVariable;
886 UINTN VariableSize;
887 VAR_CHECK_VARIABLE_PROPERTY Property;
888
889 //
890 // Only after End Of Dxe, the variables belong to system variable are fixed.
891 // If PcdMaxUserNvStorageVariableSize is 0, it means user variable share the same NV storage with system variable,
892 // then no need to calculate the common user variable total size specially.
893 //
894 if (mEndOfDxe && (mVariableModuleGlobal->CommonMaxUserVariableSpace != mVariableModuleGlobal->CommonVariableSpace)) {
895 Variable = GetStartPointer (mNvVariableCache);
896 while (IsValidVariableHeader (Variable, GetEndPointer (mNvVariableCache))) {
897 NextVariable = GetNextVariablePtr (Variable);
898 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
899 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
900 if (VarCheckLibVariablePropertyGet (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &Property) == EFI_NOT_FOUND) {
901 //
902 // No property, it is user variable.
903 //
904 mVariableModuleGlobal->CommonUserVariableTotalSize += VariableSize;
905 }
906 }
907
908 Variable = NextVariable;
909 }
910 }
911 }
912
913 /**
914 Initialize variable quota.
915
916 **/
917 VOID
918 InitializeVariableQuota (
919 VOID
920 )
921 {
922 if (!mEndOfDxe) {
923 return;
924 }
925
926 InitializeVarErrorFlag ();
927 CalculateCommonUserVariableTotalSize ();
928 }
929
930 /**
931
932 Variable store garbage collection and reclaim operation.
933
934 @param[in] VariableBase Base address of variable store.
935 @param[out] LastVariableOffset Offset of last variable.
936 @param[in] IsVolatile The variable store is volatile or not;
937 if it is non-volatile, need FTW.
938 @param[in, out] UpdatingPtrTrack Pointer to updating variable pointer track structure.
939 @param[in] NewVariable Pointer to new variable.
940 @param[in] NewVariableSize New variable size.
941
942 @return EFI_SUCCESS Reclaim operation has finished successfully.
943 @return EFI_OUT_OF_RESOURCES No enough memory resources or variable space.
944 @return Others Unexpect error happened during reclaim operation.
945
946 **/
947 EFI_STATUS
948 Reclaim (
949 IN EFI_PHYSICAL_ADDRESS VariableBase,
950 OUT UINTN *LastVariableOffset,
951 IN BOOLEAN IsVolatile,
952 IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
953 IN VARIABLE_HEADER *NewVariable,
954 IN UINTN NewVariableSize
955 )
956 {
957 VARIABLE_HEADER *Variable;
958 VARIABLE_HEADER *AddedVariable;
959 VARIABLE_HEADER *NextVariable;
960 VARIABLE_HEADER *NextAddedVariable;
961 VARIABLE_STORE_HEADER *VariableStoreHeader;
962 UINT8 *ValidBuffer;
963 UINTN MaximumBufferSize;
964 UINTN VariableSize;
965 UINTN NameSize;
966 UINT8 *CurrPtr;
967 VOID *Point0;
968 VOID *Point1;
969 BOOLEAN FoundAdded;
970 EFI_STATUS Status;
971 UINTN CommonVariableTotalSize;
972 UINTN CommonUserVariableTotalSize;
973 UINTN HwErrVariableTotalSize;
974 VARIABLE_HEADER *UpdatingVariable;
975 VARIABLE_HEADER *UpdatingInDeletedTransition;
976
977 UpdatingVariable = NULL;
978 UpdatingInDeletedTransition = NULL;
979 if (UpdatingPtrTrack != NULL) {
980 UpdatingVariable = UpdatingPtrTrack->CurrPtr;
981 UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr;
982 }
983
984 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
985
986 CommonVariableTotalSize = 0;
987 CommonUserVariableTotalSize = 0;
988 HwErrVariableTotalSize = 0;
989
990 if (IsVolatile) {
991 //
992 // Start Pointers for the variable.
993 //
994 Variable = GetStartPointer (VariableStoreHeader);
995 MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
996
997 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
998 NextVariable = GetNextVariablePtr (Variable);
999 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
1000 Variable != UpdatingVariable &&
1001 Variable != UpdatingInDeletedTransition
1002 ) {
1003 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1004 MaximumBufferSize += VariableSize;
1005 }
1006
1007 Variable = NextVariable;
1008 }
1009
1010 if (NewVariable != NULL) {
1011 //
1012 // Add the new variable size.
1013 //
1014 MaximumBufferSize += NewVariableSize;
1015 }
1016
1017 //
1018 // Reserve the 1 Bytes with Oxff to identify the
1019 // end of the variable buffer.
1020 //
1021 MaximumBufferSize += 1;
1022 ValidBuffer = AllocatePool (MaximumBufferSize);
1023 if (ValidBuffer == NULL) {
1024 return EFI_OUT_OF_RESOURCES;
1025 }
1026 } else {
1027 //
1028 // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache
1029 // as the buffer to reduce SMRAM consumption for SMM variable driver.
1030 //
1031 MaximumBufferSize = mNvVariableCache->Size;
1032 ValidBuffer = (UINT8 *) mNvVariableCache;
1033 }
1034
1035 SetMem (ValidBuffer, MaximumBufferSize, 0xff);
1036
1037 //
1038 // Copy variable store header.
1039 //
1040 CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
1041 CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
1042
1043 //
1044 // Reinstall all ADDED variables as long as they are not identical to Updating Variable.
1045 //
1046 Variable = GetStartPointer (VariableStoreHeader);
1047 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
1048 NextVariable = GetNextVariablePtr (Variable);
1049 if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) {
1050 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1051 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
1052 CurrPtr += VariableSize;
1053 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1054 HwErrVariableTotalSize += VariableSize;
1055 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1056 CommonVariableTotalSize += VariableSize;
1057 if (IsUserVariable (Variable)) {
1058 CommonUserVariableTotalSize += VariableSize;
1059 }
1060 }
1061 }
1062 Variable = NextVariable;
1063 }
1064
1065 //
1066 // Reinstall all in delete transition variables.
1067 //
1068 Variable = GetStartPointer (VariableStoreHeader);
1069 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
1070 NextVariable = GetNextVariablePtr (Variable);
1071 if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1072
1073 //
1074 // Buffer has cached all ADDED variable.
1075 // Per IN_DELETED variable, we have to guarantee that
1076 // no ADDED one in previous buffer.
1077 //
1078
1079 FoundAdded = FALSE;
1080 AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
1081 while (IsValidVariableHeader (AddedVariable, GetEndPointer ((VARIABLE_STORE_HEADER *) ValidBuffer))) {
1082 NextAddedVariable = GetNextVariablePtr (AddedVariable);
1083 NameSize = NameSizeOfVariable (AddedVariable);
1084 if (CompareGuid (GetVendorGuidPtr (AddedVariable), GetVendorGuidPtr (Variable)) &&
1085 NameSize == NameSizeOfVariable (Variable)
1086 ) {
1087 Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
1088 Point1 = (VOID *) GetVariableNamePtr (Variable);
1089 if (CompareMem (Point0, Point1, NameSize) == 0) {
1090 FoundAdded = TRUE;
1091 break;
1092 }
1093 }
1094 AddedVariable = NextAddedVariable;
1095 }
1096 if (!FoundAdded) {
1097 //
1098 // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
1099 //
1100 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1101 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
1102 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1103 CurrPtr += VariableSize;
1104 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1105 HwErrVariableTotalSize += VariableSize;
1106 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
1107 CommonVariableTotalSize += VariableSize;
1108 if (IsUserVariable (Variable)) {
1109 CommonUserVariableTotalSize += VariableSize;
1110 }
1111 }
1112 }
1113 }
1114
1115 Variable = NextVariable;
1116 }
1117
1118 //
1119 // Install the new variable if it is not NULL.
1120 //
1121 if (NewVariable != NULL) {
1122 if (((UINTN) CurrPtr - (UINTN) ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) {
1123 //
1124 // No enough space to store the new variable.
1125 //
1126 Status = EFI_OUT_OF_RESOURCES;
1127 goto Done;
1128 }
1129 if (!IsVolatile) {
1130 if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1131 HwErrVariableTotalSize += NewVariableSize;
1132 } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1133 CommonVariableTotalSize += NewVariableSize;
1134 if (IsUserVariable (NewVariable)) {
1135 CommonUserVariableTotalSize += NewVariableSize;
1136 }
1137 }
1138 if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) ||
1139 (CommonVariableTotalSize > mVariableModuleGlobal->CommonVariableSpace) ||
1140 (CommonUserVariableTotalSize > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
1141 //
1142 // No enough space to store the new variable by NV or NV+HR attribute.
1143 //
1144 Status = EFI_OUT_OF_RESOURCES;
1145 goto Done;
1146 }
1147 }
1148
1149 CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize);
1150 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1151 if (UpdatingVariable != NULL) {
1152 UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
1153 UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
1154 }
1155 CurrPtr += NewVariableSize;
1156 }
1157
1158 if (IsVolatile) {
1159 //
1160 // If volatile variable store, just copy valid buffer.
1161 //
1162 SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
1163 CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) CurrPtr - (UINTN) ValidBuffer);
1164 *LastVariableOffset = (UINTN) CurrPtr - (UINTN) ValidBuffer;
1165 Status = EFI_SUCCESS;
1166 } else {
1167 //
1168 // If non-volatile variable store, perform FTW here.
1169 //
1170 Status = FtwVariableSpace (
1171 VariableBase,
1172 (VARIABLE_STORE_HEADER *) ValidBuffer
1173 );
1174 if (!EFI_ERROR (Status)) {
1175 *LastVariableOffset = (UINTN) CurrPtr - (UINTN) ValidBuffer;
1176 mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
1177 mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
1178 mVariableModuleGlobal->CommonUserVariableTotalSize = CommonUserVariableTotalSize;
1179 } else {
1180 mVariableModuleGlobal->HwErrVariableTotalSize = 0;
1181 mVariableModuleGlobal->CommonVariableTotalSize = 0;
1182 mVariableModuleGlobal->CommonUserVariableTotalSize = 0;
1183 Variable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
1184 while (IsValidVariableHeader (Variable, GetEndPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase))) {
1185 NextVariable = GetNextVariablePtr (Variable);
1186 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
1187 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1188 mVariableModuleGlobal->HwErrVariableTotalSize += VariableSize;
1189 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1190 mVariableModuleGlobal->CommonVariableTotalSize += VariableSize;
1191 if (IsUserVariable (Variable)) {
1192 mVariableModuleGlobal->CommonUserVariableTotalSize += VariableSize;
1193 }
1194 }
1195
1196 Variable = NextVariable;
1197 }
1198 *LastVariableOffset = (UINTN) Variable - (UINTN) VariableBase;
1199 }
1200 }
1201
1202 Done:
1203 if (IsVolatile) {
1204 FreePool (ValidBuffer);
1205 } else {
1206 //
1207 // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back.
1208 //
1209 CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
1210 }
1211
1212 return Status;
1213 }
1214
1215 /**
1216 Find the variable in the specified variable store.
1217
1218 @param[in] VariableName Name of the variable to be found
1219 @param[in] VendorGuid Vendor GUID to be found.
1220 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1221 check at runtime when searching variable.
1222 @param[in, out] PtrTrack Variable Track Pointer structure that contains Variable Information.
1223
1224 @retval EFI_SUCCESS Variable found successfully
1225 @retval EFI_NOT_FOUND Variable not found
1226 **/
1227 EFI_STATUS
1228 FindVariableEx (
1229 IN CHAR16 *VariableName,
1230 IN EFI_GUID *VendorGuid,
1231 IN BOOLEAN IgnoreRtCheck,
1232 IN OUT VARIABLE_POINTER_TRACK *PtrTrack
1233 )
1234 {
1235 VARIABLE_HEADER *InDeletedVariable;
1236 VOID *Point;
1237
1238 PtrTrack->InDeletedTransitionPtr = NULL;
1239
1240 //
1241 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1242 //
1243 InDeletedVariable = NULL;
1244
1245 for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
1246 ; IsValidVariableHeader (PtrTrack->CurrPtr, PtrTrack->EndPtr)
1247 ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
1248 ) {
1249 if (PtrTrack->CurrPtr->State == VAR_ADDED ||
1250 PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
1251 ) {
1252 if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
1253 if (VariableName[0] == 0) {
1254 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1255 InDeletedVariable = PtrTrack->CurrPtr;
1256 } else {
1257 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1258 return EFI_SUCCESS;
1259 }
1260 } else {
1261 if (CompareGuid (VendorGuid, GetVendorGuidPtr (PtrTrack->CurrPtr))) {
1262 Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
1263
1264 ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
1265 if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
1266 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1267 InDeletedVariable = PtrTrack->CurrPtr;
1268 } else {
1269 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1270 return EFI_SUCCESS;
1271 }
1272 }
1273 }
1274 }
1275 }
1276 }
1277 }
1278
1279 PtrTrack->CurrPtr = InDeletedVariable;
1280 return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
1281 }
1282
1283
1284 /**
1285 Finds variable in storage blocks of volatile and non-volatile storage areas.
1286
1287 This code finds variable in storage blocks of volatile and non-volatile storage areas.
1288 If VariableName is an empty string, then we just return the first
1289 qualified variable without comparing VariableName and VendorGuid.
1290 If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
1291 at runtime when searching existing variable, only VariableName and VendorGuid are compared.
1292 Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
1293
1294 @param[in] VariableName Name of the variable to be found.
1295 @param[in] VendorGuid Vendor GUID to be found.
1296 @param[out] PtrTrack VARIABLE_POINTER_TRACK structure for output,
1297 including the range searched and the target position.
1298 @param[in] Global Pointer to VARIABLE_GLOBAL structure, including
1299 base of volatile variable storage area, base of
1300 NV variable storage area, and a lock.
1301 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1302 check at runtime when searching variable.
1303
1304 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
1305 VendorGuid is NULL.
1306 @retval EFI_SUCCESS Variable successfully found.
1307 @retval EFI_NOT_FOUND Variable not found
1308
1309 **/
1310 EFI_STATUS
1311 FindVariable (
1312 IN CHAR16 *VariableName,
1313 IN EFI_GUID *VendorGuid,
1314 OUT VARIABLE_POINTER_TRACK *PtrTrack,
1315 IN VARIABLE_GLOBAL *Global,
1316 IN BOOLEAN IgnoreRtCheck
1317 )
1318 {
1319 EFI_STATUS Status;
1320 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
1321 VARIABLE_STORE_TYPE Type;
1322
1323 if (VariableName[0] != 0 && VendorGuid == NULL) {
1324 return EFI_INVALID_PARAMETER;
1325 }
1326
1327 //
1328 // 0: Volatile, 1: HOB, 2: Non-Volatile.
1329 // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
1330 // make use of this mapping to implement search algorithm.
1331 //
1332 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
1333 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
1334 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
1335
1336 //
1337 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1338 //
1339 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
1340 if (VariableStoreHeader[Type] == NULL) {
1341 continue;
1342 }
1343
1344 PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
1345 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
1346 PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
1347
1348 Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
1349 if (!EFI_ERROR (Status)) {
1350 return Status;
1351 }
1352 }
1353 return EFI_NOT_FOUND;
1354 }
1355
1356 /**
1357 Get index from supported language codes according to language string.
1358
1359 This code is used to get corresponding index in supported language codes. It can handle
1360 RFC4646 and ISO639 language tags.
1361 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
1362 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
1363
1364 For example:
1365 SupportedLang = "engfraengfra"
1366 Lang = "eng"
1367 Iso639Language = TRUE
1368 The return value is "0".
1369 Another example:
1370 SupportedLang = "en;fr;en-US;fr-FR"
1371 Lang = "fr-FR"
1372 Iso639Language = FALSE
1373 The return value is "3".
1374
1375 @param SupportedLang Platform supported language codes.
1376 @param Lang Configured language.
1377 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1378
1379 @retval The index of language in the language codes.
1380
1381 **/
1382 UINTN
1383 GetIndexFromSupportedLangCodes(
1384 IN CHAR8 *SupportedLang,
1385 IN CHAR8 *Lang,
1386 IN BOOLEAN Iso639Language
1387 )
1388 {
1389 UINTN Index;
1390 UINTN CompareLength;
1391 UINTN LanguageLength;
1392
1393 if (Iso639Language) {
1394 CompareLength = ISO_639_2_ENTRY_SIZE;
1395 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
1396 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
1397 //
1398 // Successfully find the index of Lang string in SupportedLang string.
1399 //
1400 Index = Index / CompareLength;
1401 return Index;
1402 }
1403 }
1404 ASSERT (FALSE);
1405 return 0;
1406 } else {
1407 //
1408 // Compare RFC4646 language code
1409 //
1410 Index = 0;
1411 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
1412
1413 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
1414 //
1415 // Skip ';' characters in SupportedLang
1416 //
1417 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
1418 //
1419 // Determine the length of the next language code in SupportedLang
1420 //
1421 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
1422
1423 if ((CompareLength == LanguageLength) &&
1424 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
1425 //
1426 // Successfully find the index of Lang string in SupportedLang string.
1427 //
1428 return Index;
1429 }
1430 }
1431 ASSERT (FALSE);
1432 return 0;
1433 }
1434 }
1435
1436 /**
1437 Get language string from supported language codes according to index.
1438
1439 This code is used to get corresponding language strings in supported language codes. It can handle
1440 RFC4646 and ISO639 language tags.
1441 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
1442 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
1443
1444 For example:
1445 SupportedLang = "engfraengfra"
1446 Index = "1"
1447 Iso639Language = TRUE
1448 The return value is "fra".
1449 Another example:
1450 SupportedLang = "en;fr;en-US;fr-FR"
1451 Index = "1"
1452 Iso639Language = FALSE
1453 The return value is "fr".
1454
1455 @param SupportedLang Platform supported language codes.
1456 @param Index The index in supported language codes.
1457 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1458
1459 @retval The language string in the language codes.
1460
1461 **/
1462 CHAR8 *
1463 GetLangFromSupportedLangCodes (
1464 IN CHAR8 *SupportedLang,
1465 IN UINTN Index,
1466 IN BOOLEAN Iso639Language
1467 )
1468 {
1469 UINTN SubIndex;
1470 UINTN CompareLength;
1471 CHAR8 *Supported;
1472
1473 SubIndex = 0;
1474 Supported = SupportedLang;
1475 if (Iso639Language) {
1476 //
1477 // According to the index of Lang string in SupportedLang string to get the language.
1478 // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
1479 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1480 //
1481 CompareLength = ISO_639_2_ENTRY_SIZE;
1482 mVariableModuleGlobal->Lang[CompareLength] = '\0';
1483 return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
1484
1485 } else {
1486 while (TRUE) {
1487 //
1488 // Take semicolon as delimitation, sequentially traverse supported language codes.
1489 //
1490 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
1491 Supported++;
1492 }
1493 if ((*Supported == '\0') && (SubIndex != Index)) {
1494 //
1495 // Have completed the traverse, but not find corrsponding string.
1496 // This case is not allowed to happen.
1497 //
1498 ASSERT(FALSE);
1499 return NULL;
1500 }
1501 if (SubIndex == Index) {
1502 //
1503 // According to the index of Lang string in SupportedLang string to get the language.
1504 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
1505 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1506 //
1507 mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
1508 return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
1509 }
1510 SubIndex++;
1511
1512 //
1513 // Skip ';' characters in Supported
1514 //
1515 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1516 }
1517 }
1518 }
1519
1520 /**
1521 Returns a pointer to an allocated buffer that contains the best matching language
1522 from a set of supported languages.
1523
1524 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1525 code types may not be mixed in a single call to this function. This function
1526 supports a variable argument list that allows the caller to pass in a prioritized
1527 list of language codes to test against all the language codes in SupportedLanguages.
1528
1529 If SupportedLanguages is NULL, then ASSERT().
1530
1531 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1532 contains a set of language codes in the format
1533 specified by Iso639Language.
1534 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1535 in ISO 639-2 format. If FALSE, then all language
1536 codes are assumed to be in RFC 4646 language format
1537 @param[in] ... A variable argument list that contains pointers to
1538 Null-terminated ASCII strings that contain one or more
1539 language codes in the format specified by Iso639Language.
1540 The first language code from each of these language
1541 code lists is used to determine if it is an exact or
1542 close match to any of the language codes in
1543 SupportedLanguages. Close matches only apply to RFC 4646
1544 language codes, and the matching algorithm from RFC 4647
1545 is used to determine if a close match is present. If
1546 an exact or close match is found, then the matching
1547 language code from SupportedLanguages is returned. If
1548 no matches are found, then the next variable argument
1549 parameter is evaluated. The variable argument list
1550 is terminated by a NULL.
1551
1552 @retval NULL The best matching language could not be found in SupportedLanguages.
1553 @retval NULL There are not enough resources available to return the best matching
1554 language.
1555 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1556 language in SupportedLanguages.
1557
1558 **/
1559 CHAR8 *
1560 EFIAPI
1561 VariableGetBestLanguage (
1562 IN CONST CHAR8 *SupportedLanguages,
1563 IN BOOLEAN Iso639Language,
1564 ...
1565 )
1566 {
1567 VA_LIST Args;
1568 CHAR8 *Language;
1569 UINTN CompareLength;
1570 UINTN LanguageLength;
1571 CONST CHAR8 *Supported;
1572 CHAR8 *Buffer;
1573
1574 if (SupportedLanguages == NULL) {
1575 return NULL;
1576 }
1577
1578 VA_START (Args, Iso639Language);
1579 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1580 //
1581 // Default to ISO 639-2 mode
1582 //
1583 CompareLength = 3;
1584 LanguageLength = MIN (3, AsciiStrLen (Language));
1585
1586 //
1587 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1588 //
1589 if (!Iso639Language) {
1590 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1591 }
1592
1593 //
1594 // Trim back the length of Language used until it is empty
1595 //
1596 while (LanguageLength > 0) {
1597 //
1598 // Loop through all language codes in SupportedLanguages
1599 //
1600 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1601 //
1602 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1603 //
1604 if (!Iso639Language) {
1605 //
1606 // Skip ';' characters in Supported
1607 //
1608 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1609 //
1610 // Determine the length of the next language code in Supported
1611 //
1612 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1613 //
1614 // If Language is longer than the Supported, then skip to the next language
1615 //
1616 if (LanguageLength > CompareLength) {
1617 continue;
1618 }
1619 }
1620 //
1621 // See if the first LanguageLength characters in Supported match Language
1622 //
1623 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1624 VA_END (Args);
1625
1626 Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
1627 Buffer[CompareLength] = '\0';
1628 return CopyMem (Buffer, Supported, CompareLength);
1629 }
1630 }
1631
1632 if (Iso639Language) {
1633 //
1634 // If ISO 639 mode, then each language can only be tested once
1635 //
1636 LanguageLength = 0;
1637 } else {
1638 //
1639 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1640 //
1641 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1642 }
1643 }
1644 }
1645 VA_END (Args);
1646
1647 //
1648 // No matches were found
1649 //
1650 return NULL;
1651 }
1652
1653 /**
1654 This function is to check if the remaining variable space is enough to set
1655 all Variables from argument list successfully. The purpose of the check
1656 is to keep the consistency of the Variables to be in variable storage.
1657
1658 Note: Variables are assumed to be in same storage.
1659 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1660 so follow the argument sequence to check the Variables.
1661
1662 @param[in] Attributes Variable attributes for Variable entries.
1663 @param[in] Marker VA_LIST style variable argument list.
1664 The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1665 A NULL terminates the list. The VariableSize of
1666 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1667 It will be changed to variable total size as output.
1668
1669 @retval TRUE Have enough variable space to set the Variables successfully.
1670 @retval FALSE No enough variable space to set the Variables successfully.
1671
1672 **/
1673 BOOLEAN
1674 EFIAPI
1675 CheckRemainingSpaceForConsistencyInternal (
1676 IN UINT32 Attributes,
1677 IN VA_LIST Marker
1678 )
1679 {
1680 EFI_STATUS Status;
1681 VA_LIST Args;
1682 VARIABLE_ENTRY_CONSISTENCY *VariableEntry;
1683 UINT64 MaximumVariableStorageSize;
1684 UINT64 RemainingVariableStorageSize;
1685 UINT64 MaximumVariableSize;
1686 UINTN TotalNeededSize;
1687 UINTN OriginalVarSize;
1688 VARIABLE_STORE_HEADER *VariableStoreHeader;
1689 VARIABLE_POINTER_TRACK VariablePtrTrack;
1690 VARIABLE_HEADER *NextVariable;
1691 UINTN VarNameSize;
1692 UINTN VarDataSize;
1693
1694 //
1695 // Non-Volatile related.
1696 //
1697 VariableStoreHeader = mNvVariableCache;
1698
1699 Status = VariableServiceQueryVariableInfoInternal (
1700 Attributes,
1701 &MaximumVariableStorageSize,
1702 &RemainingVariableStorageSize,
1703 &MaximumVariableSize
1704 );
1705 ASSERT_EFI_ERROR (Status);
1706
1707 TotalNeededSize = 0;
1708 VA_COPY (Args, Marker);
1709 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1710 while (VariableEntry != NULL) {
1711 //
1712 // Calculate variable total size.
1713 //
1714 VarNameSize = StrSize (VariableEntry->Name);
1715 VarNameSize += GET_PAD_SIZE (VarNameSize);
1716 VarDataSize = VariableEntry->VariableSize;
1717 VarDataSize += GET_PAD_SIZE (VarDataSize);
1718 VariableEntry->VariableSize = HEADER_ALIGN (GetVariableHeaderSize () + VarNameSize + VarDataSize);
1719
1720 TotalNeededSize += VariableEntry->VariableSize;
1721 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1722 }
1723 VA_END (Args);
1724
1725 if (RemainingVariableStorageSize >= TotalNeededSize) {
1726 //
1727 // Already have enough space.
1728 //
1729 return TRUE;
1730 } else if (AtRuntime ()) {
1731 //
1732 // At runtime, no reclaim.
1733 // The original variable space of Variables can't be reused.
1734 //
1735 return FALSE;
1736 }
1737
1738 VA_COPY (Args, Marker);
1739 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1740 while (VariableEntry != NULL) {
1741 //
1742 // Check if Variable[Index] has been present and get its size.
1743 //
1744 OriginalVarSize = 0;
1745 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
1746 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
1747 Status = FindVariableEx (
1748 VariableEntry->Name,
1749 VariableEntry->Guid,
1750 FALSE,
1751 &VariablePtrTrack
1752 );
1753 if (!EFI_ERROR (Status)) {
1754 //
1755 // Get size of Variable[Index].
1756 //
1757 NextVariable = GetNextVariablePtr (VariablePtrTrack.CurrPtr);
1758 OriginalVarSize = (UINTN) NextVariable - (UINTN) VariablePtrTrack.CurrPtr;
1759 //
1760 // Add the original size of Variable[Index] to remaining variable storage size.
1761 //
1762 RemainingVariableStorageSize += OriginalVarSize;
1763 }
1764 if (VariableEntry->VariableSize > RemainingVariableStorageSize) {
1765 //
1766 // No enough space for Variable[Index].
1767 //
1768 return FALSE;
1769 }
1770 //
1771 // Sub the (new) size of Variable[Index] from remaining variable storage size.
1772 //
1773 RemainingVariableStorageSize -= VariableEntry->VariableSize;
1774 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1775 }
1776 VA_END (Args);
1777
1778 return TRUE;
1779 }
1780
1781 /**
1782 This function is to check if the remaining variable space is enough to set
1783 all Variables from argument list successfully. The purpose of the check
1784 is to keep the consistency of the Variables to be in variable storage.
1785
1786 Note: Variables are assumed to be in same storage.
1787 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1788 so follow the argument sequence to check the Variables.
1789
1790 @param[in] Attributes Variable attributes for Variable entries.
1791 @param ... The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1792 A NULL terminates the list. The VariableSize of
1793 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1794 It will be changed to variable total size as output.
1795
1796 @retval TRUE Have enough variable space to set the Variables successfully.
1797 @retval FALSE No enough variable space to set the Variables successfully.
1798
1799 **/
1800 BOOLEAN
1801 EFIAPI
1802 CheckRemainingSpaceForConsistency (
1803 IN UINT32 Attributes,
1804 ...
1805 )
1806 {
1807 VA_LIST Marker;
1808 BOOLEAN Return;
1809
1810 VA_START (Marker, Attributes);
1811
1812 Return = CheckRemainingSpaceForConsistencyInternal (Attributes, Marker);
1813
1814 VA_END (Marker);
1815
1816 return Return;
1817 }
1818
1819 /**
1820 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
1821
1822 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
1823
1824 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
1825 and are read-only. Therefore, in variable driver, only store the original value for other use.
1826
1827 @param[in] VariableName Name of variable.
1828
1829 @param[in] Data Variable data.
1830
1831 @param[in] DataSize Size of data. 0 means delete.
1832
1833 @retval EFI_SUCCESS The update operation is successful or ignored.
1834 @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime.
1835 @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation.
1836 @retval Others Other errors happened during the update operation.
1837
1838 **/
1839 EFI_STATUS
1840 AutoUpdateLangVariable (
1841 IN CHAR16 *VariableName,
1842 IN VOID *Data,
1843 IN UINTN DataSize
1844 )
1845 {
1846 EFI_STATUS Status;
1847 CHAR8 *BestPlatformLang;
1848 CHAR8 *BestLang;
1849 UINTN Index;
1850 UINT32 Attributes;
1851 VARIABLE_POINTER_TRACK Variable;
1852 BOOLEAN SetLanguageCodes;
1853 VARIABLE_ENTRY_CONSISTENCY VariableEntry[2];
1854
1855 //
1856 // Don't do updates for delete operation
1857 //
1858 if (DataSize == 0) {
1859 return EFI_SUCCESS;
1860 }
1861
1862 SetLanguageCodes = FALSE;
1863
1864 if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) {
1865 //
1866 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
1867 //
1868 if (AtRuntime ()) {
1869 return EFI_WRITE_PROTECTED;
1870 }
1871
1872 SetLanguageCodes = TRUE;
1873
1874 //
1875 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
1876 // Therefore, in variable driver, only store the original value for other use.
1877 //
1878 if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
1879 FreePool (mVariableModuleGlobal->PlatformLangCodes);
1880 }
1881 mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1882 ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
1883
1884 //
1885 // PlatformLang holds a single language from PlatformLangCodes,
1886 // so the size of PlatformLangCodes is enough for the PlatformLang.
1887 //
1888 if (mVariableModuleGlobal->PlatformLang != NULL) {
1889 FreePool (mVariableModuleGlobal->PlatformLang);
1890 }
1891 mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
1892 ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
1893
1894 } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) {
1895 //
1896 // LangCodes is a volatile variable, so it can not be updated at runtime.
1897 //
1898 if (AtRuntime ()) {
1899 return EFI_WRITE_PROTECTED;
1900 }
1901
1902 SetLanguageCodes = TRUE;
1903
1904 //
1905 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
1906 // Therefore, in variable driver, only store the original value for other use.
1907 //
1908 if (mVariableModuleGlobal->LangCodes != NULL) {
1909 FreePool (mVariableModuleGlobal->LangCodes);
1910 }
1911 mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1912 ASSERT (mVariableModuleGlobal->LangCodes != NULL);
1913 }
1914
1915 if (SetLanguageCodes
1916 && (mVariableModuleGlobal->PlatformLangCodes != NULL)
1917 && (mVariableModuleGlobal->LangCodes != NULL)) {
1918 //
1919 // Update Lang if PlatformLang is already set
1920 // Update PlatformLang if Lang is already set
1921 //
1922 Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1923 if (!EFI_ERROR (Status)) {
1924 //
1925 // Update Lang
1926 //
1927 VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME;
1928 Data = GetVariableDataPtr (Variable.CurrPtr);
1929 DataSize = DataSizeOfVariable (Variable.CurrPtr);
1930 } else {
1931 Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1932 if (!EFI_ERROR (Status)) {
1933 //
1934 // Update PlatformLang
1935 //
1936 VariableName = EFI_LANG_VARIABLE_NAME;
1937 Data = GetVariableDataPtr (Variable.CurrPtr);
1938 DataSize = DataSizeOfVariable (Variable.CurrPtr);
1939 } else {
1940 //
1941 // Neither PlatformLang nor Lang is set, directly return
1942 //
1943 return EFI_SUCCESS;
1944 }
1945 }
1946 }
1947
1948 Status = EFI_SUCCESS;
1949
1950 //
1951 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
1952 //
1953 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
1954
1955 if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) {
1956 //
1957 // Update Lang when PlatformLangCodes/LangCodes were set.
1958 //
1959 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1960 //
1961 // When setting PlatformLang, firstly get most matched language string from supported language codes.
1962 //
1963 BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
1964 if (BestPlatformLang != NULL) {
1965 //
1966 // Get the corresponding index in language codes.
1967 //
1968 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
1969
1970 //
1971 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
1972 //
1973 BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
1974
1975 //
1976 // Check the variable space for both Lang and PlatformLang variable.
1977 //
1978 VariableEntry[0].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
1979 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
1980 VariableEntry[0].Name = EFI_LANG_VARIABLE_NAME;
1981
1982 VariableEntry[1].VariableSize = AsciiStrSize (BestPlatformLang);
1983 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
1984 VariableEntry[1].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
1985 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
1986 //
1987 // No enough variable space to set both Lang and PlatformLang successfully.
1988 //
1989 Status = EFI_OUT_OF_RESOURCES;
1990 } else {
1991 //
1992 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1993 //
1994 FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1995
1996 Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang,
1997 ISO_639_2_ENTRY_SIZE + 1, Attributes, 0, 0, &Variable, NULL);
1998 }
1999
2000 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a Status: %r\n", BestPlatformLang, BestLang, Status));
2001 }
2002 }
2003
2004 } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) {
2005 //
2006 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
2007 //
2008 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
2009 //
2010 // When setting Lang, firstly get most matched language string from supported language codes.
2011 //
2012 BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
2013 if (BestLang != NULL) {
2014 //
2015 // Get the corresponding index in language codes.
2016 //
2017 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
2018
2019 //
2020 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
2021 //
2022 BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
2023
2024 //
2025 // Check the variable space for both PlatformLang and Lang variable.
2026 //
2027 VariableEntry[0].VariableSize = AsciiStrSize (BestPlatformLang);
2028 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
2029 VariableEntry[0].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
2030
2031 VariableEntry[1].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
2032 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
2033 VariableEntry[1].Name = EFI_LANG_VARIABLE_NAME;
2034 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
2035 //
2036 // No enough variable space to set both PlatformLang and Lang successfully.
2037 //
2038 Status = EFI_OUT_OF_RESOURCES;
2039 } else {
2040 //
2041 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
2042 //
2043 FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2044
2045 Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang,
2046 AsciiStrSize (BestPlatformLang), Attributes, 0, 0, &Variable, NULL);
2047 }
2048
2049 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status));
2050 }
2051 }
2052 }
2053
2054 if (SetLanguageCodes) {
2055 //
2056 // Continue to set PlatformLangCodes or LangCodes.
2057 //
2058 return EFI_SUCCESS;
2059 } else {
2060 return Status;
2061 }
2062 }
2063
2064 /**
2065 Compare two EFI_TIME data.
2066
2067
2068 @param FirstTime A pointer to the first EFI_TIME data.
2069 @param SecondTime A pointer to the second EFI_TIME data.
2070
2071 @retval TRUE The FirstTime is not later than the SecondTime.
2072 @retval FALSE The FirstTime is later than the SecondTime.
2073
2074 **/
2075 BOOLEAN
2076 VariableCompareTimeStampInternal (
2077 IN EFI_TIME *FirstTime,
2078 IN EFI_TIME *SecondTime
2079 )
2080 {
2081 if (FirstTime->Year != SecondTime->Year) {
2082 return (BOOLEAN) (FirstTime->Year < SecondTime->Year);
2083 } else if (FirstTime->Month != SecondTime->Month) {
2084 return (BOOLEAN) (FirstTime->Month < SecondTime->Month);
2085 } else if (FirstTime->Day != SecondTime->Day) {
2086 return (BOOLEAN) (FirstTime->Day < SecondTime->Day);
2087 } else if (FirstTime->Hour != SecondTime->Hour) {
2088 return (BOOLEAN) (FirstTime->Hour < SecondTime->Hour);
2089 } else if (FirstTime->Minute != SecondTime->Minute) {
2090 return (BOOLEAN) (FirstTime->Minute < SecondTime->Minute);
2091 }
2092
2093 return (BOOLEAN) (FirstTime->Second <= SecondTime->Second);
2094 }
2095
2096 /**
2097 Update the variable region with Variable information. If EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set,
2098 index of associated public key is needed.
2099
2100 @param[in] VariableName Name of variable.
2101 @param[in] VendorGuid Guid of variable.
2102 @param[in] Data Variable data.
2103 @param[in] DataSize Size of data. 0 means delete.
2104 @param[in] Attributes Attributes of the variable.
2105 @param[in] KeyIndex Index of associated public key.
2106 @param[in] MonotonicCount Value of associated monotonic count.
2107 @param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
2108 @param[in] TimeStamp Value of associated TimeStamp.
2109
2110 @retval EFI_SUCCESS The update operation is success.
2111 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
2112
2113 **/
2114 EFI_STATUS
2115 UpdateVariable (
2116 IN CHAR16 *VariableName,
2117 IN EFI_GUID *VendorGuid,
2118 IN VOID *Data,
2119 IN UINTN DataSize,
2120 IN UINT32 Attributes OPTIONAL,
2121 IN UINT32 KeyIndex OPTIONAL,
2122 IN UINT64 MonotonicCount OPTIONAL,
2123 IN OUT VARIABLE_POINTER_TRACK *CacheVariable,
2124 IN EFI_TIME *TimeStamp OPTIONAL
2125 )
2126 {
2127 EFI_STATUS Status;
2128 VARIABLE_HEADER *NextVariable;
2129 UINTN ScratchSize;
2130 UINTN MaxDataSize;
2131 UINTN VarNameOffset;
2132 UINTN VarDataOffset;
2133 UINTN VarNameSize;
2134 UINTN VarSize;
2135 BOOLEAN Volatile;
2136 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
2137 UINT8 State;
2138 VARIABLE_POINTER_TRACK *Variable;
2139 VARIABLE_POINTER_TRACK NvVariable;
2140 VARIABLE_STORE_HEADER *VariableStoreHeader;
2141 UINTN CacheOffset;
2142 UINT8 *BufferForMerge;
2143 UINTN MergedBufSize;
2144 BOOLEAN DataReady;
2145 UINTN DataOffset;
2146 BOOLEAN IsCommonVariable;
2147 BOOLEAN IsCommonUserVariable;
2148 AUTHENTICATED_VARIABLE_HEADER *AuthVariable;
2149
2150 if (mVariableModuleGlobal->FvbInstance == NULL) {
2151 //
2152 // The FVB protocol is not ready, so the EFI_VARIABLE_WRITE_ARCH_PROTOCOL is not installed.
2153 //
2154 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2155 //
2156 // Trying to update NV variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
2157 //
2158 DEBUG ((EFI_D_ERROR, "Update NV variable before EFI_VARIABLE_WRITE_ARCH_PROTOCOL ready - %r\n", EFI_NOT_AVAILABLE_YET));
2159 return EFI_NOT_AVAILABLE_YET;
2160 } else if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
2161 //
2162 // Trying to update volatile authenticated variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
2163 // The authenticated variable perhaps is not initialized, just return here.
2164 //
2165 DEBUG ((EFI_D_ERROR, "Update AUTH variable before EFI_VARIABLE_WRITE_ARCH_PROTOCOL ready - %r\n", EFI_NOT_AVAILABLE_YET));
2166 return EFI_NOT_AVAILABLE_YET;
2167 }
2168 }
2169
2170 //
2171 // Check if CacheVariable points to the variable in variable HOB.
2172 // If yes, let CacheVariable points to the variable in NV variable cache.
2173 //
2174 if ((CacheVariable->CurrPtr != NULL) &&
2175 (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) &&
2176 (CacheVariable->StartPtr == GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase))
2177 ) {
2178 CacheVariable->StartPtr = GetStartPointer (mNvVariableCache);
2179 CacheVariable->EndPtr = GetEndPointer (mNvVariableCache);
2180 CacheVariable->Volatile = FALSE;
2181 Status = FindVariableEx (VariableName, VendorGuid, FALSE, CacheVariable);
2182 if (CacheVariable->CurrPtr == NULL || EFI_ERROR (Status)) {
2183 //
2184 // There is no matched variable in NV variable cache.
2185 //
2186 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0)) || (Attributes == 0)) {
2187 //
2188 // It is to delete variable,
2189 // go to delete this variable in variable HOB and
2190 // try to flush other variables from HOB to flash.
2191 //
2192 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, FALSE, TRUE, FALSE);
2193 FlushHobVariableToFlash (VariableName, VendorGuid);
2194 return EFI_SUCCESS;
2195 }
2196 }
2197 }
2198
2199 if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
2200 Variable = CacheVariable;
2201 } else {
2202 //
2203 // Update/Delete existing NV variable.
2204 // CacheVariable points to the variable in the memory copy of Flash area
2205 // Now let Variable points to the same variable in Flash area.
2206 //
2207 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
2208 Variable = &NvVariable;
2209 Variable->StartPtr = GetStartPointer (VariableStoreHeader);
2210 Variable->EndPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->EndPtr - (UINTN)CacheVariable->StartPtr));
2211
2212 Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
2213 if (CacheVariable->InDeletedTransitionPtr != NULL) {
2214 Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
2215 } else {
2216 Variable->InDeletedTransitionPtr = NULL;
2217 }
2218 Variable->Volatile = FALSE;
2219 }
2220
2221 Fvb = mVariableModuleGlobal->FvbInstance;
2222
2223 //
2224 // Tricky part: Use scratch data area at the end of volatile variable store
2225 // as a temporary storage.
2226 //
2227 NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
2228 ScratchSize = mVariableModuleGlobal->ScratchBufferSize;
2229 SetMem (NextVariable, ScratchSize, 0xff);
2230 DataReady = FALSE;
2231
2232 if (Variable->CurrPtr != NULL) {
2233 //
2234 // Update/Delete existing variable.
2235 //
2236 if (AtRuntime ()) {
2237 //
2238 // If AtRuntime and the variable is Volatile and Runtime Access,
2239 // the volatile is ReadOnly, and SetVariable should be aborted and
2240 // return EFI_WRITE_PROTECTED.
2241 //
2242 if (Variable->Volatile) {
2243 Status = EFI_WRITE_PROTECTED;
2244 goto Done;
2245 }
2246 //
2247 // Only variable that have NV attributes can be updated/deleted in Runtime.
2248 //
2249 if ((CacheVariable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
2250 Status = EFI_INVALID_PARAMETER;
2251 goto Done;
2252 }
2253
2254 //
2255 // Only variable that have RT attributes can be updated/deleted in Runtime.
2256 //
2257 if ((CacheVariable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) {
2258 Status = EFI_INVALID_PARAMETER;
2259 goto Done;
2260 }
2261 }
2262
2263 //
2264 // Setting a data variable with no access, or zero DataSize attributes
2265 // causes it to be deleted.
2266 // When the EFI_VARIABLE_APPEND_WRITE attribute is set, DataSize of zero will
2267 // not delete the variable.
2268 //
2269 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0))|| ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0)) {
2270 if (Variable->InDeletedTransitionPtr != NULL) {
2271 //
2272 // Both ADDED and IN_DELETED_TRANSITION variable are present,
2273 // set IN_DELETED_TRANSITION one to DELETED state first.
2274 //
2275 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2276 State = CacheVariable->InDeletedTransitionPtr->State;
2277 State &= VAR_DELETED;
2278 Status = UpdateVariableStore (
2279 &mVariableModuleGlobal->VariableGlobal,
2280 Variable->Volatile,
2281 FALSE,
2282 Fvb,
2283 (UINTN) &Variable->InDeletedTransitionPtr->State,
2284 sizeof (UINT8),
2285 &State
2286 );
2287 if (!EFI_ERROR (Status)) {
2288 if (!Variable->Volatile) {
2289 CacheVariable->InDeletedTransitionPtr->State = State;
2290 }
2291 } else {
2292 goto Done;
2293 }
2294 }
2295
2296 State = CacheVariable->CurrPtr->State;
2297 State &= VAR_DELETED;
2298
2299 Status = UpdateVariableStore (
2300 &mVariableModuleGlobal->VariableGlobal,
2301 Variable->Volatile,
2302 FALSE,
2303 Fvb,
2304 (UINTN) &Variable->CurrPtr->State,
2305 sizeof (UINT8),
2306 &State
2307 );
2308 if (!EFI_ERROR (Status)) {
2309 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
2310 if (!Variable->Volatile) {
2311 CacheVariable->CurrPtr->State = State;
2312 FlushHobVariableToFlash (VariableName, VendorGuid);
2313 }
2314 }
2315 goto Done;
2316 }
2317 //
2318 // If the variable is marked valid, and the same data has been passed in,
2319 // then return to the caller immediately.
2320 //
2321 if (DataSizeOfVariable (CacheVariable->CurrPtr) == DataSize &&
2322 (CompareMem (Data, GetVariableDataPtr (CacheVariable->CurrPtr), DataSize) == 0) &&
2323 ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) &&
2324 (TimeStamp == NULL)) {
2325 //
2326 // Variable content unchanged and no need to update timestamp, just return.
2327 //
2328 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
2329 Status = EFI_SUCCESS;
2330 goto Done;
2331 } else if ((CacheVariable->CurrPtr->State == VAR_ADDED) ||
2332 (CacheVariable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
2333
2334 //
2335 // EFI_VARIABLE_APPEND_WRITE attribute only effects for existing variable.
2336 //
2337 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0) {
2338 //
2339 // NOTE: From 0 to DataOffset of NextVariable is reserved for Variable Header and Name.
2340 // From DataOffset of NextVariable is to save the existing variable data.
2341 //
2342 DataOffset = GetVariableDataOffset (CacheVariable->CurrPtr);
2343 BufferForMerge = (UINT8 *) ((UINTN) NextVariable + DataOffset);
2344 CopyMem (BufferForMerge, (UINT8 *) ((UINTN) CacheVariable->CurrPtr + DataOffset), DataSizeOfVariable (CacheVariable->CurrPtr));
2345
2346 //
2347 // Set Max Common/Auth Variable Data Size as default MaxDataSize.
2348 //
2349 if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
2350 MaxDataSize = mVariableModuleGlobal->MaxAuthVariableSize - DataOffset;
2351 } else {
2352 MaxDataSize = mVariableModuleGlobal->MaxVariableSize - DataOffset;
2353 }
2354
2355 //
2356 // Append the new data to the end of existing data.
2357 // Max Harware error record variable data size is different from common/auth variable.
2358 //
2359 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2360 MaxDataSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - DataOffset;
2361 }
2362
2363 if (DataSizeOfVariable (CacheVariable->CurrPtr) + DataSize > MaxDataSize) {
2364 //
2365 // Existing data size + new data size exceed maximum variable size limitation.
2366 //
2367 Status = EFI_INVALID_PARAMETER;
2368 goto Done;
2369 }
2370 CopyMem ((UINT8*) ((UINTN) BufferForMerge + DataSizeOfVariable (CacheVariable->CurrPtr)), Data, DataSize);
2371 MergedBufSize = DataSizeOfVariable (CacheVariable->CurrPtr) + DataSize;
2372
2373 //
2374 // BufferForMerge(from DataOffset of NextVariable) has included the merged existing and new data.
2375 //
2376 Data = BufferForMerge;
2377 DataSize = MergedBufSize;
2378 DataReady = TRUE;
2379 }
2380
2381 //
2382 // Mark the old variable as in delete transition.
2383 //
2384 State = CacheVariable->CurrPtr->State;
2385 State &= VAR_IN_DELETED_TRANSITION;
2386
2387 Status = UpdateVariableStore (
2388 &mVariableModuleGlobal->VariableGlobal,
2389 Variable->Volatile,
2390 FALSE,
2391 Fvb,
2392 (UINTN) &Variable->CurrPtr->State,
2393 sizeof (UINT8),
2394 &State
2395 );
2396 if (EFI_ERROR (Status)) {
2397 goto Done;
2398 }
2399 if (!Variable->Volatile) {
2400 CacheVariable->CurrPtr->State = State;
2401 }
2402 }
2403 } else {
2404 //
2405 // Not found existing variable. Create a new variable.
2406 //
2407
2408 if ((DataSize == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0)) {
2409 Status = EFI_SUCCESS;
2410 goto Done;
2411 }
2412
2413 //
2414 // Make sure we are trying to create a new variable.
2415 // Setting a data variable with zero DataSize or no access attributes means to delete it.
2416 //
2417 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
2418 Status = EFI_NOT_FOUND;
2419 goto Done;
2420 }
2421
2422 //
2423 // Only variable have NV|RT attribute can be created in Runtime.
2424 //
2425 if (AtRuntime () &&
2426 (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
2427 Status = EFI_INVALID_PARAMETER;
2428 goto Done;
2429 }
2430 }
2431
2432 //
2433 // Function part - create a new variable and copy the data.
2434 // Both update a variable and create a variable will come here.
2435 //
2436 NextVariable->StartId = VARIABLE_DATA;
2437 //
2438 // NextVariable->State = VAR_ADDED;
2439 //
2440 NextVariable->Reserved = 0;
2441 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
2442 AuthVariable = (AUTHENTICATED_VARIABLE_HEADER *) NextVariable;
2443 AuthVariable->PubKeyIndex = KeyIndex;
2444 AuthVariable->MonotonicCount = MonotonicCount;
2445 ZeroMem (&AuthVariable->TimeStamp, sizeof (EFI_TIME));
2446
2447 if (((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) &&
2448 (TimeStamp != NULL)) {
2449 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) {
2450 CopyMem (&AuthVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2451 } else {
2452 //
2453 // In the case when the EFI_VARIABLE_APPEND_WRITE attribute is set, only
2454 // when the new TimeStamp value is later than the current timestamp associated
2455 // with the variable, we need associate the new timestamp with the updated value.
2456 //
2457 if (Variable->CurrPtr != NULL) {
2458 if (VariableCompareTimeStampInternal (&(((AUTHENTICATED_VARIABLE_HEADER *) CacheVariable->CurrPtr)->TimeStamp), TimeStamp)) {
2459 CopyMem (&AuthVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2460 }
2461 }
2462 }
2463 }
2464 }
2465
2466 //
2467 // The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned
2468 // Attributes bitmask parameter of a GetVariable() call.
2469 //
2470 NextVariable->Attributes = Attributes & (~EFI_VARIABLE_APPEND_WRITE);
2471
2472 VarNameOffset = GetVariableHeaderSize ();
2473 VarNameSize = StrSize (VariableName);
2474 CopyMem (
2475 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
2476 VariableName,
2477 VarNameSize
2478 );
2479 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
2480
2481 //
2482 // If DataReady is TRUE, it means the variable data has been saved into
2483 // NextVariable during EFI_VARIABLE_APPEND_WRITE operation preparation.
2484 //
2485 if (!DataReady) {
2486 CopyMem (
2487 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
2488 Data,
2489 DataSize
2490 );
2491 }
2492
2493 CopyMem (GetVendorGuidPtr (NextVariable), VendorGuid, sizeof (EFI_GUID));
2494 //
2495 // There will be pad bytes after Data, the NextVariable->NameSize and
2496 // NextVariable->DataSize should not include pad size so that variable
2497 // service can get actual size in GetVariable.
2498 //
2499 SetNameSizeOfVariable (NextVariable, VarNameSize);
2500 SetDataSizeOfVariable (NextVariable, DataSize);
2501
2502 //
2503 // The actual size of the variable that stores in storage should
2504 // include pad size.
2505 //
2506 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
2507 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2508 //
2509 // Create a nonvolatile variable.
2510 //
2511 Volatile = FALSE;
2512
2513 IsCommonVariable = FALSE;
2514 IsCommonUserVariable = FALSE;
2515 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0) {
2516 IsCommonVariable = TRUE;
2517 IsCommonUserVariable = IsUserVariable (NextVariable);
2518 }
2519 if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
2520 && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
2521 || (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonVariableSpace))
2522 || (IsCommonVariable && AtRuntime () && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonRuntimeVariableSpace))
2523 || (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace))) {
2524 if (AtRuntime ()) {
2525 if (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
2526 RecordVarErrorFlag (VAR_ERROR_FLAG_USER_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2527 }
2528 if (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonRuntimeVariableSpace)) {
2529 RecordVarErrorFlag (VAR_ERROR_FLAG_SYSTEM_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2530 }
2531 Status = EFI_OUT_OF_RESOURCES;
2532 goto Done;
2533 }
2534 //
2535 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2536 //
2537 Status = Reclaim (
2538 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2539 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2540 FALSE,
2541 Variable,
2542 NextVariable,
2543 HEADER_ALIGN (VarSize)
2544 );
2545 if (!EFI_ERROR (Status)) {
2546 //
2547 // The new variable has been integrated successfully during reclaiming.
2548 //
2549 if (Variable->CurrPtr != NULL) {
2550 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2551 CacheVariable->InDeletedTransitionPtr = NULL;
2552 }
2553 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE);
2554 FlushHobVariableToFlash (VariableName, VendorGuid);
2555 } else {
2556 if (IsCommonUserVariable && ((VarSize + mVariableModuleGlobal->CommonUserVariableTotalSize) > mVariableModuleGlobal->CommonMaxUserVariableSpace)) {
2557 RecordVarErrorFlag (VAR_ERROR_FLAG_USER_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2558 }
2559 if (IsCommonVariable && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > mVariableModuleGlobal->CommonVariableSpace)) {
2560 RecordVarErrorFlag (VAR_ERROR_FLAG_SYSTEM_ERROR, VariableName, VendorGuid, Attributes, VarSize);
2561 }
2562 }
2563 goto Done;
2564 }
2565 //
2566 // Four steps
2567 // 1. Write variable header
2568 // 2. Set variable state to header valid
2569 // 3. Write variable data
2570 // 4. Set variable state to valid
2571 //
2572 //
2573 // Step 1:
2574 //
2575 CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
2576 Status = UpdateVariableStore (
2577 &mVariableModuleGlobal->VariableGlobal,
2578 FALSE,
2579 TRUE,
2580 Fvb,
2581 mVariableModuleGlobal->NonVolatileLastVariableOffset,
2582 (UINT32) GetVariableHeaderSize (),
2583 (UINT8 *) NextVariable
2584 );
2585
2586 if (EFI_ERROR (Status)) {
2587 goto Done;
2588 }
2589
2590 //
2591 // Step 2:
2592 //
2593 NextVariable->State = VAR_HEADER_VALID_ONLY;
2594 Status = UpdateVariableStore (
2595 &mVariableModuleGlobal->VariableGlobal,
2596 FALSE,
2597 TRUE,
2598 Fvb,
2599 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2600 sizeof (UINT8),
2601 &NextVariable->State
2602 );
2603
2604 if (EFI_ERROR (Status)) {
2605 goto Done;
2606 }
2607 //
2608 // Step 3:
2609 //
2610 Status = UpdateVariableStore (
2611 &mVariableModuleGlobal->VariableGlobal,
2612 FALSE,
2613 TRUE,
2614 Fvb,
2615 mVariableModuleGlobal->NonVolatileLastVariableOffset + GetVariableHeaderSize (),
2616 (UINT32) (VarSize - GetVariableHeaderSize ()),
2617 (UINT8 *) NextVariable + GetVariableHeaderSize ()
2618 );
2619
2620 if (EFI_ERROR (Status)) {
2621 goto Done;
2622 }
2623 //
2624 // Step 4:
2625 //
2626 NextVariable->State = VAR_ADDED;
2627 Status = UpdateVariableStore (
2628 &mVariableModuleGlobal->VariableGlobal,
2629 FALSE,
2630 TRUE,
2631 Fvb,
2632 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2633 sizeof (UINT8),
2634 &NextVariable->State
2635 );
2636
2637 if (EFI_ERROR (Status)) {
2638 goto Done;
2639 }
2640
2641 mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2642
2643 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
2644 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
2645 } else {
2646 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
2647 if (IsCommonUserVariable) {
2648 mVariableModuleGlobal->CommonUserVariableTotalSize += HEADER_ALIGN (VarSize);
2649 }
2650 }
2651 //
2652 // update the memory copy of Flash region.
2653 //
2654 CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
2655 } else {
2656 //
2657 // Create a volatile variable.
2658 //
2659 Volatile = TRUE;
2660
2661 if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
2662 ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
2663 //
2664 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2665 //
2666 Status = Reclaim (
2667 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
2668 &mVariableModuleGlobal->VolatileLastVariableOffset,
2669 TRUE,
2670 Variable,
2671 NextVariable,
2672 HEADER_ALIGN (VarSize)
2673 );
2674 if (!EFI_ERROR (Status)) {
2675 //
2676 // The new variable has been integrated successfully during reclaiming.
2677 //
2678 if (Variable->CurrPtr != NULL) {
2679 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2680 CacheVariable->InDeletedTransitionPtr = NULL;
2681 }
2682 UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE);
2683 }
2684 goto Done;
2685 }
2686
2687 NextVariable->State = VAR_ADDED;
2688 Status = UpdateVariableStore (
2689 &mVariableModuleGlobal->VariableGlobal,
2690 TRUE,
2691 TRUE,
2692 Fvb,
2693 mVariableModuleGlobal->VolatileLastVariableOffset,
2694 (UINT32) VarSize,
2695 (UINT8 *) NextVariable
2696 );
2697
2698 if (EFI_ERROR (Status)) {
2699 goto Done;
2700 }
2701
2702 mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2703 }
2704
2705 //
2706 // Mark the old variable as deleted.
2707 //
2708 if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
2709 if (Variable->InDeletedTransitionPtr != NULL) {
2710 //
2711 // Both ADDED and IN_DELETED_TRANSITION old variable are present,
2712 // set IN_DELETED_TRANSITION one to DELETED state first.
2713 //
2714 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2715 State = CacheVariable->InDeletedTransitionPtr->State;
2716 State &= VAR_DELETED;
2717 Status = UpdateVariableStore (
2718 &mVariableModuleGlobal->VariableGlobal,
2719 Variable->Volatile,
2720 FALSE,
2721 Fvb,
2722 (UINTN) &Variable->InDeletedTransitionPtr->State,
2723 sizeof (UINT8),
2724 &State
2725 );
2726 if (!EFI_ERROR (Status)) {
2727 if (!Variable->Volatile) {
2728 CacheVariable->InDeletedTransitionPtr->State = State;
2729 }
2730 } else {
2731 goto Done;
2732 }
2733 }
2734
2735 State = Variable->CurrPtr->State;
2736 State &= VAR_DELETED;
2737
2738 Status = UpdateVariableStore (
2739 &mVariableModuleGlobal->VariableGlobal,
2740 Variable->Volatile,
2741 FALSE,
2742 Fvb,
2743 (UINTN) &Variable->CurrPtr->State,
2744 sizeof (UINT8),
2745 &State
2746 );
2747 if (!EFI_ERROR (Status) && !Variable->Volatile) {
2748 CacheVariable->CurrPtr->State = State;
2749 }
2750 }
2751
2752 if (!EFI_ERROR (Status)) {
2753 UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
2754 if (!Volatile) {
2755 FlushHobVariableToFlash (VariableName, VendorGuid);
2756 }
2757 }
2758
2759 Done:
2760 return Status;
2761 }
2762
2763 /**
2764
2765 This code finds variable in storage blocks (Volatile or Non-Volatile).
2766
2767 Caution: This function may receive untrusted input.
2768 This function may be invoked in SMM mode, and datasize is external input.
2769 This function will do basic validation, before parse the data.
2770
2771 @param VariableName Name of Variable to be found.
2772 @param VendorGuid Variable vendor GUID.
2773 @param Attributes Attribute value of the variable found.
2774 @param DataSize Size of Data found. If size is less than the
2775 data, this value contains the required size.
2776 @param Data The buffer to return the contents of the variable. May be NULL
2777 with a zero DataSize in order to determine the size buffer needed.
2778
2779 @return EFI_INVALID_PARAMETER Invalid parameter.
2780 @return EFI_SUCCESS Find the specified variable.
2781 @return EFI_NOT_FOUND Not found.
2782 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2783
2784 **/
2785 EFI_STATUS
2786 EFIAPI
2787 VariableServiceGetVariable (
2788 IN CHAR16 *VariableName,
2789 IN EFI_GUID *VendorGuid,
2790 OUT UINT32 *Attributes OPTIONAL,
2791 IN OUT UINTN *DataSize,
2792 OUT VOID *Data OPTIONAL
2793 )
2794 {
2795 EFI_STATUS Status;
2796 VARIABLE_POINTER_TRACK Variable;
2797 UINTN VarDataSize;
2798
2799 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
2800 return EFI_INVALID_PARAMETER;
2801 }
2802
2803 if (VariableName[0] == 0) {
2804 return EFI_NOT_FOUND;
2805 }
2806
2807 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2808
2809 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2810 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2811 goto Done;
2812 }
2813
2814 //
2815 // Get data size
2816 //
2817 VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
2818 ASSERT (VarDataSize != 0);
2819
2820 if (*DataSize >= VarDataSize) {
2821 if (Data == NULL) {
2822 Status = EFI_INVALID_PARAMETER;
2823 goto Done;
2824 }
2825
2826 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
2827 if (Attributes != NULL) {
2828 *Attributes = Variable.CurrPtr->Attributes;
2829 }
2830
2831 *DataSize = VarDataSize;
2832 UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
2833
2834 Status = EFI_SUCCESS;
2835 goto Done;
2836 } else {
2837 *DataSize = VarDataSize;
2838 Status = EFI_BUFFER_TOO_SMALL;
2839 goto Done;
2840 }
2841
2842 Done:
2843 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2844 return Status;
2845 }
2846
2847 /**
2848 This code Finds the Next available variable.
2849
2850 Caution: This function may receive untrusted input.
2851 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
2852
2853 @param[in] VariableName Pointer to variable name.
2854 @param[in] VendorGuid Variable Vendor Guid.
2855 @param[out] VariablePtr Pointer to variable header address.
2856
2857 @retval EFI_SUCCESS The function completed successfully.
2858 @retval EFI_NOT_FOUND The next variable was not found.
2859 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while VendorGuid is NULL.
2860 @retval EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name and
2861 GUID of an existing variable.
2862
2863 **/
2864 EFI_STATUS
2865 EFIAPI
2866 VariableServiceGetNextVariableInternal (
2867 IN CHAR16 *VariableName,
2868 IN EFI_GUID *VendorGuid,
2869 OUT VARIABLE_HEADER **VariablePtr
2870 )
2871 {
2872 VARIABLE_STORE_TYPE Type;
2873 VARIABLE_POINTER_TRACK Variable;
2874 VARIABLE_POINTER_TRACK VariableInHob;
2875 VARIABLE_POINTER_TRACK VariablePtrTrack;
2876 EFI_STATUS Status;
2877 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
2878
2879 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2880 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2881 //
2882 // For VariableName is an empty string, FindVariable() will try to find and return
2883 // the first qualified variable, and if FindVariable() returns error (EFI_NOT_FOUND)
2884 // as no any variable is found, still go to return the error (EFI_NOT_FOUND).
2885 //
2886 if (VariableName[0] != 0) {
2887 //
2888 // For VariableName is not an empty string, and FindVariable() returns error as
2889 // VariableName and VendorGuid are not a name and GUID of an existing variable,
2890 // there is no way to get next variable, follow spec to return EFI_INVALID_PARAMETER.
2891 //
2892 Status = EFI_INVALID_PARAMETER;
2893 }
2894 goto Done;
2895 }
2896
2897 if (VariableName[0] != 0) {
2898 //
2899 // If variable name is not NULL, get next variable.
2900 //
2901 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2902 }
2903
2904 //
2905 // 0: Volatile, 1: HOB, 2: Non-Volatile.
2906 // The index and attributes mapping must be kept in this order as FindVariable
2907 // makes use of this mapping to implement search algorithm.
2908 //
2909 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
2910 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2911 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
2912
2913 while (TRUE) {
2914 //
2915 // Switch from Volatile to HOB, to Non-Volatile.
2916 //
2917 while (!IsValidVariableHeader (Variable.CurrPtr, Variable.EndPtr)) {
2918 //
2919 // Find current storage index
2920 //
2921 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
2922 if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
2923 break;
2924 }
2925 }
2926 ASSERT (Type < VariableStoreTypeMax);
2927 //
2928 // Switch to next storage
2929 //
2930 for (Type++; Type < VariableStoreTypeMax; Type++) {
2931 if (VariableStoreHeader[Type] != NULL) {
2932 break;
2933 }
2934 }
2935 //
2936 // Capture the case that
2937 // 1. current storage is the last one, or
2938 // 2. no further storage
2939 //
2940 if (Type == VariableStoreTypeMax) {
2941 Status = EFI_NOT_FOUND;
2942 goto Done;
2943 }
2944 Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
2945 Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
2946 Variable.CurrPtr = Variable.StartPtr;
2947 }
2948
2949 //
2950 // Variable is found
2951 //
2952 if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2953 if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
2954 if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2955 //
2956 // If it is a IN_DELETED_TRANSITION variable,
2957 // and there is also a same ADDED one at the same time,
2958 // don't return it.
2959 //
2960 VariablePtrTrack.StartPtr = Variable.StartPtr;
2961 VariablePtrTrack.EndPtr = Variable.EndPtr;
2962 Status = FindVariableEx (
2963 GetVariableNamePtr (Variable.CurrPtr),
2964 GetVendorGuidPtr (Variable.CurrPtr),
2965 FALSE,
2966 &VariablePtrTrack
2967 );
2968 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
2969 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2970 continue;
2971 }
2972 }
2973
2974 //
2975 // Don't return NV variable when HOB overrides it
2976 //
2977 if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
2978 (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
2979 ) {
2980 VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
2981 VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
2982 Status = FindVariableEx (
2983 GetVariableNamePtr (Variable.CurrPtr),
2984 GetVendorGuidPtr (Variable.CurrPtr),
2985 FALSE,
2986 &VariableInHob
2987 );
2988 if (!EFI_ERROR (Status)) {
2989 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2990 continue;
2991 }
2992 }
2993
2994 *VariablePtr = Variable.CurrPtr;
2995 Status = EFI_SUCCESS;
2996 goto Done;
2997 }
2998 }
2999
3000 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
3001 }
3002
3003 Done:
3004 return Status;
3005 }
3006
3007 /**
3008
3009 This code Finds the Next available variable.
3010
3011 Caution: This function may receive untrusted input.
3012 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3013
3014 @param VariableNameSize The size of the VariableName buffer. The size must be large
3015 enough to fit input string supplied in VariableName buffer.
3016 @param VariableName Pointer to variable name.
3017 @param VendorGuid Variable Vendor Guid.
3018
3019 @retval EFI_SUCCESS The function completed successfully.
3020 @retval EFI_NOT_FOUND The next variable was not found.
3021 @retval EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the result.
3022 VariableNameSize has been updated with the size needed to complete the request.
3023 @retval EFI_INVALID_PARAMETER VariableNameSize is NULL.
3024 @retval EFI_INVALID_PARAMETER VariableName is NULL.
3025 @retval EFI_INVALID_PARAMETER VendorGuid is NULL.
3026 @retval EFI_INVALID_PARAMETER The input values of VariableName and VendorGuid are not a name and
3027 GUID of an existing variable.
3028 @retval EFI_INVALID_PARAMETER Null-terminator is not found in the first VariableNameSize bytes of
3029 the input VariableName buffer.
3030
3031 **/
3032 EFI_STATUS
3033 EFIAPI
3034 VariableServiceGetNextVariableName (
3035 IN OUT UINTN *VariableNameSize,
3036 IN OUT CHAR16 *VariableName,
3037 IN OUT EFI_GUID *VendorGuid
3038 )
3039 {
3040 EFI_STATUS Status;
3041 UINTN MaxLen;
3042 UINTN VarNameSize;
3043 VARIABLE_HEADER *VariablePtr;
3044
3045 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
3046 return EFI_INVALID_PARAMETER;
3047 }
3048
3049 //
3050 // Calculate the possible maximum length of name string, including the Null terminator.
3051 //
3052 MaxLen = *VariableNameSize / sizeof (CHAR16);
3053 if ((MaxLen == 0) || (StrnLenS (VariableName, MaxLen) == MaxLen)) {
3054 //
3055 // Null-terminator is not found in the first VariableNameSize bytes of the input VariableName buffer,
3056 // follow spec to return EFI_INVALID_PARAMETER.
3057 //
3058 return EFI_INVALID_PARAMETER;
3059 }
3060
3061 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3062
3063 Status = VariableServiceGetNextVariableInternal (VariableName, VendorGuid, &VariablePtr);
3064 if (!EFI_ERROR (Status)) {
3065 VarNameSize = NameSizeOfVariable (VariablePtr);
3066 ASSERT (VarNameSize != 0);
3067 if (VarNameSize <= *VariableNameSize) {
3068 CopyMem (VariableName, GetVariableNamePtr (VariablePtr), VarNameSize);
3069 CopyMem (VendorGuid, GetVendorGuidPtr (VariablePtr), sizeof (EFI_GUID));
3070 Status = EFI_SUCCESS;
3071 } else {
3072 Status = EFI_BUFFER_TOO_SMALL;
3073 }
3074
3075 *VariableNameSize = VarNameSize;
3076 }
3077
3078 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3079 return Status;
3080 }
3081
3082 /**
3083
3084 This code sets variable in storage blocks (Volatile or Non-Volatile).
3085
3086 Caution: This function may receive untrusted input.
3087 This function may be invoked in SMM mode, and datasize and data are external input.
3088 This function will do basic validation, before parse the data.
3089 This function will parse the authentication carefully to avoid security issues, like
3090 buffer overflow, integer overflow.
3091 This function will check attribute carefully to avoid authentication bypass.
3092
3093 @param VariableName Name of Variable to be found.
3094 @param VendorGuid Variable vendor GUID.
3095 @param Attributes Attribute value of the variable found
3096 @param DataSize Size of Data found. If size is less than the
3097 data, this value contains the required size.
3098 @param Data Data pointer.
3099
3100 @return EFI_INVALID_PARAMETER Invalid parameter.
3101 @return EFI_SUCCESS Set successfully.
3102 @return EFI_OUT_OF_RESOURCES Resource not enough to set variable.
3103 @return EFI_NOT_FOUND Not found.
3104 @return EFI_WRITE_PROTECTED Variable is read-only.
3105
3106 **/
3107 EFI_STATUS
3108 EFIAPI
3109 VariableServiceSetVariable (
3110 IN CHAR16 *VariableName,
3111 IN EFI_GUID *VendorGuid,
3112 IN UINT32 Attributes,
3113 IN UINTN DataSize,
3114 IN VOID *Data
3115 )
3116 {
3117 VARIABLE_POINTER_TRACK Variable;
3118 EFI_STATUS Status;
3119 VARIABLE_HEADER *NextVariable;
3120 EFI_PHYSICAL_ADDRESS Point;
3121 UINTN PayloadSize;
3122
3123 //
3124 // Check input parameters.
3125 //
3126 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
3127 return EFI_INVALID_PARAMETER;
3128 }
3129
3130 if (DataSize != 0 && Data == NULL) {
3131 return EFI_INVALID_PARAMETER;
3132 }
3133
3134 //
3135 // Check for reserverd bit in variable attribute.
3136 //
3137 if ((Attributes & (~EFI_VARIABLE_ATTRIBUTES_MASK)) != 0) {
3138 return EFI_INVALID_PARAMETER;
3139 }
3140
3141 //
3142 // Make sure if runtime bit is set, boot service bit is set also.
3143 //
3144 if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
3145 return EFI_INVALID_PARAMETER;
3146 } else if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
3147 if (!mVariableModuleGlobal->VariableGlobal.AuthSupport) {
3148 //
3149 // Not support authenticated variable write.
3150 //
3151 return EFI_INVALID_PARAMETER;
3152 }
3153 } else if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
3154 if (PcdGet32 (PcdHwErrStorageSize) == 0) {
3155 //
3156 // Not support harware error record variable variable.
3157 //
3158 return EFI_INVALID_PARAMETER;
3159 }
3160 }
3161
3162 //
3163 // EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS and EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute
3164 // cannot be set both.
3165 //
3166 if (((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS)
3167 && ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)) {
3168 return EFI_INVALID_PARAMETER;
3169 }
3170
3171 if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) {
3172 if (DataSize < AUTHINFO_SIZE) {
3173 //
3174 // Try to write Authenticated Variable without AuthInfo.
3175 //
3176 return EFI_SECURITY_VIOLATION;
3177 }
3178 PayloadSize = DataSize - AUTHINFO_SIZE;
3179 } else if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) {
3180 //
3181 // Sanity check for EFI_VARIABLE_AUTHENTICATION_2 descriptor.
3182 //
3183 if (DataSize < OFFSET_OF_AUTHINFO2_CERT_DATA ||
3184 ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength > DataSize - (OFFSET_OF (EFI_VARIABLE_AUTHENTICATION_2, AuthInfo)) ||
3185 ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength < OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData)) {
3186 return EFI_SECURITY_VIOLATION;
3187 }
3188 PayloadSize = DataSize - AUTHINFO2_SIZE (Data);
3189 } else {
3190 PayloadSize = DataSize;
3191 }
3192
3193 if ((UINTN)(~0) - PayloadSize < StrSize(VariableName)){
3194 //
3195 // Prevent whole variable size overflow
3196 //
3197 return EFI_INVALID_PARAMETER;
3198 }
3199
3200 //
3201 // The size of the VariableName, including the Unicode Null in bytes plus
3202 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
3203 // bytes for HwErrRec#### variable.
3204 //
3205 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3206 if (StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxHardwareErrorVariableSize) - GetVariableHeaderSize ()) {
3207 return EFI_INVALID_PARAMETER;
3208 }
3209 } else {
3210 //
3211 // The size of the VariableName, including the Unicode Null in bytes plus
3212 // the DataSize is limited to maximum size of Max(Auth)VariableSize bytes.
3213 //
3214 if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
3215 if (StrSize (VariableName) + PayloadSize > mVariableModuleGlobal->MaxAuthVariableSize - GetVariableHeaderSize ()) {
3216 return EFI_INVALID_PARAMETER;
3217 }
3218 } else {
3219 if (StrSize (VariableName) + PayloadSize > mVariableModuleGlobal->MaxVariableSize - GetVariableHeaderSize ()) {
3220 return EFI_INVALID_PARAMETER;
3221 }
3222 }
3223 }
3224
3225 //
3226 // Special Handling for MOR Lock variable.
3227 //
3228 Status = SetVariableCheckHandlerMor (VariableName, VendorGuid, Attributes, PayloadSize, (VOID *) ((UINTN) Data + DataSize - PayloadSize));
3229 if (Status == EFI_ALREADY_STARTED) {
3230 //
3231 // EFI_ALREADY_STARTED means the SetVariable() action is handled inside of SetVariableCheckHandlerMor().
3232 // Variable driver can just return SUCCESS.
3233 //
3234 return EFI_SUCCESS;
3235 }
3236 if (EFI_ERROR (Status)) {
3237 return Status;
3238 }
3239
3240 Status = VarCheckLibSetVariableCheck (VariableName, VendorGuid, Attributes, PayloadSize, (VOID *) ((UINTN) Data + DataSize - PayloadSize), mRequestSource);
3241 if (EFI_ERROR (Status)) {
3242 return Status;
3243 }
3244
3245 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3246
3247 //
3248 // Consider reentrant in MCA/INIT/NMI. It needs be reupdated.
3249 //
3250 if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) {
3251 Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
3252 //
3253 // Parse non-volatile variable data and get last variable offset.
3254 //
3255 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point);
3256 while (IsValidVariableHeader (NextVariable, GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point))) {
3257 NextVariable = GetNextVariablePtr (NextVariable);
3258 }
3259 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point;
3260 }
3261
3262 //
3263 // Check whether the input variable is already existed.
3264 //
3265 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE);
3266 if (!EFI_ERROR (Status)) {
3267 if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) {
3268 Status = EFI_WRITE_PROTECTED;
3269 goto Done;
3270 }
3271 if (Attributes != 0 && (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) != Variable.CurrPtr->Attributes) {
3272 //
3273 // If a preexisting variable is rewritten with different attributes, SetVariable() shall not
3274 // modify the variable and shall return EFI_INVALID_PARAMETER. Two exceptions to this rule:
3275 // 1. No access attributes specified
3276 // 2. The only attribute differing is EFI_VARIABLE_APPEND_WRITE
3277 //
3278 Status = EFI_INVALID_PARAMETER;
3279 DEBUG ((EFI_D_INFO, "[Variable]: Rewritten a preexisting variable(0x%08x) with different attributes(0x%08x) - %g:%s\n", Variable.CurrPtr->Attributes, Attributes, VendorGuid, VariableName));
3280 goto Done;
3281 }
3282 }
3283
3284 if (!FeaturePcdGet (PcdUefiVariableDefaultLangDeprecate)) {
3285 //
3286 // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang.
3287 //
3288 Status = AutoUpdateLangVariable (VariableName, Data, DataSize);
3289 if (EFI_ERROR (Status)) {
3290 //
3291 // The auto update operation failed, directly return to avoid inconsistency between PlatformLang and Lang.
3292 //
3293 goto Done;
3294 }
3295 }
3296
3297 if (mVariableModuleGlobal->VariableGlobal.AuthSupport) {
3298 Status = AuthVariableLibProcessVariable (VariableName, VendorGuid, Data, DataSize, Attributes);
3299 } else {
3300 Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, 0, 0, &Variable, NULL);
3301 }
3302
3303 Done:
3304 InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState);
3305 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3306
3307 if (!AtRuntime ()) {
3308 if (!EFI_ERROR (Status)) {
3309 SecureBootHook (
3310 VariableName,
3311 VendorGuid
3312 );
3313 }
3314 }
3315
3316 return Status;
3317 }
3318
3319 /**
3320
3321 This code returns information about the EFI variables.
3322
3323 Caution: This function may receive untrusted input.
3324 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3325
3326 @param Attributes Attributes bitmask to specify the type of variables
3327 on which to return information.
3328 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
3329 for the EFI variables associated with the attributes specified.
3330 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
3331 for EFI variables associated with the attributes specified.
3332 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
3333 associated with the attributes specified.
3334
3335 @return EFI_SUCCESS Query successfully.
3336
3337 **/
3338 EFI_STATUS
3339 EFIAPI
3340 VariableServiceQueryVariableInfoInternal (
3341 IN UINT32 Attributes,
3342 OUT UINT64 *MaximumVariableStorageSize,
3343 OUT UINT64 *RemainingVariableStorageSize,
3344 OUT UINT64 *MaximumVariableSize
3345 )
3346 {
3347 VARIABLE_HEADER *Variable;
3348 VARIABLE_HEADER *NextVariable;
3349 UINT64 VariableSize;
3350 VARIABLE_STORE_HEADER *VariableStoreHeader;
3351 UINT64 CommonVariableTotalSize;
3352 UINT64 HwErrVariableTotalSize;
3353 EFI_STATUS Status;
3354 VARIABLE_POINTER_TRACK VariablePtrTrack;
3355
3356 CommonVariableTotalSize = 0;
3357 HwErrVariableTotalSize = 0;
3358
3359 if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
3360 //
3361 // Query is Volatile related.
3362 //
3363 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
3364 } else {
3365 //
3366 // Query is Non-Volatile related.
3367 //
3368 VariableStoreHeader = mNvVariableCache;
3369 }
3370
3371 //
3372 // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
3373 // with the storage size (excluding the storage header size).
3374 //
3375 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
3376
3377 //
3378 // Harware error record variable needs larger size.
3379 //
3380 if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
3381 *MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize);
3382 *MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - GetVariableHeaderSize ();
3383 } else {
3384 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
3385 if (AtRuntime ()) {
3386 *MaximumVariableStorageSize = mVariableModuleGlobal->CommonRuntimeVariableSpace;
3387 } else {
3388 *MaximumVariableStorageSize = mVariableModuleGlobal->CommonVariableSpace;
3389 }
3390 }
3391
3392 //
3393 // Let *MaximumVariableSize be Max(Auth)VariableSize with the exception of the variable header size.
3394 //
3395 if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
3396 *MaximumVariableSize = mVariableModuleGlobal->MaxAuthVariableSize - GetVariableHeaderSize ();
3397 } else {
3398 *MaximumVariableSize = mVariableModuleGlobal->MaxVariableSize - GetVariableHeaderSize ();
3399 }
3400 }
3401
3402 //
3403 // Point to the starting address of the variables.
3404 //
3405 Variable = GetStartPointer (VariableStoreHeader);
3406
3407 //
3408 // Now walk through the related variable store.
3409 //
3410 while (IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))) {
3411 NextVariable = GetNextVariablePtr (Variable);
3412 VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
3413
3414 if (AtRuntime ()) {
3415 //
3416 // We don't take the state of the variables in mind
3417 // when calculating RemainingVariableStorageSize,
3418 // since the space occupied by variables not marked with
3419 // VAR_ADDED is not allowed to be reclaimed in Runtime.
3420 //
3421 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3422 HwErrVariableTotalSize += VariableSize;
3423 } else {
3424 CommonVariableTotalSize += VariableSize;
3425 }
3426 } else {
3427 //
3428 // Only care about Variables with State VAR_ADDED, because
3429 // the space not marked as VAR_ADDED is reclaimable now.
3430 //
3431 if (Variable->State == VAR_ADDED) {
3432 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3433 HwErrVariableTotalSize += VariableSize;
3434 } else {
3435 CommonVariableTotalSize += VariableSize;
3436 }
3437 } else if (Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
3438 //
3439 // If it is a IN_DELETED_TRANSITION variable,
3440 // and there is not also a same ADDED one at the same time,
3441 // this IN_DELETED_TRANSITION variable is valid.
3442 //
3443 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
3444 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
3445 Status = FindVariableEx (
3446 GetVariableNamePtr (Variable),
3447 GetVendorGuidPtr (Variable),
3448 FALSE,
3449 &VariablePtrTrack
3450 );
3451 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State != VAR_ADDED) {
3452 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3453 HwErrVariableTotalSize += VariableSize;
3454 } else {
3455 CommonVariableTotalSize += VariableSize;
3456 }
3457 }
3458 }
3459 }
3460
3461 //
3462 // Go to the next one.
3463 //
3464 Variable = NextVariable;
3465 }
3466
3467 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
3468 *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
3469 } else {
3470 if (*MaximumVariableStorageSize < CommonVariableTotalSize) {
3471 *RemainingVariableStorageSize = 0;
3472 } else {
3473 *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
3474 }
3475 }
3476
3477 if (*RemainingVariableStorageSize < GetVariableHeaderSize ()) {
3478 *MaximumVariableSize = 0;
3479 } else if ((*RemainingVariableStorageSize - GetVariableHeaderSize ()) < *MaximumVariableSize) {
3480 *MaximumVariableSize = *RemainingVariableStorageSize - GetVariableHeaderSize ();
3481 }
3482
3483 return EFI_SUCCESS;
3484 }
3485
3486 /**
3487
3488 This code returns information about the EFI variables.
3489
3490 Caution: This function may receive untrusted input.
3491 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3492
3493 @param Attributes Attributes bitmask to specify the type of variables
3494 on which to return information.
3495 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
3496 for the EFI variables associated with the attributes specified.
3497 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
3498 for EFI variables associated with the attributes specified.
3499 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
3500 associated with the attributes specified.
3501
3502 @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
3503 @return EFI_SUCCESS Query successfully.
3504 @return EFI_UNSUPPORTED The attribute is not supported on this platform.
3505
3506 **/
3507 EFI_STATUS
3508 EFIAPI
3509 VariableServiceQueryVariableInfo (
3510 IN UINT32 Attributes,
3511 OUT UINT64 *MaximumVariableStorageSize,
3512 OUT UINT64 *RemainingVariableStorageSize,
3513 OUT UINT64 *MaximumVariableSize
3514 )
3515 {
3516 EFI_STATUS Status;
3517
3518 if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
3519 return EFI_INVALID_PARAMETER;
3520 }
3521
3522 if ((Attributes & EFI_VARIABLE_ATTRIBUTES_MASK) == 0) {
3523 //
3524 // Make sure the Attributes combination is supported by the platform.
3525 //
3526 return EFI_UNSUPPORTED;
3527 } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
3528 //
3529 // Make sure if runtime bit is set, boot service bit is set also.
3530 //
3531 return EFI_INVALID_PARAMETER;
3532 } else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
3533 //
3534 // Make sure RT Attribute is set if we are in Runtime phase.
3535 //
3536 return EFI_INVALID_PARAMETER;
3537 } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3538 //
3539 // Make sure Hw Attribute is set with NV.
3540 //
3541 return EFI_INVALID_PARAMETER;
3542 } else if ((Attributes & VARIABLE_ATTRIBUTE_AT_AW) != 0) {
3543 if (!mVariableModuleGlobal->VariableGlobal.AuthSupport) {
3544 //
3545 // Not support authenticated variable write.
3546 //
3547 return EFI_UNSUPPORTED;
3548 }
3549 } else if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
3550 if (PcdGet32 (PcdHwErrStorageSize) == 0) {
3551 //
3552 // Not support harware error record variable variable.
3553 //
3554 return EFI_UNSUPPORTED;
3555 }
3556 }
3557
3558 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3559
3560 Status = VariableServiceQueryVariableInfoInternal (
3561 Attributes,
3562 MaximumVariableStorageSize,
3563 RemainingVariableStorageSize,
3564 MaximumVariableSize
3565 );
3566
3567 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3568 return Status;
3569 }
3570
3571 /**
3572 This function reclaims variable storage if free size is below the threshold.
3573
3574 Caution: This function may be invoked at SMM mode.
3575 Care must be taken to make sure not security issue.
3576
3577 **/
3578 VOID
3579 ReclaimForOS(
3580 VOID
3581 )
3582 {
3583 EFI_STATUS Status;
3584 UINTN RemainingCommonRuntimeVariableSpace;
3585 UINTN RemainingHwErrVariableSpace;
3586 STATIC BOOLEAN Reclaimed;
3587
3588 //
3589 // This function will be called only once at EndOfDxe or ReadyToBoot event.
3590 //
3591 if (Reclaimed) {
3592 return;
3593 }
3594 Reclaimed = TRUE;
3595
3596 Status = EFI_SUCCESS;
3597
3598 if (mVariableModuleGlobal->CommonRuntimeVariableSpace < mVariableModuleGlobal->CommonVariableTotalSize) {
3599 RemainingCommonRuntimeVariableSpace = 0;
3600 } else {
3601 RemainingCommonRuntimeVariableSpace = mVariableModuleGlobal->CommonRuntimeVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize;
3602 }
3603
3604 RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize;
3605
3606 //
3607 // Check if the free area is below a threshold.
3608 //
3609 if (((RemainingCommonRuntimeVariableSpace < mVariableModuleGlobal->MaxVariableSize) ||
3610 (RemainingCommonRuntimeVariableSpace < mVariableModuleGlobal->MaxAuthVariableSize)) ||
3611 ((PcdGet32 (PcdHwErrStorageSize) != 0) &&
3612 (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){
3613 Status = Reclaim (
3614 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
3615 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
3616 FALSE,
3617 NULL,
3618 NULL,
3619 0
3620 );
3621 ASSERT_EFI_ERROR (Status);
3622 }
3623 }
3624
3625 /**
3626 Get non-volatile maximum variable size.
3627
3628 @return Non-volatile maximum variable size.
3629
3630 **/
3631 UINTN
3632 GetNonVolatileMaxVariableSize (
3633 VOID
3634 )
3635 {
3636 if (PcdGet32 (PcdHwErrStorageSize) != 0) {
3637 return MAX (MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxAuthVariableSize)),
3638 PcdGet32 (PcdMaxHardwareErrorVariableSize));
3639 } else {
3640 return MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxAuthVariableSize));
3641 }
3642 }
3643
3644 /**
3645 Init non-volatile variable store.
3646
3647 @param[out] NvFvHeader Output pointer to non-volatile FV header address.
3648
3649 @retval EFI_SUCCESS Function successfully executed.
3650 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
3651 @retval EFI_VOLUME_CORRUPTED Variable Store or Firmware Volume for Variable Store is corrupted.
3652
3653 **/
3654 EFI_STATUS
3655 InitNonVolatileVariableStore (
3656 OUT EFI_FIRMWARE_VOLUME_HEADER **NvFvHeader
3657 )
3658 {
3659 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
3660 VARIABLE_HEADER *Variable;
3661 VARIABLE_HEADER *NextVariable;
3662 EFI_PHYSICAL_ADDRESS VariableStoreBase;
3663 UINT64 VariableStoreLength;
3664 UINTN VariableSize;
3665 EFI_HOB_GUID_TYPE *GuidHob;
3666 EFI_PHYSICAL_ADDRESS NvStorageBase;
3667 UINT8 *NvStorageData;
3668 UINT32 NvStorageSize;
3669 FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *FtwLastWriteData;
3670 UINT32 BackUpOffset;
3671 UINT32 BackUpSize;
3672 UINT32 HwErrStorageSize;
3673 UINT32 MaxUserNvVariableSpaceSize;
3674 UINT32 BoottimeReservedNvVariableSpaceSize;
3675 EFI_STATUS Status;
3676 VOID *FtwProtocol;
3677
3678 mVariableModuleGlobal->FvbInstance = NULL;
3679
3680 //
3681 // Allocate runtime memory used for a memory copy of the FLASH region.
3682 // Keep the memory and the FLASH in sync as updates occur.
3683 //
3684 NvStorageSize = PcdGet32 (PcdFlashNvStorageVariableSize);
3685 NvStorageData = AllocateRuntimeZeroPool (NvStorageSize);
3686 if (NvStorageData == NULL) {
3687 return EFI_OUT_OF_RESOURCES;
3688 }
3689
3690 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
3691 if (NvStorageBase == 0) {
3692 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3693 }
3694 //
3695 // Copy NV storage data to the memory buffer.
3696 //
3697 CopyMem (NvStorageData, (UINT8 *) (UINTN) NvStorageBase, NvStorageSize);
3698
3699 Status = GetFtwProtocol ((VOID **)&FtwProtocol);
3700 //
3701 // If FTW protocol has been installed, no need to check FTW last write data hob.
3702 //
3703 if (EFI_ERROR (Status)) {
3704 //
3705 // Check the FTW last write data hob.
3706 //
3707 GuidHob = GetFirstGuidHob (&gEdkiiFaultTolerantWriteGuid);
3708 if (GuidHob != NULL) {
3709 FtwLastWriteData = (FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *) GET_GUID_HOB_DATA (GuidHob);
3710 if (FtwLastWriteData->TargetAddress == NvStorageBase) {
3711 DEBUG ((EFI_D_INFO, "Variable: NV storage is backed up in spare block: 0x%x\n", (UINTN) FtwLastWriteData->SpareAddress));
3712 //
3713 // Copy the backed up NV storage data to the memory buffer from spare block.
3714 //
3715 CopyMem (NvStorageData, (UINT8 *) (UINTN) (FtwLastWriteData->SpareAddress), NvStorageSize);
3716 } else if ((FtwLastWriteData->TargetAddress > NvStorageBase) &&
3717 (FtwLastWriteData->TargetAddress < (NvStorageBase + NvStorageSize))) {
3718 //
3719 // Flash NV storage from the Offset is backed up in spare block.
3720 //
3721 BackUpOffset = (UINT32) (FtwLastWriteData->TargetAddress - NvStorageBase);
3722 BackUpSize = NvStorageSize - BackUpOffset;
3723 DEBUG ((EFI_D_INFO, "Variable: High partial NV storage from offset: %x is backed up in spare block: 0x%x\n", BackUpOffset, (UINTN) FtwLastWriteData->SpareAddress));
3724 //
3725 // Copy the partial backed up NV storage data to the memory buffer from spare block.
3726 //
3727 CopyMem (NvStorageData + BackUpOffset, (UINT8 *) (UINTN) FtwLastWriteData->SpareAddress, BackUpSize);
3728 }
3729 }
3730 }
3731
3732 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) NvStorageData;
3733
3734 //
3735 // Check if the Firmware Volume is not corrupted
3736 //
3737 if ((FvHeader->Signature != EFI_FVH_SIGNATURE) || (!CompareGuid (&gEfiSystemNvDataFvGuid, &FvHeader->FileSystemGuid))) {
3738 FreePool (NvStorageData);
3739 DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n"));
3740 return EFI_VOLUME_CORRUPTED;
3741 }
3742
3743 VariableStoreBase = (UINTN) FvHeader + FvHeader->HeaderLength;
3744 VariableStoreLength = NvStorageSize - FvHeader->HeaderLength;
3745
3746 mNvFvHeaderCache = FvHeader;
3747 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3748 mNvVariableCache = (VARIABLE_STORE_HEADER *) (UINTN) VariableStoreBase;
3749 if (GetVariableStoreStatus (mNvVariableCache) != EfiValid) {
3750 FreePool (NvStorageData);
3751 mNvFvHeaderCache = NULL;
3752 mNvVariableCache = NULL;
3753 DEBUG((EFI_D_ERROR, "Variable Store header is corrupted\n"));
3754 return EFI_VOLUME_CORRUPTED;
3755 }
3756 ASSERT(mNvVariableCache->Size == VariableStoreLength);
3757
3758 ASSERT (sizeof (VARIABLE_STORE_HEADER) <= VariableStoreLength);
3759
3760 mVariableModuleGlobal->VariableGlobal.AuthFormat = (BOOLEAN)(CompareGuid (&mNvVariableCache->Signature, &gEfiAuthenticatedVariableGuid));
3761
3762 HwErrStorageSize = PcdGet32 (PcdHwErrStorageSize);
3763 MaxUserNvVariableSpaceSize = PcdGet32 (PcdMaxUserNvVariableSpaceSize);
3764 BoottimeReservedNvVariableSpaceSize = PcdGet32 (PcdBoottimeReservedNvVariableSpaceSize);
3765
3766 //
3767 // Note that in EdkII variable driver implementation, Hardware Error Record type variable
3768 // is stored with common variable in the same NV region. So the platform integrator should
3769 // ensure that the value of PcdHwErrStorageSize is less than the value of
3770 // (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)).
3771 //
3772 ASSERT (HwErrStorageSize < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)));
3773 //
3774 // Ensure that the value of PcdMaxUserNvVariableSpaceSize is less than the value of
3775 // (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)) - PcdGet32 (PcdHwErrStorageSize).
3776 //
3777 ASSERT (MaxUserNvVariableSpaceSize < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER) - HwErrStorageSize));
3778 //
3779 // Ensure that the value of PcdBoottimeReservedNvVariableSpaceSize is less than the value of
3780 // (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)) - PcdGet32 (PcdHwErrStorageSize).
3781 //
3782 ASSERT (BoottimeReservedNvVariableSpaceSize < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER) - HwErrStorageSize));
3783
3784 mVariableModuleGlobal->CommonVariableSpace = ((UINTN) VariableStoreLength - sizeof (VARIABLE_STORE_HEADER) - HwErrStorageSize);
3785 mVariableModuleGlobal->CommonMaxUserVariableSpace = ((MaxUserNvVariableSpaceSize != 0) ? MaxUserNvVariableSpaceSize : mVariableModuleGlobal->CommonVariableSpace);
3786 mVariableModuleGlobal->CommonRuntimeVariableSpace = mVariableModuleGlobal->CommonVariableSpace - BoottimeReservedNvVariableSpaceSize;
3787
3788 DEBUG ((EFI_D_INFO, "Variable driver common space: 0x%x 0x%x 0x%x\n", mVariableModuleGlobal->CommonVariableSpace, mVariableModuleGlobal->CommonMaxUserVariableSpace, mVariableModuleGlobal->CommonRuntimeVariableSpace));
3789
3790 //
3791 // The max NV variable size should be < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)).
3792 //
3793 ASSERT (GetNonVolatileMaxVariableSize () < (VariableStoreLength - sizeof (VARIABLE_STORE_HEADER)));
3794
3795 mVariableModuleGlobal->MaxVariableSize = PcdGet32 (PcdMaxVariableSize);
3796 mVariableModuleGlobal->MaxAuthVariableSize = ((PcdGet32 (PcdMaxAuthVariableSize) != 0) ? PcdGet32 (PcdMaxAuthVariableSize) : mVariableModuleGlobal->MaxVariableSize);
3797
3798 //
3799 // Parse non-volatile variable data and get last variable offset.
3800 //
3801 Variable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase);
3802 while (IsValidVariableHeader (Variable, GetEndPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase))) {
3803 NextVariable = GetNextVariablePtr (Variable);
3804 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
3805 if ((Variable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
3806 mVariableModuleGlobal->HwErrVariableTotalSize += VariableSize;
3807 } else {
3808 mVariableModuleGlobal->CommonVariableTotalSize += VariableSize;
3809 }
3810
3811 Variable = NextVariable;
3812 }
3813 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) Variable - (UINTN) VariableStoreBase;
3814
3815 *NvFvHeader = FvHeader;
3816 return EFI_SUCCESS;
3817 }
3818
3819 /**
3820 Flush the HOB variable to flash.
3821
3822 @param[in] VariableName Name of variable has been updated or deleted.
3823 @param[in] VendorGuid Guid of variable has been updated or deleted.
3824
3825 **/
3826 VOID
3827 FlushHobVariableToFlash (
3828 IN CHAR16 *VariableName,
3829 IN EFI_GUID *VendorGuid
3830 )
3831 {
3832 EFI_STATUS Status;
3833 VARIABLE_STORE_HEADER *VariableStoreHeader;
3834 VARIABLE_HEADER *Variable;
3835 VOID *VariableData;
3836 VARIABLE_POINTER_TRACK VariablePtrTrack;
3837 BOOLEAN ErrorFlag;
3838
3839 ErrorFlag = FALSE;
3840
3841 //
3842 // Flush the HOB variable to flash.
3843 //
3844 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3845 VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
3846 //
3847 // Set HobVariableBase to 0, it can avoid SetVariable to call back.
3848 //
3849 mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0;
3850 for ( Variable = GetStartPointer (VariableStoreHeader)
3851 ; IsValidVariableHeader (Variable, GetEndPointer (VariableStoreHeader))
3852 ; Variable = GetNextVariablePtr (Variable)
3853 ) {
3854 if (Variable->State != VAR_ADDED) {
3855 //
3856 // The HOB variable has been set to DELETED state in local.
3857 //
3858 continue;
3859 }
3860 ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0);
3861 if (VendorGuid == NULL || VariableName == NULL ||
3862 !CompareGuid (VendorGuid, GetVendorGuidPtr (Variable)) ||
3863 StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) {
3864 VariableData = GetVariableDataPtr (Variable);
3865 FindVariable (GetVariableNamePtr (Variable), GetVendorGuidPtr (Variable), &VariablePtrTrack, &mVariableModuleGlobal->VariableGlobal, FALSE);
3866 Status = UpdateVariable (
3867 GetVariableNamePtr (Variable),
3868 GetVendorGuidPtr (Variable),
3869 VariableData,
3870 DataSizeOfVariable (Variable),
3871 Variable->Attributes,
3872 0,
3873 0,
3874 &VariablePtrTrack,
3875 NULL
3876 );
3877 DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", GetVendorGuidPtr (Variable), GetVariableNamePtr (Variable), Status));
3878 } else {
3879 //
3880 // The updated or deleted variable is matched with this HOB variable.
3881 // Don't break here because we will try to set other HOB variables
3882 // since this variable could be set successfully.
3883 //
3884 Status = EFI_SUCCESS;
3885 }
3886 if (!EFI_ERROR (Status)) {
3887 //
3888 // If set variable successful, or the updated or deleted variable is matched with the HOB variable,
3889 // set the HOB variable to DELETED state in local.
3890 //
3891 DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", GetVendorGuidPtr (Variable), GetVariableNamePtr (Variable)));
3892 Variable->State &= VAR_DELETED;
3893 } else {
3894 ErrorFlag = TRUE;
3895 }
3896 }
3897 if (ErrorFlag) {
3898 //
3899 // We still have HOB variable(s) not flushed in flash.
3900 //
3901 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader;
3902 } else {
3903 //
3904 // All HOB variables have been flushed in flash.
3905 //
3906 DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n"));
3907 if (!AtRuntime ()) {
3908 FreePool ((VOID *) VariableStoreHeader);
3909 }
3910 }
3911 }
3912
3913 }
3914
3915 /**
3916 Initializes variable write service after FTW was ready.
3917
3918 @retval EFI_SUCCESS Function successfully executed.
3919 @retval Others Fail to initialize the variable service.
3920
3921 **/
3922 EFI_STATUS
3923 VariableWriteServiceInitialize (
3924 VOID
3925 )
3926 {
3927 EFI_STATUS Status;
3928 UINTN Index;
3929 UINT8 Data;
3930 EFI_PHYSICAL_ADDRESS VariableStoreBase;
3931 EFI_PHYSICAL_ADDRESS NvStorageBase;
3932 VARIABLE_ENTRY_PROPERTY *VariableEntry;
3933
3934 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3935
3936 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
3937 if (NvStorageBase == 0) {
3938 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3939 }
3940 VariableStoreBase = NvStorageBase + (mNvFvHeaderCache->HeaderLength);
3941
3942 //
3943 // Let NonVolatileVariableBase point to flash variable store base directly after FTW ready.
3944 //
3945 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3946
3947 //
3948 // Check if the free area is really free.
3949 //
3950 for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < mNvVariableCache->Size; Index++) {
3951 Data = ((UINT8 *) mNvVariableCache)[Index];
3952 if (Data != 0xff) {
3953 //
3954 // There must be something wrong in variable store, do reclaim operation.
3955 //
3956 Status = Reclaim (
3957 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
3958 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
3959 FALSE,
3960 NULL,
3961 NULL,
3962 0
3963 );
3964 if (EFI_ERROR (Status)) {
3965 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3966 return Status;
3967 }
3968 break;
3969 }
3970 }
3971
3972 FlushHobVariableToFlash (NULL, NULL);
3973
3974 Status = EFI_SUCCESS;
3975 ZeroMem (&mAuthContextOut, sizeof (mAuthContextOut));
3976 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
3977 //
3978 // Authenticated variable initialize.
3979 //
3980 mAuthContextIn.StructSize = sizeof (AUTH_VAR_LIB_CONTEXT_IN);
3981 mAuthContextIn.MaxAuthVariableSize = mVariableModuleGlobal->MaxAuthVariableSize - GetVariableHeaderSize ();
3982 Status = AuthVariableLibInitialize (&mAuthContextIn, &mAuthContextOut);
3983 if (!EFI_ERROR (Status)) {
3984 DEBUG ((EFI_D_INFO, "Variable driver will work with auth variable support!\n"));
3985 mVariableModuleGlobal->VariableGlobal.AuthSupport = TRUE;
3986 if (mAuthContextOut.AuthVarEntry != NULL) {
3987 for (Index = 0; Index < mAuthContextOut.AuthVarEntryCount; Index++) {
3988 VariableEntry = &mAuthContextOut.AuthVarEntry[Index];
3989 Status = VarCheckLibVariablePropertySet (
3990 VariableEntry->Name,
3991 VariableEntry->Guid,
3992 &VariableEntry->VariableProperty
3993 );
3994 ASSERT_EFI_ERROR (Status);
3995 }
3996 }
3997 } else if (Status == EFI_UNSUPPORTED) {
3998 DEBUG ((EFI_D_INFO, "NOTICE - AuthVariableLibInitialize() returns %r!\n", Status));
3999 DEBUG ((EFI_D_INFO, "Variable driver will continue to work without auth variable support!\n"));
4000 mVariableModuleGlobal->VariableGlobal.AuthSupport = FALSE;
4001 Status = EFI_SUCCESS;
4002 }
4003 }
4004
4005 if (!EFI_ERROR (Status)) {
4006 for (Index = 0; Index < ARRAY_SIZE (mVariableEntryProperty); Index++) {
4007 VariableEntry = &mVariableEntryProperty[Index];
4008 Status = VarCheckLibVariablePropertySet (VariableEntry->Name, VariableEntry->Guid, &VariableEntry->VariableProperty);
4009 ASSERT_EFI_ERROR (Status);
4010 }
4011 }
4012
4013 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
4014
4015 //
4016 // Initialize MOR Lock variable.
4017 //
4018 MorLockInit ();
4019
4020 return Status;
4021 }
4022
4023
4024 /**
4025 Initializes variable store area for non-volatile and volatile variable.
4026
4027 @retval EFI_SUCCESS Function successfully executed.
4028 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
4029
4030 **/
4031 EFI_STATUS
4032 VariableCommonInitialize (
4033 VOID
4034 )
4035 {
4036 EFI_STATUS Status;
4037 VARIABLE_STORE_HEADER *VolatileVariableStore;
4038 VARIABLE_STORE_HEADER *VariableStoreHeader;
4039 UINT64 VariableStoreLength;
4040 UINTN ScratchSize;
4041 EFI_HOB_GUID_TYPE *GuidHob;
4042 EFI_GUID *VariableGuid;
4043 EFI_FIRMWARE_VOLUME_HEADER *NvFvHeader;
4044
4045 //
4046 // Allocate runtime memory for variable driver global structure.
4047 //
4048 mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL));
4049 if (mVariableModuleGlobal == NULL) {
4050 return EFI_OUT_OF_RESOURCES;
4051 }
4052
4053 InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY);
4054
4055 //
4056 // Init non-volatile variable store.
4057 //
4058 NvFvHeader = NULL;
4059 Status = InitNonVolatileVariableStore (&NvFvHeader);
4060 if (EFI_ERROR (Status)) {
4061 FreePool (mVariableModuleGlobal);
4062 return Status;
4063 }
4064
4065 //
4066 // mVariableModuleGlobal->VariableGlobal.AuthFormat
4067 // has been initialized in InitNonVolatileVariableStore().
4068 //
4069 if (mVariableModuleGlobal->VariableGlobal.AuthFormat) {
4070 DEBUG ((EFI_D_INFO, "Variable driver will work with auth variable format!\n"));
4071 //
4072 // Set AuthSupport to FALSE first, VariableWriteServiceInitialize() will initialize it.
4073 //
4074 mVariableModuleGlobal->VariableGlobal.AuthSupport = FALSE;
4075 VariableGuid = &gEfiAuthenticatedVariableGuid;
4076 } else {
4077 DEBUG ((EFI_D_INFO, "Variable driver will work without auth variable support!\n"));
4078 mVariableModuleGlobal->VariableGlobal.AuthSupport = FALSE;
4079 VariableGuid = &gEfiVariableGuid;
4080 }
4081
4082 //
4083 // Get HOB variable store.
4084 //
4085 GuidHob = GetFirstGuidHob (VariableGuid);
4086 if (GuidHob != NULL) {
4087 VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob);
4088 VariableStoreLength = GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE);
4089 if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
4090 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader);
4091 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) {
4092 FreePool (NvFvHeader);
4093 FreePool (mVariableModuleGlobal);
4094 return EFI_OUT_OF_RESOURCES;
4095 }
4096 } else {
4097 DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n"));
4098 }
4099 }
4100
4101 //
4102 // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data.
4103 //
4104 ScratchSize = GetNonVolatileMaxVariableSize ();
4105 mVariableModuleGlobal->ScratchBufferSize = ScratchSize;
4106 VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize);
4107 if (VolatileVariableStore == NULL) {
4108 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
4109 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
4110 }
4111 FreePool (NvFvHeader);
4112 FreePool (mVariableModuleGlobal);
4113 return EFI_OUT_OF_RESOURCES;
4114 }
4115
4116 SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff);
4117
4118 //
4119 // Initialize Variable Specific Data.
4120 //
4121 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore;
4122 mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore;
4123
4124 CopyGuid (&VolatileVariableStore->Signature, VariableGuid);
4125 VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize);
4126 VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED;
4127 VolatileVariableStore->State = VARIABLE_STORE_HEALTHY;
4128 VolatileVariableStore->Reserved = 0;
4129 VolatileVariableStore->Reserved1 = 0;
4130
4131 return EFI_SUCCESS;
4132 }
4133
4134
4135 /**
4136 Get the proper fvb handle and/or fvb protocol by the given Flash address.
4137
4138 @param[in] Address The Flash address.
4139 @param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle.
4140 @param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol.
4141
4142 **/
4143 EFI_STATUS
4144 GetFvbInfoByAddress (
4145 IN EFI_PHYSICAL_ADDRESS Address,
4146 OUT EFI_HANDLE *FvbHandle OPTIONAL,
4147 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL
4148 )
4149 {
4150 EFI_STATUS Status;
4151 EFI_HANDLE *HandleBuffer;
4152 UINTN HandleCount;
4153 UINTN Index;
4154 EFI_PHYSICAL_ADDRESS FvbBaseAddress;
4155 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
4156 EFI_FVB_ATTRIBUTES_2 Attributes;
4157 UINTN BlockSize;
4158 UINTN NumberOfBlocks;
4159
4160 HandleBuffer = NULL;
4161 //
4162 // Get all FVB handles.
4163 //
4164 Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
4165 if (EFI_ERROR (Status)) {
4166 return EFI_NOT_FOUND;
4167 }
4168
4169 //
4170 // Get the FVB to access variable store.
4171 //
4172 Fvb = NULL;
4173 for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) {
4174 Status = GetFvbByHandle (HandleBuffer[Index], &Fvb);
4175 if (EFI_ERROR (Status)) {
4176 Status = EFI_NOT_FOUND;
4177 break;
4178 }
4179
4180 //
4181 // Ensure this FVB protocol supported Write operation.
4182 //
4183 Status = Fvb->GetAttributes (Fvb, &Attributes);
4184 if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
4185 continue;
4186 }
4187
4188 //
4189 // Compare the address and select the right one.
4190 //
4191 Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
4192 if (EFI_ERROR (Status)) {
4193 continue;
4194 }
4195
4196 //
4197 // Assume one FVB has one type of BlockSize.
4198 //
4199 Status = Fvb->GetBlockSize (Fvb, 0, &BlockSize, &NumberOfBlocks);
4200 if (EFI_ERROR (Status)) {
4201 continue;
4202 }
4203
4204 if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + BlockSize * NumberOfBlocks))) {
4205 if (FvbHandle != NULL) {
4206 *FvbHandle = HandleBuffer[Index];
4207 }
4208 if (FvbProtocol != NULL) {
4209 *FvbProtocol = Fvb;
4210 }
4211 Status = EFI_SUCCESS;
4212 break;
4213 }
4214 }
4215 FreePool (HandleBuffer);
4216
4217 if (Fvb == NULL) {
4218 Status = EFI_NOT_FOUND;
4219 }
4220
4221 return Status;
4222 }
4223