]> git.proxmox.com Git - mirror_edk2.git/blob - MdePkg/Include/Base.h
Add comments for the MACRO follow the Spec, and change some definition not match...
[mirror_edk2.git] / MdePkg / Include / Base.h
1 /** @file
2 Root include file for Mde Package Base type modules
3
4 This is the include file for any module of type base. Base modules only use
5 types defined via this include file and can be ported easily to any
6 environment. There are a set of base libraries in the Mde Package that can
7 be used to implement base modules.
8
9 Copyright (c) 2006 - 2008, Intel Corporation<BR>
10 All rights reserved. This program and the accompanying materials
11 are licensed and made available under the terms and conditions of the BSD License
12 which accompanies this distribution. The full text of the license may be found at
13 http://opensource.org/licenses/bsd-license.php
14
15 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
16 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
17
18 **/
19
20
21 #ifndef __BASE_H__
22 #define __BASE_H__
23
24 //
25 // Include processor specific binding
26 //
27 #include <ProcessorBind.h>
28
29
30 //
31 // 128 bit buffer containing a unique identifier value.
32 // Unless otherwise specified, aligned on a 64 bit boundary.
33 //
34 typedef struct {
35 UINT32 Data1;
36 UINT16 Data2;
37 UINT16 Data3;
38 UINT8 Data4[8];
39 } GUID;
40
41 //
42 // 8-bytes unsigned value that represents a physical system address.
43 //
44 typedef UINT64 PHYSICAL_ADDRESS;
45
46 //
47 // LIST_ENTRY definition.
48 //
49 typedef struct _LIST_ENTRY LIST_ENTRY;
50
51 struct _LIST_ENTRY {
52 LIST_ENTRY *ForwardLink;
53 LIST_ENTRY *BackLink;
54 };
55
56 //
57 // Modifiers to abstract standard types to aid in debug of problems
58 //
59 #define CONST const
60 #define STATIC static
61 #define VOID void
62
63 //
64 // Modifiers for Data Types used to self document code.
65 // This concept is borrowed for UEFI specification.
66 //
67 #define IN
68 #define OUT
69 #define OPTIONAL
70
71 //
72 // UEFI specification claims 1 and 0. We are concerned about the
73 // complier portability so we did it this way.
74 //
75 #define TRUE ((BOOLEAN)(1==1))
76 #define FALSE ((BOOLEAN)(0==1))
77
78 //
79 // NULL pointer (VOID *)
80 //
81 #define NULL ((VOID *) 0)
82
83
84 #define BIT0 0x00000001
85 #define BIT1 0x00000002
86 #define BIT2 0x00000004
87 #define BIT3 0x00000008
88 #define BIT4 0x00000010
89 #define BIT5 0x00000020
90 #define BIT6 0x00000040
91 #define BIT7 0x00000080
92 #define BIT8 0x00000100
93 #define BIT9 0x00000200
94 #define BIT10 0x00000400
95 #define BIT11 0x00000800
96 #define BIT12 0x00001000
97 #define BIT13 0x00002000
98 #define BIT14 0x00004000
99 #define BIT15 0x00008000
100 #define BIT16 0x00010000
101 #define BIT17 0x00020000
102 #define BIT18 0x00040000
103 #define BIT19 0x00080000
104 #define BIT20 0x00100000
105 #define BIT21 0x00200000
106 #define BIT22 0x00400000
107 #define BIT23 0x00800000
108 #define BIT24 0x01000000
109 #define BIT25 0x02000000
110 #define BIT26 0x04000000
111 #define BIT27 0x08000000
112 #define BIT28 0x10000000
113 #define BIT29 0x20000000
114 #define BIT30 0x40000000
115 #define BIT31 0x80000000
116 #define BIT32 0x0000000100000000UL
117 #define BIT33 0x0000000200000000UL
118 #define BIT34 0x0000000400000000UL
119 #define BIT35 0x0000000800000000UL
120 #define BIT36 0x0000001000000000UL
121 #define BIT37 0x0000002000000000UL
122 #define BIT38 0x0000004000000000UL
123 #define BIT39 0x0000008000000000UL
124 #define BIT40 0x0000010000000000UL
125 #define BIT41 0x0000020000000000UL
126 #define BIT42 0x0000040000000000UL
127 #define BIT43 0x0000080000000000UL
128 #define BIT44 0x0000100000000000UL
129 #define BIT45 0x0000200000000000UL
130 #define BIT46 0x0000400000000000UL
131 #define BIT47 0x0000800000000000UL
132 #define BIT48 0x0001000000000000UL
133 #define BIT49 0x0002000000000000UL
134 #define BIT50 0x0004000000000000UL
135 #define BIT51 0x0008000000000000UL
136 #define BIT52 0x0010000000000000UL
137 #define BIT53 0x0020000000000000UL
138 #define BIT54 0x0040000000000000UL
139 #define BIT55 0x0080000000000000UL
140 #define BIT56 0x0100000000000000UL
141 #define BIT57 0x0200000000000000UL
142 #define BIT58 0x0400000000000000UL
143 #define BIT59 0x0800000000000000UL
144 #define BIT60 0x1000000000000000UL
145 #define BIT61 0x2000000000000000UL
146 #define BIT62 0x4000000000000000UL
147 #define BIT63 0x8000000000000000UL
148
149 //
150 // Support for variable length argument lists using the ANSI standard.
151 //
152 // Since we are using the ANSI standard we used the standard naming and
153 // did not follow the coding convention
154 //
155 // VA_LIST - typedef for argument list.
156 // VA_START (VA_LIST Marker, argument before the ...) - Init Marker for use.
157 // VA_END (VA_LIST Marker) - Clear Marker
158 // VA_ARG (VA_LIST Marker, var arg size) - Use Marker to get an argument from
159 // the ... list. You must know the size and pass it in this macro.
160 //
161 // example:
162 //
163 // UINTN
164 // ExampleVarArg (
165 // IN UINTN NumberOfArgs,
166 // ...
167 // )
168 // {
169 // VA_LIST Marker;
170 // UINTN Index;
171 // UINTN Result;
172 //
173 // //
174 // // Initialize the Marker
175 // //
176 // VA_START (Marker, NumberOfArgs);
177 // for (Index = 0, Result = 0; Index < NumberOfArgs; Index++) {
178 // //
179 // // The ... list is a series of UINTN values, so average them up.
180 // //
181 // Result += VA_ARG (Marker, UINTN);
182 // }
183 //
184 // VA_END (Marker);
185 // return Result
186 // }
187 //
188
189 #define _INT_SIZE_OF(n) ((sizeof (n) + sizeof (UINTN) - 1) &~(sizeof (UINTN) - 1))
190
191 //
192 // Pointer to the start of a variable argument list. Same as UINT8 *.
193 //
194 typedef CHAR8 *VA_LIST;
195
196 /**
197 Retrieves a pointer to the beginning of a variable argument list based on
198 the name of the parameter that immediately precedes the variable argument list.
199
200 This function initializes Marker to point to the beginning of the variable argument
201 list that immediately follows Parameter. The method for computing the pointer to the
202 next argument in the argument list is CPU specific following the EFIAPI ABI.
203
204 @param Marker Pointer to the beginning of the variable argument list.
205 @param Parameter The name of the parameter that immediately precedes
206 the variable argument list.
207
208 @return A pointer to the beginning of a variable argument list.
209
210 **/
211 #define VA_START(Marker, Parameter) (Marker = (VA_LIST) & (Parameter) + _INT_SIZE_OF (Parameter))
212
213 /**
214 Returns an argument of a specified type from a variable argument list and updates
215 the pointer to the variable argument list to point to the next argument.
216
217 This function returns an argument of the type specified by TYPE from the beginning
218 of the variable argument list specified by Marker. Marker is then updated to point
219 to the next argument in the variable argument list. The method for computing the
220 pointer to the next argument in the argument list is CPU specific following the EFIAPI ABI.
221
222 @param Marker Pointer to the beginning of a variable argument list.
223 @param TYPE The type of argument to retrieve from the beginning
224 of the variable argument list.
225
226 @return An argument of the type specified by TYPE.
227
228 **/
229 #define VA_ARG(Marker, TYPE) (*(TYPE *) ((Marker += _INT_SIZE_OF (TYPE)) - _INT_SIZE_OF (TYPE)))
230
231 /**
232 Terminates the use of a variable argument list.
233
234 This function initializes Marker so it can no longer be used with VA_ARG().
235 After this macro is used, the only way to access the variable argument list again is
236 by using VA_START() again.
237
238 @param Marker The variable to set to the beginning of the variable argument list.
239
240 **/
241 #define VA_END(Marker) (Marker = (VA_LIST) 0)
242
243 /**
244 Macro that returns the byte offset of a field in a data structure.
245
246 This function returns the offset, in bytes, of field specified by Field from the
247 beginning of the data structure specified by TYPE. If TYPE does not contain Field,
248 the module will not compile.
249
250 @param TYPE The name of the data structure that contains the field specified by Field.
251 @param Field The name of the field in the data structure.
252
253 @return Offset, in bytes, of field.
254
255 **/
256 #define OFFSET_OF(TYPE, Field) ((UINTN) &(((TYPE *)0)->Field))
257
258 /**
259 Macro that returns a pointer to the data structure that contains a specified field of
260 that data structure. This is a lightweight method to hide information by placing a
261 public data structure inside a larger private data structure and using a pointer to
262 the public data structure to retrieve a pointer to the private data structure.
263
264 This function computes the offset, in bytes, of field specified by Field from the beginning
265 of the data structure specified by TYPE. This offset is subtracted from Record, and is
266 used to return a pointer to a data structure of the type specified by TYPE.If the data type
267 specified by TYPE does not contain the field specified by Field, then the module will not compile.
268
269 @param Record Pointer to the field specified by Field within a data structure of type TYPE.
270 @param TYPE The name of the data structure type to return. This data structure must
271 contain the field specified by Field.
272 @param Field The name of the field in the data structure specified by TYPE to which Record points.
273
274 @return A pointer to the structure from one of it's elements.
275
276 **/
277 #define _CR(Record, TYPE, Field) ((TYPE *) ((CHAR8 *) (Record) - (CHAR8 *) &(((TYPE *) 0)->Field)))
278
279 /**
280 Rounds a value up to the next boundary using a specified alignment.
281
282 This function rounds Value up to the next boundary using the specified Alignment.
283 This aligned value is returned.
284
285 @param Value The value to round up.
286 @param Alignment The alignment boundary used to return the aligned value.
287
288 @return A value up to the next boundary.
289
290 **/
291 #define ALIGN_VALUE(Value, Alignment) ((Value) + (((Alignment) - (Value)) & ((Alignment) - 1)))
292
293 /**
294 Adjust a pointer by adding the minimum offset required for it to be aligned on
295 a specified alignment boundary.
296
297 This function rounds the pointer specified by Pointer to the next alignment boundary
298 specified by Alignment. The pointer to the aligned address is returned.
299
300 @param Value The value to round up.
301 @param Alignment The alignment boundary to use to return an aligned pointer.
302
303 @return Pointer to the aligned address.
304
305 **/
306 #define ALIGN_POINTER(Pointer, Alignment) ((VOID *) (ALIGN_VALUE ((UINTN)(Pointer), (Alignment))))
307
308 /**
309 Rounds a value up to the next natural boundary for the current CPU.
310 This is 4-bytes for 32-bit CPUs and 8-bytes for 64-bit CPUs.
311
312 This function rounds the value specified by Value up to the next natural boundary for the
313 current CPU. This rounded value is returned.
314
315 @param Value The value to round up.
316
317 @return Rounded value specified by Value.
318
319 **/
320 #define ALIGN_VARIABLE(Value) ALIGN_VALUE ((Value), sizeof (UINTN))
321
322
323 /**
324 Return the maximum of two operands.
325
326 This macro returns the maximum of two operand specified by a and b.
327 Both a and b must be the same numerical types, signed or unsigned.
328
329 @param TYPE Any numerical data types.
330 @param a The first operand with any numerical type.
331 @param b The second operand. It should be the same any numerical type with a.
332
333 @return Maximum of two operands.
334
335 **/
336 #define MAX(a, b) \
337 (((a) > (b)) ? (a) : (b))
338
339 /**
340 Return the minimum of two operands.
341
342 This macro returns the minimal of two operand specified by a and b.
343 Both a and b must be the same numerical types, signed or unsigned.
344
345 @param TYPE Any numerical data types.
346 @param a The first operand with any numerical type.
347 @param b The second operand. It should be the same any numerical type with a.
348
349 @return Minimum of two operands.
350
351 **/
352
353 #define MIN(a, b) \
354 (((a) < (b)) ? (a) : (b))
355
356
357 //
358 // EFI Error Codes common to all execution phases
359 //
360
361 typedef INTN RETURN_STATUS;
362
363 //
364 // Set the upper bit to indicate EFI Error.
365 //
366 #define ENCODE_ERROR(a) (MAX_BIT | (a))
367
368 #define ENCODE_WARNING(a) (a)
369 #define RETURN_ERROR(a) ((INTN) (a) < 0)
370
371 #define RETURN_SUCCESS 0
372 #define RETURN_LOAD_ERROR ENCODE_ERROR (1)
373 #define RETURN_INVALID_PARAMETER ENCODE_ERROR (2)
374 #define RETURN_UNSUPPORTED ENCODE_ERROR (3)
375 #define RETURN_BAD_BUFFER_SIZE ENCODE_ERROR (4)
376 #define RETURN_BUFFER_TOO_SMALL ENCODE_ERROR (5)
377 #define RETURN_NOT_READY ENCODE_ERROR (6)
378 #define RETURN_DEVICE_ERROR ENCODE_ERROR (7)
379 #define RETURN_WRITE_PROTECTED ENCODE_ERROR (8)
380 #define RETURN_OUT_OF_RESOURCES ENCODE_ERROR (9)
381 #define RETURN_VOLUME_CORRUPTED ENCODE_ERROR (10)
382 #define RETURN_VOLUME_FULL ENCODE_ERROR (11)
383 #define RETURN_NO_MEDIA ENCODE_ERROR (12)
384 #define RETURN_MEDIA_CHANGED ENCODE_ERROR (13)
385 #define RETURN_NOT_FOUND ENCODE_ERROR (14)
386 #define RETURN_ACCESS_DENIED ENCODE_ERROR (15)
387 #define RETURN_NO_RESPONSE ENCODE_ERROR (16)
388 #define RETURN_NO_MAPPING ENCODE_ERROR (17)
389 #define RETURN_TIMEOUT ENCODE_ERROR (18)
390 #define RETURN_NOT_STARTED ENCODE_ERROR (19)
391 #define RETURN_ALREADY_STARTED ENCODE_ERROR (20)
392 #define RETURN_ABORTED ENCODE_ERROR (21)
393 #define RETURN_ICMP_ERROR ENCODE_ERROR (22)
394 #define RETURN_TFTP_ERROR ENCODE_ERROR (23)
395 #define RETURN_PROTOCOL_ERROR ENCODE_ERROR (24)
396 #define RETURN_INCOMPATIBLE_VERSION ENCODE_ERROR (25)
397 #define RETURN_SECURITY_VIOLATION ENCODE_ERROR (26)
398 #define RETURN_CRC_ERROR ENCODE_ERROR (27)
399 #define RETURN_END_OF_MEDIA ENCODE_ERROR (28)
400 #define RETURN_END_OF_FILE ENCODE_ERROR (31)
401 #define RETURN_INVALID_LANGUAGE ENCODE_ERROR (32)
402
403
404 #define RETURN_WARN_UNKNOWN_GLYPH ENCODE_WARNING (1)
405 #define RETURN_WARN_DELETE_FAILURE ENCODE_WARNING (2)
406 #define RETURN_WARN_WRITE_FAILURE ENCODE_WARNING (3)
407 #define RETURN_WARN_BUFFER_TOO_SMALL ENCODE_WARNING (4)
408
409 /**
410 Returns a 16-bit signature built from 2 ASCII characters.
411
412 This macro returns a 16-bit value built from the two ASCII characters specified
413 by A and B.
414
415 @param A The first ASCII character.
416 @param B The second ASCII character.
417
418 @return A 16-bit value built from the two ASCII characters specified by A and B.
419
420 **/
421 #define SIGNATURE_16(A, B) ((A) | (B << 8))
422
423 /**
424 Returns a 32-bit signature built from 4 ASCII characters.
425
426 This macro returns a 32-bit value built from the four ASCII characters specified
427 by A, B, C, and D.
428
429 @param A The first ASCII character.
430 @param B The second ASCII character.
431 @param C The third ASCII character.
432 @param D The fourth ASCII character.
433
434 @return A 32-bit value built from the two ASCII characters specified by A, B,
435 C and D.
436
437 **/
438 #define SIGNATURE_32(A, B, C, D) (SIGNATURE_16 (A, B) | (SIGNATURE_16 (C, D) << 16))
439
440 /**
441 Returns a 64-bit signature built from 8 ASCII characters.
442
443 This macro returns a 64-bit value built from the eight ASCII characters specified
444 by A, B, C, D, E, F, G,and H.
445
446 @param A The first ASCII character.
447 @param B The second ASCII character.
448 @param C The third ASCII character.
449 @param D The fourth ASCII character.
450 @param E The fifth ASCII character.
451 @param F The sixth ASCII character.
452 @param G The seventh ASCII character.
453 @param H The eighth ASCII character.
454
455 @return A 64-bit value built from the two ASCII characters specified by A, B,
456 C, D, E, F, G and H.
457
458 **/
459 #define SIGNATURE_64(A, B, C, D, E, F, G, H) \
460 (SIGNATURE_32 (A, B, C, D) | ((UINT64) (SIGNATURE_32 (E, F, G, H)) << 32))
461
462 #endif
463