]> git.proxmox.com Git - mirror_edk2.git/blob - MdeModulePkg/Universal/Variable/RuntimeDxe/Variable.c
Support load 64 bit image from 32 bit core.
[mirror_edk2.git] / MdeModulePkg / Universal / Variable / RuntimeDxe / Variable.c
1 /** @file
2
3 The common variable operation routines shared by DXE_RUNTIME variable
4 module and DXE_SMM variable module.
5
6 Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
7 This program and the accompanying materials
8 are licensed and made available under the terms and conditions of the BSD License
9 which accompanies this distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14
15 **/
16
17 #include "Variable.h"
18
19 VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
20
21 ///
22 /// Define a memory cache that improves the search performance for a variable.
23 ///
24 VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
25
26 ///
27 /// The memory entry used for variable statistics data.
28 ///
29 VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
30
31 ///
32 /// The list to store the variables which cannot be set after the EFI_END_OF_DXE_EVENT_GROUP_GUID
33 /// or EVT_GROUP_READY_TO_BOOT event.
34 ///
35 LIST_ENTRY mLockedVariableList = INITIALIZE_LIST_HEAD_VARIABLE (mLockedVariableList);
36
37 ///
38 /// The flag to indicate whether the platform has left the DXE phase of execution.
39 ///
40 BOOLEAN mEndOfDxe = FALSE;
41
42 ///
43 /// The flag to indicate whether the variable storage locking is enabled.
44 ///
45 BOOLEAN mEnableLocking = TRUE;
46
47 //
48 // To prevent name collisions with possible future globally defined variables,
49 // other internal firmware data variables that are not defined here must be
50 // saved with a unique VendorGuid other than EFI_GLOBAL_VARIABLE or
51 // any other GUID defined by the UEFI Specification. Implementations must
52 // only permit the creation of variables with a UEFI Specification-defined
53 // VendorGuid when these variables are documented in the UEFI Specification.
54 //
55 GLOBAL_VARIABLE_ENTRY mGlobalVariableList[] = {
56 {EFI_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
57 {EFI_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
58 {EFI_TIME_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
59 {EFI_PLATFORM_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
60 {EFI_PLATFORM_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
61 {EFI_CON_IN_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
62 {EFI_CON_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
63 {EFI_ERR_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
64 {EFI_CON_IN_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
65 {EFI_CON_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
66 {EFI_ERR_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
67 {EFI_BOOT_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
68 {EFI_BOOT_NEXT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
69 {EFI_BOOT_CURRENT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
70 {EFI_BOOT_OPTION_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
71 {EFI_DRIVER_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
72 {EFI_HW_ERR_REC_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
73 {EFI_SETUP_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
74 {EFI_KEY_EXCHANGE_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
75 {EFI_PLATFORM_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
76 {EFI_SIGNATURE_SUPPORT_NAME, VARIABLE_ATTRIBUTE_BS_RT},
77 {EFI_SECURE_BOOT_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
78 {EFI_KEK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
79 {EFI_PK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
80 {EFI_DB_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
81 {EFI_DBX_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
82 {EFI_DBT_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
83 {EFI_OS_INDICATIONS_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
84 {EFI_OS_INDICATIONS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
85 {EFI_VENDOR_KEYS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
86 };
87 GLOBAL_VARIABLE_ENTRY mGlobalVariableList2[] = {
88 {L"Boot####", VARIABLE_ATTRIBUTE_NV_BS_RT},
89 {L"Driver####", VARIABLE_ATTRIBUTE_NV_BS_RT},
90 {L"Key####", VARIABLE_ATTRIBUTE_NV_BS_RT},
91 };
92
93 /**
94 Routine used to track statistical information about variable usage.
95 The data is stored in the EFI system table so it can be accessed later.
96 VariableInfo.efi can dump out the table. Only Boot Services variable
97 accesses are tracked by this code. The PcdVariableCollectStatistics
98 build flag controls if this feature is enabled.
99
100 A read that hits in the cache will have Read and Cache true for
101 the transaction. Data is allocated by this routine, but never
102 freed.
103
104 @param[in] VariableName Name of the Variable to track.
105 @param[in] VendorGuid Guid of the Variable to track.
106 @param[in] Volatile TRUE if volatile FALSE if non-volatile.
107 @param[in] Read TRUE if GetVariable() was called.
108 @param[in] Write TRUE if SetVariable() was called.
109 @param[in] Delete TRUE if deleted via SetVariable().
110 @param[in] Cache TRUE for a cache hit.
111
112 **/
113 VOID
114 UpdateVariableInfo (
115 IN CHAR16 *VariableName,
116 IN EFI_GUID *VendorGuid,
117 IN BOOLEAN Volatile,
118 IN BOOLEAN Read,
119 IN BOOLEAN Write,
120 IN BOOLEAN Delete,
121 IN BOOLEAN Cache
122 )
123 {
124 VARIABLE_INFO_ENTRY *Entry;
125
126 if (FeaturePcdGet (PcdVariableCollectStatistics)) {
127
128 if (AtRuntime ()) {
129 // Don't collect statistics at runtime.
130 return;
131 }
132
133 if (gVariableInfo == NULL) {
134 //
135 // On the first call allocate a entry and place a pointer to it in
136 // the EFI System Table.
137 //
138 gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
139 ASSERT (gVariableInfo != NULL);
140
141 CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
142 gVariableInfo->Name = AllocatePool (StrSize (VariableName));
143 ASSERT (gVariableInfo->Name != NULL);
144 StrCpy (gVariableInfo->Name, VariableName);
145 gVariableInfo->Volatile = Volatile;
146 }
147
148
149 for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
150 if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
151 if (StrCmp (VariableName, Entry->Name) == 0) {
152 if (Read) {
153 Entry->ReadCount++;
154 }
155 if (Write) {
156 Entry->WriteCount++;
157 }
158 if (Delete) {
159 Entry->DeleteCount++;
160 }
161 if (Cache) {
162 Entry->CacheCount++;
163 }
164
165 return;
166 }
167 }
168
169 if (Entry->Next == NULL) {
170 //
171 // If the entry is not in the table add it.
172 // Next iteration of the loop will fill in the data.
173 //
174 Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
175 ASSERT (Entry->Next != NULL);
176
177 CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
178 Entry->Next->Name = AllocatePool (StrSize (VariableName));
179 ASSERT (Entry->Next->Name != NULL);
180 StrCpy (Entry->Next->Name, VariableName);
181 Entry->Next->Volatile = Volatile;
182 }
183
184 }
185 }
186 }
187
188
189 /**
190
191 This code checks if variable header is valid or not.
192
193 @param Variable Pointer to the Variable Header.
194
195 @retval TRUE Variable header is valid.
196 @retval FALSE Variable header is not valid.
197
198 **/
199 BOOLEAN
200 IsValidVariableHeader (
201 IN VARIABLE_HEADER *Variable
202 )
203 {
204 if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
205 return FALSE;
206 }
207
208 return TRUE;
209 }
210
211
212 /**
213
214 This function writes data to the FWH at the correct LBA even if the LBAs
215 are fragmented.
216
217 @param Global Pointer to VARAIBLE_GLOBAL structure.
218 @param Volatile Point out the Variable is Volatile or Non-Volatile.
219 @param SetByIndex TRUE if target pointer is given as index.
220 FALSE if target pointer is absolute.
221 @param Fvb Pointer to the writable FVB protocol.
222 @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
223 structure.
224 @param DataSize Size of data to be written.
225 @param Buffer Pointer to the buffer from which data is written.
226
227 @retval EFI_INVALID_PARAMETER Parameters not valid.
228 @retval EFI_SUCCESS Variable store successfully updated.
229
230 **/
231 EFI_STATUS
232 UpdateVariableStore (
233 IN VARIABLE_GLOBAL *Global,
234 IN BOOLEAN Volatile,
235 IN BOOLEAN SetByIndex,
236 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
237 IN UINTN DataPtrIndex,
238 IN UINT32 DataSize,
239 IN UINT8 *Buffer
240 )
241 {
242 EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
243 UINTN BlockIndex2;
244 UINTN LinearOffset;
245 UINTN CurrWriteSize;
246 UINTN CurrWritePtr;
247 UINT8 *CurrBuffer;
248 EFI_LBA LbaNumber;
249 UINTN Size;
250 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
251 VARIABLE_STORE_HEADER *VolatileBase;
252 EFI_PHYSICAL_ADDRESS FvVolHdr;
253 EFI_PHYSICAL_ADDRESS DataPtr;
254 EFI_STATUS Status;
255
256 FwVolHeader = NULL;
257 DataPtr = DataPtrIndex;
258
259 //
260 // Check if the Data is Volatile.
261 //
262 if (!Volatile) {
263 ASSERT (Fvb != NULL);
264 Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
265 ASSERT_EFI_ERROR (Status);
266
267 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
268 //
269 // Data Pointer should point to the actual Address where data is to be
270 // written.
271 //
272 if (SetByIndex) {
273 DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
274 }
275
276 if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
277 return EFI_INVALID_PARAMETER;
278 }
279 } else {
280 //
281 // Data Pointer should point to the actual Address where data is to be
282 // written.
283 //
284 VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
285 if (SetByIndex) {
286 DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
287 }
288
289 if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
290 return EFI_INVALID_PARAMETER;
291 }
292
293 //
294 // If Volatile Variable just do a simple mem copy.
295 //
296 CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
297 return EFI_SUCCESS;
298 }
299
300 //
301 // If we are here we are dealing with Non-Volatile Variables.
302 //
303 LinearOffset = (UINTN) FwVolHeader;
304 CurrWritePtr = (UINTN) DataPtr;
305 CurrWriteSize = DataSize;
306 CurrBuffer = Buffer;
307 LbaNumber = 0;
308
309 if (CurrWritePtr < LinearOffset) {
310 return EFI_INVALID_PARAMETER;
311 }
312
313 for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
314 for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
315 //
316 // Check to see if the Variable Writes are spanning through multiple
317 // blocks.
318 //
319 if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
320 if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
321 Status = Fvb->Write (
322 Fvb,
323 LbaNumber,
324 (UINTN) (CurrWritePtr - LinearOffset),
325 &CurrWriteSize,
326 CurrBuffer
327 );
328 return Status;
329 } else {
330 Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
331 Status = Fvb->Write (
332 Fvb,
333 LbaNumber,
334 (UINTN) (CurrWritePtr - LinearOffset),
335 &Size,
336 CurrBuffer
337 );
338 if (EFI_ERROR (Status)) {
339 return Status;
340 }
341
342 CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
343 CurrBuffer = CurrBuffer + Size;
344 CurrWriteSize = CurrWriteSize - Size;
345 }
346 }
347
348 LinearOffset += PtrBlockMapEntry->Length;
349 LbaNumber++;
350 }
351 }
352
353 return EFI_SUCCESS;
354 }
355
356
357 /**
358
359 This code gets the current status of Variable Store.
360
361 @param VarStoreHeader Pointer to the Variable Store Header.
362
363 @retval EfiRaw Variable store status is raw.
364 @retval EfiValid Variable store status is valid.
365 @retval EfiInvalid Variable store status is invalid.
366
367 **/
368 VARIABLE_STORE_STATUS
369 GetVariableStoreStatus (
370 IN VARIABLE_STORE_HEADER *VarStoreHeader
371 )
372 {
373 if (CompareGuid (&VarStoreHeader->Signature, &gEfiVariableGuid) &&
374 VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
375 VarStoreHeader->State == VARIABLE_STORE_HEALTHY
376 ) {
377
378 return EfiValid;
379 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
380 ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
381 ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
382 ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
383 VarStoreHeader->Size == 0xffffffff &&
384 VarStoreHeader->Format == 0xff &&
385 VarStoreHeader->State == 0xff
386 ) {
387
388 return EfiRaw;
389 } else {
390 return EfiInvalid;
391 }
392 }
393
394
395 /**
396
397 This code gets the size of name of variable.
398
399 @param Variable Pointer to the Variable Header.
400
401 @return UINTN Size of variable in bytes.
402
403 **/
404 UINTN
405 NameSizeOfVariable (
406 IN VARIABLE_HEADER *Variable
407 )
408 {
409 if (Variable->State == (UINT8) (-1) ||
410 Variable->DataSize == (UINT32) (-1) ||
411 Variable->NameSize == (UINT32) (-1) ||
412 Variable->Attributes == (UINT32) (-1)) {
413 return 0;
414 }
415 return (UINTN) Variable->NameSize;
416 }
417
418 /**
419
420 This code gets the size of variable data.
421
422 @param Variable Pointer to the Variable Header.
423
424 @return Size of variable in bytes.
425
426 **/
427 UINTN
428 DataSizeOfVariable (
429 IN VARIABLE_HEADER *Variable
430 )
431 {
432 if (Variable->State == (UINT8) (-1) ||
433 Variable->DataSize == (UINT32) (-1) ||
434 Variable->NameSize == (UINT32) (-1) ||
435 Variable->Attributes == (UINT32) (-1)) {
436 return 0;
437 }
438 return (UINTN) Variable->DataSize;
439 }
440
441 /**
442
443 This code gets the pointer to the variable name.
444
445 @param Variable Pointer to the Variable Header.
446
447 @return Pointer to Variable Name which is Unicode encoding.
448
449 **/
450 CHAR16 *
451 GetVariableNamePtr (
452 IN VARIABLE_HEADER *Variable
453 )
454 {
455
456 return (CHAR16 *) (Variable + 1);
457 }
458
459 /**
460
461 This code gets the pointer to the variable data.
462
463 @param Variable Pointer to the Variable Header.
464
465 @return Pointer to Variable Data.
466
467 **/
468 UINT8 *
469 GetVariableDataPtr (
470 IN VARIABLE_HEADER *Variable
471 )
472 {
473 UINTN Value;
474
475 //
476 // Be careful about pad size for alignment.
477 //
478 Value = (UINTN) GetVariableNamePtr (Variable);
479 Value += NameSizeOfVariable (Variable);
480 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
481
482 return (UINT8 *) Value;
483 }
484
485
486 /**
487
488 This code gets the pointer to the next variable header.
489
490 @param Variable Pointer to the Variable Header.
491
492 @return Pointer to next variable header.
493
494 **/
495 VARIABLE_HEADER *
496 GetNextVariablePtr (
497 IN VARIABLE_HEADER *Variable
498 )
499 {
500 UINTN Value;
501
502 if (!IsValidVariableHeader (Variable)) {
503 return NULL;
504 }
505
506 Value = (UINTN) GetVariableDataPtr (Variable);
507 Value += DataSizeOfVariable (Variable);
508 Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
509
510 //
511 // Be careful about pad size for alignment.
512 //
513 return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
514 }
515
516 /**
517
518 Gets the pointer to the first variable header in given variable store area.
519
520 @param VarStoreHeader Pointer to the Variable Store Header.
521
522 @return Pointer to the first variable header.
523
524 **/
525 VARIABLE_HEADER *
526 GetStartPointer (
527 IN VARIABLE_STORE_HEADER *VarStoreHeader
528 )
529 {
530 //
531 // The end of variable store.
532 //
533 return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
534 }
535
536 /**
537
538 Gets the pointer to the end of the variable storage area.
539
540 This function gets pointer to the end of the variable storage
541 area, according to the input variable store header.
542
543 @param VarStoreHeader Pointer to the Variable Store Header.
544
545 @return Pointer to the end of the variable storage area.
546
547 **/
548 VARIABLE_HEADER *
549 GetEndPointer (
550 IN VARIABLE_STORE_HEADER *VarStoreHeader
551 )
552 {
553 //
554 // The end of variable store
555 //
556 return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
557 }
558
559
560 /**
561
562 Variable store garbage collection and reclaim operation.
563
564 @param VariableBase Base address of variable store.
565 @param LastVariableOffset Offset of last variable.
566 @param IsVolatile The variable store is volatile or not;
567 if it is non-volatile, need FTW.
568 @param UpdatingPtrTrack Pointer to updating variable pointer track structure.
569 @param NewVariable Pointer to new variable.
570 @param NewVariableSize New variable size.
571
572 @return EFI_OUT_OF_RESOURCES
573 @return EFI_SUCCESS
574 @return Others
575
576 **/
577 EFI_STATUS
578 Reclaim (
579 IN EFI_PHYSICAL_ADDRESS VariableBase,
580 OUT UINTN *LastVariableOffset,
581 IN BOOLEAN IsVolatile,
582 IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
583 IN VARIABLE_HEADER *NewVariable,
584 IN UINTN NewVariableSize
585 )
586 {
587 VARIABLE_HEADER *Variable;
588 VARIABLE_HEADER *AddedVariable;
589 VARIABLE_HEADER *NextVariable;
590 VARIABLE_HEADER *NextAddedVariable;
591 VARIABLE_STORE_HEADER *VariableStoreHeader;
592 UINT8 *ValidBuffer;
593 UINTN MaximumBufferSize;
594 UINTN VariableSize;
595 UINTN NameSize;
596 UINT8 *CurrPtr;
597 VOID *Point0;
598 VOID *Point1;
599 BOOLEAN FoundAdded;
600 EFI_STATUS Status;
601 UINTN CommonVariableTotalSize;
602 UINTN HwErrVariableTotalSize;
603 VARIABLE_HEADER *UpdatingVariable;
604 VARIABLE_HEADER *UpdatingInDeletedTransition;
605
606 UpdatingVariable = NULL;
607 UpdatingInDeletedTransition = NULL;
608 if (UpdatingPtrTrack != NULL) {
609 UpdatingVariable = UpdatingPtrTrack->CurrPtr;
610 UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr;
611 }
612
613 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
614
615 CommonVariableTotalSize = 0;
616 HwErrVariableTotalSize = 0;
617
618 if (IsVolatile) {
619 //
620 // Start Pointers for the variable.
621 //
622 Variable = GetStartPointer (VariableStoreHeader);
623 MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
624
625 while (IsValidVariableHeader (Variable)) {
626 NextVariable = GetNextVariablePtr (Variable);
627 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
628 Variable != UpdatingVariable &&
629 Variable != UpdatingInDeletedTransition
630 ) {
631 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
632 MaximumBufferSize += VariableSize;
633 }
634
635 Variable = NextVariable;
636 }
637
638 if (NewVariable != NULL) {
639 //
640 // Add the new variable size.
641 //
642 MaximumBufferSize += NewVariableSize;
643 }
644
645 //
646 // Reserve the 1 Bytes with Oxff to identify the
647 // end of the variable buffer.
648 //
649 MaximumBufferSize += 1;
650 ValidBuffer = AllocatePool (MaximumBufferSize);
651 if (ValidBuffer == NULL) {
652 return EFI_OUT_OF_RESOURCES;
653 }
654 } else {
655 //
656 // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache
657 // as the buffer to reduce SMRAM consumption for SMM variable driver.
658 //
659 MaximumBufferSize = mNvVariableCache->Size;
660 ValidBuffer = (UINT8 *) mNvVariableCache;
661 }
662
663 SetMem (ValidBuffer, MaximumBufferSize, 0xff);
664
665 //
666 // Copy variable store header.
667 //
668 CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
669 CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
670
671 //
672 // Reinstall all ADDED variables as long as they are not identical to Updating Variable.
673 //
674 Variable = GetStartPointer (VariableStoreHeader);
675 while (IsValidVariableHeader (Variable)) {
676 NextVariable = GetNextVariablePtr (Variable);
677 if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) {
678 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
679 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
680 CurrPtr += VariableSize;
681 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
682 HwErrVariableTotalSize += VariableSize;
683 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
684 CommonVariableTotalSize += VariableSize;
685 }
686 }
687 Variable = NextVariable;
688 }
689
690 //
691 // Reinstall all in delete transition variables.
692 //
693 Variable = GetStartPointer (VariableStoreHeader);
694 while (IsValidVariableHeader (Variable)) {
695 NextVariable = GetNextVariablePtr (Variable);
696 if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
697
698 //
699 // Buffer has cached all ADDED variable.
700 // Per IN_DELETED variable, we have to guarantee that
701 // no ADDED one in previous buffer.
702 //
703
704 FoundAdded = FALSE;
705 AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
706 while (IsValidVariableHeader (AddedVariable)) {
707 NextAddedVariable = GetNextVariablePtr (AddedVariable);
708 NameSize = NameSizeOfVariable (AddedVariable);
709 if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) &&
710 NameSize == NameSizeOfVariable (Variable)
711 ) {
712 Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
713 Point1 = (VOID *) GetVariableNamePtr (Variable);
714 if (CompareMem (Point0, Point1, NameSize) == 0) {
715 FoundAdded = TRUE;
716 break;
717 }
718 }
719 AddedVariable = NextAddedVariable;
720 }
721 if (!FoundAdded) {
722 //
723 // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
724 //
725 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
726 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
727 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
728 CurrPtr += VariableSize;
729 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
730 HwErrVariableTotalSize += VariableSize;
731 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
732 CommonVariableTotalSize += VariableSize;
733 }
734 }
735 }
736
737 Variable = NextVariable;
738 }
739
740 //
741 // Install the new variable if it is not NULL.
742 //
743 if (NewVariable != NULL) {
744 if ((UINTN) (CurrPtr - ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) {
745 //
746 // No enough space to store the new variable.
747 //
748 Status = EFI_OUT_OF_RESOURCES;
749 goto Done;
750 }
751 if (!IsVolatile) {
752 if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
753 HwErrVariableTotalSize += NewVariableSize;
754 } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
755 CommonVariableTotalSize += NewVariableSize;
756 }
757 if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) ||
758 (CommonVariableTotalSize > VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize))) {
759 //
760 // No enough space to store the new variable by NV or NV+HR attribute.
761 //
762 Status = EFI_OUT_OF_RESOURCES;
763 goto Done;
764 }
765 }
766
767 CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize);
768 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
769 if (UpdatingVariable != NULL) {
770 UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
771 UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
772 }
773 CurrPtr += NewVariableSize;
774 }
775
776 if (IsVolatile) {
777 //
778 // If volatile variable store, just copy valid buffer.
779 //
780 SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
781 CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - ValidBuffer));
782 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
783 Status = EFI_SUCCESS;
784 } else {
785 //
786 // If non-volatile variable store, perform FTW here.
787 //
788 Status = FtwVariableSpace (
789 VariableBase,
790 (VARIABLE_STORE_HEADER *) ValidBuffer
791 );
792 if (!EFI_ERROR (Status)) {
793 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
794 mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
795 mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
796 } else {
797 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
798 while (IsValidVariableHeader (NextVariable)) {
799 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
800 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
801 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
802 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
803 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
804 }
805
806 NextVariable = GetNextVariablePtr (NextVariable);
807 }
808 *LastVariableOffset = (UINTN) NextVariable - (UINTN) VariableBase;
809 }
810 }
811
812 Done:
813 if (IsVolatile) {
814 FreePool (ValidBuffer);
815 } else {
816 //
817 // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back.
818 //
819 CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
820 }
821
822 return Status;
823 }
824
825 /**
826 Find the variable in the specified variable store.
827
828 @param VariableName Name of the variable to be found
829 @param VendorGuid Vendor GUID to be found.
830 @param IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
831 check at runtime when searching variable.
832 @param PtrTrack Variable Track Pointer structure that contains Variable Information.
833
834 @retval EFI_SUCCESS Variable found successfully
835 @retval EFI_NOT_FOUND Variable not found
836 **/
837 EFI_STATUS
838 FindVariableEx (
839 IN CHAR16 *VariableName,
840 IN EFI_GUID *VendorGuid,
841 IN BOOLEAN IgnoreRtCheck,
842 IN OUT VARIABLE_POINTER_TRACK *PtrTrack
843 )
844 {
845 VARIABLE_HEADER *InDeletedVariable;
846 VOID *Point;
847
848 PtrTrack->InDeletedTransitionPtr = NULL;
849
850 //
851 // Find the variable by walk through HOB, volatile and non-volatile variable store.
852 //
853 InDeletedVariable = NULL;
854
855 for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
856 ; (PtrTrack->CurrPtr < PtrTrack->EndPtr) && IsValidVariableHeader (PtrTrack->CurrPtr)
857 ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
858 ) {
859 if (PtrTrack->CurrPtr->State == VAR_ADDED ||
860 PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
861 ) {
862 if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
863 if (VariableName[0] == 0) {
864 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
865 InDeletedVariable = PtrTrack->CurrPtr;
866 } else {
867 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
868 return EFI_SUCCESS;
869 }
870 } else {
871 if (CompareGuid (VendorGuid, &PtrTrack->CurrPtr->VendorGuid)) {
872 Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
873
874 ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
875 if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
876 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
877 InDeletedVariable = PtrTrack->CurrPtr;
878 } else {
879 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
880 return EFI_SUCCESS;
881 }
882 }
883 }
884 }
885 }
886 }
887 }
888
889 PtrTrack->CurrPtr = InDeletedVariable;
890 return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
891 }
892
893
894 /**
895 Finds variable in storage blocks of volatile and non-volatile storage areas.
896
897 This code finds variable in storage blocks of volatile and non-volatile storage areas.
898 If VariableName is an empty string, then we just return the first
899 qualified variable without comparing VariableName and VendorGuid.
900 If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
901 at runtime when searching existing variable, only VariableName and VendorGuid are compared.
902 Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
903
904 @param VariableName Name of the variable to be found.
905 @param VendorGuid Vendor GUID to be found.
906 @param PtrTrack VARIABLE_POINTER_TRACK structure for output,
907 including the range searched and the target position.
908 @param Global Pointer to VARIABLE_GLOBAL structure, including
909 base of volatile variable storage area, base of
910 NV variable storage area, and a lock.
911 @param IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
912 check at runtime when searching variable.
913
914 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
915 VendorGuid is NULL.
916 @retval EFI_SUCCESS Variable successfully found.
917 @retval EFI_NOT_FOUND Variable not found
918
919 **/
920 EFI_STATUS
921 FindVariable (
922 IN CHAR16 *VariableName,
923 IN EFI_GUID *VendorGuid,
924 OUT VARIABLE_POINTER_TRACK *PtrTrack,
925 IN VARIABLE_GLOBAL *Global,
926 IN BOOLEAN IgnoreRtCheck
927 )
928 {
929 EFI_STATUS Status;
930 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
931 VARIABLE_STORE_TYPE Type;
932
933 if (VariableName[0] != 0 && VendorGuid == NULL) {
934 return EFI_INVALID_PARAMETER;
935 }
936
937 //
938 // 0: Volatile, 1: HOB, 2: Non-Volatile.
939 // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
940 // make use of this mapping to implement search algorithm.
941 //
942 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
943 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
944 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
945
946 //
947 // Find the variable by walk through HOB, volatile and non-volatile variable store.
948 //
949 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
950 if (VariableStoreHeader[Type] == NULL) {
951 continue;
952 }
953
954 PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
955 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
956 PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
957
958 Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
959 if (!EFI_ERROR (Status)) {
960 return Status;
961 }
962 }
963 return EFI_NOT_FOUND;
964 }
965
966 /**
967 Get index from supported language codes according to language string.
968
969 This code is used to get corresponding index in supported language codes. It can handle
970 RFC4646 and ISO639 language tags.
971 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
972 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
973
974 For example:
975 SupportedLang = "engfraengfra"
976 Lang = "eng"
977 Iso639Language = TRUE
978 The return value is "0".
979 Another example:
980 SupportedLang = "en;fr;en-US;fr-FR"
981 Lang = "fr-FR"
982 Iso639Language = FALSE
983 The return value is "3".
984
985 @param SupportedLang Platform supported language codes.
986 @param Lang Configured language.
987 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
988
989 @retval The index of language in the language codes.
990
991 **/
992 UINTN
993 GetIndexFromSupportedLangCodes(
994 IN CHAR8 *SupportedLang,
995 IN CHAR8 *Lang,
996 IN BOOLEAN Iso639Language
997 )
998 {
999 UINTN Index;
1000 UINTN CompareLength;
1001 UINTN LanguageLength;
1002
1003 if (Iso639Language) {
1004 CompareLength = ISO_639_2_ENTRY_SIZE;
1005 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
1006 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
1007 //
1008 // Successfully find the index of Lang string in SupportedLang string.
1009 //
1010 Index = Index / CompareLength;
1011 return Index;
1012 }
1013 }
1014 ASSERT (FALSE);
1015 return 0;
1016 } else {
1017 //
1018 // Compare RFC4646 language code
1019 //
1020 Index = 0;
1021 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
1022
1023 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
1024 //
1025 // Skip ';' characters in SupportedLang
1026 //
1027 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
1028 //
1029 // Determine the length of the next language code in SupportedLang
1030 //
1031 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
1032
1033 if ((CompareLength == LanguageLength) &&
1034 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
1035 //
1036 // Successfully find the index of Lang string in SupportedLang string.
1037 //
1038 return Index;
1039 }
1040 }
1041 ASSERT (FALSE);
1042 return 0;
1043 }
1044 }
1045
1046 /**
1047 Get language string from supported language codes according to index.
1048
1049 This code is used to get corresponding language strings in supported language codes. It can handle
1050 RFC4646 and ISO639 language tags.
1051 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
1052 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
1053
1054 For example:
1055 SupportedLang = "engfraengfra"
1056 Index = "1"
1057 Iso639Language = TRUE
1058 The return value is "fra".
1059 Another example:
1060 SupportedLang = "en;fr;en-US;fr-FR"
1061 Index = "1"
1062 Iso639Language = FALSE
1063 The return value is "fr".
1064
1065 @param SupportedLang Platform supported language codes.
1066 @param Index The index in supported language codes.
1067 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1068
1069 @retval The language string in the language codes.
1070
1071 **/
1072 CHAR8 *
1073 GetLangFromSupportedLangCodes (
1074 IN CHAR8 *SupportedLang,
1075 IN UINTN Index,
1076 IN BOOLEAN Iso639Language
1077 )
1078 {
1079 UINTN SubIndex;
1080 UINTN CompareLength;
1081 CHAR8 *Supported;
1082
1083 SubIndex = 0;
1084 Supported = SupportedLang;
1085 if (Iso639Language) {
1086 //
1087 // According to the index of Lang string in SupportedLang string to get the language.
1088 // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
1089 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1090 //
1091 CompareLength = ISO_639_2_ENTRY_SIZE;
1092 mVariableModuleGlobal->Lang[CompareLength] = '\0';
1093 return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
1094
1095 } else {
1096 while (TRUE) {
1097 //
1098 // Take semicolon as delimitation, sequentially traverse supported language codes.
1099 //
1100 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
1101 Supported++;
1102 }
1103 if ((*Supported == '\0') && (SubIndex != Index)) {
1104 //
1105 // Have completed the traverse, but not find corrsponding string.
1106 // This case is not allowed to happen.
1107 //
1108 ASSERT(FALSE);
1109 return NULL;
1110 }
1111 if (SubIndex == Index) {
1112 //
1113 // According to the index of Lang string in SupportedLang string to get the language.
1114 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
1115 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1116 //
1117 mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
1118 return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
1119 }
1120 SubIndex++;
1121
1122 //
1123 // Skip ';' characters in Supported
1124 //
1125 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1126 }
1127 }
1128 }
1129
1130 /**
1131 Returns a pointer to an allocated buffer that contains the best matching language
1132 from a set of supported languages.
1133
1134 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1135 code types may not be mixed in a single call to this function. This function
1136 supports a variable argument list that allows the caller to pass in a prioritized
1137 list of language codes to test against all the language codes in SupportedLanguages.
1138
1139 If SupportedLanguages is NULL, then ASSERT().
1140
1141 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1142 contains a set of language codes in the format
1143 specified by Iso639Language.
1144 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1145 in ISO 639-2 format. If FALSE, then all language
1146 codes are assumed to be in RFC 4646 language format
1147 @param[in] ... A variable argument list that contains pointers to
1148 Null-terminated ASCII strings that contain one or more
1149 language codes in the format specified by Iso639Language.
1150 The first language code from each of these language
1151 code lists is used to determine if it is an exact or
1152 close match to any of the language codes in
1153 SupportedLanguages. Close matches only apply to RFC 4646
1154 language codes, and the matching algorithm from RFC 4647
1155 is used to determine if a close match is present. If
1156 an exact or close match is found, then the matching
1157 language code from SupportedLanguages is returned. If
1158 no matches are found, then the next variable argument
1159 parameter is evaluated. The variable argument list
1160 is terminated by a NULL.
1161
1162 @retval NULL The best matching language could not be found in SupportedLanguages.
1163 @retval NULL There are not enough resources available to return the best matching
1164 language.
1165 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1166 language in SupportedLanguages.
1167
1168 **/
1169 CHAR8 *
1170 EFIAPI
1171 VariableGetBestLanguage (
1172 IN CONST CHAR8 *SupportedLanguages,
1173 IN BOOLEAN Iso639Language,
1174 ...
1175 )
1176 {
1177 VA_LIST Args;
1178 CHAR8 *Language;
1179 UINTN CompareLength;
1180 UINTN LanguageLength;
1181 CONST CHAR8 *Supported;
1182 CHAR8 *Buffer;
1183
1184 ASSERT (SupportedLanguages != NULL);
1185
1186 VA_START (Args, Iso639Language);
1187 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1188 //
1189 // Default to ISO 639-2 mode
1190 //
1191 CompareLength = 3;
1192 LanguageLength = MIN (3, AsciiStrLen (Language));
1193
1194 //
1195 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1196 //
1197 if (!Iso639Language) {
1198 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1199 }
1200
1201 //
1202 // Trim back the length of Language used until it is empty
1203 //
1204 while (LanguageLength > 0) {
1205 //
1206 // Loop through all language codes in SupportedLanguages
1207 //
1208 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1209 //
1210 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1211 //
1212 if (!Iso639Language) {
1213 //
1214 // Skip ';' characters in Supported
1215 //
1216 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1217 //
1218 // Determine the length of the next language code in Supported
1219 //
1220 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1221 //
1222 // If Language is longer than the Supported, then skip to the next language
1223 //
1224 if (LanguageLength > CompareLength) {
1225 continue;
1226 }
1227 }
1228 //
1229 // See if the first LanguageLength characters in Supported match Language
1230 //
1231 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1232 VA_END (Args);
1233
1234 Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
1235 Buffer[CompareLength] = '\0';
1236 return CopyMem (Buffer, Supported, CompareLength);
1237 }
1238 }
1239
1240 if (Iso639Language) {
1241 //
1242 // If ISO 639 mode, then each language can only be tested once
1243 //
1244 LanguageLength = 0;
1245 } else {
1246 //
1247 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1248 //
1249 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1250 }
1251 }
1252 }
1253 VA_END (Args);
1254
1255 //
1256 // No matches were found
1257 //
1258 return NULL;
1259 }
1260
1261 /**
1262 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
1263
1264 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
1265
1266 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
1267 and are read-only. Therefore, in variable driver, only store the original value for other use.
1268
1269 @param[in] VariableName Name of variable.
1270
1271 @param[in] Data Variable data.
1272
1273 @param[in] DataSize Size of data. 0 means delete.
1274
1275 @retval EFI_SUCCESS The update operation is successful or ignored.
1276 @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime.
1277 @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation.
1278 @retval Others Other errors happened during the update operation.
1279
1280 **/
1281 EFI_STATUS
1282 AutoUpdateLangVariable (
1283 IN CHAR16 *VariableName,
1284 IN VOID *Data,
1285 IN UINTN DataSize
1286 )
1287 {
1288 EFI_STATUS Status;
1289 CHAR8 *BestPlatformLang;
1290 CHAR8 *BestLang;
1291 UINTN Index;
1292 UINT32 Attributes;
1293 VARIABLE_POINTER_TRACK Variable;
1294 BOOLEAN SetLanguageCodes;
1295
1296 //
1297 // Don't do updates for delete operation
1298 //
1299 if (DataSize == 0) {
1300 return EFI_SUCCESS;
1301 }
1302
1303 SetLanguageCodes = FALSE;
1304
1305 if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) {
1306 //
1307 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
1308 //
1309 if (AtRuntime ()) {
1310 return EFI_WRITE_PROTECTED;
1311 }
1312
1313 SetLanguageCodes = TRUE;
1314
1315 //
1316 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
1317 // Therefore, in variable driver, only store the original value for other use.
1318 //
1319 if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
1320 FreePool (mVariableModuleGlobal->PlatformLangCodes);
1321 }
1322 mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1323 ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
1324
1325 //
1326 // PlatformLang holds a single language from PlatformLangCodes,
1327 // so the size of PlatformLangCodes is enough for the PlatformLang.
1328 //
1329 if (mVariableModuleGlobal->PlatformLang != NULL) {
1330 FreePool (mVariableModuleGlobal->PlatformLang);
1331 }
1332 mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
1333 ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
1334
1335 } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) {
1336 //
1337 // LangCodes is a volatile variable, so it can not be updated at runtime.
1338 //
1339 if (AtRuntime ()) {
1340 return EFI_WRITE_PROTECTED;
1341 }
1342
1343 SetLanguageCodes = TRUE;
1344
1345 //
1346 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
1347 // Therefore, in variable driver, only store the original value for other use.
1348 //
1349 if (mVariableModuleGlobal->LangCodes != NULL) {
1350 FreePool (mVariableModuleGlobal->LangCodes);
1351 }
1352 mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1353 ASSERT (mVariableModuleGlobal->LangCodes != NULL);
1354 }
1355
1356 if (SetLanguageCodes
1357 && (mVariableModuleGlobal->PlatformLangCodes != NULL)
1358 && (mVariableModuleGlobal->LangCodes != NULL)) {
1359 //
1360 // Update Lang if PlatformLang is already set
1361 // Update PlatformLang if Lang is already set
1362 //
1363 Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1364 if (!EFI_ERROR (Status)) {
1365 //
1366 // Update Lang
1367 //
1368 VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME;
1369 Data = GetVariableDataPtr (Variable.CurrPtr);
1370 DataSize = Variable.CurrPtr->DataSize;
1371 } else {
1372 Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1373 if (!EFI_ERROR (Status)) {
1374 //
1375 // Update PlatformLang
1376 //
1377 VariableName = EFI_LANG_VARIABLE_NAME;
1378 Data = GetVariableDataPtr (Variable.CurrPtr);
1379 DataSize = Variable.CurrPtr->DataSize;
1380 } else {
1381 //
1382 // Neither PlatformLang nor Lang is set, directly return
1383 //
1384 return EFI_SUCCESS;
1385 }
1386 }
1387 }
1388
1389 Status = EFI_SUCCESS;
1390
1391 //
1392 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
1393 //
1394 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
1395
1396 if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) {
1397 //
1398 // Update Lang when PlatformLangCodes/LangCodes were set.
1399 //
1400 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1401 //
1402 // When setting PlatformLang, firstly get most matched language string from supported language codes.
1403 //
1404 BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
1405 if (BestPlatformLang != NULL) {
1406 //
1407 // Get the corresponding index in language codes.
1408 //
1409 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
1410
1411 //
1412 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
1413 //
1414 BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
1415
1416 //
1417 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1418 //
1419 FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1420
1421 Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang,
1422 ISO_639_2_ENTRY_SIZE + 1, Attributes, &Variable);
1423
1424 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a: Status: %r\n", BestPlatformLang, BestLang, Status));
1425 }
1426 }
1427
1428 } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) {
1429 //
1430 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
1431 //
1432 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1433 //
1434 // When setting Lang, firstly get most matched language string from supported language codes.
1435 //
1436 BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
1437 if (BestLang != NULL) {
1438 //
1439 // Get the corresponding index in language codes.
1440 //
1441 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
1442
1443 //
1444 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
1445 //
1446 BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
1447
1448 //
1449 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
1450 //
1451 FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1452
1453 Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang,
1454 AsciiStrSize (BestPlatformLang), Attributes, &Variable);
1455
1456 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status));
1457 }
1458 }
1459 }
1460
1461 return Status;
1462 }
1463
1464 /**
1465 Update the variable region with Variable information. These are the same
1466 arguments as the EFI Variable services.
1467
1468 @param[in] VariableName Name of variable.
1469 @param[in] VendorGuid Guid of variable.
1470 @param[in] Data Variable data.
1471 @param[in] DataSize Size of data. 0 means delete.
1472 @param[in] Attributes Attribues of the variable.
1473 @param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
1474
1475 @retval EFI_SUCCESS The update operation is success.
1476 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
1477
1478 **/
1479 EFI_STATUS
1480 UpdateVariable (
1481 IN CHAR16 *VariableName,
1482 IN EFI_GUID *VendorGuid,
1483 IN VOID *Data,
1484 IN UINTN DataSize,
1485 IN UINT32 Attributes OPTIONAL,
1486 IN OUT VARIABLE_POINTER_TRACK *CacheVariable
1487 )
1488 {
1489 EFI_STATUS Status;
1490 VARIABLE_HEADER *NextVariable;
1491 UINTN ScratchSize;
1492 UINTN NonVolatileVarableStoreSize;
1493 UINTN VarNameOffset;
1494 UINTN VarDataOffset;
1495 UINTN VarNameSize;
1496 UINTN VarSize;
1497 BOOLEAN Volatile;
1498 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
1499 UINT8 State;
1500 VARIABLE_POINTER_TRACK *Variable;
1501 VARIABLE_POINTER_TRACK NvVariable;
1502 VARIABLE_STORE_HEADER *VariableStoreHeader;
1503 UINTN CacheOffset;
1504
1505 if ((mVariableModuleGlobal->FvbInstance == NULL) && ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0)) {
1506 //
1507 // The FVB protocol is not ready. Trying to update NV variable prior to the installation
1508 // of EFI_VARIABLE_WRITE_ARCH_PROTOCOL.
1509 //
1510 return EFI_NOT_AVAILABLE_YET;
1511 }
1512
1513 if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
1514 Variable = CacheVariable;
1515 } else {
1516 //
1517 // Update/Delete existing NV variable.
1518 // CacheVariable points to the variable in the memory copy of Flash area
1519 // Now let Variable points to the same variable in Flash area.
1520 //
1521 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
1522 Variable = &NvVariable;
1523 Variable->StartPtr = GetStartPointer (VariableStoreHeader);
1524 Variable->EndPtr = GetEndPointer (VariableStoreHeader);
1525 Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
1526 if (CacheVariable->InDeletedTransitionPtr != NULL) {
1527 Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
1528 } else {
1529 Variable->InDeletedTransitionPtr = NULL;
1530 }
1531 Variable->Volatile = FALSE;
1532 }
1533
1534 Fvb = mVariableModuleGlobal->FvbInstance;
1535
1536 if (Variable->CurrPtr != NULL) {
1537 //
1538 // Update/Delete existing variable.
1539 //
1540 if (AtRuntime ()) {
1541 //
1542 // If AtRuntime and the variable is Volatile and Runtime Access,
1543 // the volatile is ReadOnly, and SetVariable should be aborted and
1544 // return EFI_WRITE_PROTECTED.
1545 //
1546 if (Variable->Volatile) {
1547 Status = EFI_WRITE_PROTECTED;
1548 goto Done;
1549 }
1550 //
1551 // Only variable that have NV|RT attributes can be updated/deleted in Runtime.
1552 //
1553 if (((Variable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0)) {
1554 Status = EFI_INVALID_PARAMETER;
1555 goto Done;
1556 }
1557 }
1558
1559 //
1560 // Setting a data variable with no access, or zero DataSize attributes
1561 // causes it to be deleted.
1562 //
1563 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1564 if (Variable->InDeletedTransitionPtr != NULL) {
1565 //
1566 // Both ADDED and IN_DELETED_TRANSITION variable are present,
1567 // set IN_DELETED_TRANSITION one to DELETED state first.
1568 //
1569 State = Variable->InDeletedTransitionPtr->State;
1570 State &= VAR_DELETED;
1571 Status = UpdateVariableStore (
1572 &mVariableModuleGlobal->VariableGlobal,
1573 Variable->Volatile,
1574 FALSE,
1575 Fvb,
1576 (UINTN) &Variable->InDeletedTransitionPtr->State,
1577 sizeof (UINT8),
1578 &State
1579 );
1580 if (!EFI_ERROR (Status)) {
1581 if (!Variable->Volatile) {
1582 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
1583 CacheVariable->InDeletedTransitionPtr->State = State;
1584 }
1585 } else {
1586 goto Done;
1587 }
1588 }
1589
1590 State = Variable->CurrPtr->State;
1591 State &= VAR_DELETED;
1592
1593 Status = UpdateVariableStore (
1594 &mVariableModuleGlobal->VariableGlobal,
1595 Variable->Volatile,
1596 FALSE,
1597 Fvb,
1598 (UINTN) &Variable->CurrPtr->State,
1599 sizeof (UINT8),
1600 &State
1601 );
1602 if (!EFI_ERROR (Status)) {
1603 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
1604 if (!Variable->Volatile) {
1605 CacheVariable->CurrPtr->State = State;
1606 FlushHobVariableToFlash (VariableName, VendorGuid);
1607 }
1608 }
1609 goto Done;
1610 }
1611 //
1612 // If the variable is marked valid, and the same data has been passed in,
1613 // then return to the caller immediately.
1614 //
1615 if (DataSizeOfVariable (Variable->CurrPtr) == DataSize &&
1616 (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0)) {
1617
1618 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
1619 Status = EFI_SUCCESS;
1620 goto Done;
1621 } else if ((Variable->CurrPtr->State == VAR_ADDED) ||
1622 (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
1623
1624 //
1625 // Mark the old variable as in delete transition.
1626 //
1627 State = Variable->CurrPtr->State;
1628 State &= VAR_IN_DELETED_TRANSITION;
1629
1630 Status = UpdateVariableStore (
1631 &mVariableModuleGlobal->VariableGlobal,
1632 Variable->Volatile,
1633 FALSE,
1634 Fvb,
1635 (UINTN) &Variable->CurrPtr->State,
1636 sizeof (UINT8),
1637 &State
1638 );
1639 if (EFI_ERROR (Status)) {
1640 goto Done;
1641 }
1642 if (!Variable->Volatile) {
1643 CacheVariable->CurrPtr->State = State;
1644 }
1645 }
1646 } else {
1647 //
1648 // Not found existing variable. Create a new variable.
1649 //
1650
1651 //
1652 // Make sure we are trying to create a new variable.
1653 // Setting a data variable with zero DataSize or no access attributes means to delete it.
1654 //
1655 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
1656 Status = EFI_NOT_FOUND;
1657 goto Done;
1658 }
1659
1660 //
1661 // Only variable have NV|RT attribute can be created in Runtime.
1662 //
1663 if (AtRuntime () &&
1664 (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
1665 Status = EFI_INVALID_PARAMETER;
1666 goto Done;
1667 }
1668 }
1669
1670 //
1671 // Function part - create a new variable and copy the data.
1672 // Both update a variable and create a variable will come here.
1673
1674 //
1675 // Tricky part: Use scratch data area at the end of volatile variable store
1676 // as a temporary storage.
1677 //
1678 NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
1679 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
1680
1681 SetMem (NextVariable, ScratchSize, 0xff);
1682
1683 NextVariable->StartId = VARIABLE_DATA;
1684 NextVariable->Attributes = Attributes;
1685 //
1686 // NextVariable->State = VAR_ADDED;
1687 //
1688 NextVariable->Reserved = 0;
1689 VarNameOffset = sizeof (VARIABLE_HEADER);
1690 VarNameSize = StrSize (VariableName);
1691 CopyMem (
1692 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
1693 VariableName,
1694 VarNameSize
1695 );
1696 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
1697 CopyMem (
1698 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
1699 Data,
1700 DataSize
1701 );
1702 CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
1703 //
1704 // There will be pad bytes after Data, the NextVariable->NameSize and
1705 // NextVariable->DataSize should not include pad size so that variable
1706 // service can get actual size in GetVariable.
1707 //
1708 NextVariable->NameSize = (UINT32)VarNameSize;
1709 NextVariable->DataSize = (UINT32)DataSize;
1710
1711 //
1712 // The actual size of the variable that stores in storage should
1713 // include pad size.
1714 //
1715 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
1716 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
1717 //
1718 // Create a nonvolatile variable.
1719 //
1720 Volatile = FALSE;
1721 NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size;
1722 if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
1723 && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
1724 || (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0)
1725 && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) {
1726 if (AtRuntime ()) {
1727 Status = EFI_OUT_OF_RESOURCES;
1728 goto Done;
1729 }
1730 //
1731 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
1732 //
1733 Status = Reclaim (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
1734 &mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, Variable, NextVariable, HEADER_ALIGN (VarSize));
1735 if (!EFI_ERROR (Status)) {
1736 //
1737 // The new variable has been integrated successfully during reclaiming.
1738 //
1739 if (Variable->CurrPtr != NULL) {
1740 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
1741 CacheVariable->InDeletedTransitionPtr = NULL;
1742 }
1743 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE);
1744 FlushHobVariableToFlash (VariableName, VendorGuid);
1745 }
1746 goto Done;
1747 }
1748 //
1749 // Four steps
1750 // 1. Write variable header
1751 // 2. Set variable state to header valid
1752 // 3. Write variable data
1753 // 4. Set variable state to valid
1754 //
1755 //
1756 // Step 1:
1757 //
1758 CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
1759 Status = UpdateVariableStore (
1760 &mVariableModuleGlobal->VariableGlobal,
1761 FALSE,
1762 TRUE,
1763 Fvb,
1764 mVariableModuleGlobal->NonVolatileLastVariableOffset,
1765 sizeof (VARIABLE_HEADER),
1766 (UINT8 *) NextVariable
1767 );
1768
1769 if (EFI_ERROR (Status)) {
1770 goto Done;
1771 }
1772
1773 //
1774 // Step 2:
1775 //
1776 NextVariable->State = VAR_HEADER_VALID_ONLY;
1777 Status = UpdateVariableStore (
1778 &mVariableModuleGlobal->VariableGlobal,
1779 FALSE,
1780 TRUE,
1781 Fvb,
1782 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
1783 sizeof (UINT8),
1784 &NextVariable->State
1785 );
1786
1787 if (EFI_ERROR (Status)) {
1788 goto Done;
1789 }
1790 //
1791 // Step 3:
1792 //
1793 Status = UpdateVariableStore (
1794 &mVariableModuleGlobal->VariableGlobal,
1795 FALSE,
1796 TRUE,
1797 Fvb,
1798 mVariableModuleGlobal->NonVolatileLastVariableOffset + sizeof (VARIABLE_HEADER),
1799 (UINT32) VarSize - sizeof (VARIABLE_HEADER),
1800 (UINT8 *) NextVariable + sizeof (VARIABLE_HEADER)
1801 );
1802
1803 if (EFI_ERROR (Status)) {
1804 goto Done;
1805 }
1806 //
1807 // Step 4:
1808 //
1809 NextVariable->State = VAR_ADDED;
1810 Status = UpdateVariableStore (
1811 &mVariableModuleGlobal->VariableGlobal,
1812 FALSE,
1813 TRUE,
1814 Fvb,
1815 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
1816 sizeof (UINT8),
1817 &NextVariable->State
1818 );
1819
1820 if (EFI_ERROR (Status)) {
1821 goto Done;
1822 }
1823
1824 mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
1825
1826 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
1827 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
1828 } else {
1829 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
1830 }
1831 //
1832 // update the memory copy of Flash region.
1833 //
1834 CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
1835 } else {
1836 //
1837 // Create a volatile variable.
1838 //
1839 Volatile = TRUE;
1840
1841 if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
1842 ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
1843 //
1844 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
1845 //
1846 Status = Reclaim (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
1847 &mVariableModuleGlobal->VolatileLastVariableOffset, TRUE, Variable, NextVariable, HEADER_ALIGN (VarSize));
1848 if (!EFI_ERROR (Status)) {
1849 //
1850 // The new variable has been integrated successfully during reclaiming.
1851 //
1852 if (Variable->CurrPtr != NULL) {
1853 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
1854 CacheVariable->InDeletedTransitionPtr = NULL;
1855 }
1856 UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE);
1857 }
1858 goto Done;
1859 }
1860
1861 NextVariable->State = VAR_ADDED;
1862 Status = UpdateVariableStore (
1863 &mVariableModuleGlobal->VariableGlobal,
1864 TRUE,
1865 TRUE,
1866 Fvb,
1867 mVariableModuleGlobal->VolatileLastVariableOffset,
1868 (UINT32) VarSize,
1869 (UINT8 *) NextVariable
1870 );
1871
1872 if (EFI_ERROR (Status)) {
1873 goto Done;
1874 }
1875
1876 mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
1877 }
1878
1879 //
1880 // Mark the old variable as deleted.
1881 //
1882 if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
1883 if (Variable->InDeletedTransitionPtr != NULL) {
1884 //
1885 // Both ADDED and IN_DELETED_TRANSITION old variable are present,
1886 // set IN_DELETED_TRANSITION one to DELETED state first.
1887 //
1888 State = Variable->InDeletedTransitionPtr->State;
1889 State &= VAR_DELETED;
1890 Status = UpdateVariableStore (
1891 &mVariableModuleGlobal->VariableGlobal,
1892 Variable->Volatile,
1893 FALSE,
1894 Fvb,
1895 (UINTN) &Variable->InDeletedTransitionPtr->State,
1896 sizeof (UINT8),
1897 &State
1898 );
1899 if (!EFI_ERROR (Status)) {
1900 if (!Variable->Volatile) {
1901 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
1902 CacheVariable->InDeletedTransitionPtr->State = State;
1903 }
1904 } else {
1905 goto Done;
1906 }
1907 }
1908
1909 State = Variable->CurrPtr->State;
1910 State &= VAR_DELETED;
1911
1912 Status = UpdateVariableStore (
1913 &mVariableModuleGlobal->VariableGlobal,
1914 Variable->Volatile,
1915 FALSE,
1916 Fvb,
1917 (UINTN) &Variable->CurrPtr->State,
1918 sizeof (UINT8),
1919 &State
1920 );
1921 if (!EFI_ERROR (Status) && !Variable->Volatile) {
1922 CacheVariable->CurrPtr->State = State;
1923 }
1924 }
1925
1926 if (!EFI_ERROR (Status)) {
1927 UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
1928 if (!Volatile) {
1929 FlushHobVariableToFlash (VariableName, VendorGuid);
1930 }
1931 }
1932
1933 Done:
1934 return Status;
1935 }
1936
1937 /**
1938 Check if a Unicode character is a hexadecimal character.
1939
1940 This function checks if a Unicode character is a
1941 hexadecimal character. The valid hexadecimal character is
1942 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
1943
1944
1945 @param Char The character to check against.
1946
1947 @retval TRUE If the Char is a hexadecmial character.
1948 @retval FALSE If the Char is not a hexadecmial character.
1949
1950 **/
1951 BOOLEAN
1952 EFIAPI
1953 IsHexaDecimalDigitCharacter (
1954 IN CHAR16 Char
1955 )
1956 {
1957 return (BOOLEAN) ((Char >= L'0' && Char <= L'9') || (Char >= L'A' && Char <= L'F') || (Char >= L'a' && Char <= L'f'));
1958 }
1959
1960 /**
1961
1962 This code checks if variable is hardware error record variable or not.
1963
1964 According to UEFI spec, hardware error record variable should use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid
1965 and have the L"HwErrRec####" name convention, #### is a printed hex value and no 0x or h is included in the hex value.
1966
1967 @param VariableName Pointer to variable name.
1968 @param VendorGuid Variable Vendor Guid.
1969
1970 @retval TRUE Variable is hardware error record variable.
1971 @retval FALSE Variable is not hardware error record variable.
1972
1973 **/
1974 BOOLEAN
1975 EFIAPI
1976 IsHwErrRecVariable (
1977 IN CHAR16 *VariableName,
1978 IN EFI_GUID *VendorGuid
1979 )
1980 {
1981 if (!CompareGuid (VendorGuid, &gEfiHardwareErrorVariableGuid) ||
1982 (StrLen (VariableName) != StrLen (L"HwErrRec####")) ||
1983 (StrnCmp(VariableName, L"HwErrRec", StrLen (L"HwErrRec")) != 0) ||
1984 !IsHexaDecimalDigitCharacter (VariableName[0x8]) ||
1985 !IsHexaDecimalDigitCharacter (VariableName[0x9]) ||
1986 !IsHexaDecimalDigitCharacter (VariableName[0xA]) ||
1987 !IsHexaDecimalDigitCharacter (VariableName[0xB])) {
1988 return FALSE;
1989 }
1990
1991 return TRUE;
1992 }
1993
1994 /**
1995 This code checks if variable guid is global variable guid first.
1996 If yes, further check if variable name is in mGlobalVariableList or mGlobalVariableList2 and attributes matched.
1997
1998 @param[in] VariableName Pointer to variable name.
1999 @param[in] VendorGuid Variable Vendor Guid.
2000 @param[in] Attributes Attributes of the variable.
2001
2002 @retval EFI_SUCCESS Variable is not global variable, or Variable is global variable, variable name is in the lists and attributes matched.
2003 @retval EFI_INVALID_PARAMETER Variable is global variable, but variable name is not in the lists or attributes unmatched.
2004
2005 **/
2006 EFI_STATUS
2007 EFIAPI
2008 CheckEfiGlobalVariable (
2009 IN CHAR16 *VariableName,
2010 IN EFI_GUID *VendorGuid,
2011 IN UINT32 Attributes
2012 )
2013 {
2014 UINTN Index;
2015 UINTN NameLength;
2016
2017 if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)){
2018 //
2019 // Try list 1, exactly match.
2020 //
2021 for (Index = 0; Index < sizeof (mGlobalVariableList)/sizeof (mGlobalVariableList[0]); Index++) {
2022 if ((StrCmp (mGlobalVariableList[Index].Name, VariableName) == 0) &&
2023 (Attributes == 0 || Attributes == mGlobalVariableList[Index].Attributes)) {
2024 return EFI_SUCCESS;
2025 }
2026 }
2027
2028 //
2029 // Try list 2.
2030 //
2031 NameLength = StrLen (VariableName) - 4;
2032 for (Index = 0; Index < sizeof (mGlobalVariableList2)/sizeof (mGlobalVariableList2[0]); Index++) {
2033 if ((StrLen (VariableName) == StrLen (mGlobalVariableList2[Index].Name)) &&
2034 (StrnCmp (mGlobalVariableList2[Index].Name, VariableName, NameLength) == 0) &&
2035 IsHexaDecimalDigitCharacter (VariableName[NameLength]) &&
2036 IsHexaDecimalDigitCharacter (VariableName[NameLength + 1]) &&
2037 IsHexaDecimalDigitCharacter (VariableName[NameLength + 2]) &&
2038 IsHexaDecimalDigitCharacter (VariableName[NameLength + 3]) &&
2039 (Attributes == 0 || Attributes == mGlobalVariableList2[Index].Attributes)) {
2040 return EFI_SUCCESS;
2041 }
2042 }
2043
2044 DEBUG ((EFI_D_INFO, "[Variable]: set global variable with invalid variable name or attributes - %g:%s:%x\n", VendorGuid, VariableName, Attributes));
2045 return EFI_INVALID_PARAMETER;
2046 }
2047
2048 return EFI_SUCCESS;
2049 }
2050
2051 /**
2052 Mark a variable that will become read-only after leaving the DXE phase of execution.
2053
2054 @param[in] This The VARIABLE_LOCK_PROTOCOL instance.
2055 @param[in] VariableName A pointer to the variable name that will be made read-only subsequently.
2056 @param[in] VendorGuid A pointer to the vendor GUID that will be made read-only subsequently.
2057
2058 @retval EFI_SUCCESS The variable specified by the VariableName and the VendorGuid was marked
2059 as pending to be read-only.
2060 @retval EFI_INVALID_PARAMETER VariableName or VendorGuid is NULL.
2061 Or VariableName is an empty string.
2062 @retval EFI_ACCESS_DENIED EFI_END_OF_DXE_EVENT_GROUP_GUID or EFI_EVENT_GROUP_READY_TO_BOOT has
2063 already been signaled.
2064 @retval EFI_OUT_OF_RESOURCES There is not enough resource to hold the lock request.
2065 **/
2066 EFI_STATUS
2067 EFIAPI
2068 VariableLockRequestToLock (
2069 IN CONST EDKII_VARIABLE_LOCK_PROTOCOL *This,
2070 IN CHAR16 *VariableName,
2071 IN EFI_GUID *VendorGuid
2072 )
2073 {
2074 VARIABLE_ENTRY *Entry;
2075
2076 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
2077 return EFI_INVALID_PARAMETER;
2078 }
2079
2080 if (mEndOfDxe) {
2081 return EFI_ACCESS_DENIED;
2082 }
2083
2084 Entry = AllocateRuntimePool (sizeof (*Entry) + StrSize (VariableName));
2085 if (Entry == NULL) {
2086 return EFI_OUT_OF_RESOURCES;
2087 }
2088
2089 DEBUG ((EFI_D_INFO, "[Variable] Lock: %g:%s\n", VendorGuid, VariableName));
2090
2091 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2092
2093 Entry->Name = (CHAR16 *) (Entry + 1);
2094 StrCpy (Entry->Name, VariableName);
2095 CopyGuid (&Entry->Guid, VendorGuid);
2096 InsertTailList (&mLockedVariableList, &Entry->Link);
2097
2098 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2099
2100 return EFI_SUCCESS;
2101 }
2102
2103 /**
2104
2105 This code finds variable in storage blocks (Volatile or Non-Volatile).
2106
2107 @param VariableName Name of Variable to be found.
2108 @param VendorGuid Variable vendor GUID.
2109 @param Attributes Attribute value of the variable found.
2110 @param DataSize Size of Data found. If size is less than the
2111 data, this value contains the required size.
2112 @param Data Data pointer.
2113
2114 @return EFI_INVALID_PARAMETER Invalid parameter.
2115 @return EFI_SUCCESS Find the specified variable.
2116 @return EFI_NOT_FOUND Not found.
2117 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2118
2119 **/
2120 EFI_STATUS
2121 EFIAPI
2122 VariableServiceGetVariable (
2123 IN CHAR16 *VariableName,
2124 IN EFI_GUID *VendorGuid,
2125 OUT UINT32 *Attributes OPTIONAL,
2126 IN OUT UINTN *DataSize,
2127 OUT VOID *Data
2128 )
2129 {
2130 EFI_STATUS Status;
2131 VARIABLE_POINTER_TRACK Variable;
2132 UINTN VarDataSize;
2133
2134 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
2135 return EFI_INVALID_PARAMETER;
2136 }
2137
2138 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2139
2140 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2141 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2142 goto Done;
2143 }
2144
2145 //
2146 // Get data size
2147 //
2148 VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
2149 ASSERT (VarDataSize != 0);
2150
2151 if (*DataSize >= VarDataSize) {
2152 if (Data == NULL) {
2153 Status = EFI_INVALID_PARAMETER;
2154 goto Done;
2155 }
2156
2157 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
2158 if (Attributes != NULL) {
2159 *Attributes = Variable.CurrPtr->Attributes;
2160 }
2161
2162 *DataSize = VarDataSize;
2163 UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
2164
2165 Status = EFI_SUCCESS;
2166 goto Done;
2167 } else {
2168 *DataSize = VarDataSize;
2169 Status = EFI_BUFFER_TOO_SMALL;
2170 goto Done;
2171 }
2172
2173 Done:
2174 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2175 return Status;
2176 }
2177
2178
2179
2180 /**
2181
2182 This code Finds the Next available variable.
2183
2184 @param VariableNameSize Size of the variable name.
2185 @param VariableName Pointer to variable name.
2186 @param VendorGuid Variable Vendor Guid.
2187
2188 @return EFI_INVALID_PARAMETER Invalid parameter.
2189 @return EFI_SUCCESS Find the specified variable.
2190 @return EFI_NOT_FOUND Not found.
2191 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2192
2193 **/
2194 EFI_STATUS
2195 EFIAPI
2196 VariableServiceGetNextVariableName (
2197 IN OUT UINTN *VariableNameSize,
2198 IN OUT CHAR16 *VariableName,
2199 IN OUT EFI_GUID *VendorGuid
2200 )
2201 {
2202 VARIABLE_STORE_TYPE Type;
2203 VARIABLE_POINTER_TRACK Variable;
2204 VARIABLE_POINTER_TRACK VariableInHob;
2205 VARIABLE_POINTER_TRACK VariablePtrTrack;
2206 UINTN VarNameSize;
2207 EFI_STATUS Status;
2208 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
2209
2210 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
2211 return EFI_INVALID_PARAMETER;
2212 }
2213
2214 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2215
2216 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2217 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2218 goto Done;
2219 }
2220
2221 if (VariableName[0] != 0) {
2222 //
2223 // If variable name is not NULL, get next variable.
2224 //
2225 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2226 }
2227
2228 //
2229 // 0: Volatile, 1: HOB, 2: Non-Volatile.
2230 // The index and attributes mapping must be kept in this order as FindVariable
2231 // makes use of this mapping to implement search algorithm.
2232 //
2233 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
2234 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2235 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
2236
2237 while (TRUE) {
2238 //
2239 // Switch from Volatile to HOB, to Non-Volatile.
2240 //
2241 while ((Variable.CurrPtr >= Variable.EndPtr) ||
2242 (Variable.CurrPtr == NULL) ||
2243 !IsValidVariableHeader (Variable.CurrPtr)
2244 ) {
2245 //
2246 // Find current storage index
2247 //
2248 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
2249 if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
2250 break;
2251 }
2252 }
2253 ASSERT (Type < VariableStoreTypeMax);
2254 //
2255 // Switch to next storage
2256 //
2257 for (Type++; Type < VariableStoreTypeMax; Type++) {
2258 if (VariableStoreHeader[Type] != NULL) {
2259 break;
2260 }
2261 }
2262 //
2263 // Capture the case that
2264 // 1. current storage is the last one, or
2265 // 2. no further storage
2266 //
2267 if (Type == VariableStoreTypeMax) {
2268 Status = EFI_NOT_FOUND;
2269 goto Done;
2270 }
2271 Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
2272 Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
2273 Variable.CurrPtr = Variable.StartPtr;
2274 }
2275
2276 //
2277 // Variable is found
2278 //
2279 if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2280 if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
2281 if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2282 //
2283 // If it is a IN_DELETED_TRANSITION variable,
2284 // and there is also a same ADDED one at the same time,
2285 // don't return it.
2286 //
2287 VariablePtrTrack.StartPtr = Variable.StartPtr;
2288 VariablePtrTrack.EndPtr = Variable.EndPtr;
2289 Status = FindVariableEx (
2290 GetVariableNamePtr (Variable.CurrPtr),
2291 &Variable.CurrPtr->VendorGuid,
2292 FALSE,
2293 &VariablePtrTrack
2294 );
2295 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
2296 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2297 continue;
2298 }
2299 }
2300
2301 //
2302 // Don't return NV variable when HOB overrides it
2303 //
2304 if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
2305 (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
2306 ) {
2307 VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
2308 VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
2309 Status = FindVariableEx (
2310 GetVariableNamePtr (Variable.CurrPtr),
2311 &Variable.CurrPtr->VendorGuid,
2312 FALSE,
2313 &VariableInHob
2314 );
2315 if (!EFI_ERROR (Status)) {
2316 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2317 continue;
2318 }
2319 }
2320
2321 VarNameSize = NameSizeOfVariable (Variable.CurrPtr);
2322 ASSERT (VarNameSize != 0);
2323
2324 if (VarNameSize <= *VariableNameSize) {
2325 CopyMem (VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize);
2326 CopyMem (VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID));
2327 Status = EFI_SUCCESS;
2328 } else {
2329 Status = EFI_BUFFER_TOO_SMALL;
2330 }
2331
2332 *VariableNameSize = VarNameSize;
2333 goto Done;
2334 }
2335 }
2336
2337 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2338 }
2339
2340 Done:
2341 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2342 return Status;
2343 }
2344
2345 /**
2346
2347 This code sets variable in storage blocks (Volatile or Non-Volatile).
2348
2349 @param VariableName Name of Variable to be found.
2350 @param VendorGuid Variable vendor GUID.
2351 @param Attributes Attribute value of the variable found
2352 @param DataSize Size of Data found. If size is less than the
2353 data, this value contains the required size.
2354 @param Data Data pointer.
2355
2356 @return EFI_INVALID_PARAMETER Invalid parameter.
2357 @return EFI_SUCCESS Set successfully.
2358 @return EFI_OUT_OF_RESOURCES Resource not enough to set variable.
2359 @return EFI_NOT_FOUND Not found.
2360 @return EFI_WRITE_PROTECTED Variable is read-only.
2361
2362 **/
2363 EFI_STATUS
2364 EFIAPI
2365 VariableServiceSetVariable (
2366 IN CHAR16 *VariableName,
2367 IN EFI_GUID *VendorGuid,
2368 IN UINT32 Attributes,
2369 IN UINTN DataSize,
2370 IN VOID *Data
2371 )
2372 {
2373 VARIABLE_POINTER_TRACK Variable;
2374 EFI_STATUS Status;
2375 VARIABLE_HEADER *NextVariable;
2376 EFI_PHYSICAL_ADDRESS Point;
2377 LIST_ENTRY *Link;
2378 VARIABLE_ENTRY *Entry;
2379
2380 //
2381 // Check input parameters.
2382 //
2383 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
2384 return EFI_INVALID_PARAMETER;
2385 }
2386
2387 if (DataSize != 0 && Data == NULL) {
2388 return EFI_INVALID_PARAMETER;
2389 }
2390
2391 //
2392 // Not support authenticated or append variable write yet.
2393 //
2394 if ((Attributes & (EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS | EFI_VARIABLE_APPEND_WRITE)) != 0) {
2395 return EFI_INVALID_PARAMETER;
2396 }
2397
2398 //
2399 // Make sure if runtime bit is set, boot service bit is set also.
2400 //
2401 if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
2402 return EFI_INVALID_PARAMETER;
2403 }
2404
2405 if ((UINTN)(~0) - DataSize < StrSize(VariableName)){
2406 //
2407 // Prevent whole variable size overflow
2408 //
2409 return EFI_INVALID_PARAMETER;
2410 }
2411
2412 //
2413 // The size of the VariableName, including the Unicode Null in bytes plus
2414 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
2415 // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
2416 //
2417 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2418 if ( StrSize (VariableName) + DataSize > PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER)) {
2419 return EFI_INVALID_PARAMETER;
2420 }
2421 if (!IsHwErrRecVariable(VariableName, VendorGuid)) {
2422 return EFI_INVALID_PARAMETER;
2423 }
2424 } else {
2425 //
2426 // The size of the VariableName, including the Unicode Null in bytes plus
2427 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxVariableSize) bytes.
2428 //
2429 if (StrSize (VariableName) + DataSize > PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER)) {
2430 return EFI_INVALID_PARAMETER;
2431 }
2432 }
2433
2434 Status = CheckEfiGlobalVariable (VariableName, VendorGuid, Attributes);
2435 if (EFI_ERROR (Status)) {
2436 return Status;
2437 }
2438
2439 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2440
2441 //
2442 // Consider reentrant in MCA/INIT/NMI. It needs be reupdated.
2443 //
2444 if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) {
2445 Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
2446 //
2447 // Parse non-volatile variable data and get last variable offset.
2448 //
2449 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point);
2450 while ((NextVariable < GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point))
2451 && IsValidVariableHeader (NextVariable)) {
2452 NextVariable = GetNextVariablePtr (NextVariable);
2453 }
2454 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point;
2455 }
2456
2457 if (mEndOfDxe && mEnableLocking) {
2458 //
2459 // Treat the variables listed in the forbidden variable list as read-only after leaving DXE phase.
2460 //
2461 for ( Link = GetFirstNode (&mLockedVariableList)
2462 ; !IsNull (&mLockedVariableList, Link)
2463 ; Link = GetNextNode (&mLockedVariableList, Link)
2464 ) {
2465 Entry = BASE_CR (Link, VARIABLE_ENTRY, Link);
2466 if (CompareGuid (&Entry->Guid, VendorGuid) && (StrCmp (Entry->Name, VariableName) == 0)) {
2467 Status = EFI_WRITE_PROTECTED;
2468 DEBUG ((EFI_D_INFO, "[Variable]: Changing readonly variable after leaving DXE phase - %g:%s\n", VendorGuid, VariableName));
2469 goto Done;
2470 }
2471 }
2472 }
2473
2474 //
2475 // Check whether the input variable is already existed.
2476 //
2477 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE);
2478 if (!EFI_ERROR (Status)) {
2479 if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) {
2480 Status = EFI_WRITE_PROTECTED;
2481 goto Done;
2482 }
2483 if (Attributes != 0 && Attributes != Variable.CurrPtr->Attributes) {
2484 //
2485 // If a preexisting variable is rewritten with different attributes, SetVariable() shall not
2486 // modify the variable and shall return EFI_INVALID_PARAMETER. Two exceptions to this rule:
2487 // 1. No access attributes specified
2488 // 2. The only attribute differing is EFI_VARIABLE_APPEND_WRITE
2489 //
2490 Status = EFI_INVALID_PARAMETER;
2491 goto Done;
2492 }
2493 }
2494
2495 //
2496 // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang.
2497 //
2498 Status = AutoUpdateLangVariable (VariableName, Data, DataSize);
2499 if (EFI_ERROR (Status)) {
2500 //
2501 // The auto update operation failed, directly return to avoid inconsistency between PlatformLang and Lang.
2502 //
2503 goto Done;
2504 }
2505
2506 Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, &Variable);
2507
2508 Done:
2509 InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState);
2510 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2511
2512 return Status;
2513 }
2514
2515 /**
2516
2517 This code returns information about the EFI variables.
2518
2519 @param Attributes Attributes bitmask to specify the type of variables
2520 on which to return information.
2521 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
2522 for the EFI variables associated with the attributes specified.
2523 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
2524 for EFI variables associated with the attributes specified.
2525 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
2526 associated with the attributes specified.
2527
2528 @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
2529 @return EFI_SUCCESS Query successfully.
2530 @return EFI_UNSUPPORTED The attribute is not supported on this platform.
2531
2532 **/
2533 EFI_STATUS
2534 EFIAPI
2535 VariableServiceQueryVariableInfo (
2536 IN UINT32 Attributes,
2537 OUT UINT64 *MaximumVariableStorageSize,
2538 OUT UINT64 *RemainingVariableStorageSize,
2539 OUT UINT64 *MaximumVariableSize
2540 )
2541 {
2542 VARIABLE_HEADER *Variable;
2543 VARIABLE_HEADER *NextVariable;
2544 UINT64 VariableSize;
2545 VARIABLE_STORE_HEADER *VariableStoreHeader;
2546 UINT64 CommonVariableTotalSize;
2547 UINT64 HwErrVariableTotalSize;
2548
2549 CommonVariableTotalSize = 0;
2550 HwErrVariableTotalSize = 0;
2551
2552 if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
2553 return EFI_INVALID_PARAMETER;
2554 }
2555
2556 if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
2557 //
2558 // Make sure the Attributes combination is supported by the platform.
2559 //
2560 return EFI_UNSUPPORTED;
2561 } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
2562 //
2563 // Make sure if runtime bit is set, boot service bit is set also.
2564 //
2565 return EFI_INVALID_PARAMETER;
2566 } else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
2567 //
2568 // Make sure RT Attribute is set if we are in Runtime phase.
2569 //
2570 return EFI_INVALID_PARAMETER;
2571 } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2572 //
2573 // Make sure Hw Attribute is set with NV.
2574 //
2575 return EFI_INVALID_PARAMETER;
2576 } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
2577 //
2578 // Not support authentiated variable write yet.
2579 //
2580 return EFI_UNSUPPORTED;
2581 }
2582
2583 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2584
2585 if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
2586 //
2587 // Query is Volatile related.
2588 //
2589 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
2590 } else {
2591 //
2592 // Query is Non-Volatile related.
2593 //
2594 VariableStoreHeader = mNvVariableCache;
2595 }
2596
2597 //
2598 // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
2599 // with the storage size (excluding the storage header size).
2600 //
2601 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
2602
2603 //
2604 // Harware error record variable needs larger size.
2605 //
2606 if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
2607 *MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize);
2608 *MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
2609 } else {
2610 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2611 ASSERT (PcdGet32 (PcdHwErrStorageSize) < VariableStoreHeader->Size);
2612 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize);
2613 }
2614
2615 //
2616 // Let *MaximumVariableSize be PcdGet32 (PcdMaxVariableSize) with the exception of the variable header size.
2617 //
2618 *MaximumVariableSize = PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
2619 }
2620
2621 //
2622 // Point to the starting address of the variables.
2623 //
2624 Variable = GetStartPointer (VariableStoreHeader);
2625
2626 //
2627 // Now walk through the related variable store.
2628 //
2629 while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
2630 NextVariable = GetNextVariablePtr (Variable);
2631 VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
2632
2633 if (AtRuntime ()) {
2634 //
2635 // We don't take the state of the variables in mind
2636 // when calculating RemainingVariableStorageSize,
2637 // since the space occupied by variables not marked with
2638 // VAR_ADDED is not allowed to be reclaimed in Runtime.
2639 //
2640 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2641 HwErrVariableTotalSize += VariableSize;
2642 } else {
2643 CommonVariableTotalSize += VariableSize;
2644 }
2645 } else {
2646 //
2647 // Only care about Variables with State VAR_ADDED, because
2648 // the space not marked as VAR_ADDED is reclaimable now.
2649 //
2650 if (Variable->State == VAR_ADDED) {
2651 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2652 HwErrVariableTotalSize += VariableSize;
2653 } else {
2654 CommonVariableTotalSize += VariableSize;
2655 }
2656 }
2657 }
2658
2659 //
2660 // Go to the next one.
2661 //
2662 Variable = NextVariable;
2663 }
2664
2665 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
2666 *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
2667 }else {
2668 *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
2669 }
2670
2671 if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) {
2672 *MaximumVariableSize = 0;
2673 } else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) {
2674 *MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER);
2675 }
2676
2677 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2678 return EFI_SUCCESS;
2679 }
2680
2681
2682 /**
2683 This function reclaims variable storage if free size is below the threshold.
2684
2685 **/
2686 VOID
2687 ReclaimForOS(
2688 VOID
2689 )
2690 {
2691 EFI_STATUS Status;
2692 UINTN CommonVariableSpace;
2693 UINTN RemainingCommonVariableSpace;
2694 UINTN RemainingHwErrVariableSpace;
2695
2696 Status = EFI_SUCCESS;
2697
2698 CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space
2699
2700 RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize;
2701
2702 RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize;
2703 //
2704 // Check if the free area is blow a threshold.
2705 //
2706 if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize))
2707 || ((PcdGet32 (PcdHwErrStorageSize) != 0) &&
2708 (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){
2709 Status = Reclaim (
2710 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2711 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2712 FALSE,
2713 NULL,
2714 NULL,
2715 0
2716 );
2717 ASSERT_EFI_ERROR (Status);
2718 }
2719 }
2720
2721 /**
2722 Init non-volatile variable store.
2723
2724 @retval EFI_SUCCESS Function successfully executed.
2725 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
2726 @retval EFI_VOLUME_CORRUPTED Variable Store or Firmware Volume for Variable Store is corrupted.
2727
2728 **/
2729 EFI_STATUS
2730 InitNonVolatileVariableStore (
2731 VOID
2732 )
2733 {
2734 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
2735 VARIABLE_HEADER *NextVariable;
2736 EFI_PHYSICAL_ADDRESS VariableStoreBase;
2737 UINT64 VariableStoreLength;
2738 UINTN VariableSize;
2739 EFI_HOB_GUID_TYPE *GuidHob;
2740 EFI_PHYSICAL_ADDRESS NvStorageBase;
2741 UINT8 *NvStorageData;
2742 UINT32 NvStorageSize;
2743 FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *FtwLastWriteData;
2744 UINT32 BackUpOffset;
2745 UINT32 BackUpSize;
2746
2747 mVariableModuleGlobal->FvbInstance = NULL;
2748
2749 //
2750 // Note that in EdkII variable driver implementation, Hardware Error Record type variable
2751 // is stored with common variable in the same NV region. So the platform integrator should
2752 // ensure that the value of PcdHwErrStorageSize is less than or equal to the value of
2753 // PcdFlashNvStorageVariableSize.
2754 //
2755 ASSERT (PcdGet32 (PcdHwErrStorageSize) <= PcdGet32 (PcdFlashNvStorageVariableSize));
2756
2757 //
2758 // Allocate runtime memory used for a memory copy of the FLASH region.
2759 // Keep the memory and the FLASH in sync as updates occur.
2760 //
2761 NvStorageSize = PcdGet32 (PcdFlashNvStorageVariableSize);
2762 NvStorageData = AllocateRuntimeZeroPool (NvStorageSize);
2763 if (NvStorageData == NULL) {
2764 return EFI_OUT_OF_RESOURCES;
2765 }
2766
2767 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
2768 if (NvStorageBase == 0) {
2769 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
2770 }
2771 //
2772 // Copy NV storage data to the memory buffer.
2773 //
2774 CopyMem (NvStorageData, (UINT8 *) (UINTN) NvStorageBase, NvStorageSize);
2775
2776 //
2777 // Check the FTW last write data hob.
2778 //
2779 GuidHob = GetFirstGuidHob (&gEdkiiFaultTolerantWriteGuid);
2780 if (GuidHob != NULL) {
2781 FtwLastWriteData = (FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *) GET_GUID_HOB_DATA (GuidHob);
2782 if (FtwLastWriteData->TargetAddress == NvStorageBase) {
2783 DEBUG ((EFI_D_INFO, "Variable: NV storage is backed up in spare block: 0x%x\n", (UINTN) FtwLastWriteData->SpareAddress));
2784 //
2785 // Copy the backed up NV storage data to the memory buffer from spare block.
2786 //
2787 CopyMem (NvStorageData, (UINT8 *) (UINTN) (FtwLastWriteData->SpareAddress), NvStorageSize);
2788 } else if ((FtwLastWriteData->TargetAddress > NvStorageBase) &&
2789 (FtwLastWriteData->TargetAddress < (NvStorageBase + NvStorageSize))) {
2790 //
2791 // Flash NV storage from the offset is backed up in spare block.
2792 //
2793 BackUpOffset = (UINT32) (FtwLastWriteData->TargetAddress - NvStorageBase);
2794 BackUpSize = NvStorageSize - BackUpOffset;
2795 DEBUG ((EFI_D_INFO, "Variable: High partial NV storage from offset: %x is backed up in spare block: 0x%x\n", BackUpOffset, (UINTN) FtwLastWriteData->SpareAddress));
2796 //
2797 // Copy the partial backed up NV storage data to the memory buffer from spare block.
2798 //
2799 CopyMem (NvStorageData + BackUpOffset, (UINT8 *) (UINTN) FtwLastWriteData->SpareAddress, BackUpSize);
2800 }
2801 }
2802
2803 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) NvStorageData;
2804
2805 //
2806 // Check if the Firmware Volume is not corrupted
2807 //
2808 if ((FvHeader->Signature != EFI_FVH_SIGNATURE) || (!CompareGuid (&gEfiSystemNvDataFvGuid, &FvHeader->FileSystemGuid))) {
2809 FreePool (NvStorageData);
2810 DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n"));
2811 return EFI_VOLUME_CORRUPTED;
2812 }
2813
2814 VariableStoreBase = (EFI_PHYSICAL_ADDRESS) ((UINTN) FvHeader + FvHeader->HeaderLength);
2815 VariableStoreLength = (UINT64) (NvStorageSize - FvHeader->HeaderLength);
2816
2817 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
2818 mNvVariableCache = (VARIABLE_STORE_HEADER *) (UINTN) VariableStoreBase;
2819 if (GetVariableStoreStatus (mNvVariableCache) != EfiValid) {
2820 FreePool (NvStorageData);
2821 DEBUG((EFI_D_ERROR, "Variable Store header is corrupted\n"));
2822 return EFI_VOLUME_CORRUPTED;
2823 }
2824 ASSERT(mNvVariableCache->Size == VariableStoreLength);
2825
2826 //
2827 // The max variable or hardware error variable size should be < variable store size.
2828 //
2829 ASSERT(MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)) < VariableStoreLength);
2830
2831 //
2832 // Parse non-volatile variable data and get last variable offset.
2833 //
2834 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase);
2835 while (IsValidVariableHeader (NextVariable)) {
2836 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
2837 if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
2838 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
2839 } else {
2840 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
2841 }
2842
2843 NextVariable = GetNextVariablePtr (NextVariable);
2844 }
2845 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase;
2846
2847 return EFI_SUCCESS;
2848 }
2849
2850 /**
2851 Flush the HOB variable to flash.
2852
2853 @param[in] VariableName Name of variable has been updated or deleted.
2854 @param[in] VendorGuid Guid of variable has been updated or deleted.
2855
2856 **/
2857 VOID
2858 FlushHobVariableToFlash (
2859 IN CHAR16 *VariableName,
2860 IN EFI_GUID *VendorGuid
2861 )
2862 {
2863 EFI_STATUS Status;
2864 VARIABLE_STORE_HEADER *VariableStoreHeader;
2865 VARIABLE_HEADER *Variable;
2866 VOID *VariableData;
2867 BOOLEAN ErrorFlag;
2868
2869 ErrorFlag = FALSE;
2870
2871 //
2872 // Flush the HOB variable to flash.
2873 //
2874 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
2875 VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2876 //
2877 // Set HobVariableBase to 0, it can avoid SetVariable to call back.
2878 //
2879 mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0;
2880 for ( Variable = GetStartPointer (VariableStoreHeader)
2881 ; (Variable < GetEndPointer (VariableStoreHeader) && IsValidVariableHeader (Variable))
2882 ; Variable = GetNextVariablePtr (Variable)
2883 ) {
2884 if (Variable->State != VAR_ADDED) {
2885 //
2886 // The HOB variable has been set to DELETED state in local.
2887 //
2888 continue;
2889 }
2890 ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0);
2891 if (VendorGuid == NULL || VariableName == NULL ||
2892 !CompareGuid (VendorGuid, &Variable->VendorGuid) ||
2893 StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) {
2894 VariableData = GetVariableDataPtr (Variable);
2895 Status = VariableServiceSetVariable (
2896 GetVariableNamePtr (Variable),
2897 &Variable->VendorGuid,
2898 Variable->Attributes,
2899 Variable->DataSize,
2900 VariableData
2901 );
2902 DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", &Variable->VendorGuid, GetVariableNamePtr (Variable), Status));
2903 } else {
2904 //
2905 // The updated or deleted variable is matched with the HOB variable.
2906 // Don't break here because we will try to set other HOB variables
2907 // since this variable could be set successfully.
2908 //
2909 Status = EFI_SUCCESS;
2910 }
2911 if (!EFI_ERROR (Status)) {
2912 //
2913 // If set variable successful, or the updated or deleted variable is matched with the HOB variable,
2914 // set the HOB variable to DELETED state in local.
2915 //
2916 DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", &Variable->VendorGuid, GetVariableNamePtr (Variable)));
2917 Variable->State &= VAR_DELETED;
2918 } else {
2919 ErrorFlag = TRUE;
2920 }
2921 }
2922 if (ErrorFlag) {
2923 //
2924 // We still have HOB variable(s) not flushed in flash.
2925 //
2926 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader;
2927 } else {
2928 //
2929 // All HOB variables have been flushed in flash.
2930 //
2931 DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n"));
2932 if (!AtRuntime ()) {
2933 FreePool ((VOID *) VariableStoreHeader);
2934 }
2935 }
2936 }
2937
2938 }
2939
2940 /**
2941 Initializes variable write service after FTW was ready.
2942
2943 @retval EFI_SUCCESS Function successfully executed.
2944 @retval Others Fail to initialize the variable service.
2945
2946 **/
2947 EFI_STATUS
2948 VariableWriteServiceInitialize (
2949 VOID
2950 )
2951 {
2952 EFI_STATUS Status;
2953 VARIABLE_STORE_HEADER *VariableStoreHeader;
2954 UINTN Index;
2955 UINT8 Data;
2956 EFI_PHYSICAL_ADDRESS VariableStoreBase;
2957 EFI_PHYSICAL_ADDRESS NvStorageBase;
2958
2959 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
2960 if (NvStorageBase == 0) {
2961 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
2962 }
2963 VariableStoreBase = NvStorageBase + (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(NvStorageBase))->HeaderLength);
2964
2965 //
2966 // Let NonVolatileVariableBase point to flash variable store base directly after FTW ready.
2967 //
2968 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
2969 VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase;
2970
2971 //
2972 // Check if the free area is really free.
2973 //
2974 for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) {
2975 Data = ((UINT8 *) mNvVariableCache)[Index];
2976 if (Data != 0xff) {
2977 //
2978 // There must be something wrong in variable store, do reclaim operation.
2979 //
2980 Status = Reclaim (
2981 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2982 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2983 FALSE,
2984 NULL,
2985 NULL,
2986 0
2987 );
2988 if (EFI_ERROR (Status)) {
2989 return Status;
2990 }
2991 break;
2992 }
2993 }
2994
2995 FlushHobVariableToFlash (NULL, NULL);
2996
2997 return EFI_SUCCESS;
2998 }
2999
3000
3001 /**
3002 Initializes variable store area for non-volatile and volatile variable.
3003
3004 @retval EFI_SUCCESS Function successfully executed.
3005 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
3006
3007 **/
3008 EFI_STATUS
3009 VariableCommonInitialize (
3010 VOID
3011 )
3012 {
3013 EFI_STATUS Status;
3014 VARIABLE_STORE_HEADER *VolatileVariableStore;
3015 VARIABLE_STORE_HEADER *VariableStoreHeader;
3016 UINT64 VariableStoreLength;
3017 UINTN ScratchSize;
3018 EFI_HOB_GUID_TYPE *GuidHob;
3019
3020 //
3021 // Allocate runtime memory for variable driver global structure.
3022 //
3023 mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL));
3024 if (mVariableModuleGlobal == NULL) {
3025 return EFI_OUT_OF_RESOURCES;
3026 }
3027
3028 InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY);
3029
3030 //
3031 // Get HOB variable store.
3032 //
3033 GuidHob = GetFirstGuidHob (&gEfiVariableGuid);
3034 if (GuidHob != NULL) {
3035 VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob);
3036 VariableStoreLength = (UINT64) (GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE));
3037 if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
3038 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader);
3039 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) {
3040 FreePool (mVariableModuleGlobal);
3041 return EFI_OUT_OF_RESOURCES;
3042 }
3043 } else {
3044 DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n"));
3045 }
3046 }
3047
3048 //
3049 // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data.
3050 //
3051 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
3052 VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize);
3053 if (VolatileVariableStore == NULL) {
3054 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3055 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3056 }
3057 FreePool (mVariableModuleGlobal);
3058 return EFI_OUT_OF_RESOURCES;
3059 }
3060
3061 SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff);
3062
3063 //
3064 // Initialize Variable Specific Data.
3065 //
3066 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore;
3067 mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore;
3068
3069 CopyGuid (&VolatileVariableStore->Signature, &gEfiVariableGuid);
3070 VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize);
3071 VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED;
3072 VolatileVariableStore->State = VARIABLE_STORE_HEALTHY;
3073 VolatileVariableStore->Reserved = 0;
3074 VolatileVariableStore->Reserved1 = 0;
3075
3076 //
3077 // Init non-volatile variable store.
3078 //
3079 Status = InitNonVolatileVariableStore ();
3080 if (EFI_ERROR (Status)) {
3081 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3082 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3083 }
3084 FreePool (mVariableModuleGlobal);
3085 FreePool (VolatileVariableStore);
3086 }
3087
3088 return Status;
3089 }
3090
3091
3092 /**
3093 Get the proper fvb handle and/or fvb protocol by the given Flash address.
3094
3095 @param[in] Address The Flash address.
3096 @param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle.
3097 @param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol.
3098
3099 **/
3100 EFI_STATUS
3101 GetFvbInfoByAddress (
3102 IN EFI_PHYSICAL_ADDRESS Address,
3103 OUT EFI_HANDLE *FvbHandle OPTIONAL,
3104 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL
3105 )
3106 {
3107 EFI_STATUS Status;
3108 EFI_HANDLE *HandleBuffer;
3109 UINTN HandleCount;
3110 UINTN Index;
3111 EFI_PHYSICAL_ADDRESS FvbBaseAddress;
3112 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
3113 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
3114 EFI_FVB_ATTRIBUTES_2 Attributes;
3115
3116 //
3117 // Get all FVB handles.
3118 //
3119 Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
3120 if (EFI_ERROR (Status)) {
3121 return EFI_NOT_FOUND;
3122 }
3123
3124 //
3125 // Get the FVB to access variable store.
3126 //
3127 Fvb = NULL;
3128 for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) {
3129 Status = GetFvbByHandle (HandleBuffer[Index], &Fvb);
3130 if (EFI_ERROR (Status)) {
3131 Status = EFI_NOT_FOUND;
3132 break;
3133 }
3134
3135 //
3136 // Ensure this FVB protocol supported Write operation.
3137 //
3138 Status = Fvb->GetAttributes (Fvb, &Attributes);
3139 if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
3140 continue;
3141 }
3142
3143 //
3144 // Compare the address and select the right one.
3145 //
3146 Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
3147 if (EFI_ERROR (Status)) {
3148 continue;
3149 }
3150
3151 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress);
3152 if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + FwVolHeader->FvLength))) {
3153 if (FvbHandle != NULL) {
3154 *FvbHandle = HandleBuffer[Index];
3155 }
3156 if (FvbProtocol != NULL) {
3157 *FvbProtocol = Fvb;
3158 }
3159 Status = EFI_SUCCESS;
3160 break;
3161 }
3162 }
3163 FreePool (HandleBuffer);
3164
3165 if (Fvb == NULL) {
3166 Status = EFI_NOT_FOUND;
3167 }
3168
3169 return Status;
3170 }
3171