]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/Variable/RuntimeDxe/Variable.c
MdeModulePkg and SecurityPkg Variable: Optimize the code to reduce some SMRAM consump...
[mirror_edk2.git] / MdeModulePkg / Universal / Variable / RuntimeDxe / Variable.c
1 /** @file
2
3 The common variable operation routines shared by DXE_RUNTIME variable
4 module and DXE_SMM variable module.
5
6 Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR>
7 This program and the accompanying materials
8 are licensed and made available under the terms and conditions of the BSD License
9 which accompanies this distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14
15 **/
16
17 #include "Variable.h"
18
19 VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
20
21 ///
22 /// Define a memory cache that improves the search performance for a variable.
23 ///
24 VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
25
26 ///
27 /// The memory entry used for variable statistics data.
28 ///
29 VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
30
31 ///
32 /// The list to store the variables which cannot be set after the EFI_END_OF_DXE_EVENT_GROUP_GUID
33 /// or EVT_GROUP_READY_TO_BOOT event.
34 ///
35 LIST_ENTRY mLockedVariableList = INITIALIZE_LIST_HEAD_VARIABLE (mLockedVariableList);
36
37 ///
38 /// The flag to indicate whether the platform has left the DXE phase of execution.
39 ///
40 BOOLEAN mEndOfDxe = FALSE;
41
42 ///
43 /// The flag to indicate whether the variable storage locking is enabled.
44 ///
45 BOOLEAN mEnableLocking = TRUE;
46
47 //
48 // To prevent name collisions with possible future globally defined variables,
49 // other internal firmware data variables that are not defined here must be
50 // saved with a unique VendorGuid other than EFI_GLOBAL_VARIABLE or
51 // any other GUID defined by the UEFI Specification. Implementations must
52 // only permit the creation of variables with a UEFI Specification-defined
53 // VendorGuid when these variables are documented in the UEFI Specification.
54 //
55 GLOBAL_VARIABLE_ENTRY mGlobalVariableList[] = {
56 {EFI_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
57 {EFI_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
58 {EFI_TIME_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
59 {EFI_PLATFORM_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
60 {EFI_PLATFORM_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
61 {EFI_CON_IN_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
62 {EFI_CON_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
63 {EFI_ERR_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
64 {EFI_CON_IN_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
65 {EFI_CON_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
66 {EFI_ERR_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
67 {EFI_BOOT_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
68 {EFI_BOOT_NEXT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
69 {EFI_BOOT_CURRENT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
70 {EFI_BOOT_OPTION_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
71 {EFI_DRIVER_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
72 {EFI_HW_ERR_REC_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
73 {EFI_SETUP_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
74 {EFI_KEY_EXCHANGE_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
75 {EFI_PLATFORM_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
76 {EFI_SIGNATURE_SUPPORT_NAME, VARIABLE_ATTRIBUTE_BS_RT},
77 {EFI_SECURE_BOOT_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
78 {EFI_KEK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
79 {EFI_PK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
80 {EFI_DB_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
81 {EFI_DBX_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
82 {EFI_DBT_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
83 {EFI_OS_INDICATIONS_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
84 {EFI_OS_INDICATIONS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
85 {EFI_VENDOR_KEYS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
86 };
87 GLOBAL_VARIABLE_ENTRY mGlobalVariableList2[] = {
88 {L"Boot####", VARIABLE_ATTRIBUTE_NV_BS_RT},
89 {L"Driver####", VARIABLE_ATTRIBUTE_NV_BS_RT},
90 {L"Key####", VARIABLE_ATTRIBUTE_NV_BS_RT},
91 };
92
93 /**
94 Routine used to track statistical information about variable usage.
95 The data is stored in the EFI system table so it can be accessed later.
96 VariableInfo.efi can dump out the table. Only Boot Services variable
97 accesses are tracked by this code. The PcdVariableCollectStatistics
98 build flag controls if this feature is enabled.
99
100 A read that hits in the cache will have Read and Cache true for
101 the transaction. Data is allocated by this routine, but never
102 freed.
103
104 @param[in] VariableName Name of the Variable to track.
105 @param[in] VendorGuid Guid of the Variable to track.
106 @param[in] Volatile TRUE if volatile FALSE if non-volatile.
107 @param[in] Read TRUE if GetVariable() was called.
108 @param[in] Write TRUE if SetVariable() was called.
109 @param[in] Delete TRUE if deleted via SetVariable().
110 @param[in] Cache TRUE for a cache hit.
111
112 **/
113 VOID
114 UpdateVariableInfo (
115 IN CHAR16 *VariableName,
116 IN EFI_GUID *VendorGuid,
117 IN BOOLEAN Volatile,
118 IN BOOLEAN Read,
119 IN BOOLEAN Write,
120 IN BOOLEAN Delete,
121 IN BOOLEAN Cache
122 )
123 {
124 VARIABLE_INFO_ENTRY *Entry;
125
126 if (FeaturePcdGet (PcdVariableCollectStatistics)) {
127
128 if (AtRuntime ()) {
129 // Don't collect statistics at runtime.
130 return;
131 }
132
133 if (gVariableInfo == NULL) {
134 //
135 // On the first call allocate a entry and place a pointer to it in
136 // the EFI System Table.
137 //
138 gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
139 ASSERT (gVariableInfo != NULL);
140
141 CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
142 gVariableInfo->Name = AllocatePool (StrSize (VariableName));
143 ASSERT (gVariableInfo->Name != NULL);
144 StrCpy (gVariableInfo->Name, VariableName);
145 gVariableInfo->Volatile = Volatile;
146 }
147
148
149 for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
150 if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
151 if (StrCmp (VariableName, Entry->Name) == 0) {
152 if (Read) {
153 Entry->ReadCount++;
154 }
155 if (Write) {
156 Entry->WriteCount++;
157 }
158 if (Delete) {
159 Entry->DeleteCount++;
160 }
161 if (Cache) {
162 Entry->CacheCount++;
163 }
164
165 return;
166 }
167 }
168
169 if (Entry->Next == NULL) {
170 //
171 // If the entry is not in the table add it.
172 // Next iteration of the loop will fill in the data.
173 //
174 Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
175 ASSERT (Entry->Next != NULL);
176
177 CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
178 Entry->Next->Name = AllocatePool (StrSize (VariableName));
179 ASSERT (Entry->Next->Name != NULL);
180 StrCpy (Entry->Next->Name, VariableName);
181 Entry->Next->Volatile = Volatile;
182 }
183
184 }
185 }
186 }
187
188
189 /**
190
191 This code checks if variable header is valid or not.
192
193 @param Variable Pointer to the Variable Header.
194
195 @retval TRUE Variable header is valid.
196 @retval FALSE Variable header is not valid.
197
198 **/
199 BOOLEAN
200 IsValidVariableHeader (
201 IN VARIABLE_HEADER *Variable
202 )
203 {
204 if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
205 return FALSE;
206 }
207
208 return TRUE;
209 }
210
211
212 /**
213
214 This function writes data to the FWH at the correct LBA even if the LBAs
215 are fragmented.
216
217 @param Global Pointer to VARAIBLE_GLOBAL structure.
218 @param Volatile Point out the Variable is Volatile or Non-Volatile.
219 @param SetByIndex TRUE if target pointer is given as index.
220 FALSE if target pointer is absolute.
221 @param Fvb Pointer to the writable FVB protocol.
222 @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
223 structure.
224 @param DataSize Size of data to be written.
225 @param Buffer Pointer to the buffer from which data is written.
226
227 @retval EFI_INVALID_PARAMETER Parameters not valid.
228 @retval EFI_SUCCESS Variable store successfully updated.
229
230 **/
231 EFI_STATUS
232 UpdateVariableStore (
233 IN VARIABLE_GLOBAL *Global,
234 IN BOOLEAN Volatile,
235 IN BOOLEAN SetByIndex,
236 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
237 IN UINTN DataPtrIndex,
238 IN UINT32 DataSize,
239 IN UINT8 *Buffer
240 )
241 {
242 EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
243 UINTN BlockIndex2;
244 UINTN LinearOffset;
245 UINTN CurrWriteSize;
246 UINTN CurrWritePtr;
247 UINT8 *CurrBuffer;
248 EFI_LBA LbaNumber;
249 UINTN Size;
250 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
251 VARIABLE_STORE_HEADER *VolatileBase;
252 EFI_PHYSICAL_ADDRESS FvVolHdr;
253 EFI_PHYSICAL_ADDRESS DataPtr;
254 EFI_STATUS Status;
255
256 FwVolHeader = NULL;
257 DataPtr = DataPtrIndex;
258
259 //
260 // Check if the Data is Volatile.
261 //
262 if (!Volatile) {
263 ASSERT (Fvb != NULL);
264 Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
265 ASSERT_EFI_ERROR (Status);
266
267 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
268 //
269 // Data Pointer should point to the actual Address where data is to be
270 // written.
271 //
272 if (SetByIndex) {
273 DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
274 }
275
276 if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
277 return EFI_INVALID_PARAMETER;
278 }
279 } else {
280 //
281 // Data Pointer should point to the actual Address where data is to be
282 // written.
283 //
284 VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
285 if (SetByIndex) {
286 DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
287 }
288
289 if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
290 return EFI_INVALID_PARAMETER;
291 }
292
293 //
294 // If Volatile Variable just do a simple mem copy.
295 //
296 CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
297 return EFI_SUCCESS;
298 }
299
300 //
301 // If we are here we are dealing with Non-Volatile Variables.
302 //
303 LinearOffset = (UINTN) FwVolHeader;
304 CurrWritePtr = (UINTN) DataPtr;
305 CurrWriteSize = DataSize;
306 CurrBuffer = Buffer;
307 LbaNumber = 0;
308
309 if (CurrWritePtr < LinearOffset) {
310 return EFI_INVALID_PARAMETER;
311 }
312
313 for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
314 for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
315 //
316 // Check to see if the Variable Writes are spanning through multiple
317 // blocks.
318 //
319 if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
320 if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
321 Status = Fvb->Write (
322 Fvb,
323 LbaNumber,
324 (UINTN) (CurrWritePtr - LinearOffset),
325 &CurrWriteSize,
326 CurrBuffer
327 );
328 return Status;
329 } else {
330 Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
331 Status = Fvb->Write (
332 Fvb,
333 LbaNumber,
334 (UINTN) (CurrWritePtr - LinearOffset),
335 &Size,
336 CurrBuffer
337 );
338 if (EFI_ERROR (Status)) {
339 return Status;
340 }
341
342 CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
343 CurrBuffer = CurrBuffer + Size;
344 CurrWriteSize = CurrWriteSize - Size;
345 }
346 }
347
348 LinearOffset += PtrBlockMapEntry->Length;
349 LbaNumber++;
350 }
351 }
352
353 return EFI_SUCCESS;
354 }
355
356
357 /**
358
359 This code gets the current status of Variable Store.
360
361 @param VarStoreHeader Pointer to the Variable Store Header.
362
363 @retval EfiRaw Variable store status is raw.
364 @retval EfiValid Variable store status is valid.
365 @retval EfiInvalid Variable store status is invalid.
366
367 **/
368 VARIABLE_STORE_STATUS
369 GetVariableStoreStatus (
370 IN VARIABLE_STORE_HEADER *VarStoreHeader
371 )
372 {
373 if (CompareGuid (&VarStoreHeader->Signature, &gEfiVariableGuid) &&
374 VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
375 VarStoreHeader->State == VARIABLE_STORE_HEALTHY
376 ) {
377
378 return EfiValid;
379 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
380 ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
381 ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
382 ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
383 VarStoreHeader->Size == 0xffffffff &&
384 VarStoreHeader->Format == 0xff &&
385 VarStoreHeader->State == 0xff
386 ) {
387
388 return EfiRaw;
389 } else {
390 return EfiInvalid;
391 }
392 }
393
394
395 /**
396
397 This code gets the size of name of variable.
398
399 @param Variable Pointer to the Variable Header.
400
401 @return UINTN Size of variable in bytes.
402
403 **/
404 UINTN
405 NameSizeOfVariable (
406 IN VARIABLE_HEADER *Variable
407 )
408 {
409 if (Variable->State == (UINT8) (-1) ||
410 Variable->DataSize == (UINT32) (-1) ||
411 Variable->NameSize == (UINT32) (-1) ||
412 Variable->Attributes == (UINT32) (-1)) {
413 return 0;
414 }
415 return (UINTN) Variable->NameSize;
416 }
417
418 /**
419
420 This code gets the size of variable data.
421
422 @param Variable Pointer to the Variable Header.
423
424 @return Size of variable in bytes.
425
426 **/
427 UINTN
428 DataSizeOfVariable (
429 IN VARIABLE_HEADER *Variable
430 )
431 {
432 if (Variable->State == (UINT8) (-1) ||
433 Variable->DataSize == (UINT32) (-1) ||
434 Variable->NameSize == (UINT32) (-1) ||
435 Variable->Attributes == (UINT32) (-1)) {
436 return 0;
437 }
438 return (UINTN) Variable->DataSize;
439 }
440
441 /**
442
443 This code gets the pointer to the variable name.
444
445 @param Variable Pointer to the Variable Header.
446
447 @return Pointer to Variable Name which is Unicode encoding.
448
449 **/
450 CHAR16 *
451 GetVariableNamePtr (
452 IN VARIABLE_HEADER *Variable
453 )
454 {
455
456 return (CHAR16 *) (Variable + 1);
457 }
458
459 /**
460
461 This code gets the pointer to the variable data.
462
463 @param Variable Pointer to the Variable Header.
464
465 @return Pointer to Variable Data.
466
467 **/
468 UINT8 *
469 GetVariableDataPtr (
470 IN VARIABLE_HEADER *Variable
471 )
472 {
473 UINTN Value;
474
475 //
476 // Be careful about pad size for alignment.
477 //
478 Value = (UINTN) GetVariableNamePtr (Variable);
479 Value += NameSizeOfVariable (Variable);
480 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
481
482 return (UINT8 *) Value;
483 }
484
485
486 /**
487
488 This code gets the pointer to the next variable header.
489
490 @param Variable Pointer to the Variable Header.
491
492 @return Pointer to next variable header.
493
494 **/
495 VARIABLE_HEADER *
496 GetNextVariablePtr (
497 IN VARIABLE_HEADER *Variable
498 )
499 {
500 UINTN Value;
501
502 if (!IsValidVariableHeader (Variable)) {
503 return NULL;
504 }
505
506 Value = (UINTN) GetVariableDataPtr (Variable);
507 Value += DataSizeOfVariable (Variable);
508 Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
509
510 //
511 // Be careful about pad size for alignment.
512 //
513 return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
514 }
515
516 /**
517
518 Gets the pointer to the first variable header in given variable store area.
519
520 @param VarStoreHeader Pointer to the Variable Store Header.
521
522 @return Pointer to the first variable header.
523
524 **/
525 VARIABLE_HEADER *
526 GetStartPointer (
527 IN VARIABLE_STORE_HEADER *VarStoreHeader
528 )
529 {
530 //
531 // The end of variable store.
532 //
533 return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
534 }
535
536 /**
537
538 Gets the pointer to the end of the variable storage area.
539
540 This function gets pointer to the end of the variable storage
541 area, according to the input variable store header.
542
543 @param VarStoreHeader Pointer to the Variable Store Header.
544
545 @return Pointer to the end of the variable storage area.
546
547 **/
548 VARIABLE_HEADER *
549 GetEndPointer (
550 IN VARIABLE_STORE_HEADER *VarStoreHeader
551 )
552 {
553 //
554 // The end of variable store
555 //
556 return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
557 }
558
559
560 /**
561
562 Variable store garbage collection and reclaim operation.
563
564 @param VariableBase Base address of variable store.
565 @param LastVariableOffset Offset of last variable.
566 @param IsVolatile The variable store is volatile or not;
567 if it is non-volatile, need FTW.
568 @param UpdatingPtrTrack Pointer to updating variable pointer track structure.
569 @param NewVariable Pointer to new variable.
570 @param NewVariableSize New variable size.
571
572 @return EFI_OUT_OF_RESOURCES
573 @return EFI_SUCCESS
574 @return Others
575
576 **/
577 EFI_STATUS
578 Reclaim (
579 IN EFI_PHYSICAL_ADDRESS VariableBase,
580 OUT UINTN *LastVariableOffset,
581 IN BOOLEAN IsVolatile,
582 IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
583 IN VARIABLE_HEADER *NewVariable,
584 IN UINTN NewVariableSize
585 )
586 {
587 VARIABLE_HEADER *Variable;
588 VARIABLE_HEADER *AddedVariable;
589 VARIABLE_HEADER *NextVariable;
590 VARIABLE_HEADER *NextAddedVariable;
591 VARIABLE_STORE_HEADER *VariableStoreHeader;
592 UINT8 *ValidBuffer;
593 UINTN MaximumBufferSize;
594 UINTN VariableSize;
595 UINTN NameSize;
596 UINT8 *CurrPtr;
597 VOID *Point0;
598 VOID *Point1;
599 BOOLEAN FoundAdded;
600 EFI_STATUS Status;
601 UINTN CommonVariableTotalSize;
602 UINTN HwErrVariableTotalSize;
603 VARIABLE_HEADER *UpdatingVariable;
604 VARIABLE_HEADER *UpdatingInDeletedTransition;
605
606 UpdatingVariable = NULL;
607 UpdatingInDeletedTransition = NULL;
608 if (UpdatingPtrTrack != NULL) {
609 UpdatingVariable = UpdatingPtrTrack->CurrPtr;
610 UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr;
611 }
612
613 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
614
615 CommonVariableTotalSize = 0;
616 HwErrVariableTotalSize = 0;
617
618 if (IsVolatile) {
619 //
620 // Start Pointers for the variable.
621 //
622 Variable = GetStartPointer (VariableStoreHeader);
623 MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
624
625 while (IsValidVariableHeader (Variable)) {
626 NextVariable = GetNextVariablePtr (Variable);
627 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
628 Variable != UpdatingVariable &&
629 Variable != UpdatingInDeletedTransition
630 ) {
631 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
632 MaximumBufferSize += VariableSize;
633 }
634
635 Variable = NextVariable;
636 }
637
638 if (NewVariable != NULL) {
639 //
640 // Add the new variable size.
641 //
642 MaximumBufferSize += NewVariableSize;
643 }
644
645 //
646 // Reserve the 1 Bytes with Oxff to identify the
647 // end of the variable buffer.
648 //
649 MaximumBufferSize += 1;
650 ValidBuffer = AllocatePool (MaximumBufferSize);
651 if (ValidBuffer == NULL) {
652 return EFI_OUT_OF_RESOURCES;
653 }
654 } else {
655 //
656 // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache
657 // as the buffer to reduce SMRAM consumption for SMM variable driver.
658 //
659 MaximumBufferSize = mNvVariableCache->Size;
660 ValidBuffer = (UINT8 *) mNvVariableCache;
661 }
662
663 SetMem (ValidBuffer, MaximumBufferSize, 0xff);
664
665 //
666 // Copy variable store header.
667 //
668 CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
669 CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
670
671 //
672 // Reinstall all ADDED variables as long as they are not identical to Updating Variable.
673 //
674 Variable = GetStartPointer (VariableStoreHeader);
675 while (IsValidVariableHeader (Variable)) {
676 NextVariable = GetNextVariablePtr (Variable);
677 if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) {
678 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
679 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
680 CurrPtr += VariableSize;
681 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
682 HwErrVariableTotalSize += VariableSize;
683 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
684 CommonVariableTotalSize += VariableSize;
685 }
686 }
687 Variable = NextVariable;
688 }
689
690 //
691 // Reinstall all in delete transition variables.
692 //
693 Variable = GetStartPointer (VariableStoreHeader);
694 while (IsValidVariableHeader (Variable)) {
695 NextVariable = GetNextVariablePtr (Variable);
696 if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
697
698 //
699 // Buffer has cached all ADDED variable.
700 // Per IN_DELETED variable, we have to guarantee that
701 // no ADDED one in previous buffer.
702 //
703
704 FoundAdded = FALSE;
705 AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
706 while (IsValidVariableHeader (AddedVariable)) {
707 NextAddedVariable = GetNextVariablePtr (AddedVariable);
708 NameSize = NameSizeOfVariable (AddedVariable);
709 if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) &&
710 NameSize == NameSizeOfVariable (Variable)
711 ) {
712 Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
713 Point1 = (VOID *) GetVariableNamePtr (Variable);
714 if (CompareMem (Point0, Point1, NameSize) == 0) {
715 FoundAdded = TRUE;
716 break;
717 }
718 }
719 AddedVariable = NextAddedVariable;
720 }
721 if (!FoundAdded) {
722 //
723 // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
724 //
725 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
726 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
727 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
728 CurrPtr += VariableSize;
729 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
730 HwErrVariableTotalSize += VariableSize;
731 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
732 CommonVariableTotalSize += VariableSize;
733 }
734 }
735 }
736
737 Variable = NextVariable;
738 }
739
740 //
741 // Install the new variable if it is not NULL.
742 //
743 if (NewVariable != NULL) {
744 if ((UINTN) (CurrPtr - ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) {
745 //
746 // No enough space to store the new variable.
747 //
748 Status = EFI_OUT_OF_RESOURCES;
749 goto Done;
750 }
751 if (!IsVolatile) {
752 if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
753 HwErrVariableTotalSize += NewVariableSize;
754 } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
755 CommonVariableTotalSize += NewVariableSize;
756 }
757 if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) ||
758 (CommonVariableTotalSize > VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize))) {
759 //
760 // No enough space to store the new variable by NV or NV+HR attribute.
761 //
762 Status = EFI_OUT_OF_RESOURCES;
763 goto Done;
764 }
765 }
766
767 CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize);
768 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
769 if (UpdatingVariable != NULL) {
770 UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
771 UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
772 }
773 CurrPtr += NewVariableSize;
774 }
775
776 if (IsVolatile) {
777 //
778 // If volatile variable store, just copy valid buffer.
779 //
780 SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
781 CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - ValidBuffer));
782 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
783 Status = EFI_SUCCESS;
784 } else {
785 //
786 // If non-volatile variable store, perform FTW here.
787 //
788 Status = FtwVariableSpace (
789 VariableBase,
790 (VARIABLE_STORE_HEADER *) ValidBuffer
791 );
792 if (!EFI_ERROR (Status)) {
793 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
794 mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
795 mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
796 } else {
797 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
798 while (IsValidVariableHeader (NextVariable)) {
799 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
800 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
801 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
802 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
803 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
804 }
805
806 NextVariable = GetNextVariablePtr (NextVariable);
807 }
808 *LastVariableOffset = (UINTN) NextVariable - (UINTN) VariableBase;
809 }
810 }
811
812 Done:
813 if (IsVolatile) {
814 FreePool (ValidBuffer);
815 } else {
816 //
817 // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back.
818 //
819 CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
820 }
821
822 return Status;
823 }
824
825 /**
826 Find the variable in the specified variable store.
827
828 @param VariableName Name of the variable to be found
829 @param VendorGuid Vendor GUID to be found.
830 @param IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
831 check at runtime when searching variable.
832 @param PtrTrack Variable Track Pointer structure that contains Variable Information.
833
834 @retval EFI_SUCCESS Variable found successfully
835 @retval EFI_NOT_FOUND Variable not found
836 **/
837 EFI_STATUS
838 FindVariableEx (
839 IN CHAR16 *VariableName,
840 IN EFI_GUID *VendorGuid,
841 IN BOOLEAN IgnoreRtCheck,
842 IN OUT VARIABLE_POINTER_TRACK *PtrTrack
843 )
844 {
845 VARIABLE_HEADER *InDeletedVariable;
846 VOID *Point;
847
848 PtrTrack->InDeletedTransitionPtr = NULL;
849
850 //
851 // Find the variable by walk through HOB, volatile and non-volatile variable store.
852 //
853 InDeletedVariable = NULL;
854
855 for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
856 ; (PtrTrack->CurrPtr < PtrTrack->EndPtr) && IsValidVariableHeader (PtrTrack->CurrPtr)
857 ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
858 ) {
859 if (PtrTrack->CurrPtr->State == VAR_ADDED ||
860 PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
861 ) {
862 if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
863 if (VariableName[0] == 0) {
864 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
865 InDeletedVariable = PtrTrack->CurrPtr;
866 } else {
867 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
868 return EFI_SUCCESS;
869 }
870 } else {
871 if (CompareGuid (VendorGuid, &PtrTrack->CurrPtr->VendorGuid)) {
872 Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
873
874 ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
875 if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
876 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
877 InDeletedVariable = PtrTrack->CurrPtr;
878 } else {
879 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
880 return EFI_SUCCESS;
881 }
882 }
883 }
884 }
885 }
886 }
887 }
888
889 PtrTrack->CurrPtr = InDeletedVariable;
890 return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
891 }
892
893
894 /**
895 Finds variable in storage blocks of volatile and non-volatile storage areas.
896
897 This code finds variable in storage blocks of volatile and non-volatile storage areas.
898 If VariableName is an empty string, then we just return the first
899 qualified variable without comparing VariableName and VendorGuid.
900 If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
901 at runtime when searching existing variable, only VariableName and VendorGuid are compared.
902 Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
903
904 @param VariableName Name of the variable to be found.
905 @param VendorGuid Vendor GUID to be found.
906 @param PtrTrack VARIABLE_POINTER_TRACK structure for output,
907 including the range searched and the target position.
908 @param Global Pointer to VARIABLE_GLOBAL structure, including
909 base of volatile variable storage area, base of
910 NV variable storage area, and a lock.
911 @param IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
912 check at runtime when searching variable.
913
914 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
915 VendorGuid is NULL.
916 @retval EFI_SUCCESS Variable successfully found.
917 @retval EFI_NOT_FOUND Variable not found
918
919 **/
920 EFI_STATUS
921 FindVariable (
922 IN CHAR16 *VariableName,
923 IN EFI_GUID *VendorGuid,
924 OUT VARIABLE_POINTER_TRACK *PtrTrack,
925 IN VARIABLE_GLOBAL *Global,
926 IN BOOLEAN IgnoreRtCheck
927 )
928 {
929 EFI_STATUS Status;
930 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
931 VARIABLE_STORE_TYPE Type;
932
933 if (VariableName[0] != 0 && VendorGuid == NULL) {
934 return EFI_INVALID_PARAMETER;
935 }
936
937 //
938 // 0: Volatile, 1: HOB, 2: Non-Volatile.
939 // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
940 // make use of this mapping to implement search algorithm.
941 //
942 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
943 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
944 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
945
946 //
947 // Find the variable by walk through HOB, volatile and non-volatile variable store.
948 //
949 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
950 if (VariableStoreHeader[Type] == NULL) {
951 continue;
952 }
953
954 PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
955 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
956 PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
957
958 Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
959 if (!EFI_ERROR (Status)) {
960 return Status;
961 }
962 }
963 return EFI_NOT_FOUND;
964 }
965
966 /**
967 Get index from supported language codes according to language string.
968
969 This code is used to get corresponding index in supported language codes. It can handle
970 RFC4646 and ISO639 language tags.
971 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
972 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
973
974 For example:
975 SupportedLang = "engfraengfra"
976 Lang = "eng"
977 Iso639Language = TRUE
978 The return value is "0".
979 Another example:
980 SupportedLang = "en;fr;en-US;fr-FR"
981 Lang = "fr-FR"
982 Iso639Language = FALSE
983 The return value is "3".
984
985 @param SupportedLang Platform supported language codes.
986 @param Lang Configured language.
987 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
988
989 @retval The index of language in the language codes.
990
991 **/
992 UINTN
993 GetIndexFromSupportedLangCodes(
994 IN CHAR8 *SupportedLang,
995 IN CHAR8 *Lang,
996 IN BOOLEAN Iso639Language
997 )
998 {
999 UINTN Index;
1000 UINTN CompareLength;
1001 UINTN LanguageLength;
1002
1003 if (Iso639Language) {
1004 CompareLength = ISO_639_2_ENTRY_SIZE;
1005 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
1006 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
1007 //
1008 // Successfully find the index of Lang string in SupportedLang string.
1009 //
1010 Index = Index / CompareLength;
1011 return Index;
1012 }
1013 }
1014 ASSERT (FALSE);
1015 return 0;
1016 } else {
1017 //
1018 // Compare RFC4646 language code
1019 //
1020 Index = 0;
1021 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
1022
1023 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
1024 //
1025 // Skip ';' characters in SupportedLang
1026 //
1027 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
1028 //
1029 // Determine the length of the next language code in SupportedLang
1030 //
1031 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
1032
1033 if ((CompareLength == LanguageLength) &&
1034 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
1035 //
1036 // Successfully find the index of Lang string in SupportedLang string.
1037 //
1038 return Index;
1039 }
1040 }
1041 ASSERT (FALSE);
1042 return 0;
1043 }
1044 }
1045
1046 /**
1047 Get language string from supported language codes according to index.
1048
1049 This code is used to get corresponding language strings in supported language codes. It can handle
1050 RFC4646 and ISO639 language tags.
1051 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
1052 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
1053
1054 For example:
1055 SupportedLang = "engfraengfra"
1056 Index = "1"
1057 Iso639Language = TRUE
1058 The return value is "fra".
1059 Another example:
1060 SupportedLang = "en;fr;en-US;fr-FR"
1061 Index = "1"
1062 Iso639Language = FALSE
1063 The return value is "fr".
1064
1065 @param SupportedLang Platform supported language codes.
1066 @param Index The index in supported language codes.
1067 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1068
1069 @retval The language string in the language codes.
1070
1071 **/
1072 CHAR8 *
1073 GetLangFromSupportedLangCodes (
1074 IN CHAR8 *SupportedLang,
1075 IN UINTN Index,
1076 IN BOOLEAN Iso639Language
1077 )
1078 {
1079 UINTN SubIndex;
1080 UINTN CompareLength;
1081 CHAR8 *Supported;
1082
1083 SubIndex = 0;
1084 Supported = SupportedLang;
1085 if (Iso639Language) {
1086 //
1087 // According to the index of Lang string in SupportedLang string to get the language.
1088 // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
1089 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1090 //
1091 CompareLength = ISO_639_2_ENTRY_SIZE;
1092 mVariableModuleGlobal->Lang[CompareLength] = '\0';
1093 return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
1094
1095 } else {
1096 while (TRUE) {
1097 //
1098 // Take semicolon as delimitation, sequentially traverse supported language codes.
1099 //
1100 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
1101 Supported++;
1102 }
1103 if ((*Supported == '\0') && (SubIndex != Index)) {
1104 //
1105 // Have completed the traverse, but not find corrsponding string.
1106 // This case is not allowed to happen.
1107 //
1108 ASSERT(FALSE);
1109 return NULL;
1110 }
1111 if (SubIndex == Index) {
1112 //
1113 // According to the index of Lang string in SupportedLang string to get the language.
1114 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
1115 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1116 //
1117 mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
1118 return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
1119 }
1120 SubIndex++;
1121
1122 //
1123 // Skip ';' characters in Supported
1124 //
1125 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1126 }
1127 }
1128 }
1129
1130 /**
1131 Returns a pointer to an allocated buffer that contains the best matching language
1132 from a set of supported languages.
1133
1134 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1135 code types may not be mixed in a single call to this function. This function
1136 supports a variable argument list that allows the caller to pass in a prioritized
1137 list of language codes to test against all the language codes in SupportedLanguages.
1138
1139 If SupportedLanguages is NULL, then ASSERT().
1140
1141 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1142 contains a set of language codes in the format
1143 specified by Iso639Language.
1144 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1145 in ISO 639-2 format. If FALSE, then all language
1146 codes are assumed to be in RFC 4646 language format
1147 @param[in] ... A variable argument list that contains pointers to
1148 Null-terminated ASCII strings that contain one or more
1149 language codes in the format specified by Iso639Language.
1150 The first language code from each of these language
1151 code lists is used to determine if it is an exact or
1152 close match to any of the language codes in
1153 SupportedLanguages. Close matches only apply to RFC 4646
1154 language codes, and the matching algorithm from RFC 4647
1155 is used to determine if a close match is present. If
1156 an exact or close match is found, then the matching
1157 language code from SupportedLanguages is returned. If
1158 no matches are found, then the next variable argument
1159 parameter is evaluated. The variable argument list
1160 is terminated by a NULL.
1161
1162 @retval NULL The best matching language could not be found in SupportedLanguages.
1163 @retval NULL There are not enough resources available to return the best matching
1164 language.
1165 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1166 language in SupportedLanguages.
1167
1168 **/
1169 CHAR8 *
1170 EFIAPI
1171 VariableGetBestLanguage (
1172 IN CONST CHAR8 *SupportedLanguages,
1173 IN BOOLEAN Iso639Language,
1174 ...
1175 )
1176 {
1177 VA_LIST Args;
1178 CHAR8 *Language;
1179 UINTN CompareLength;
1180 UINTN LanguageLength;
1181 CONST CHAR8 *Supported;
1182 CHAR8 *Buffer;
1183
1184 ASSERT (SupportedLanguages != NULL);
1185
1186 VA_START (Args, Iso639Language);
1187 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1188 //
1189 // Default to ISO 639-2 mode
1190 //
1191 CompareLength = 3;
1192 LanguageLength = MIN (3, AsciiStrLen (Language));
1193
1194 //
1195 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1196 //
1197 if (!Iso639Language) {
1198 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1199 }
1200
1201 //
1202 // Trim back the length of Language used until it is empty
1203 //
1204 while (LanguageLength > 0) {
1205 //
1206 // Loop through all language codes in SupportedLanguages
1207 //
1208 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1209 //
1210 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1211 //
1212 if (!Iso639Language) {
1213 //
1214 // Skip ';' characters in Supported
1215 //
1216 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1217 //
1218 // Determine the length of the next language code in Supported
1219 //
1220 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1221 //
1222 // If Language is longer than the Supported, then skip to the next language
1223 //
1224 if (LanguageLength > CompareLength) {
1225 continue;
1226 }
1227 }
1228 //
1229 // See if the first LanguageLength characters in Supported match Language
1230 //
1231 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1232 VA_END (Args);
1233
1234 Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
1235 Buffer[CompareLength] = '\0';
1236 return CopyMem (Buffer, Supported, CompareLength);
1237 }
1238 }
1239
1240 if (Iso639Language) {
1241 //
1242 // If ISO 639 mode, then each language can only be tested once
1243 //
1244 LanguageLength = 0;
1245 } else {
1246 //
1247 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1248 //
1249 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1250 }
1251 }
1252 }
1253 VA_END (Args);
1254
1255 //
1256 // No matches were found
1257 //
1258 return NULL;
1259 }
1260
1261 /**
1262 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
1263
1264 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
1265
1266 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
1267 and are read-only. Therefore, in variable driver, only store the original value for other use.
1268
1269 @param[in] VariableName Name of variable.
1270
1271 @param[in] Data Variable data.
1272
1273 @param[in] DataSize Size of data. 0 means delete.
1274
1275 **/
1276 VOID
1277 AutoUpdateLangVariable (
1278 IN CHAR16 *VariableName,
1279 IN VOID *Data,
1280 IN UINTN DataSize
1281 )
1282 {
1283 EFI_STATUS Status;
1284 CHAR8 *BestPlatformLang;
1285 CHAR8 *BestLang;
1286 UINTN Index;
1287 UINT32 Attributes;
1288 VARIABLE_POINTER_TRACK Variable;
1289 BOOLEAN SetLanguageCodes;
1290
1291 //
1292 // Don't do updates for delete operation
1293 //
1294 if (DataSize == 0) {
1295 return;
1296 }
1297
1298 SetLanguageCodes = FALSE;
1299
1300 if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) {
1301 //
1302 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
1303 //
1304 if (AtRuntime ()) {
1305 return;
1306 }
1307
1308 SetLanguageCodes = TRUE;
1309
1310 //
1311 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
1312 // Therefore, in variable driver, only store the original value for other use.
1313 //
1314 if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
1315 FreePool (mVariableModuleGlobal->PlatformLangCodes);
1316 }
1317 mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1318 ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
1319
1320 //
1321 // PlatformLang holds a single language from PlatformLangCodes,
1322 // so the size of PlatformLangCodes is enough for the PlatformLang.
1323 //
1324 if (mVariableModuleGlobal->PlatformLang != NULL) {
1325 FreePool (mVariableModuleGlobal->PlatformLang);
1326 }
1327 mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
1328 ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
1329
1330 } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) {
1331 //
1332 // LangCodes is a volatile variable, so it can not be updated at runtime.
1333 //
1334 if (AtRuntime ()) {
1335 return;
1336 }
1337
1338 SetLanguageCodes = TRUE;
1339
1340 //
1341 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
1342 // Therefore, in variable driver, only store the original value for other use.
1343 //
1344 if (mVariableModuleGlobal->LangCodes != NULL) {
1345 FreePool (mVariableModuleGlobal->LangCodes);
1346 }
1347 mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1348 ASSERT (mVariableModuleGlobal->LangCodes != NULL);
1349 }
1350
1351 if (SetLanguageCodes
1352 && (mVariableModuleGlobal->PlatformLangCodes != NULL)
1353 && (mVariableModuleGlobal->LangCodes != NULL)) {
1354 //
1355 // Update Lang if PlatformLang is already set
1356 // Update PlatformLang if Lang is already set
1357 //
1358 Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1359 if (!EFI_ERROR (Status)) {
1360 //
1361 // Update Lang
1362 //
1363 VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME;
1364 Data = GetVariableDataPtr (Variable.CurrPtr);
1365 DataSize = Variable.CurrPtr->DataSize;
1366 } else {
1367 Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1368 if (!EFI_ERROR (Status)) {
1369 //
1370 // Update PlatformLang
1371 //
1372 VariableName = EFI_LANG_VARIABLE_NAME;
1373 Data = GetVariableDataPtr (Variable.CurrPtr);
1374 DataSize = Variable.CurrPtr->DataSize;
1375 } else {
1376 //
1377 // Neither PlatformLang nor Lang is set, directly return
1378 //
1379 return;
1380 }
1381 }
1382 }
1383
1384 //
1385 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
1386 //
1387 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
1388
1389 if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) {
1390 //
1391 // Update Lang when PlatformLangCodes/LangCodes were set.
1392 //
1393 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1394 //
1395 // When setting PlatformLang, firstly get most matched language string from supported language codes.
1396 //
1397 BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
1398 if (BestPlatformLang != NULL) {
1399 //
1400 // Get the corresponding index in language codes.
1401 //
1402 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
1403
1404 //
1405 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
1406 //
1407 BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
1408
1409 //
1410 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1411 //
1412 FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1413
1414 Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang,
1415 ISO_639_2_ENTRY_SIZE + 1, Attributes, &Variable);
1416
1417 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a\n", BestPlatformLang, BestLang));
1418
1419 ASSERT_EFI_ERROR(Status);
1420 }
1421 }
1422
1423 } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) {
1424 //
1425 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
1426 //
1427 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1428 //
1429 // When setting Lang, firstly get most matched language string from supported language codes.
1430 //
1431 BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
1432 if (BestLang != NULL) {
1433 //
1434 // Get the corresponding index in language codes.
1435 //
1436 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
1437
1438 //
1439 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
1440 //
1441 BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
1442
1443 //
1444 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
1445 //
1446 FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1447
1448 Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang,
1449 AsciiStrSize (BestPlatformLang), Attributes, &Variable);
1450
1451 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a\n", BestLang, BestPlatformLang));
1452 ASSERT_EFI_ERROR (Status);
1453 }
1454 }
1455 }
1456 }
1457
1458 /**
1459 Update the variable region with Variable information. These are the same
1460 arguments as the EFI Variable services.
1461
1462 @param[in] VariableName Name of variable.
1463 @param[in] VendorGuid Guid of variable.
1464 @param[in] Data Variable data.
1465 @param[in] DataSize Size of data. 0 means delete.
1466 @param[in] Attributes Attribues of the variable.
1467 @param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
1468
1469 @retval EFI_SUCCESS The update operation is success.
1470 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
1471
1472 **/
1473 EFI_STATUS
1474 UpdateVariable (
1475 IN CHAR16 *VariableName,
1476 IN EFI_GUID *VendorGuid,
1477 IN VOID *Data,
1478 IN UINTN DataSize,
1479 IN UINT32 Attributes OPTIONAL,
1480 IN OUT VARIABLE_POINTER_TRACK *CacheVariable
1481 )
1482 {
1483 EFI_STATUS Status;
1484 VARIABLE_HEADER *NextVariable;
1485 UINTN ScratchSize;
1486 UINTN NonVolatileVarableStoreSize;
1487 UINTN VarNameOffset;
1488 UINTN VarDataOffset;
1489 UINTN VarNameSize;
1490 UINTN VarSize;
1491 BOOLEAN Volatile;
1492 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
1493 UINT8 State;
1494 VARIABLE_POINTER_TRACK *Variable;
1495 VARIABLE_POINTER_TRACK NvVariable;
1496 VARIABLE_STORE_HEADER *VariableStoreHeader;
1497 UINTN CacheOffset;
1498
1499 if ((mVariableModuleGlobal->FvbInstance == NULL) && ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0)) {
1500 //
1501 // The FVB protocol is not ready. Trying to update NV variable prior to the installation
1502 // of EFI_VARIABLE_WRITE_ARCH_PROTOCOL.
1503 //
1504 return EFI_NOT_AVAILABLE_YET;
1505 }
1506
1507 if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
1508 Variable = CacheVariable;
1509 } else {
1510 //
1511 // Update/Delete existing NV variable.
1512 // CacheVariable points to the variable in the memory copy of Flash area
1513 // Now let Variable points to the same variable in Flash area.
1514 //
1515 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
1516 Variable = &NvVariable;
1517 Variable->StartPtr = GetStartPointer (VariableStoreHeader);
1518 Variable->EndPtr = GetEndPointer (VariableStoreHeader);
1519 Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
1520 if (CacheVariable->InDeletedTransitionPtr != NULL) {
1521 Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
1522 } else {
1523 Variable->InDeletedTransitionPtr = NULL;
1524 }
1525 Variable->Volatile = FALSE;
1526 }
1527
1528 Fvb = mVariableModuleGlobal->FvbInstance;
1529
1530 if (Variable->CurrPtr != NULL) {
1531 //
1532 // Update/Delete existing variable.
1533 //
1534 if (AtRuntime ()) {
1535 //
1536 // If AtRuntime and the variable is Volatile and Runtime Access,
1537 // the volatile is ReadOnly, and SetVariable should be aborted and
1538 // return EFI_WRITE_PROTECTED.
1539 //
1540 if (Variable->Volatile) {
1541 Status = EFI_WRITE_PROTECTED;
1542 goto Done;
1543 }
1544 //
1545 // Only variable that have NV|RT attributes can be updated/deleted in Runtime.
1546 //
1547 if (((Variable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0)) {
1548 Status = EFI_INVALID_PARAMETER;
1549 goto Done;
1550 }
1551 }
1552
1553 //
1554 // Setting a data variable with no access, or zero DataSize attributes
1555 // causes it to be deleted.
1556 //
1557 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1558 if (Variable->InDeletedTransitionPtr != NULL) {
1559 //
1560 // Both ADDED and IN_DELETED_TRANSITION variable are present,
1561 // set IN_DELETED_TRANSITION one to DELETED state first.
1562 //
1563 State = Variable->InDeletedTransitionPtr->State;
1564 State &= VAR_DELETED;
1565 Status = UpdateVariableStore (
1566 &mVariableModuleGlobal->VariableGlobal,
1567 Variable->Volatile,
1568 FALSE,
1569 Fvb,
1570 (UINTN) &Variable->InDeletedTransitionPtr->State,
1571 sizeof (UINT8),
1572 &State
1573 );
1574 if (!EFI_ERROR (Status)) {
1575 if (!Variable->Volatile) {
1576 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
1577 CacheVariable->InDeletedTransitionPtr->State = State;
1578 }
1579 } else {
1580 goto Done;
1581 }
1582 }
1583
1584 State = Variable->CurrPtr->State;
1585 State &= VAR_DELETED;
1586
1587 Status = UpdateVariableStore (
1588 &mVariableModuleGlobal->VariableGlobal,
1589 Variable->Volatile,
1590 FALSE,
1591 Fvb,
1592 (UINTN) &Variable->CurrPtr->State,
1593 sizeof (UINT8),
1594 &State
1595 );
1596 if (!EFI_ERROR (Status)) {
1597 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
1598 if (!Variable->Volatile) {
1599 CacheVariable->CurrPtr->State = State;
1600 FlushHobVariableToFlash (VariableName, VendorGuid);
1601 }
1602 }
1603 goto Done;
1604 }
1605 //
1606 // If the variable is marked valid, and the same data has been passed in,
1607 // then return to the caller immediately.
1608 //
1609 if (DataSizeOfVariable (Variable->CurrPtr) == DataSize &&
1610 (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0)) {
1611
1612 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
1613 Status = EFI_SUCCESS;
1614 goto Done;
1615 } else if ((Variable->CurrPtr->State == VAR_ADDED) ||
1616 (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
1617
1618 //
1619 // Mark the old variable as in delete transition.
1620 //
1621 State = Variable->CurrPtr->State;
1622 State &= VAR_IN_DELETED_TRANSITION;
1623
1624 Status = UpdateVariableStore (
1625 &mVariableModuleGlobal->VariableGlobal,
1626 Variable->Volatile,
1627 FALSE,
1628 Fvb,
1629 (UINTN) &Variable->CurrPtr->State,
1630 sizeof (UINT8),
1631 &State
1632 );
1633 if (EFI_ERROR (Status)) {
1634 goto Done;
1635 }
1636 if (!Variable->Volatile) {
1637 CacheVariable->CurrPtr->State = State;
1638 }
1639 }
1640 } else {
1641 //
1642 // Not found existing variable. Create a new variable.
1643 //
1644
1645 //
1646 // Make sure we are trying to create a new variable.
1647 // Setting a data variable with zero DataSize or no access attributes means to delete it.
1648 //
1649 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1650 Status = EFI_NOT_FOUND;
1651 goto Done;
1652 }
1653
1654 //
1655 // Only variable have NV|RT attribute can be created in Runtime.
1656 //
1657 if (AtRuntime () &&
1658 (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
1659 Status = EFI_INVALID_PARAMETER;
1660 goto Done;
1661 }
1662 }
1663
1664 //
1665 // Function part - create a new variable and copy the data.
1666 // Both update a variable and create a variable will come here.
1667
1668 //
1669 // Tricky part: Use scratch data area at the end of volatile variable store
1670 // as a temporary storage.
1671 //
1672 NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
1673 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
1674
1675 SetMem (NextVariable, ScratchSize, 0xff);
1676
1677 NextVariable->StartId = VARIABLE_DATA;
1678 NextVariable->Attributes = Attributes;
1679 //
1680 // NextVariable->State = VAR_ADDED;
1681 //
1682 NextVariable->Reserved = 0;
1683 VarNameOffset = sizeof (VARIABLE_HEADER);
1684 VarNameSize = StrSize (VariableName);
1685 CopyMem (
1686 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
1687 VariableName,
1688 VarNameSize
1689 );
1690 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
1691 CopyMem (
1692 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
1693 Data,
1694 DataSize
1695 );
1696 CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
1697 //
1698 // There will be pad bytes after Data, the NextVariable->NameSize and
1699 // NextVariable->DataSize should not include pad size so that variable
1700 // service can get actual size in GetVariable.
1701 //
1702 NextVariable->NameSize = (UINT32)VarNameSize;
1703 NextVariable->DataSize = (UINT32)DataSize;
1704
1705 //
1706 // The actual size of the variable that stores in storage should
1707 // include pad size.
1708 //
1709 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
1710 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
1711 //
1712 // Create a nonvolatile variable.
1713 //
1714 Volatile = FALSE;
1715 NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size;
1716 if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
1717 && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
1718 || (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0)
1719 && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) {
1720 if (AtRuntime ()) {
1721 Status = EFI_OUT_OF_RESOURCES;
1722 goto Done;
1723 }
1724 //
1725 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
1726 //
1727 Status = Reclaim (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
1728 &mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, Variable, NextVariable, HEADER_ALIGN (VarSize));
1729 if (!EFI_ERROR (Status)) {
1730 //
1731 // The new variable has been integrated successfully during reclaiming.
1732 //
1733 if (Variable->CurrPtr != NULL) {
1734 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
1735 CacheVariable->InDeletedTransitionPtr = NULL;
1736 }
1737 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE);
1738 FlushHobVariableToFlash (VariableName, VendorGuid);
1739 }
1740 goto Done;
1741 }
1742 //
1743 // Four steps
1744 // 1. Write variable header
1745 // 2. Set variable state to header valid
1746 // 3. Write variable data
1747 // 4. Set variable state to valid
1748 //
1749 //
1750 // Step 1:
1751 //
1752 CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
1753 Status = UpdateVariableStore (
1754 &mVariableModuleGlobal->VariableGlobal,
1755 FALSE,
1756 TRUE,
1757 Fvb,
1758 mVariableModuleGlobal->NonVolatileLastVariableOffset,
1759 sizeof (VARIABLE_HEADER),
1760 (UINT8 *) NextVariable
1761 );
1762
1763 if (EFI_ERROR (Status)) {
1764 goto Done;
1765 }
1766
1767 //
1768 // Step 2:
1769 //
1770 NextVariable->State = VAR_HEADER_VALID_ONLY;
1771 Status = UpdateVariableStore (
1772 &mVariableModuleGlobal->VariableGlobal,
1773 FALSE,
1774 TRUE,
1775 Fvb,
1776 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
1777 sizeof (UINT8),
1778 &NextVariable->State
1779 );
1780
1781 if (EFI_ERROR (Status)) {
1782 goto Done;
1783 }
1784 //
1785 // Step 3:
1786 //
1787 Status = UpdateVariableStore (
1788 &mVariableModuleGlobal->VariableGlobal,
1789 FALSE,
1790 TRUE,
1791 Fvb,
1792 mVariableModuleGlobal->NonVolatileLastVariableOffset + sizeof (VARIABLE_HEADER),
1793 (UINT32) VarSize - sizeof (VARIABLE_HEADER),
1794 (UINT8 *) NextVariable + sizeof (VARIABLE_HEADER)
1795 );
1796
1797 if (EFI_ERROR (Status)) {
1798 goto Done;
1799 }
1800 //
1801 // Step 4:
1802 //
1803 NextVariable->State = VAR_ADDED;
1804 Status = UpdateVariableStore (
1805 &mVariableModuleGlobal->VariableGlobal,
1806 FALSE,
1807 TRUE,
1808 Fvb,
1809 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
1810 sizeof (UINT8),
1811 &NextVariable->State
1812 );
1813
1814 if (EFI_ERROR (Status)) {
1815 goto Done;
1816 }
1817
1818 mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
1819
1820 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
1821 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
1822 } else {
1823 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
1824 }
1825 //
1826 // update the memory copy of Flash region.
1827 //
1828 CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
1829 } else {
1830 //
1831 // Create a volatile variable.
1832 //
1833 Volatile = TRUE;
1834
1835 if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
1836 ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
1837 //
1838 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
1839 //
1840 Status = Reclaim (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
1841 &mVariableModuleGlobal->VolatileLastVariableOffset, TRUE, Variable, NextVariable, HEADER_ALIGN (VarSize));
1842 if (!EFI_ERROR (Status)) {
1843 //
1844 // The new variable has been integrated successfully during reclaiming.
1845 //
1846 if (Variable->CurrPtr != NULL) {
1847 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
1848 CacheVariable->InDeletedTransitionPtr = NULL;
1849 }
1850 UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE);
1851 }
1852 goto Done;
1853 }
1854
1855 NextVariable->State = VAR_ADDED;
1856 Status = UpdateVariableStore (
1857 &mVariableModuleGlobal->VariableGlobal,
1858 TRUE,
1859 TRUE,
1860 Fvb,
1861 mVariableModuleGlobal->VolatileLastVariableOffset,
1862 (UINT32) VarSize,
1863 (UINT8 *) NextVariable
1864 );
1865
1866 if (EFI_ERROR (Status)) {
1867 goto Done;
1868 }
1869
1870 mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
1871 }
1872
1873 //
1874 // Mark the old variable as deleted.
1875 //
1876 if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
1877 if (Variable->InDeletedTransitionPtr != NULL) {
1878 //
1879 // Both ADDED and IN_DELETED_TRANSITION old variable are present,
1880 // set IN_DELETED_TRANSITION one to DELETED state first.
1881 //
1882 State = Variable->InDeletedTransitionPtr->State;
1883 State &= VAR_DELETED;
1884 Status = UpdateVariableStore (
1885 &mVariableModuleGlobal->VariableGlobal,
1886 Variable->Volatile,
1887 FALSE,
1888 Fvb,
1889 (UINTN) &Variable->InDeletedTransitionPtr->State,
1890 sizeof (UINT8),
1891 &State
1892 );
1893 if (!EFI_ERROR (Status)) {
1894 if (!Variable->Volatile) {
1895 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
1896 CacheVariable->InDeletedTransitionPtr->State = State;
1897 }
1898 } else {
1899 goto Done;
1900 }
1901 }
1902
1903 State = Variable->CurrPtr->State;
1904 State &= VAR_DELETED;
1905
1906 Status = UpdateVariableStore (
1907 &mVariableModuleGlobal->VariableGlobal,
1908 Variable->Volatile,
1909 FALSE,
1910 Fvb,
1911 (UINTN) &Variable->CurrPtr->State,
1912 sizeof (UINT8),
1913 &State
1914 );
1915 if (!EFI_ERROR (Status) && !Variable->Volatile) {
1916 CacheVariable->CurrPtr->State = State;
1917 }
1918 }
1919
1920 if (!EFI_ERROR (Status)) {
1921 UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
1922 if (!Volatile) {
1923 FlushHobVariableToFlash (VariableName, VendorGuid);
1924 }
1925 }
1926
1927 Done:
1928 return Status;
1929 }
1930
1931 /**
1932 Check if a Unicode character is a hexadecimal character.
1933
1934 This function checks if a Unicode character is a
1935 hexadecimal character. The valid hexadecimal character is
1936 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
1937
1938
1939 @param Char The character to check against.
1940
1941 @retval TRUE If the Char is a hexadecmial character.
1942 @retval FALSE If the Char is not a hexadecmial character.
1943
1944 **/
1945 BOOLEAN
1946 EFIAPI
1947 IsHexaDecimalDigitCharacter (
1948 IN CHAR16 Char
1949 )
1950 {
1951 return (BOOLEAN) ((Char >= L'0' && Char <= L'9') || (Char >= L'A' && Char <= L'F') || (Char >= L'a' && Char <= L'f'));
1952 }
1953
1954 /**
1955
1956 This code checks if variable is hardware error record variable or not.
1957
1958 According to UEFI spec, hardware error record variable should use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid
1959 and have the L"HwErrRec####" name convention, #### is a printed hex value and no 0x or h is included in the hex value.
1960
1961 @param VariableName Pointer to variable name.
1962 @param VendorGuid Variable Vendor Guid.
1963
1964 @retval TRUE Variable is hardware error record variable.
1965 @retval FALSE Variable is not hardware error record variable.
1966
1967 **/
1968 BOOLEAN
1969 EFIAPI
1970 IsHwErrRecVariable (
1971 IN CHAR16 *VariableName,
1972 IN EFI_GUID *VendorGuid
1973 )
1974 {
1975 if (!CompareGuid (VendorGuid, &gEfiHardwareErrorVariableGuid) ||
1976 (StrLen (VariableName) != StrLen (L"HwErrRec####")) ||
1977 (StrnCmp(VariableName, L"HwErrRec", StrLen (L"HwErrRec")) != 0) ||
1978 !IsHexaDecimalDigitCharacter (VariableName[0x8]) ||
1979 !IsHexaDecimalDigitCharacter (VariableName[0x9]) ||
1980 !IsHexaDecimalDigitCharacter (VariableName[0xA]) ||
1981 !IsHexaDecimalDigitCharacter (VariableName[0xB])) {
1982 return FALSE;
1983 }
1984
1985 return TRUE;
1986 }
1987
1988 /**
1989 This code checks if variable guid is global variable guid first.
1990 If yes, further check if variable name is in mGlobalVariableList or mGlobalVariableList2 and attributes matched.
1991
1992 @param[in] VariableName Pointer to variable name.
1993 @param[in] VendorGuid Variable Vendor Guid.
1994 @param[in] Attributes Attributes of the variable.
1995
1996 @retval EFI_SUCCESS Variable is not global variable, or Variable is global variable, variable name is in the lists and attributes matched.
1997 @retval EFI_INVALID_PARAMETER Variable is global variable, but variable name is not in the lists or attributes unmatched.
1998
1999 **/
2000 EFI_STATUS
2001 EFIAPI
2002 CheckEfiGlobalVariable (
2003 IN CHAR16 *VariableName,
2004 IN EFI_GUID *VendorGuid,
2005 IN UINT32 Attributes
2006 )
2007 {
2008 UINTN Index;
2009 UINTN NameLength;
2010
2011 if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)){
2012 //
2013 // Try list 1, exactly match.
2014 //
2015 for (Index = 0; Index < sizeof (mGlobalVariableList)/sizeof (mGlobalVariableList[0]); Index++) {
2016 if ((StrCmp (mGlobalVariableList[Index].Name, VariableName) == 0) &&
2017 (Attributes == 0 || Attributes == mGlobalVariableList[Index].Attributes)) {
2018 return EFI_SUCCESS;
2019 }
2020 }
2021
2022 //
2023 // Try list 2.
2024 //
2025 NameLength = StrLen (VariableName) - 4;
2026 for (Index = 0; Index < sizeof (mGlobalVariableList2)/sizeof (mGlobalVariableList2[0]); Index++) {
2027 if ((StrLen (VariableName) == StrLen (mGlobalVariableList2[Index].Name)) &&
2028 (StrnCmp (mGlobalVariableList2[Index].Name, VariableName, NameLength) == 0) &&
2029 IsHexaDecimalDigitCharacter (VariableName[NameLength]) &&
2030 IsHexaDecimalDigitCharacter (VariableName[NameLength + 1]) &&
2031 IsHexaDecimalDigitCharacter (VariableName[NameLength + 2]) &&
2032 IsHexaDecimalDigitCharacter (VariableName[NameLength + 3]) &&
2033 (Attributes == 0 || Attributes == mGlobalVariableList2[Index].Attributes)) {
2034 return EFI_SUCCESS;
2035 }
2036 }
2037
2038 DEBUG ((EFI_D_INFO, "[Variable]: set global variable with invalid variable name or attributes - %g:%s:%x\n", VendorGuid, VariableName, Attributes));
2039 return EFI_INVALID_PARAMETER;
2040 }
2041
2042 return EFI_SUCCESS;
2043 }
2044
2045 /**
2046 Mark a variable that will become read-only after leaving the DXE phase of execution.
2047
2048 @param[in] This The VARIABLE_LOCK_PROTOCOL instance.
2049 @param[in] VariableName A pointer to the variable name that will be made read-only subsequently.
2050 @param[in] VendorGuid A pointer to the vendor GUID that will be made read-only subsequently.
2051
2052 @retval EFI_SUCCESS The variable specified by the VariableName and the VendorGuid was marked
2053 as pending to be read-only.
2054 @retval EFI_INVALID_PARAMETER VariableName or VendorGuid is NULL.
2055 Or VariableName is an empty string.
2056 @retval EFI_ACCESS_DENIED EFI_END_OF_DXE_EVENT_GROUP_GUID or EFI_EVENT_GROUP_READY_TO_BOOT has
2057 already been signaled.
2058 @retval EFI_OUT_OF_RESOURCES There is not enough resource to hold the lock request.
2059 **/
2060 EFI_STATUS
2061 EFIAPI
2062 VariableLockRequestToLock (
2063 IN CONST EDKII_VARIABLE_LOCK_PROTOCOL *This,
2064 IN CHAR16 *VariableName,
2065 IN EFI_GUID *VendorGuid
2066 )
2067 {
2068 VARIABLE_ENTRY *Entry;
2069
2070 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
2071 return EFI_INVALID_PARAMETER;
2072 }
2073
2074 if (mEndOfDxe) {
2075 return EFI_ACCESS_DENIED;
2076 }
2077
2078 Entry = AllocateRuntimePool (sizeof (*Entry) + StrSize (VariableName));
2079 if (Entry == NULL) {
2080 return EFI_OUT_OF_RESOURCES;
2081 }
2082
2083 DEBUG ((EFI_D_INFO, "[Variable] Lock: %g:%s\n", VendorGuid, VariableName));
2084
2085 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2086
2087 Entry->Name = (CHAR16 *) (Entry + 1);
2088 StrCpy (Entry->Name, VariableName);
2089 CopyGuid (&Entry->Guid, VendorGuid);
2090 InsertTailList (&mLockedVariableList, &Entry->Link);
2091
2092 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2093
2094 return EFI_SUCCESS;
2095 }
2096
2097 /**
2098
2099 This code finds variable in storage blocks (Volatile or Non-Volatile).
2100
2101 @param VariableName Name of Variable to be found.
2102 @param VendorGuid Variable vendor GUID.
2103 @param Attributes Attribute value of the variable found.
2104 @param DataSize Size of Data found. If size is less than the
2105 data, this value contains the required size.
2106 @param Data Data pointer.
2107
2108 @return EFI_INVALID_PARAMETER Invalid parameter.
2109 @return EFI_SUCCESS Find the specified variable.
2110 @return EFI_NOT_FOUND Not found.
2111 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2112
2113 **/
2114 EFI_STATUS
2115 EFIAPI
2116 VariableServiceGetVariable (
2117 IN CHAR16 *VariableName,
2118 IN EFI_GUID *VendorGuid,
2119 OUT UINT32 *Attributes OPTIONAL,
2120 IN OUT UINTN *DataSize,
2121 OUT VOID *Data
2122 )
2123 {
2124 EFI_STATUS Status;
2125 VARIABLE_POINTER_TRACK Variable;
2126 UINTN VarDataSize;
2127
2128 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
2129 return EFI_INVALID_PARAMETER;
2130 }
2131
2132 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2133
2134 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2135 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2136 goto Done;
2137 }
2138
2139 //
2140 // Get data size
2141 //
2142 VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
2143 ASSERT (VarDataSize != 0);
2144
2145 if (*DataSize >= VarDataSize) {
2146 if (Data == NULL) {
2147 Status = EFI_INVALID_PARAMETER;
2148 goto Done;
2149 }
2150
2151 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
2152 if (Attributes != NULL) {
2153 *Attributes = Variable.CurrPtr->Attributes;
2154 }
2155
2156 *DataSize = VarDataSize;
2157 UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
2158
2159 Status = EFI_SUCCESS;
2160 goto Done;
2161 } else {
2162 *DataSize = VarDataSize;
2163 Status = EFI_BUFFER_TOO_SMALL;
2164 goto Done;
2165 }
2166
2167 Done:
2168 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2169 return Status;
2170 }
2171
2172
2173
2174 /**
2175
2176 This code Finds the Next available variable.
2177
2178 @param VariableNameSize Size of the variable name.
2179 @param VariableName Pointer to variable name.
2180 @param VendorGuid Variable Vendor Guid.
2181
2182 @return EFI_INVALID_PARAMETER Invalid parameter.
2183 @return EFI_SUCCESS Find the specified variable.
2184 @return EFI_NOT_FOUND Not found.
2185 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2186
2187 **/
2188 EFI_STATUS
2189 EFIAPI
2190 VariableServiceGetNextVariableName (
2191 IN OUT UINTN *VariableNameSize,
2192 IN OUT CHAR16 *VariableName,
2193 IN OUT EFI_GUID *VendorGuid
2194 )
2195 {
2196 VARIABLE_STORE_TYPE Type;
2197 VARIABLE_POINTER_TRACK Variable;
2198 VARIABLE_POINTER_TRACK VariableInHob;
2199 VARIABLE_POINTER_TRACK VariablePtrTrack;
2200 UINTN VarNameSize;
2201 EFI_STATUS Status;
2202 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
2203
2204 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
2205 return EFI_INVALID_PARAMETER;
2206 }
2207
2208 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2209
2210 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2211 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2212 goto Done;
2213 }
2214
2215 if (VariableName[0] != 0) {
2216 //
2217 // If variable name is not NULL, get next variable.
2218 //
2219 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2220 }
2221
2222 //
2223 // 0: Volatile, 1: HOB, 2: Non-Volatile.
2224 // The index and attributes mapping must be kept in this order as FindVariable
2225 // makes use of this mapping to implement search algorithm.
2226 //
2227 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
2228 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2229 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
2230
2231 while (TRUE) {
2232 //
2233 // Switch from Volatile to HOB, to Non-Volatile.
2234 //
2235 while ((Variable.CurrPtr >= Variable.EndPtr) ||
2236 (Variable.CurrPtr == NULL) ||
2237 !IsValidVariableHeader (Variable.CurrPtr)
2238 ) {
2239 //
2240 // Find current storage index
2241 //
2242 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
2243 if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
2244 break;
2245 }
2246 }
2247 ASSERT (Type < VariableStoreTypeMax);
2248 //
2249 // Switch to next storage
2250 //
2251 for (Type++; Type < VariableStoreTypeMax; Type++) {
2252 if (VariableStoreHeader[Type] != NULL) {
2253 break;
2254 }
2255 }
2256 //
2257 // Capture the case that
2258 // 1. current storage is the last one, or
2259 // 2. no further storage
2260 //
2261 if (Type == VariableStoreTypeMax) {
2262 Status = EFI_NOT_FOUND;
2263 goto Done;
2264 }
2265 Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
2266 Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
2267 Variable.CurrPtr = Variable.StartPtr;
2268 }
2269
2270 //
2271 // Variable is found
2272 //
2273 if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2274 if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
2275 if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2276 //
2277 // If it is a IN_DELETED_TRANSITION variable,
2278 // and there is also a same ADDED one at the same time,
2279 // don't return it.
2280 //
2281 VariablePtrTrack.StartPtr = Variable.StartPtr;
2282 VariablePtrTrack.EndPtr = Variable.EndPtr;
2283 Status = FindVariableEx (
2284 GetVariableNamePtr (Variable.CurrPtr),
2285 &Variable.CurrPtr->VendorGuid,
2286 FALSE,
2287 &VariablePtrTrack
2288 );
2289 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
2290 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2291 continue;
2292 }
2293 }
2294
2295 //
2296 // Don't return NV variable when HOB overrides it
2297 //
2298 if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
2299 (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
2300 ) {
2301 VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
2302 VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
2303 Status = FindVariableEx (
2304 GetVariableNamePtr (Variable.CurrPtr),
2305 &Variable.CurrPtr->VendorGuid,
2306 FALSE,
2307 &VariableInHob
2308 );
2309 if (!EFI_ERROR (Status)) {
2310 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2311 continue;
2312 }
2313 }
2314
2315 VarNameSize = NameSizeOfVariable (Variable.CurrPtr);
2316 ASSERT (VarNameSize != 0);
2317
2318 if (VarNameSize <= *VariableNameSize) {
2319 CopyMem (VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize);
2320 CopyMem (VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID));
2321 Status = EFI_SUCCESS;
2322 } else {
2323 Status = EFI_BUFFER_TOO_SMALL;
2324 }
2325
2326 *VariableNameSize = VarNameSize;
2327 goto Done;
2328 }
2329 }
2330
2331 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2332 }
2333
2334 Done:
2335 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2336 return Status;
2337 }
2338
2339 /**
2340
2341 This code sets variable in storage blocks (Volatile or Non-Volatile).
2342
2343 @param VariableName Name of Variable to be found.
2344 @param VendorGuid Variable vendor GUID.
2345 @param Attributes Attribute value of the variable found
2346 @param DataSize Size of Data found. If size is less than the
2347 data, this value contains the required size.
2348 @param Data Data pointer.
2349
2350 @return EFI_INVALID_PARAMETER Invalid parameter.
2351 @return EFI_SUCCESS Set successfully.
2352 @return EFI_OUT_OF_RESOURCES Resource not enough to set variable.
2353 @return EFI_NOT_FOUND Not found.
2354 @return EFI_WRITE_PROTECTED Variable is read-only.
2355
2356 **/
2357 EFI_STATUS
2358 EFIAPI
2359 VariableServiceSetVariable (
2360 IN CHAR16 *VariableName,
2361 IN EFI_GUID *VendorGuid,
2362 IN UINT32 Attributes,
2363 IN UINTN DataSize,
2364 IN VOID *Data
2365 )
2366 {
2367 VARIABLE_POINTER_TRACK Variable;
2368 EFI_STATUS Status;
2369 VARIABLE_HEADER *NextVariable;
2370 EFI_PHYSICAL_ADDRESS Point;
2371 LIST_ENTRY *Link;
2372 VARIABLE_ENTRY *Entry;
2373
2374 //
2375 // Check input parameters.
2376 //
2377 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
2378 return EFI_INVALID_PARAMETER;
2379 }
2380
2381 if (DataSize != 0 && Data == NULL) {
2382 return EFI_INVALID_PARAMETER;
2383 }
2384
2385 //
2386 // Not support authenticated or append variable write yet.
2387 //
2388 if ((Attributes & (EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_APPEND_WRITE)) != 0) {
2389 return EFI_INVALID_PARAMETER;
2390 }
2391
2392 //
2393 // Make sure if runtime bit is set, boot service bit is set also.
2394 //
2395 if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
2396 return EFI_INVALID_PARAMETER;
2397 }
2398
2399 if ((UINTN)(~0) - DataSize < StrSize(VariableName)){
2400 //
2401 // Prevent whole variable size overflow
2402 //
2403 return EFI_INVALID_PARAMETER;
2404 }
2405
2406 //
2407 // The size of the VariableName, including the Unicode Null in bytes plus
2408 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
2409 // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
2410 //
2411 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2412 if ( StrSize (VariableName) + DataSize > PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER)) {
2413 return EFI_INVALID_PARAMETER;
2414 }
2415 if (!IsHwErrRecVariable(VariableName, VendorGuid)) {
2416 return EFI_INVALID_PARAMETER;
2417 }
2418 } else {
2419 //
2420 // The size of the VariableName, including the Unicode Null in bytes plus
2421 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxVariableSize) bytes.
2422 //
2423 if (StrSize (VariableName) + DataSize > PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER)) {
2424 return EFI_INVALID_PARAMETER;
2425 }
2426 }
2427
2428 Status = CheckEfiGlobalVariable (VariableName, VendorGuid, Attributes);
2429 if (EFI_ERROR (Status)) {
2430 return Status;
2431 }
2432
2433 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2434
2435 //
2436 // Consider reentrant in MCA/INIT/NMI. It needs be reupdated.
2437 //
2438 if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) {
2439 Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
2440 //
2441 // Parse non-volatile variable data and get last variable offset.
2442 //
2443 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point);
2444 while ((NextVariable < GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point))
2445 && IsValidVariableHeader (NextVariable)) {
2446 NextVariable = GetNextVariablePtr (NextVariable);
2447 }
2448 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point;
2449 }
2450
2451 if (mEndOfDxe && mEnableLocking) {
2452 //
2453 // Treat the variables listed in the forbidden variable list as read-only after leaving DXE phase.
2454 //
2455 for ( Link = GetFirstNode (&mLockedVariableList)
2456 ; !IsNull (&mLockedVariableList, Link)
2457 ; Link = GetNextNode (&mLockedVariableList, Link)
2458 ) {
2459 Entry = BASE_CR (Link, VARIABLE_ENTRY, Link);
2460 if (CompareGuid (&Entry->Guid, VendorGuid) && (StrCmp (Entry->Name, VariableName) == 0)) {
2461 Status = EFI_WRITE_PROTECTED;
2462 DEBUG ((EFI_D_INFO, "[Variable]: Changing readonly variable after leaving DXE phase - %g:%s\n", VendorGuid, VariableName));
2463 goto Done;
2464 }
2465 }
2466 }
2467
2468 //
2469 // Check whether the input variable is already existed.
2470 //
2471 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE);
2472 if (!EFI_ERROR (Status)) {
2473 if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) {
2474 Status = EFI_WRITE_PROTECTED;
2475 goto Done;
2476 }
2477 if (Attributes != 0 && Attributes != Variable.CurrPtr->Attributes) {
2478 //
2479 // If a preexisting variable is rewritten with different attributes, SetVariable() shall not
2480 // modify the variable and shall return EFI_INVALID_PARAMETER. Two exceptions to this rule:
2481 // 1. No access attributes specified
2482 // 2. The only attribute differing is EFI_VARIABLE_APPEND_WRITE
2483 //
2484 Status = EFI_INVALID_PARAMETER;
2485 goto Done;
2486 }
2487 }
2488
2489 //
2490 // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang.
2491 //
2492 AutoUpdateLangVariable (VariableName, Data, DataSize);
2493
2494 Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, &Variable);
2495
2496 Done:
2497 InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState);
2498 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2499
2500 return Status;
2501 }
2502
2503 /**
2504
2505 This code returns information about the EFI variables.
2506
2507 @param Attributes Attributes bitmask to specify the type of variables
2508 on which to return information.
2509 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
2510 for the EFI variables associated with the attributes specified.
2511 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
2512 for EFI variables associated with the attributes specified.
2513 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
2514 associated with the attributes specified.
2515
2516 @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
2517 @return EFI_SUCCESS Query successfully.
2518 @return EFI_UNSUPPORTED The attribute is not supported on this platform.
2519
2520 **/
2521 EFI_STATUS
2522 EFIAPI
2523 VariableServiceQueryVariableInfo (
2524 IN UINT32 Attributes,
2525 OUT UINT64 *MaximumVariableStorageSize,
2526 OUT UINT64 *RemainingVariableStorageSize,
2527 OUT UINT64 *MaximumVariableSize
2528 )
2529 {
2530 VARIABLE_HEADER *Variable;
2531 VARIABLE_HEADER *NextVariable;
2532 UINT64 VariableSize;
2533 VARIABLE_STORE_HEADER *VariableStoreHeader;
2534 UINT64 CommonVariableTotalSize;
2535 UINT64 HwErrVariableTotalSize;
2536
2537 CommonVariableTotalSize = 0;
2538 HwErrVariableTotalSize = 0;
2539
2540 if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
2541 return EFI_INVALID_PARAMETER;
2542 }
2543
2544 if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
2545 //
2546 // Make sure the Attributes combination is supported by the platform.
2547 //
2548 return EFI_UNSUPPORTED;
2549 } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
2550 //
2551 // Make sure if runtime bit is set, boot service bit is set also.
2552 //
2553 return EFI_INVALID_PARAMETER;
2554 } else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
2555 //
2556 // Make sure RT Attribute is set if we are in Runtime phase.
2557 //
2558 return EFI_INVALID_PARAMETER;
2559 } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2560 //
2561 // Make sure Hw Attribute is set with NV.
2562 //
2563 return EFI_INVALID_PARAMETER;
2564 } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
2565 //
2566 // Not support authentiated variable write yet.
2567 //
2568 return EFI_UNSUPPORTED;
2569 }
2570
2571 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2572
2573 if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
2574 //
2575 // Query is Volatile related.
2576 //
2577 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
2578 } else {
2579 //
2580 // Query is Non-Volatile related.
2581 //
2582 VariableStoreHeader = mNvVariableCache;
2583 }
2584
2585 //
2586 // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
2587 // with the storage size (excluding the storage header size).
2588 //
2589 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
2590
2591 //
2592 // Harware error record variable needs larger size.
2593 //
2594 if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
2595 *MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize);
2596 *MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
2597 } else {
2598 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2599 ASSERT (PcdGet32 (PcdHwErrStorageSize) < VariableStoreHeader->Size);
2600 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize);
2601 }
2602
2603 //
2604 // Let *MaximumVariableSize be PcdGet32 (PcdMaxVariableSize) with the exception of the variable header size.
2605 //
2606 *MaximumVariableSize = PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
2607 }
2608
2609 //
2610 // Point to the starting address of the variables.
2611 //
2612 Variable = GetStartPointer (VariableStoreHeader);
2613
2614 //
2615 // Now walk through the related variable store.
2616 //
2617 while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
2618 NextVariable = GetNextVariablePtr (Variable);
2619 VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
2620
2621 if (AtRuntime ()) {
2622 //
2623 // We don't take the state of the variables in mind
2624 // when calculating RemainingVariableStorageSize,
2625 // since the space occupied by variables not marked with
2626 // VAR_ADDED is not allowed to be reclaimed in Runtime.
2627 //
2628 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2629 HwErrVariableTotalSize += VariableSize;
2630 } else {
2631 CommonVariableTotalSize += VariableSize;
2632 }
2633 } else {
2634 //
2635 // Only care about Variables with State VAR_ADDED, because
2636 // the space not marked as VAR_ADDED is reclaimable now.
2637 //
2638 if (Variable->State == VAR_ADDED) {
2639 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2640 HwErrVariableTotalSize += VariableSize;
2641 } else {
2642 CommonVariableTotalSize += VariableSize;
2643 }
2644 }
2645 }
2646
2647 //
2648 // Go to the next one.
2649 //
2650 Variable = NextVariable;
2651 }
2652
2653 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
2654 *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
2655 }else {
2656 *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
2657 }
2658
2659 if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) {
2660 *MaximumVariableSize = 0;
2661 } else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) {
2662 *MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER);
2663 }
2664
2665 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2666 return EFI_SUCCESS;
2667 }
2668
2669
2670 /**
2671 This function reclaims variable storage if free size is below the threshold.
2672
2673 **/
2674 VOID
2675 ReclaimForOS(
2676 VOID
2677 )
2678 {
2679 EFI_STATUS Status;
2680 UINTN CommonVariableSpace;
2681 UINTN RemainingCommonVariableSpace;
2682 UINTN RemainingHwErrVariableSpace;
2683
2684 Status = EFI_SUCCESS;
2685
2686 CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space
2687
2688 RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize;
2689
2690 RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize;
2691 //
2692 // Check if the free area is blow a threshold.
2693 //
2694 if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize))
2695 || ((PcdGet32 (PcdHwErrStorageSize) != 0) &&
2696 (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){
2697 Status = Reclaim (
2698 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2699 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2700 FALSE,
2701 NULL,
2702 NULL,
2703 0
2704 );
2705 ASSERT_EFI_ERROR (Status);
2706 }
2707 }
2708
2709 /**
2710 Init non-volatile variable store.
2711
2712 @retval EFI_SUCCESS Function successfully executed.
2713 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
2714 @retval EFI_VOLUME_CORRUPTED Variable Store or Firmware Volume for Variable Store is corrupted.
2715
2716 **/
2717 EFI_STATUS
2718 InitNonVolatileVariableStore (
2719 VOID
2720 )
2721 {
2722 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
2723 VARIABLE_HEADER *NextVariable;
2724 EFI_PHYSICAL_ADDRESS VariableStoreBase;
2725 UINT64 VariableStoreLength;
2726 UINTN VariableSize;
2727 EFI_HOB_GUID_TYPE *GuidHob;
2728 EFI_PHYSICAL_ADDRESS NvStorageBase;
2729 UINT8 *NvStorageData;
2730 UINT32 NvStorageSize;
2731 FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *FtwLastWriteData;
2732 UINT32 BackUpOffset;
2733 UINT32 BackUpSize;
2734
2735 mVariableModuleGlobal->FvbInstance = NULL;
2736
2737 //
2738 // Note that in EdkII variable driver implementation, Hardware Error Record type variable
2739 // is stored with common variable in the same NV region. So the platform integrator should
2740 // ensure that the value of PcdHwErrStorageSize is less than or equal to the value of
2741 // PcdFlashNvStorageVariableSize.
2742 //
2743 ASSERT (PcdGet32 (PcdHwErrStorageSize) <= PcdGet32 (PcdFlashNvStorageVariableSize));
2744
2745 //
2746 // Allocate runtime memory used for a memory copy of the FLASH region.
2747 // Keep the memory and the FLASH in sync as updates occur.
2748 //
2749 NvStorageSize = PcdGet32 (PcdFlashNvStorageVariableSize);
2750 NvStorageData = AllocateRuntimeZeroPool (NvStorageSize);
2751 if (NvStorageData == NULL) {
2752 return EFI_OUT_OF_RESOURCES;
2753 }
2754
2755 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
2756 if (NvStorageBase == 0) {
2757 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
2758 }
2759 //
2760 // Copy NV storage data to the memory buffer.
2761 //
2762 CopyMem (NvStorageData, (UINT8 *) (UINTN) NvStorageBase, NvStorageSize);
2763
2764 //
2765 // Check the FTW last write data hob.
2766 //
2767 GuidHob = GetFirstGuidHob (&gEdkiiFaultTolerantWriteGuid);
2768 if (GuidHob != NULL) {
2769 FtwLastWriteData = (FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *) GET_GUID_HOB_DATA (GuidHob);
2770 if (FtwLastWriteData->TargetAddress == NvStorageBase) {
2771 DEBUG ((EFI_D_INFO, "Variable: NV storage is backed up in spare block: 0x%x\n", (UINTN) FtwLastWriteData->SpareAddress));
2772 //
2773 // Copy the backed up NV storage data to the memory buffer from spare block.
2774 //
2775 CopyMem (NvStorageData, (UINT8 *) (UINTN) (FtwLastWriteData->SpareAddress), NvStorageSize);
2776 } else if ((FtwLastWriteData->TargetAddress > NvStorageBase) &&
2777 (FtwLastWriteData->TargetAddress < (NvStorageBase + NvStorageSize))) {
2778 //
2779 // Flash NV storage from the offset is backed up in spare block.
2780 //
2781 BackUpOffset = (UINT32) (FtwLastWriteData->TargetAddress - NvStorageBase);
2782 BackUpSize = NvStorageSize - BackUpOffset;
2783 DEBUG ((EFI_D_INFO, "Variable: High partial NV storage from offset: %x is backed up in spare block: 0x%x\n", BackUpOffset, (UINTN) FtwLastWriteData->SpareAddress));
2784 //
2785 // Copy the partial backed up NV storage data to the memory buffer from spare block.
2786 //
2787 CopyMem (NvStorageData + BackUpOffset, (UINT8 *) (UINTN) FtwLastWriteData->SpareAddress, BackUpSize);
2788 }
2789 }
2790
2791 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) NvStorageData;
2792
2793 //
2794 // Check if the Firmware Volume is not corrupted
2795 //
2796 if ((FvHeader->Signature != EFI_FVH_SIGNATURE) || (!CompareGuid (&gEfiSystemNvDataFvGuid, &FvHeader->FileSystemGuid))) {
2797 FreePool (NvStorageData);
2798 DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n"));
2799 return EFI_VOLUME_CORRUPTED;
2800 }
2801
2802 VariableStoreBase = (EFI_PHYSICAL_ADDRESS) ((UINTN) FvHeader + FvHeader->HeaderLength);
2803 VariableStoreLength = (UINT64) (NvStorageSize - FvHeader->HeaderLength);
2804
2805 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
2806 mNvVariableCache = (VARIABLE_STORE_HEADER *) (UINTN) VariableStoreBase;
2807 if (GetVariableStoreStatus (mNvVariableCache) != EfiValid) {
2808 FreePool (NvStorageData);
2809 DEBUG((EFI_D_ERROR, "Variable Store header is corrupted\n"));
2810 return EFI_VOLUME_CORRUPTED;
2811 }
2812 ASSERT(mNvVariableCache->Size == VariableStoreLength);
2813
2814 //
2815 // The max variable or hardware error variable size should be < variable store size.
2816 //
2817 ASSERT(MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)) < VariableStoreLength);
2818
2819 //
2820 // Parse non-volatile variable data and get last variable offset.
2821 //
2822 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase);
2823 while (IsValidVariableHeader (NextVariable)) {
2824 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
2825 if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
2826 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
2827 } else {
2828 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
2829 }
2830
2831 NextVariable = GetNextVariablePtr (NextVariable);
2832 }
2833 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase;
2834
2835 return EFI_SUCCESS;
2836 }
2837
2838 /**
2839 Flush the HOB variable to flash.
2840
2841 @param[in] VariableName Name of variable has been updated or deleted.
2842 @param[in] VendorGuid Guid of variable has been updated or deleted.
2843
2844 **/
2845 VOID
2846 FlushHobVariableToFlash (
2847 IN CHAR16 *VariableName,
2848 IN EFI_GUID *VendorGuid
2849 )
2850 {
2851 EFI_STATUS Status;
2852 VARIABLE_STORE_HEADER *VariableStoreHeader;
2853 VARIABLE_HEADER *Variable;
2854 VOID *VariableData;
2855 BOOLEAN ErrorFlag;
2856
2857 ErrorFlag = FALSE;
2858
2859 //
2860 // Flush the HOB variable to flash.
2861 //
2862 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
2863 VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2864 //
2865 // Set HobVariableBase to 0, it can avoid SetVariable to call back.
2866 //
2867 mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0;
2868 for ( Variable = GetStartPointer (VariableStoreHeader)
2869 ; (Variable < GetEndPointer (VariableStoreHeader) && IsValidVariableHeader (Variable))
2870 ; Variable = GetNextVariablePtr (Variable)
2871 ) {
2872 if (Variable->State != VAR_ADDED) {
2873 //
2874 // The HOB variable has been set to DELETED state in local.
2875 //
2876 continue;
2877 }
2878 ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0);
2879 if (VendorGuid == NULL || VariableName == NULL ||
2880 !CompareGuid (VendorGuid, &Variable->VendorGuid) ||
2881 StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) {
2882 VariableData = GetVariableDataPtr (Variable);
2883 Status = VariableServiceSetVariable (
2884 GetVariableNamePtr (Variable),
2885 &Variable->VendorGuid,
2886 Variable->Attributes,
2887 Variable->DataSize,
2888 VariableData
2889 );
2890 DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", &Variable->VendorGuid, GetVariableNamePtr (Variable), Status));
2891 } else {
2892 //
2893 // The updated or deleted variable is matched with the HOB variable.
2894 // Don't break here because we will try to set other HOB variables
2895 // since this variable could be set successfully.
2896 //
2897 Status = EFI_SUCCESS;
2898 }
2899 if (!EFI_ERROR (Status)) {
2900 //
2901 // If set variable successful, or the updated or deleted variable is matched with the HOB variable,
2902 // set the HOB variable to DELETED state in local.
2903 //
2904 DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", &Variable->VendorGuid, GetVariableNamePtr (Variable)));
2905 Variable->State &= VAR_DELETED;
2906 } else {
2907 ErrorFlag = TRUE;
2908 }
2909 }
2910 if (ErrorFlag) {
2911 //
2912 // We still have HOB variable(s) not flushed in flash.
2913 //
2914 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader;
2915 } else {
2916 //
2917 // All HOB variables have been flushed in flash.
2918 //
2919 DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n"));
2920 if (!AtRuntime ()) {
2921 FreePool ((VOID *) VariableStoreHeader);
2922 }
2923 }
2924 }
2925
2926 }
2927
2928 /**
2929 Initializes variable write service after FTW was ready.
2930
2931 @retval EFI_SUCCESS Function successfully executed.
2932 @retval Others Fail to initialize the variable service.
2933
2934 **/
2935 EFI_STATUS
2936 VariableWriteServiceInitialize (
2937 VOID
2938 )
2939 {
2940 EFI_STATUS Status;
2941 VARIABLE_STORE_HEADER *VariableStoreHeader;
2942 UINTN Index;
2943 UINT8 Data;
2944 EFI_PHYSICAL_ADDRESS VariableStoreBase;
2945 EFI_PHYSICAL_ADDRESS NvStorageBase;
2946
2947 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
2948 if (NvStorageBase == 0) {
2949 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
2950 }
2951 VariableStoreBase = NvStorageBase + (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(NvStorageBase))->HeaderLength);
2952
2953 //
2954 // Let NonVolatileVariableBase point to flash variable store base directly after FTW ready.
2955 //
2956 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
2957 VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase;
2958
2959 //
2960 // Check if the free area is really free.
2961 //
2962 for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) {
2963 Data = ((UINT8 *) mNvVariableCache)[Index];
2964 if (Data != 0xff) {
2965 //
2966 // There must be something wrong in variable store, do reclaim operation.
2967 //
2968 Status = Reclaim (
2969 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2970 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2971 FALSE,
2972 NULL,
2973 NULL,
2974 0
2975 );
2976 if (EFI_ERROR (Status)) {
2977 return Status;
2978 }
2979 break;
2980 }
2981 }
2982
2983 FlushHobVariableToFlash (NULL, NULL);
2984
2985 return EFI_SUCCESS;
2986 }
2987
2988
2989 /**
2990 Initializes variable store area for non-volatile and volatile variable.
2991
2992 @retval EFI_SUCCESS Function successfully executed.
2993 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
2994
2995 **/
2996 EFI_STATUS
2997 VariableCommonInitialize (
2998 VOID
2999 )
3000 {
3001 EFI_STATUS Status;
3002 VARIABLE_STORE_HEADER *VolatileVariableStore;
3003 VARIABLE_STORE_HEADER *VariableStoreHeader;
3004 UINT64 VariableStoreLength;
3005 UINTN ScratchSize;
3006 EFI_HOB_GUID_TYPE *GuidHob;
3007
3008 //
3009 // Allocate runtime memory for variable driver global structure.
3010 //
3011 mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL));
3012 if (mVariableModuleGlobal == NULL) {
3013 return EFI_OUT_OF_RESOURCES;
3014 }
3015
3016 InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY);
3017
3018 //
3019 // Get HOB variable store.
3020 //
3021 GuidHob = GetFirstGuidHob (&gEfiVariableGuid);
3022 if (GuidHob != NULL) {
3023 VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob);
3024 VariableStoreLength = (UINT64) (GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE));
3025 if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
3026 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader);
3027 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) {
3028 FreePool (mVariableModuleGlobal);
3029 return EFI_OUT_OF_RESOURCES;
3030 }
3031 } else {
3032 DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n"));
3033 }
3034 }
3035
3036 //
3037 // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data.
3038 //
3039 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
3040 VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize);
3041 if (VolatileVariableStore == NULL) {
3042 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3043 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3044 }
3045 FreePool (mVariableModuleGlobal);
3046 return EFI_OUT_OF_RESOURCES;
3047 }
3048
3049 SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff);
3050
3051 //
3052 // Initialize Variable Specific Data.
3053 //
3054 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore;
3055 mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore;
3056
3057 CopyGuid (&VolatileVariableStore->Signature, &gEfiVariableGuid);
3058 VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize);
3059 VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED;
3060 VolatileVariableStore->State = VARIABLE_STORE_HEALTHY;
3061 VolatileVariableStore->Reserved = 0;
3062 VolatileVariableStore->Reserved1 = 0;
3063
3064 //
3065 // Init non-volatile variable store.
3066 //
3067 Status = InitNonVolatileVariableStore ();
3068 if (EFI_ERROR (Status)) {
3069 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3070 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3071 }
3072 FreePool (mVariableModuleGlobal);
3073 FreePool (VolatileVariableStore);
3074 }
3075
3076 return Status;
3077 }
3078
3079
3080 /**
3081 Get the proper fvb handle and/or fvb protocol by the given Flash address.
3082
3083 @param[in] Address The Flash address.
3084 @param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle.
3085 @param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol.
3086
3087 **/
3088 EFI_STATUS
3089 GetFvbInfoByAddress (
3090 IN EFI_PHYSICAL_ADDRESS Address,
3091 OUT EFI_HANDLE *FvbHandle OPTIONAL,
3092 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL
3093 )
3094 {
3095 EFI_STATUS Status;
3096 EFI_HANDLE *HandleBuffer;
3097 UINTN HandleCount;
3098 UINTN Index;
3099 EFI_PHYSICAL_ADDRESS FvbBaseAddress;
3100 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
3101 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
3102 EFI_FVB_ATTRIBUTES_2 Attributes;
3103
3104 //
3105 // Get all FVB handles.
3106 //
3107 Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
3108 if (EFI_ERROR (Status)) {
3109 return EFI_NOT_FOUND;
3110 }
3111
3112 //
3113 // Get the FVB to access variable store.
3114 //
3115 Fvb = NULL;
3116 for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) {
3117 Status = GetFvbByHandle (HandleBuffer[Index], &Fvb);
3118 if (EFI_ERROR (Status)) {
3119 Status = EFI_NOT_FOUND;
3120 break;
3121 }
3122
3123 //
3124 // Ensure this FVB protocol supported Write operation.
3125 //
3126 Status = Fvb->GetAttributes (Fvb, &Attributes);
3127 if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
3128 continue;
3129 }
3130
3131 //
3132 // Compare the address and select the right one.
3133 //
3134 Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
3135 if (EFI_ERROR (Status)) {
3136 continue;
3137 }
3138
3139 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress);
3140 if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + FwVolHeader->FvLength))) {
3141 if (FvbHandle != NULL) {
3142 *FvbHandle = HandleBuffer[Index];
3143 }
3144 if (FvbProtocol != NULL) {
3145 *FvbProtocol = Fvb;
3146 }
3147 Status = EFI_SUCCESS;
3148 break;
3149 }
3150 }
3151 FreePool (HandleBuffer);
3152
3153 if (Fvb == NULL) {
3154 Status = EFI_NOT_FOUND;
3155 }
3156
3157 return Status;
3158 }
3159