2 Provides string functions, linked list functions, math functions, synchronization
3 functions, file path functions, and CPU architecture-specific functions.
5 Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
6 Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
7 This program and the accompanying materials
8 are licensed and made available under the terms and conditions of the BSD License
9 which accompanies this distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php.
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
21 // Definitions for architecture-specific types
23 #if defined (MDE_CPU_IA32)
25 /// The IA-32 architecture context buffer used by SetJump() and LongJump().
34 } BASE_LIBRARY_JUMP_BUFFER
;
36 #define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4
38 #endif // defined (MDE_CPU_IA32)
40 #if defined (MDE_CPU_IPF)
43 /// The Itanium architecture context buffer used by SetJump() and LongJump().
78 UINT64 AfterSpillUNAT
;
84 } BASE_LIBRARY_JUMP_BUFFER
;
86 #define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10
88 #endif // defined (MDE_CPU_IPF)
90 #if defined (MDE_CPU_X64)
92 /// The x64 architecture context buffer used by SetJump() and LongJump().
106 UINT8 XmmBuffer
[160]; ///< XMM6-XMM15.
107 } BASE_LIBRARY_JUMP_BUFFER
;
109 #define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8
111 #endif // defined (MDE_CPU_X64)
113 #if defined (MDE_CPU_EBC)
115 /// The EBC context buffer used by SetJump() and LongJump().
123 } BASE_LIBRARY_JUMP_BUFFER
;
125 #define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8
127 #endif // defined (MDE_CPU_EBC)
129 #if defined (MDE_CPU_ARM)
132 UINT32 R3
; ///< A copy of R13.
143 } BASE_LIBRARY_JUMP_BUFFER
;
145 #define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4
147 #endif // defined (MDE_CPU_ARM)
149 #if defined (MDE_CPU_AARCH64)
175 } BASE_LIBRARY_JUMP_BUFFER
;
177 #define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8
179 #endif // defined (MDE_CPU_AARCH64)
188 Returns the length of a Null-terminated Unicode string.
190 This function is similar as strlen_s defined in C11.
192 If String is not aligned on a 16-bit boundary, then ASSERT().
194 @param String A pointer to a Null-terminated Unicode string.
195 @param MaxSize The maximum number of Destination Unicode
196 char, including terminating null char.
198 @retval 0 If String is NULL.
199 @retval MaxSize If there is no null character in the first MaxSize characters of String.
200 @return The number of characters that percede the terminating null character.
206 IN CONST CHAR16
*String
,
211 Returns the size of a Null-terminated Unicode string in bytes, including the
214 This function returns the size of the Null-terminated Unicode string
215 specified by String in bytes, including the Null terminator.
217 If String is not aligned on a 16-bit boundary, then ASSERT().
219 @param String A pointer to a Null-terminated Unicode string.
220 @param MaxSize The maximum number of Destination Unicode
221 char, including the Null terminator.
223 @retval 0 If String is NULL.
224 @retval (sizeof (CHAR16) * (MaxSize + 1))
225 If there is no Null terminator in the first MaxSize characters of
227 @return The size of the Null-terminated Unicode string in bytes, including
234 IN CONST CHAR16
*String
,
239 Copies the string pointed to by Source (including the terminating null char)
240 to the array pointed to by Destination.
242 This function is similar as strcpy_s defined in C11.
244 If Destination is not aligned on a 16-bit boundary, then ASSERT().
245 If Source is not aligned on a 16-bit boundary, then ASSERT().
246 If an error would be returned, then the function will also ASSERT().
248 If an error is returned, then the Destination is unmodified.
250 @param Destination A pointer to a Null-terminated Unicode string.
251 @param DestMax The maximum number of Destination Unicode
252 char, including terminating null char.
253 @param Source A pointer to a Null-terminated Unicode string.
255 @retval RETURN_SUCCESS String is copied.
256 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).
257 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
259 If PcdMaximumUnicodeStringLength is not zero,
260 and DestMax is greater than
261 PcdMaximumUnicodeStringLength.
263 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
268 OUT CHAR16
*Destination
,
270 IN CONST CHAR16
*Source
274 Copies not more than Length successive char from the string pointed to by
275 Source to the array pointed to by Destination. If no null char is copied from
276 Source, then Destination[Length] is always set to null.
278 This function is similar as strncpy_s defined in C11.
280 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
281 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().
282 If an error would be returned, then the function will also ASSERT().
284 If an error is returned, then the Destination is unmodified.
286 @param Destination A pointer to a Null-terminated Unicode string.
287 @param DestMax The maximum number of Destination Unicode
288 char, including terminating null char.
289 @param Source A pointer to a Null-terminated Unicode string.
290 @param Length The maximum number of Unicode characters to copy.
292 @retval RETURN_SUCCESS String is copied.
293 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than
294 MIN(StrLen(Source), Length).
295 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
297 If PcdMaximumUnicodeStringLength is not zero,
298 and DestMax is greater than
299 PcdMaximumUnicodeStringLength.
301 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
306 OUT CHAR16
*Destination
,
308 IN CONST CHAR16
*Source
,
313 Appends a copy of the string pointed to by Source (including the terminating
314 null char) to the end of the string pointed to by Destination.
316 This function is similar as strcat_s defined in C11.
318 If Destination is not aligned on a 16-bit boundary, then ASSERT().
319 If Source is not aligned on a 16-bit boundary, then ASSERT().
320 If an error would be returned, then the function will also ASSERT().
322 If an error is returned, then the Destination is unmodified.
324 @param Destination A pointer to a Null-terminated Unicode string.
325 @param DestMax The maximum number of Destination Unicode
326 char, including terminating null char.
327 @param Source A pointer to a Null-terminated Unicode string.
329 @retval RETURN_SUCCESS String is appended.
330 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than
332 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT
333 greater than StrLen(Source).
334 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
336 If PcdMaximumUnicodeStringLength is not zero,
337 and DestMax is greater than
338 PcdMaximumUnicodeStringLength.
340 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
345 IN OUT CHAR16
*Destination
,
347 IN CONST CHAR16
*Source
351 Appends not more than Length successive char from the string pointed to by
352 Source to the end of the string pointed to by Destination. If no null char is
353 copied from Source, then Destination[StrLen(Destination) + Length] is always
356 This function is similar as strncat_s defined in C11.
358 If Destination is not aligned on a 16-bit boundary, then ASSERT().
359 If Source is not aligned on a 16-bit boundary, then ASSERT().
360 If an error would be returned, then the function will also ASSERT().
362 If an error is returned, then the Destination is unmodified.
364 @param Destination A pointer to a Null-terminated Unicode string.
365 @param DestMax The maximum number of Destination Unicode
366 char, including terminating null char.
367 @param Source A pointer to a Null-terminated Unicode string.
368 @param Length The maximum number of Unicode characters to copy.
370 @retval RETURN_SUCCESS String is appended.
371 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than
373 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT
374 greater than MIN(StrLen(Source), Length).
375 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
377 If PcdMaximumUnicodeStringLength is not zero,
378 and DestMax is greater than
379 PcdMaximumUnicodeStringLength.
381 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
386 IN OUT CHAR16
*Destination
,
388 IN CONST CHAR16
*Source
,
393 Convert a Null-terminated Unicode decimal string to a value of type UINTN.
395 This function outputs a value of type UINTN by interpreting the contents of
396 the Unicode string specified by String as a decimal number. The format of the
397 input Unicode string String is:
399 [spaces] [decimal digits].
401 The valid decimal digit character is in the range [0-9]. The function will
402 ignore the pad space, which includes spaces or tab characters, before
403 [decimal digits]. The running zero in the beginning of [decimal digits] will
404 be ignored. Then, the function stops at the first character that is a not a
405 valid decimal character or a Null-terminator, whichever one comes first.
407 If String is NULL, then ASSERT().
408 If Data is NULL, then ASSERT().
409 If String is not aligned in a 16-bit boundary, then ASSERT().
410 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
411 PcdMaximumUnicodeStringLength Unicode characters, not including the
412 Null-terminator, then ASSERT().
414 If String has no valid decimal digits in the above format, then 0 is stored
415 at the location pointed to by Data.
416 If the number represented by String exceeds the range defined by UINTN, then
417 MAX_UINTN is stored at the location pointed to by Data.
419 If EndPointer is not NULL, a pointer to the character that stopped the scan
420 is stored at the location pointed to by EndPointer. If String has no valid
421 decimal digits right after the optional pad spaces, the value of String is
422 stored at the location pointed to by EndPointer.
424 @param String Pointer to a Null-terminated Unicode string.
425 @param EndPointer Pointer to character that stops scan.
426 @param Data Pointer to the converted value.
428 @retval RETURN_SUCCESS Value is translated from String.
429 @retval RETURN_INVALID_PARAMETER If String is NULL.
431 If PcdMaximumUnicodeStringLength is not
432 zero, and String contains more than
433 PcdMaximumUnicodeStringLength Unicode
434 characters, not including the
436 @retval RETURN_UNSUPPORTED If the number represented by String exceeds
437 the range defined by UINTN.
443 IN CONST CHAR16
*String
,
444 OUT CHAR16
**EndPointer
, OPTIONAL
449 Convert a Null-terminated Unicode decimal string to a value of type UINT64.
451 This function outputs a value of type UINT64 by interpreting the contents of
452 the Unicode string specified by String as a decimal number. The format of the
453 input Unicode string String is:
455 [spaces] [decimal digits].
457 The valid decimal digit character is in the range [0-9]. The function will
458 ignore the pad space, which includes spaces or tab characters, before
459 [decimal digits]. The running zero in the beginning of [decimal digits] will
460 be ignored. Then, the function stops at the first character that is a not a
461 valid decimal character or a Null-terminator, whichever one comes first.
463 If String is NULL, then ASSERT().
464 If Data is NULL, then ASSERT().
465 If String is not aligned in a 16-bit boundary, then ASSERT().
466 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
467 PcdMaximumUnicodeStringLength Unicode characters, not including the
468 Null-terminator, then ASSERT().
470 If String has no valid decimal digits in the above format, then 0 is stored
471 at the location pointed to by Data.
472 If the number represented by String exceeds the range defined by UINT64, then
473 MAX_UINT64 is stored at the location pointed to by Data.
475 If EndPointer is not NULL, a pointer to the character that stopped the scan
476 is stored at the location pointed to by EndPointer. If String has no valid
477 decimal digits right after the optional pad spaces, the value of String is
478 stored at the location pointed to by EndPointer.
480 @param String Pointer to a Null-terminated Unicode string.
481 @param EndPointer Pointer to character that stops scan.
482 @param Data Pointer to the converted value.
484 @retval RETURN_SUCCESS Value is translated from String.
485 @retval RETURN_INVALID_PARAMETER If String is NULL.
487 If PcdMaximumUnicodeStringLength is not
488 zero, and String contains more than
489 PcdMaximumUnicodeStringLength Unicode
490 characters, not including the
492 @retval RETURN_UNSUPPORTED If the number represented by String exceeds
493 the range defined by UINT64.
498 StrDecimalToUint64S (
499 IN CONST CHAR16
*String
,
500 OUT CHAR16
**EndPointer
, OPTIONAL
505 Convert a Null-terminated Unicode hexadecimal string to a value of type
508 This function outputs a value of type UINTN by interpreting the contents of
509 the Unicode string specified by String as a hexadecimal number. The format of
510 the input Unicode string String is:
512 [spaces][zeros][x][hexadecimal digits].
514 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
515 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
516 If "x" appears in the input string, it must be prefixed with at least one 0.
517 The function will ignore the pad space, which includes spaces or tab
518 characters, before [zeros], [x] or [hexadecimal digit]. The running zero
519 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts
520 after [x] or the first valid hexadecimal digit. Then, the function stops at
521 the first character that is a not a valid hexadecimal character or NULL,
522 whichever one comes first.
524 If String is NULL, then ASSERT().
525 If Data is NULL, then ASSERT().
526 If String is not aligned in a 16-bit boundary, then ASSERT().
527 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
528 PcdMaximumUnicodeStringLength Unicode characters, not including the
529 Null-terminator, then ASSERT().
531 If String has no valid hexadecimal digits in the above format, then 0 is
532 stored at the location pointed to by Data.
533 If the number represented by String exceeds the range defined by UINTN, then
534 MAX_UINTN is stored at the location pointed to by Data.
536 If EndPointer is not NULL, a pointer to the character that stopped the scan
537 is stored at the location pointed to by EndPointer. If String has no valid
538 hexadecimal digits right after the optional pad spaces, the value of String
539 is stored at the location pointed to by EndPointer.
541 @param String Pointer to a Null-terminated Unicode string.
542 @param EndPointer Pointer to character that stops scan.
543 @param Data Pointer to the converted value.
545 @retval RETURN_SUCCESS Value is translated from String.
546 @retval RETURN_INVALID_PARAMETER If String is NULL.
548 If PcdMaximumUnicodeStringLength is not
549 zero, and String contains more than
550 PcdMaximumUnicodeStringLength Unicode
551 characters, not including the
553 @retval RETURN_UNSUPPORTED If the number represented by String exceeds
554 the range defined by UINTN.
560 IN CONST CHAR16
*String
,
561 OUT CHAR16
**EndPointer
, OPTIONAL
566 Convert a Null-terminated Unicode hexadecimal string to a value of type
569 This function outputs a value of type UINT64 by interpreting the contents of
570 the Unicode string specified by String as a hexadecimal number. The format of
571 the input Unicode string String is:
573 [spaces][zeros][x][hexadecimal digits].
575 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
576 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
577 If "x" appears in the input string, it must be prefixed with at least one 0.
578 The function will ignore the pad space, which includes spaces or tab
579 characters, before [zeros], [x] or [hexadecimal digit]. The running zero
580 before [x] or [hexadecimal digit] will be ignored. Then, the decoding starts
581 after [x] or the first valid hexadecimal digit. Then, the function stops at
582 the first character that is a not a valid hexadecimal character or NULL,
583 whichever one comes first.
585 If String is NULL, then ASSERT().
586 If Data is NULL, then ASSERT().
587 If String is not aligned in a 16-bit boundary, then ASSERT().
588 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
589 PcdMaximumUnicodeStringLength Unicode characters, not including the
590 Null-terminator, then ASSERT().
592 If String has no valid hexadecimal digits in the above format, then 0 is
593 stored at the location pointed to by Data.
594 If the number represented by String exceeds the range defined by UINT64, then
595 MAX_UINT64 is stored at the location pointed to by Data.
597 If EndPointer is not NULL, a pointer to the character that stopped the scan
598 is stored at the location pointed to by EndPointer. If String has no valid
599 hexadecimal digits right after the optional pad spaces, the value of String
600 is stored at the location pointed to by EndPointer.
602 @param String Pointer to a Null-terminated Unicode string.
603 @param EndPointer Pointer to character that stops scan.
604 @param Data Pointer to the converted value.
606 @retval RETURN_SUCCESS Value is translated from String.
607 @retval RETURN_INVALID_PARAMETER If String is NULL.
609 If PcdMaximumUnicodeStringLength is not
610 zero, and String contains more than
611 PcdMaximumUnicodeStringLength Unicode
612 characters, not including the
614 @retval RETURN_UNSUPPORTED If the number represented by String exceeds
615 the range defined by UINT64.
621 IN CONST CHAR16
*String
,
622 OUT CHAR16
**EndPointer
, OPTIONAL
627 Returns the length of a Null-terminated Ascii string.
629 This function is similar as strlen_s defined in C11.
631 @param String A pointer to a Null-terminated Ascii string.
632 @param MaxSize The maximum number of Destination Ascii
633 char, including terminating null char.
635 @retval 0 If String is NULL.
636 @retval MaxSize If there is no null character in the first MaxSize characters of String.
637 @return The number of characters that percede the terminating null character.
643 IN CONST CHAR8
*String
,
648 Returns the size of a Null-terminated Ascii string in bytes, including the
651 This function returns the size of the Null-terminated Ascii string specified
652 by String in bytes, including the Null terminator.
654 @param String A pointer to a Null-terminated Ascii string.
655 @param MaxSize The maximum number of Destination Ascii
656 char, including the Null terminator.
658 @retval 0 If String is NULL.
659 @retval (sizeof (CHAR8) * (MaxSize + 1))
660 If there is no Null terminator in the first MaxSize characters of
662 @return The size of the Null-terminated Ascii string in bytes, including the
669 IN CONST CHAR8
*String
,
674 Copies the string pointed to by Source (including the terminating null char)
675 to the array pointed to by Destination.
677 This function is similar as strcpy_s defined in C11.
679 If an error would be returned, then the function will also ASSERT().
681 If an error is returned, then the Destination is unmodified.
683 @param Destination A pointer to a Null-terminated Ascii string.
684 @param DestMax The maximum number of Destination Ascii
685 char, including terminating null char.
686 @param Source A pointer to a Null-terminated Ascii string.
688 @retval RETURN_SUCCESS String is copied.
689 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).
690 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
692 If PcdMaximumAsciiStringLength is not zero,
693 and DestMax is greater than
694 PcdMaximumAsciiStringLength.
696 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
701 OUT CHAR8
*Destination
,
703 IN CONST CHAR8
*Source
707 Copies not more than Length successive char from the string pointed to by
708 Source to the array pointed to by Destination. If no null char is copied from
709 Source, then Destination[Length] is always set to null.
711 This function is similar as strncpy_s defined in C11.
713 If an error would be returned, then the function will also ASSERT().
715 If an error is returned, then the Destination is unmodified.
717 @param Destination A pointer to a Null-terminated Ascii string.
718 @param DestMax The maximum number of Destination Ascii
719 char, including terminating null char.
720 @param Source A pointer to a Null-terminated Ascii string.
721 @param Length The maximum number of Ascii characters to copy.
723 @retval RETURN_SUCCESS String is copied.
724 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than
725 MIN(StrLen(Source), Length).
726 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
728 If PcdMaximumAsciiStringLength is not zero,
729 and DestMax is greater than
730 PcdMaximumAsciiStringLength.
732 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
737 OUT CHAR8
*Destination
,
739 IN CONST CHAR8
*Source
,
744 Appends a copy of the string pointed to by Source (including the terminating
745 null char) to the end of the string pointed to by Destination.
747 This function is similar as strcat_s defined in C11.
749 If an error would be returned, then the function will also ASSERT().
751 If an error is returned, then the Destination is unmodified.
753 @param Destination A pointer to a Null-terminated Ascii string.
754 @param DestMax The maximum number of Destination Ascii
755 char, including terminating null char.
756 @param Source A pointer to a Null-terminated Ascii string.
758 @retval RETURN_SUCCESS String is appended.
759 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than
761 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT
762 greater than StrLen(Source).
763 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
765 If PcdMaximumAsciiStringLength is not zero,
766 and DestMax is greater than
767 PcdMaximumAsciiStringLength.
769 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
774 IN OUT CHAR8
*Destination
,
776 IN CONST CHAR8
*Source
780 Appends not more than Length successive char from the string pointed to by
781 Source to the end of the string pointed to by Destination. If no null char is
782 copied from Source, then Destination[StrLen(Destination) + Length] is always
785 This function is similar as strncat_s defined in C11.
787 If an error would be returned, then the function will also ASSERT().
789 If an error is returned, then the Destination is unmodified.
791 @param Destination A pointer to a Null-terminated Ascii string.
792 @param DestMax The maximum number of Destination Ascii
793 char, including terminating null char.
794 @param Source A pointer to a Null-terminated Ascii string.
795 @param Length The maximum number of Ascii characters to copy.
797 @retval RETURN_SUCCESS String is appended.
798 @retval RETURN_BAD_BUFFER_SIZE If DestMax is NOT greater than
800 @retval RETURN_BUFFER_TOO_SMALL If (DestMax - StrLen(Destination)) is NOT
801 greater than MIN(StrLen(Source), Length).
802 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
804 If PcdMaximumAsciiStringLength is not zero,
805 and DestMax is greater than
806 PcdMaximumAsciiStringLength.
808 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
813 IN OUT CHAR8
*Destination
,
815 IN CONST CHAR8
*Source
,
820 Convert a Null-terminated Ascii decimal string to a value of type UINTN.
822 This function outputs a value of type UINTN by interpreting the contents of
823 the Ascii string specified by String as a decimal number. The format of the
824 input Ascii string String is:
826 [spaces] [decimal digits].
828 The valid decimal digit character is in the range [0-9]. The function will
829 ignore the pad space, which includes spaces or tab characters, before
830 [decimal digits]. The running zero in the beginning of [decimal digits] will
831 be ignored. Then, the function stops at the first character that is a not a
832 valid decimal character or a Null-terminator, whichever one comes first.
834 If String is NULL, then ASSERT().
835 If Data is NULL, then ASSERT().
836 If PcdMaximumAsciiStringLength is not zero, and String contains more than
837 PcdMaximumAsciiStringLength Ascii characters, not including the
838 Null-terminator, then ASSERT().
840 If String has no valid decimal digits in the above format, then 0 is stored
841 at the location pointed to by Data.
842 If the number represented by String exceeds the range defined by UINTN, then
843 MAX_UINTN is stored at the location pointed to by Data.
845 If EndPointer is not NULL, a pointer to the character that stopped the scan
846 is stored at the location pointed to by EndPointer. If String has no valid
847 decimal digits right after the optional pad spaces, the value of String is
848 stored at the location pointed to by EndPointer.
850 @param String Pointer to a Null-terminated Ascii string.
851 @param EndPointer Pointer to character that stops scan.
852 @param Data Pointer to the converted value.
854 @retval RETURN_SUCCESS Value is translated from String.
855 @retval RETURN_INVALID_PARAMETER If String is NULL.
857 If PcdMaximumAsciiStringLength is not zero,
858 and String contains more than
859 PcdMaximumAsciiStringLength Ascii
860 characters, not including the
862 @retval RETURN_UNSUPPORTED If the number represented by String exceeds
863 the range defined by UINTN.
868 AsciiStrDecimalToUintnS (
869 IN CONST CHAR8
*String
,
870 OUT CHAR8
**EndPointer
, OPTIONAL
875 Convert a Null-terminated Ascii decimal string to a value of type UINT64.
877 This function outputs a value of type UINT64 by interpreting the contents of
878 the Ascii string specified by String as a decimal number. The format of the
879 input Ascii string String is:
881 [spaces] [decimal digits].
883 The valid decimal digit character is in the range [0-9]. The function will
884 ignore the pad space, which includes spaces or tab characters, before
885 [decimal digits]. The running zero in the beginning of [decimal digits] will
886 be ignored. Then, the function stops at the first character that is a not a
887 valid decimal character or a Null-terminator, whichever one comes first.
889 If String is NULL, then ASSERT().
890 If Data is NULL, then ASSERT().
891 If PcdMaximumAsciiStringLength is not zero, and String contains more than
892 PcdMaximumAsciiStringLength Ascii characters, not including the
893 Null-terminator, then ASSERT().
895 If String has no valid decimal digits in the above format, then 0 is stored
896 at the location pointed to by Data.
897 If the number represented by String exceeds the range defined by UINT64, then
898 MAX_UINT64 is stored at the location pointed to by Data.
900 If EndPointer is not NULL, a pointer to the character that stopped the scan
901 is stored at the location pointed to by EndPointer. If String has no valid
902 decimal digits right after the optional pad spaces, the value of String is
903 stored at the location pointed to by EndPointer.
905 @param String Pointer to a Null-terminated Ascii string.
906 @param EndPointer Pointer to character that stops scan.
907 @param Data Pointer to the converted value.
909 @retval RETURN_SUCCESS Value is translated from String.
910 @retval RETURN_INVALID_PARAMETER If String is NULL.
912 If PcdMaximumAsciiStringLength is not zero,
913 and String contains more than
914 PcdMaximumAsciiStringLength Ascii
915 characters, not including the
917 @retval RETURN_UNSUPPORTED If the number represented by String exceeds
918 the range defined by UINT64.
923 AsciiStrDecimalToUint64S (
924 IN CONST CHAR8
*String
,
925 OUT CHAR8
**EndPointer
, OPTIONAL
930 Convert a Null-terminated Ascii hexadecimal string to a value of type UINTN.
932 This function outputs a value of type UINTN by interpreting the contents of
933 the Ascii string specified by String as a hexadecimal number. The format of
934 the input Ascii string String is:
936 [spaces][zeros][x][hexadecimal digits].
938 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
939 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If
940 "x" appears in the input string, it must be prefixed with at least one 0. The
941 function will ignore the pad space, which includes spaces or tab characters,
942 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or
943 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or
944 the first valid hexadecimal digit. Then, the function stops at the first
945 character that is a not a valid hexadecimal character or Null-terminator,
946 whichever on comes first.
948 If String is NULL, then ASSERT().
949 If Data is NULL, then ASSERT().
950 If PcdMaximumAsciiStringLength is not zero, and String contains more than
951 PcdMaximumAsciiStringLength Ascii characters, not including the
952 Null-terminator, then ASSERT().
954 If String has no valid hexadecimal digits in the above format, then 0 is
955 stored at the location pointed to by Data.
956 If the number represented by String exceeds the range defined by UINTN, then
957 MAX_UINTN is stored at the location pointed to by Data.
959 If EndPointer is not NULL, a pointer to the character that stopped the scan
960 is stored at the location pointed to by EndPointer. If String has no valid
961 hexadecimal digits right after the optional pad spaces, the value of String
962 is stored at the location pointed to by EndPointer.
964 @param String Pointer to a Null-terminated Ascii string.
965 @param EndPointer Pointer to character that stops scan.
966 @param Data Pointer to the converted value.
968 @retval RETURN_SUCCESS Value is translated from String.
969 @retval RETURN_INVALID_PARAMETER If String is NULL.
971 If PcdMaximumAsciiStringLength is not zero,
972 and String contains more than
973 PcdMaximumAsciiStringLength Ascii
974 characters, not including the
976 @retval RETURN_UNSUPPORTED If the number represented by String exceeds
977 the range defined by UINTN.
982 AsciiStrHexToUintnS (
983 IN CONST CHAR8
*String
,
984 OUT CHAR8
**EndPointer
, OPTIONAL
989 Convert a Null-terminated Ascii hexadecimal string to a value of type UINT64.
991 This function outputs a value of type UINT64 by interpreting the contents of
992 the Ascii string specified by String as a hexadecimal number. The format of
993 the input Ascii string String is:
995 [spaces][zeros][x][hexadecimal digits].
997 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
998 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If
999 "x" appears in the input string, it must be prefixed with at least one 0. The
1000 function will ignore the pad space, which includes spaces or tab characters,
1001 before [zeros], [x] or [hexadecimal digits]. The running zero before [x] or
1002 [hexadecimal digits] will be ignored. Then, the decoding starts after [x] or
1003 the first valid hexadecimal digit. Then, the function stops at the first
1004 character that is a not a valid hexadecimal character or Null-terminator,
1005 whichever on comes first.
1007 If String is NULL, then ASSERT().
1008 If Data is NULL, then ASSERT().
1009 If PcdMaximumAsciiStringLength is not zero, and String contains more than
1010 PcdMaximumAsciiStringLength Ascii characters, not including the
1011 Null-terminator, then ASSERT().
1013 If String has no valid hexadecimal digits in the above format, then 0 is
1014 stored at the location pointed to by Data.
1015 If the number represented by String exceeds the range defined by UINT64, then
1016 MAX_UINT64 is stored at the location pointed to by Data.
1018 If EndPointer is not NULL, a pointer to the character that stopped the scan
1019 is stored at the location pointed to by EndPointer. If String has no valid
1020 hexadecimal digits right after the optional pad spaces, the value of String
1021 is stored at the location pointed to by EndPointer.
1023 @param String Pointer to a Null-terminated Ascii string.
1024 @param EndPointer Pointer to character that stops scan.
1025 @param Data Pointer to the converted value.
1027 @retval RETURN_SUCCESS Value is translated from String.
1028 @retval RETURN_INVALID_PARAMETER If String is NULL.
1030 If PcdMaximumAsciiStringLength is not zero,
1031 and String contains more than
1032 PcdMaximumAsciiStringLength Ascii
1033 characters, not including the
1035 @retval RETURN_UNSUPPORTED If the number represented by String exceeds
1036 the range defined by UINT64.
1041 AsciiStrHexToUint64S (
1042 IN CONST CHAR8
*String
,
1043 OUT CHAR8
**EndPointer
, OPTIONAL
1048 #ifndef DISABLE_NEW_DEPRECATED_INTERFACES
1051 [ATTENTION] This function is deprecated for security reason.
1053 Copies one Null-terminated Unicode string to another Null-terminated Unicode
1054 string and returns the new Unicode string.
1056 This function copies the contents of the Unicode string Source to the Unicode
1057 string Destination, and returns Destination. If Source and Destination
1058 overlap, then the results are undefined.
1060 If Destination is NULL, then ASSERT().
1061 If Destination is not aligned on a 16-bit boundary, then ASSERT().
1062 If Source is NULL, then ASSERT().
1063 If Source is not aligned on a 16-bit boundary, then ASSERT().
1064 If Source and Destination overlap, then ASSERT().
1065 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
1066 PcdMaximumUnicodeStringLength Unicode characters not including the
1067 Null-terminator, then ASSERT().
1069 @param Destination The pointer to a Null-terminated Unicode string.
1070 @param Source The pointer to a Null-terminated Unicode string.
1072 @return Destination.
1078 OUT CHAR16
*Destination
,
1079 IN CONST CHAR16
*Source
1084 [ATTENTION] This function is deprecated for security reason.
1086 Copies up to a specified length from one Null-terminated Unicode string to
1087 another Null-terminated Unicode string and returns the new Unicode string.
1089 This function copies the contents of the Unicode string Source to the Unicode
1090 string Destination, and returns Destination. At most, Length Unicode
1091 characters are copied from Source to Destination. If Length is 0, then
1092 Destination is returned unmodified. If Length is greater that the number of
1093 Unicode characters in Source, then Destination is padded with Null Unicode
1094 characters. If Source and Destination overlap, then the results are
1097 If Length > 0 and Destination is NULL, then ASSERT().
1098 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
1099 If Length > 0 and Source is NULL, then ASSERT().
1100 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().
1101 If Source and Destination overlap, then ASSERT().
1102 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than
1103 PcdMaximumUnicodeStringLength, then ASSERT().
1104 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
1105 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,
1108 @param Destination The pointer to a Null-terminated Unicode string.
1109 @param Source The pointer to a Null-terminated Unicode string.
1110 @param Length The maximum number of Unicode characters to copy.
1112 @return Destination.
1118 OUT CHAR16
*Destination
,
1119 IN CONST CHAR16
*Source
,
1122 #endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)
1125 Returns the length of a Null-terminated Unicode string.
1127 This function returns the number of Unicode characters in the Null-terminated
1128 Unicode string specified by String.
1130 If String is NULL, then ASSERT().
1131 If String is not aligned on a 16-bit boundary, then ASSERT().
1132 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
1133 PcdMaximumUnicodeStringLength Unicode characters not including the
1134 Null-terminator, then ASSERT().
1136 @param String Pointer to a Null-terminated Unicode string.
1138 @return The length of String.
1144 IN CONST CHAR16
*String
1149 Returns the size of a Null-terminated Unicode string in bytes, including the
1152 This function returns the size, in bytes, of the Null-terminated Unicode string
1153 specified by String.
1155 If String is NULL, then ASSERT().
1156 If String is not aligned on a 16-bit boundary, then ASSERT().
1157 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
1158 PcdMaximumUnicodeStringLength Unicode characters not including the
1159 Null-terminator, then ASSERT().
1161 @param String The pointer to a Null-terminated Unicode string.
1163 @return The size of String.
1169 IN CONST CHAR16
*String
1174 Compares two Null-terminated Unicode strings, and returns the difference
1175 between the first mismatched Unicode characters.
1177 This function compares the Null-terminated Unicode string FirstString to the
1178 Null-terminated Unicode string SecondString. If FirstString is identical to
1179 SecondString, then 0 is returned. Otherwise, the value returned is the first
1180 mismatched Unicode character in SecondString subtracted from the first
1181 mismatched Unicode character in FirstString.
1183 If FirstString is NULL, then ASSERT().
1184 If FirstString is not aligned on a 16-bit boundary, then ASSERT().
1185 If SecondString is NULL, then ASSERT().
1186 If SecondString is not aligned on a 16-bit boundary, then ASSERT().
1187 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more
1188 than PcdMaximumUnicodeStringLength Unicode characters not including the
1189 Null-terminator, then ASSERT().
1190 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more
1191 than PcdMaximumUnicodeStringLength Unicode characters, not including the
1192 Null-terminator, then ASSERT().
1194 @param FirstString The pointer to a Null-terminated Unicode string.
1195 @param SecondString The pointer to a Null-terminated Unicode string.
1197 @retval 0 FirstString is identical to SecondString.
1198 @return others FirstString is not identical to SecondString.
1204 IN CONST CHAR16
*FirstString
,
1205 IN CONST CHAR16
*SecondString
1210 Compares up to a specified length the contents of two Null-terminated Unicode strings,
1211 and returns the difference between the first mismatched Unicode characters.
1213 This function compares the Null-terminated Unicode string FirstString to the
1214 Null-terminated Unicode string SecondString. At most, Length Unicode
1215 characters will be compared. If Length is 0, then 0 is returned. If
1216 FirstString is identical to SecondString, then 0 is returned. Otherwise, the
1217 value returned is the first mismatched Unicode character in SecondString
1218 subtracted from the first mismatched Unicode character in FirstString.
1220 If Length > 0 and FirstString is NULL, then ASSERT().
1221 If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().
1222 If Length > 0 and SecondString is NULL, then ASSERT().
1223 If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().
1224 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than
1225 PcdMaximumUnicodeStringLength, then ASSERT().
1226 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than
1227 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,
1229 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than
1230 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,
1233 @param FirstString The pointer to a Null-terminated Unicode string.
1234 @param SecondString The pointer to a Null-terminated Unicode string.
1235 @param Length The maximum number of Unicode characters to compare.
1237 @retval 0 FirstString is identical to SecondString.
1238 @return others FirstString is not identical to SecondString.
1244 IN CONST CHAR16
*FirstString
,
1245 IN CONST CHAR16
*SecondString
,
1250 #ifndef DISABLE_NEW_DEPRECATED_INTERFACES
1253 [ATTENTION] This function is deprecated for security reason.
1255 Concatenates one Null-terminated Unicode string to another Null-terminated
1256 Unicode string, and returns the concatenated Unicode string.
1258 This function concatenates two Null-terminated Unicode strings. The contents
1259 of Null-terminated Unicode string Source are concatenated to the end of
1260 Null-terminated Unicode string Destination. The Null-terminated concatenated
1261 Unicode String is returned. If Source and Destination overlap, then the
1262 results are undefined.
1264 If Destination is NULL, then ASSERT().
1265 If Destination is not aligned on a 16-bit boundary, then ASSERT().
1266 If Source is NULL, then ASSERT().
1267 If Source is not aligned on a 16-bit boundary, then ASSERT().
1268 If Source and Destination overlap, then ASSERT().
1269 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
1270 than PcdMaximumUnicodeStringLength Unicode characters, not including the
1271 Null-terminator, then ASSERT().
1272 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
1273 PcdMaximumUnicodeStringLength Unicode characters, not including the
1274 Null-terminator, then ASSERT().
1275 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
1276 and Source results in a Unicode string with more than
1277 PcdMaximumUnicodeStringLength Unicode characters, not including the
1278 Null-terminator, then ASSERT().
1280 @param Destination The pointer to a Null-terminated Unicode string.
1281 @param Source The pointer to a Null-terminated Unicode string.
1283 @return Destination.
1289 IN OUT CHAR16
*Destination
,
1290 IN CONST CHAR16
*Source
1295 [ATTENTION] This function is deprecated for security reason.
1297 Concatenates up to a specified length one Null-terminated Unicode to the end
1298 of another Null-terminated Unicode string, and returns the concatenated
1301 This function concatenates two Null-terminated Unicode strings. The contents
1302 of Null-terminated Unicode string Source are concatenated to the end of
1303 Null-terminated Unicode string Destination, and Destination is returned. At
1304 most, Length Unicode characters are concatenated from Source to the end of
1305 Destination, and Destination is always Null-terminated. If Length is 0, then
1306 Destination is returned unmodified. If Source and Destination overlap, then
1307 the results are undefined.
1309 If Destination is NULL, then ASSERT().
1310 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
1311 If Length > 0 and Source is NULL, then ASSERT().
1312 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().
1313 If Source and Destination overlap, then ASSERT().
1314 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than
1315 PcdMaximumUnicodeStringLength, then ASSERT().
1316 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
1317 than PcdMaximumUnicodeStringLength Unicode characters, not including the
1318 Null-terminator, then ASSERT().
1319 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
1320 PcdMaximumUnicodeStringLength Unicode characters, not including the
1321 Null-terminator, then ASSERT().
1322 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
1323 and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength
1324 Unicode characters, not including the Null-terminator, then ASSERT().
1326 @param Destination The pointer to a Null-terminated Unicode string.
1327 @param Source The pointer to a Null-terminated Unicode string.
1328 @param Length The maximum number of Unicode characters to concatenate from
1331 @return Destination.
1337 IN OUT CHAR16
*Destination
,
1338 IN CONST CHAR16
*Source
,
1341 #endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)
1344 Returns the first occurrence of a Null-terminated Unicode sub-string
1345 in a Null-terminated Unicode string.
1347 This function scans the contents of the Null-terminated Unicode string
1348 specified by String and returns the first occurrence of SearchString.
1349 If SearchString is not found in String, then NULL is returned. If
1350 the length of SearchString is zero, then String is returned.
1352 If String is NULL, then ASSERT().
1353 If String is not aligned on a 16-bit boundary, then ASSERT().
1354 If SearchString is NULL, then ASSERT().
1355 If SearchString is not aligned on a 16-bit boundary, then ASSERT().
1357 If PcdMaximumUnicodeStringLength is not zero, and SearchString
1358 or String contains more than PcdMaximumUnicodeStringLength Unicode
1359 characters, not including the Null-terminator, then ASSERT().
1361 @param String The pointer to a Null-terminated Unicode string.
1362 @param SearchString The pointer to a Null-terminated Unicode string to search for.
1364 @retval NULL If the SearchString does not appear in String.
1365 @return others If there is a match.
1371 IN CONST CHAR16
*String
,
1372 IN CONST CHAR16
*SearchString
1376 Convert a Null-terminated Unicode decimal string to a value of
1379 This function returns a value of type UINTN by interpreting the contents
1380 of the Unicode string specified by String as a decimal number. The format
1381 of the input Unicode string String is:
1383 [spaces] [decimal digits].
1385 The valid decimal digit character is in the range [0-9]. The
1386 function will ignore the pad space, which includes spaces or
1387 tab characters, before [decimal digits]. The running zero in the
1388 beginning of [decimal digits] will be ignored. Then, the function
1389 stops at the first character that is a not a valid decimal character
1390 or a Null-terminator, whichever one comes first.
1392 If String is NULL, then ASSERT().
1393 If String is not aligned in a 16-bit boundary, then ASSERT().
1394 If String has only pad spaces, then 0 is returned.
1395 If String has no pad spaces or valid decimal digits,
1397 If the number represented by String overflows according
1398 to the range defined by UINTN, then MAX_UINTN is returned.
1400 If PcdMaximumUnicodeStringLength is not zero, and String contains
1401 more than PcdMaximumUnicodeStringLength Unicode characters not including
1402 the Null-terminator, then ASSERT().
1404 @param String The pointer to a Null-terminated Unicode string.
1406 @retval Value translated from String.
1412 IN CONST CHAR16
*String
1416 Convert a Null-terminated Unicode decimal string to a value of
1419 This function returns a value of type UINT64 by interpreting the contents
1420 of the Unicode string specified by String as a decimal number. The format
1421 of the input Unicode string String is:
1423 [spaces] [decimal digits].
1425 The valid decimal digit character is in the range [0-9]. The
1426 function will ignore the pad space, which includes spaces or
1427 tab characters, before [decimal digits]. The running zero in the
1428 beginning of [decimal digits] will be ignored. Then, the function
1429 stops at the first character that is a not a valid decimal character
1430 or a Null-terminator, whichever one comes first.
1432 If String is NULL, then ASSERT().
1433 If String is not aligned in a 16-bit boundary, then ASSERT().
1434 If String has only pad spaces, then 0 is returned.
1435 If String has no pad spaces or valid decimal digits,
1437 If the number represented by String overflows according
1438 to the range defined by UINT64, then MAX_UINT64 is returned.
1440 If PcdMaximumUnicodeStringLength is not zero, and String contains
1441 more than PcdMaximumUnicodeStringLength Unicode characters not including
1442 the Null-terminator, then ASSERT().
1444 @param String The pointer to a Null-terminated Unicode string.
1446 @retval Value translated from String.
1451 StrDecimalToUint64 (
1452 IN CONST CHAR16
*String
1457 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.
1459 This function returns a value of type UINTN by interpreting the contents
1460 of the Unicode string specified by String as a hexadecimal number.
1461 The format of the input Unicode string String is:
1463 [spaces][zeros][x][hexadecimal digits].
1465 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
1466 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
1467 If "x" appears in the input string, it must be prefixed with at least one 0.
1468 The function will ignore the pad space, which includes spaces or tab characters,
1469 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or
1470 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the
1471 first valid hexadecimal digit. Then, the function stops at the first character
1472 that is a not a valid hexadecimal character or NULL, whichever one comes first.
1474 If String is NULL, then ASSERT().
1475 If String is not aligned in a 16-bit boundary, then ASSERT().
1476 If String has only pad spaces, then zero is returned.
1477 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,
1478 then zero is returned.
1479 If the number represented by String overflows according to the range defined by
1480 UINTN, then MAX_UINTN is returned.
1482 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
1483 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,
1486 @param String The pointer to a Null-terminated Unicode string.
1488 @retval Value translated from String.
1494 IN CONST CHAR16
*String
1499 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.
1501 This function returns a value of type UINT64 by interpreting the contents
1502 of the Unicode string specified by String as a hexadecimal number.
1503 The format of the input Unicode string String is
1505 [spaces][zeros][x][hexadecimal digits].
1507 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
1508 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.
1509 If "x" appears in the input string, it must be prefixed with at least one 0.
1510 The function will ignore the pad space, which includes spaces or tab characters,
1511 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or
1512 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the
1513 first valid hexadecimal digit. Then, the function stops at the first character that is
1514 a not a valid hexadecimal character or NULL, whichever one comes first.
1516 If String is NULL, then ASSERT().
1517 If String is not aligned in a 16-bit boundary, then ASSERT().
1518 If String has only pad spaces, then zero is returned.
1519 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,
1520 then zero is returned.
1521 If the number represented by String overflows according to the range defined by
1522 UINT64, then MAX_UINT64 is returned.
1524 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
1525 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,
1528 @param String The pointer to a Null-terminated Unicode string.
1530 @retval Value translated from String.
1536 IN CONST CHAR16
*String
1540 Convert a Null-terminated Unicode string to IPv6 address and prefix length.
1542 This function outputs a value of type IPv6_ADDRESS and may output a value
1543 of type UINT8 by interpreting the contents of the Unicode string specified
1544 by String. The format of the input Unicode string String is as follows:
1548 X contains one to four hexadecimal digit characters in the range [0-9], [a-f] and
1549 [A-F]. X is converted to a value of type UINT16, whose low byte is stored in low
1550 memory address and high byte is stored in high memory address. P contains decimal
1551 digit characters in the range [0-9]. The running zero in the beginning of P will
1552 be ignored. /P is optional.
1554 When /P is not in the String, the function stops at the first character that is
1555 not a valid hexadecimal digit character after eight X's are converted.
1557 When /P is in the String, the function stops at the first character that is not
1558 a valid decimal digit character after P is converted.
1560 "::" can be used to compress one or more groups of X when X contains only 0.
1561 The "::" can only appear once in the String.
1563 If String is NULL, then ASSERT().
1565 If Address is NULL, then ASSERT().
1567 If String is not aligned in a 16-bit boundary, then ASSERT().
1569 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
1570 PcdMaximumUnicodeStringLength Unicode characters, not including the
1571 Null-terminator, then ASSERT().
1573 If EndPointer is not NULL and Address is translated from String, a pointer
1574 to the character that stopped the scan is stored at the location pointed to
1577 @param String Pointer to a Null-terminated Unicode string.
1578 @param EndPointer Pointer to character that stops scan.
1579 @param Address Pointer to the converted IPv6 address.
1580 @param PrefixLength Pointer to the converted IPv6 address prefix
1581 length. MAX_UINT8 is returned when /P is
1584 @retval RETURN_SUCCESS Address is translated from String.
1585 @retval RETURN_INVALID_PARAMETER If String is NULL.
1587 @retval RETURN_UNSUPPORTED If X contains more than four hexadecimal
1589 If String contains "::" and number of X
1591 If P starts with character that is not a
1592 valid decimal digit character.
1593 If the decimal number converted from P
1600 IN CONST CHAR16
*String
,
1601 OUT CHAR16
**EndPointer
, OPTIONAL
1602 OUT IPv6_ADDRESS
*Address
,
1603 OUT UINT8
*PrefixLength OPTIONAL
1607 Convert a Null-terminated Unicode string to IPv4 address and prefix length.
1609 This function outputs a value of type IPv4_ADDRESS and may output a value
1610 of type UINT8 by interpreting the contents of the Unicode string specified
1611 by String. The format of the input Unicode string String is as follows:
1615 D and P are decimal digit characters in the range [0-9]. The running zero in
1616 the beginning of D and P will be ignored. /P is optional.
1618 When /P is not in the String, the function stops at the first character that is
1619 not a valid decimal digit character after four D's are converted.
1621 When /P is in the String, the function stops at the first character that is not
1622 a valid decimal digit character after P is converted.
1624 If String is NULL, then ASSERT().
1626 If Address is NULL, then ASSERT().
1628 If String is not aligned in a 16-bit boundary, then ASSERT().
1630 If PcdMaximumUnicodeStringLength is not zero, and String contains more than
1631 PcdMaximumUnicodeStringLength Unicode characters, not including the
1632 Null-terminator, then ASSERT().
1634 If EndPointer is not NULL and Address is translated from String, a pointer
1635 to the character that stopped the scan is stored at the location pointed to
1638 @param String Pointer to a Null-terminated Unicode string.
1639 @param EndPointer Pointer to character that stops scan.
1640 @param Address Pointer to the converted IPv4 address.
1641 @param PrefixLength Pointer to the converted IPv4 address prefix
1642 length. MAX_UINT8 is returned when /P is
1645 @retval RETURN_SUCCESS Address is translated from String.
1646 @retval RETURN_INVALID_PARAMETER If String is NULL.
1648 @retval RETURN_UNSUPPORTED If String is not in the correct format.
1649 If any decimal number converted from D
1651 If the decimal number converted from P
1658 IN CONST CHAR16
*String
,
1659 OUT CHAR16
**EndPointer
, OPTIONAL
1660 OUT IPv4_ADDRESS
*Address
,
1661 OUT UINT8
*PrefixLength OPTIONAL
1664 #define GUID_STRING_LENGTH 36
1667 Convert a Null-terminated Unicode GUID string to a value of type
1670 This function outputs a GUID value by interpreting the contents of
1671 the Unicode string specified by String. The format of the input
1672 Unicode string String consists of 36 characters, as follows:
1674 aabbccdd-eeff-gghh-iijj-kkllmmnnoopp
1676 The pairs aa - pp are two characters in the range [0-9], [a-f] and
1677 [A-F], with each pair representing a single byte hexadecimal value.
1679 The mapping between String and the EFI_GUID structure is as follows:
1697 If String is NULL, then ASSERT().
1698 If Guid is NULL, then ASSERT().
1699 If String is not aligned in a 16-bit boundary, then ASSERT().
1701 @param String Pointer to a Null-terminated Unicode string.
1702 @param Guid Pointer to the converted GUID.
1704 @retval RETURN_SUCCESS Guid is translated from String.
1705 @retval RETURN_INVALID_PARAMETER If String is NULL.
1707 @retval RETURN_UNSUPPORTED If String is not as the above format.
1713 IN CONST CHAR16
*String
,
1718 Convert a Null-terminated Unicode hexadecimal string to a byte array.
1720 This function outputs a byte array by interpreting the contents of
1721 the Unicode string specified by String in hexadecimal format. The format of
1722 the input Unicode string String is:
1726 X is a hexadecimal digit character in the range [0-9], [a-f] and [A-F].
1727 The function decodes every two hexadecimal digit characters as one byte. The
1728 decoding stops after Length of characters and outputs Buffer containing
1731 If String is not aligned in a 16-bit boundary, then ASSERT().
1733 If String is NULL, then ASSERT().
1735 If Buffer is NULL, then ASSERT().
1737 If Length is not multiple of 2, then ASSERT().
1739 If PcdMaximumUnicodeStringLength is not zero and Length is greater than
1740 PcdMaximumUnicodeStringLength, then ASSERT().
1742 If MaxBufferSize is less than (Length / 2), then ASSERT().
1744 @param String Pointer to a Null-terminated Unicode string.
1745 @param Length The number of Unicode characters to decode.
1746 @param Buffer Pointer to the converted bytes array.
1747 @param MaxBufferSize The maximum size of Buffer.
1749 @retval RETURN_SUCCESS Buffer is translated from String.
1750 @retval RETURN_INVALID_PARAMETER If String is NULL.
1752 If Length is not multiple of 2.
1753 If PcdMaximumUnicodeStringLength is not zero,
1754 and Length is greater than
1755 PcdMaximumUnicodeStringLength.
1756 @retval RETURN_UNSUPPORTED If Length of characters from String contain
1757 a character that is not valid hexadecimal
1758 digit characters, or a Null-terminator.
1759 @retval RETURN_BUFFER_TOO_SMALL If MaxBufferSize is less than (Length / 2).
1764 IN CONST CHAR16
*String
,
1767 IN UINTN MaxBufferSize
1770 #ifndef DISABLE_NEW_DEPRECATED_INTERFACES
1773 [ATTENTION] This function is deprecated for security reason.
1775 Convert a Null-terminated Unicode string to a Null-terminated
1776 ASCII string and returns the ASCII string.
1778 This function converts the content of the Unicode string Source
1779 to the ASCII string Destination by copying the lower 8 bits of
1780 each Unicode character. It returns Destination.
1782 The caller is responsible to make sure Destination points to a buffer with size
1783 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.
1785 If any Unicode characters in Source contain non-zero value in
1786 the upper 8 bits, then ASSERT().
1788 If Destination is NULL, then ASSERT().
1789 If Source is NULL, then ASSERT().
1790 If Source is not aligned on a 16-bit boundary, then ASSERT().
1791 If Source and Destination overlap, then ASSERT().
1793 If PcdMaximumUnicodeStringLength is not zero, and Source contains
1794 more than PcdMaximumUnicodeStringLength Unicode characters not including
1795 the Null-terminator, then ASSERT().
1797 If PcdMaximumAsciiStringLength is not zero, and Source contains more
1798 than PcdMaximumAsciiStringLength Unicode characters not including the
1799 Null-terminator, then ASSERT().
1801 @param Source The pointer to a Null-terminated Unicode string.
1802 @param Destination The pointer to a Null-terminated ASCII string.
1804 @return Destination.
1809 UnicodeStrToAsciiStr (
1810 IN CONST CHAR16
*Source
,
1811 OUT CHAR8
*Destination
1814 #endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)
1817 Convert a Null-terminated Unicode string to a Null-terminated
1820 This function is similar to AsciiStrCpyS.
1822 This function converts the content of the Unicode string Source
1823 to the ASCII string Destination by copying the lower 8 bits of
1824 each Unicode character. The function terminates the ASCII string
1825 Destination by appending a Null-terminator character at the end.
1827 The caller is responsible to make sure Destination points to a buffer with size
1828 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.
1830 If any Unicode characters in Source contain non-zero value in
1831 the upper 8 bits, then ASSERT().
1833 If Source is not aligned on a 16-bit boundary, then ASSERT().
1834 If an error would be returned, then the function will also ASSERT().
1836 If an error is returned, then the Destination is unmodified.
1838 @param Source The pointer to a Null-terminated Unicode string.
1839 @param Destination The pointer to a Null-terminated ASCII string.
1840 @param DestMax The maximum number of Destination Ascii
1841 char, including terminating null char.
1843 @retval RETURN_SUCCESS String is converted.
1844 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).
1845 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
1847 If PcdMaximumAsciiStringLength is not zero,
1848 and DestMax is greater than
1849 PcdMaximumAsciiStringLength.
1850 If PcdMaximumUnicodeStringLength is not zero,
1851 and DestMax is greater than
1852 PcdMaximumUnicodeStringLength.
1854 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
1859 UnicodeStrToAsciiStrS (
1860 IN CONST CHAR16
*Source
,
1861 OUT CHAR8
*Destination
,
1866 Convert not more than Length successive characters from a Null-terminated
1867 Unicode string to a Null-terminated Ascii string. If no null char is copied
1868 from Source, then Destination[Length] is always set to null.
1870 This function converts not more than Length successive characters from the
1871 Unicode string Source to the Ascii string Destination by copying the lower 8
1872 bits of each Unicode character. The function terminates the Ascii string
1873 Destination by appending a Null-terminator character at the end.
1875 The caller is responsible to make sure Destination points to a buffer with size
1876 equal or greater than ((StrLen (Source) + 1) * sizeof (CHAR8)) in bytes.
1878 If any Unicode characters in Source contain non-zero value in the upper 8
1879 bits, then ASSERT().
1880 If Source is not aligned on a 16-bit boundary, then ASSERT().
1881 If an error would be returned, then the function will also ASSERT().
1883 If an error is returned, then the Destination is unmodified.
1885 @param Source The pointer to a Null-terminated Unicode string.
1886 @param Length The maximum number of Unicode characters to
1888 @param Destination The pointer to a Null-terminated Ascii string.
1889 @param DestMax The maximum number of Destination Ascii
1890 char, including terminating null char.
1891 @param DestinationLength The number of Unicode characters converted.
1893 @retval RETURN_SUCCESS String is converted.
1894 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
1896 If DestinationLength is NULL.
1897 If PcdMaximumAsciiStringLength is not zero,
1898 and Length or DestMax is greater than
1899 PcdMaximumAsciiStringLength.
1900 If PcdMaximumUnicodeStringLength is not
1901 zero, and Length or DestMax is greater than
1902 PcdMaximumUnicodeStringLength.
1904 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than
1905 MIN(StrLen(Source), Length).
1906 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
1911 UnicodeStrnToAsciiStrS (
1912 IN CONST CHAR16
*Source
,
1914 OUT CHAR8
*Destination
,
1916 OUT UINTN
*DestinationLength
1919 #ifndef DISABLE_NEW_DEPRECATED_INTERFACES
1922 [ATTENTION] This function is deprecated for security reason.
1924 Copies one Null-terminated ASCII string to another Null-terminated ASCII
1925 string and returns the new ASCII string.
1927 This function copies the contents of the ASCII string Source to the ASCII
1928 string Destination, and returns Destination. If Source and Destination
1929 overlap, then the results are undefined.
1931 If Destination is NULL, then ASSERT().
1932 If Source is NULL, then ASSERT().
1933 If Source and Destination overlap, then ASSERT().
1934 If PcdMaximumAsciiStringLength is not zero and Source contains more than
1935 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
1938 @param Destination The pointer to a Null-terminated ASCII string.
1939 @param Source The pointer to a Null-terminated ASCII string.
1947 OUT CHAR8
*Destination
,
1948 IN CONST CHAR8
*Source
1953 [ATTENTION] This function is deprecated for security reason.
1955 Copies up to a specified length one Null-terminated ASCII string to another
1956 Null-terminated ASCII string and returns the new ASCII string.
1958 This function copies the contents of the ASCII string Source to the ASCII
1959 string Destination, and returns Destination. At most, Length ASCII characters
1960 are copied from Source to Destination. If Length is 0, then Destination is
1961 returned unmodified. If Length is greater that the number of ASCII characters
1962 in Source, then Destination is padded with Null ASCII characters. If Source
1963 and Destination overlap, then the results are undefined.
1965 If Destination is NULL, then ASSERT().
1966 If Source is NULL, then ASSERT().
1967 If Source and Destination overlap, then ASSERT().
1968 If PcdMaximumAsciiStringLength is not zero, and Length is greater than
1969 PcdMaximumAsciiStringLength, then ASSERT().
1970 If PcdMaximumAsciiStringLength is not zero, and Source contains more than
1971 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,
1974 @param Destination The pointer to a Null-terminated ASCII string.
1975 @param Source The pointer to a Null-terminated ASCII string.
1976 @param Length The maximum number of ASCII characters to copy.
1984 OUT CHAR8
*Destination
,
1985 IN CONST CHAR8
*Source
,
1988 #endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)
1991 Returns the length of a Null-terminated ASCII string.
1993 This function returns the number of ASCII characters in the Null-terminated
1994 ASCII string specified by String.
1996 If Length > 0 and Destination is NULL, then ASSERT().
1997 If Length > 0 and Source is NULL, then ASSERT().
1998 If PcdMaximumAsciiStringLength is not zero and String contains more than
1999 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
2002 @param String The pointer to a Null-terminated ASCII string.
2004 @return The length of String.
2010 IN CONST CHAR8
*String
2015 Returns the size of a Null-terminated ASCII string in bytes, including the
2018 This function returns the size, in bytes, of the Null-terminated ASCII string
2019 specified by String.
2021 If String is NULL, then ASSERT().
2022 If PcdMaximumAsciiStringLength is not zero and String contains more than
2023 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
2026 @param String The pointer to a Null-terminated ASCII string.
2028 @return The size of String.
2034 IN CONST CHAR8
*String
2039 Compares two Null-terminated ASCII strings, and returns the difference
2040 between the first mismatched ASCII characters.
2042 This function compares the Null-terminated ASCII string FirstString to the
2043 Null-terminated ASCII string SecondString. If FirstString is identical to
2044 SecondString, then 0 is returned. Otherwise, the value returned is the first
2045 mismatched ASCII character in SecondString subtracted from the first
2046 mismatched ASCII character in FirstString.
2048 If FirstString is NULL, then ASSERT().
2049 If SecondString is NULL, then ASSERT().
2050 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
2051 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
2053 If PcdMaximumAsciiStringLength is not zero and SecondString contains more
2054 than PcdMaximumAsciiStringLength ASCII characters not including the
2055 Null-terminator, then ASSERT().
2057 @param FirstString The pointer to a Null-terminated ASCII string.
2058 @param SecondString The pointer to a Null-terminated ASCII string.
2060 @retval ==0 FirstString is identical to SecondString.
2061 @retval !=0 FirstString is not identical to SecondString.
2067 IN CONST CHAR8
*FirstString
,
2068 IN CONST CHAR8
*SecondString
2073 Performs a case insensitive comparison of two Null-terminated ASCII strings,
2074 and returns the difference between the first mismatched ASCII characters.
2076 This function performs a case insensitive comparison of the Null-terminated
2077 ASCII string FirstString to the Null-terminated ASCII string SecondString. If
2078 FirstString is identical to SecondString, then 0 is returned. Otherwise, the
2079 value returned is the first mismatched lower case ASCII character in
2080 SecondString subtracted from the first mismatched lower case ASCII character
2083 If FirstString is NULL, then ASSERT().
2084 If SecondString is NULL, then ASSERT().
2085 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than
2086 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
2088 If PcdMaximumAsciiStringLength is not zero and SecondString contains more
2089 than PcdMaximumAsciiStringLength ASCII characters not including the
2090 Null-terminator, then ASSERT().
2092 @param FirstString The pointer to a Null-terminated ASCII string.
2093 @param SecondString The pointer to a Null-terminated ASCII string.
2095 @retval ==0 FirstString is identical to SecondString using case insensitive
2097 @retval !=0 FirstString is not identical to SecondString using case
2098 insensitive comparisons.
2104 IN CONST CHAR8
*FirstString
,
2105 IN CONST CHAR8
*SecondString
2110 Compares two Null-terminated ASCII strings with maximum lengths, and returns
2111 the difference between the first mismatched ASCII characters.
2113 This function compares the Null-terminated ASCII string FirstString to the
2114 Null-terminated ASCII string SecondString. At most, Length ASCII characters
2115 will be compared. If Length is 0, then 0 is returned. If FirstString is
2116 identical to SecondString, then 0 is returned. Otherwise, the value returned
2117 is the first mismatched ASCII character in SecondString subtracted from the
2118 first mismatched ASCII character in FirstString.
2120 If Length > 0 and FirstString is NULL, then ASSERT().
2121 If Length > 0 and SecondString is NULL, then ASSERT().
2122 If PcdMaximumAsciiStringLength is not zero, and Length is greater than
2123 PcdMaximumAsciiStringLength, then ASSERT().
2124 If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than
2125 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,
2127 If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than
2128 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,
2131 @param FirstString The pointer to a Null-terminated ASCII string.
2132 @param SecondString The pointer to a Null-terminated ASCII string.
2133 @param Length The maximum number of ASCII characters for compare.
2135 @retval ==0 FirstString is identical to SecondString.
2136 @retval !=0 FirstString is not identical to SecondString.
2142 IN CONST CHAR8
*FirstString
,
2143 IN CONST CHAR8
*SecondString
,
2148 #ifndef DISABLE_NEW_DEPRECATED_INTERFACES
2151 [ATTENTION] This function is deprecated for security reason.
2153 Concatenates one Null-terminated ASCII string to another Null-terminated
2154 ASCII string, and returns the concatenated ASCII string.
2156 This function concatenates two Null-terminated ASCII strings. The contents of
2157 Null-terminated ASCII string Source are concatenated to the end of Null-
2158 terminated ASCII string Destination. The Null-terminated concatenated ASCII
2161 If Destination is NULL, then ASSERT().
2162 If Source is NULL, then ASSERT().
2163 If PcdMaximumAsciiStringLength is not zero and Destination contains more than
2164 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
2166 If PcdMaximumAsciiStringLength is not zero and Source contains more than
2167 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
2169 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and
2170 Source results in a ASCII string with more than PcdMaximumAsciiStringLength
2171 ASCII characters, then ASSERT().
2173 @param Destination The pointer to a Null-terminated ASCII string.
2174 @param Source The pointer to a Null-terminated ASCII string.
2182 IN OUT CHAR8
*Destination
,
2183 IN CONST CHAR8
*Source
2188 [ATTENTION] This function is deprecated for security reason.
2190 Concatenates up to a specified length one Null-terminated ASCII string to
2191 the end of another Null-terminated ASCII string, and returns the
2192 concatenated ASCII string.
2194 This function concatenates two Null-terminated ASCII strings. The contents
2195 of Null-terminated ASCII string Source are concatenated to the end of Null-
2196 terminated ASCII string Destination, and Destination is returned. At most,
2197 Length ASCII characters are concatenated from Source to the end of
2198 Destination, and Destination is always Null-terminated. If Length is 0, then
2199 Destination is returned unmodified. If Source and Destination overlap, then
2200 the results are undefined.
2202 If Length > 0 and Destination is NULL, then ASSERT().
2203 If Length > 0 and Source is NULL, then ASSERT().
2204 If Source and Destination overlap, then ASSERT().
2205 If PcdMaximumAsciiStringLength is not zero, and Length is greater than
2206 PcdMaximumAsciiStringLength, then ASSERT().
2207 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than
2208 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,
2210 If PcdMaximumAsciiStringLength is not zero, and Source contains more than
2211 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,
2213 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and
2214 Source results in a ASCII string with more than PcdMaximumAsciiStringLength
2215 ASCII characters, not including the Null-terminator, then ASSERT().
2217 @param Destination The pointer to a Null-terminated ASCII string.
2218 @param Source The pointer to a Null-terminated ASCII string.
2219 @param Length The maximum number of ASCII characters to concatenate from
2228 IN OUT CHAR8
*Destination
,
2229 IN CONST CHAR8
*Source
,
2232 #endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)
2235 Returns the first occurrence of a Null-terminated ASCII sub-string
2236 in a Null-terminated ASCII string.
2238 This function scans the contents of the ASCII string specified by String
2239 and returns the first occurrence of SearchString. If SearchString is not
2240 found in String, then NULL is returned. If the length of SearchString is zero,
2241 then String is returned.
2243 If String is NULL, then ASSERT().
2244 If SearchString is NULL, then ASSERT().
2246 If PcdMaximumAsciiStringLength is not zero, and SearchString or
2247 String contains more than PcdMaximumAsciiStringLength Unicode characters
2248 not including the Null-terminator, then ASSERT().
2250 @param String The pointer to a Null-terminated ASCII string.
2251 @param SearchString The pointer to a Null-terminated ASCII string to search for.
2253 @retval NULL If the SearchString does not appear in String.
2254 @retval others If there is a match return the first occurrence of SearchingString.
2255 If the length of SearchString is zero,return String.
2261 IN CONST CHAR8
*String
,
2262 IN CONST CHAR8
*SearchString
2267 Convert a Null-terminated ASCII decimal string to a value of type
2270 This function returns a value of type UINTN by interpreting the contents
2271 of the ASCII string String as a decimal number. The format of the input
2272 ASCII string String is:
2274 [spaces] [decimal digits].
2276 The valid decimal digit character is in the range [0-9]. The function will
2277 ignore the pad space, which includes spaces or tab characters, before the digits.
2278 The running zero in the beginning of [decimal digits] will be ignored. Then, the
2279 function stops at the first character that is a not a valid decimal character or
2280 Null-terminator, whichever on comes first.
2282 If String has only pad spaces, then 0 is returned.
2283 If String has no pad spaces or valid decimal digits, then 0 is returned.
2284 If the number represented by String overflows according to the range defined by
2285 UINTN, then MAX_UINTN is returned.
2286 If String is NULL, then ASSERT().
2287 If PcdMaximumAsciiStringLength is not zero, and String contains more than
2288 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
2291 @param String The pointer to a Null-terminated ASCII string.
2293 @retval The value translated from String.
2298 AsciiStrDecimalToUintn (
2299 IN CONST CHAR8
*String
2304 Convert a Null-terminated ASCII decimal string to a value of type
2307 This function returns a value of type UINT64 by interpreting the contents
2308 of the ASCII string String as a decimal number. The format of the input
2309 ASCII string String is:
2311 [spaces] [decimal digits].
2313 The valid decimal digit character is in the range [0-9]. The function will
2314 ignore the pad space, which includes spaces or tab characters, before the digits.
2315 The running zero in the beginning of [decimal digits] will be ignored. Then, the
2316 function stops at the first character that is a not a valid decimal character or
2317 Null-terminator, whichever on comes first.
2319 If String has only pad spaces, then 0 is returned.
2320 If String has no pad spaces or valid decimal digits, then 0 is returned.
2321 If the number represented by String overflows according to the range defined by
2322 UINT64, then MAX_UINT64 is returned.
2323 If String is NULL, then ASSERT().
2324 If PcdMaximumAsciiStringLength is not zero, and String contains more than
2325 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
2328 @param String The pointer to a Null-terminated ASCII string.
2330 @retval Value translated from String.
2335 AsciiStrDecimalToUint64 (
2336 IN CONST CHAR8
*String
2341 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.
2343 This function returns a value of type UINTN by interpreting the contents of
2344 the ASCII string String as a hexadecimal number. The format of the input ASCII
2347 [spaces][zeros][x][hexadecimal digits].
2349 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
2350 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"
2351 appears in the input string, it must be prefixed with at least one 0. The function
2352 will ignore the pad space, which includes spaces or tab characters, before [zeros],
2353 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]
2354 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal
2355 digit. Then, the function stops at the first character that is a not a valid
2356 hexadecimal character or Null-terminator, whichever on comes first.
2358 If String has only pad spaces, then 0 is returned.
2359 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then
2362 If the number represented by String overflows according to the range defined by UINTN,
2363 then MAX_UINTN is returned.
2364 If String is NULL, then ASSERT().
2365 If PcdMaximumAsciiStringLength is not zero,
2366 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including
2367 the Null-terminator, then ASSERT().
2369 @param String The pointer to a Null-terminated ASCII string.
2371 @retval Value translated from String.
2376 AsciiStrHexToUintn (
2377 IN CONST CHAR8
*String
2382 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.
2384 This function returns a value of type UINT64 by interpreting the contents of
2385 the ASCII string String as a hexadecimal number. The format of the input ASCII
2388 [spaces][zeros][x][hexadecimal digits].
2390 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].
2391 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"
2392 appears in the input string, it must be prefixed with at least one 0. The function
2393 will ignore the pad space, which includes spaces or tab characters, before [zeros],
2394 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]
2395 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal
2396 digit. Then, the function stops at the first character that is a not a valid
2397 hexadecimal character or Null-terminator, whichever on comes first.
2399 If String has only pad spaces, then 0 is returned.
2400 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then
2403 If the number represented by String overflows according to the range defined by UINT64,
2404 then MAX_UINT64 is returned.
2405 If String is NULL, then ASSERT().
2406 If PcdMaximumAsciiStringLength is not zero,
2407 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including
2408 the Null-terminator, then ASSERT().
2410 @param String The pointer to a Null-terminated ASCII string.
2412 @retval Value translated from String.
2417 AsciiStrHexToUint64 (
2418 IN CONST CHAR8
*String
2422 Convert a Null-terminated ASCII string to IPv6 address and prefix length.
2424 This function outputs a value of type IPv6_ADDRESS and may output a value
2425 of type UINT8 by interpreting the contents of the ASCII string specified
2426 by String. The format of the input ASCII string String is as follows:
2430 X contains one to four hexadecimal digit characters in the range [0-9], [a-f] and
2431 [A-F]. X is converted to a value of type UINT16, whose low byte is stored in low
2432 memory address and high byte is stored in high memory address. P contains decimal
2433 digit characters in the range [0-9]. The running zero in the beginning of P will
2434 be ignored. /P is optional.
2436 When /P is not in the String, the function stops at the first character that is
2437 not a valid hexadecimal digit character after eight X's are converted.
2439 When /P is in the String, the function stops at the first character that is not
2440 a valid decimal digit character after P is converted.
2442 "::" can be used to compress one or more groups of X when X contains only 0.
2443 The "::" can only appear once in the String.
2445 If String is NULL, then ASSERT().
2447 If Address is NULL, then ASSERT().
2449 If EndPointer is not NULL and Address is translated from String, a pointer
2450 to the character that stopped the scan is stored at the location pointed to
2453 @param String Pointer to a Null-terminated ASCII string.
2454 @param EndPointer Pointer to character that stops scan.
2455 @param Address Pointer to the converted IPv6 address.
2456 @param PrefixLength Pointer to the converted IPv6 address prefix
2457 length. MAX_UINT8 is returned when /P is
2460 @retval RETURN_SUCCESS Address is translated from String.
2461 @retval RETURN_INVALID_PARAMETER If String is NULL.
2463 @retval RETURN_UNSUPPORTED If X contains more than four hexadecimal
2465 If String contains "::" and number of X
2467 If P starts with character that is not a
2468 valid decimal digit character.
2469 If the decimal number converted from P
2475 AsciiStrToIpv6Address (
2476 IN CONST CHAR8
*String
,
2477 OUT CHAR8
**EndPointer
, OPTIONAL
2478 OUT IPv6_ADDRESS
*Address
,
2479 OUT UINT8
*PrefixLength OPTIONAL
2483 Convert a Null-terminated ASCII string to IPv4 address and prefix length.
2485 This function outputs a value of type IPv4_ADDRESS and may output a value
2486 of type UINT8 by interpreting the contents of the ASCII string specified
2487 by String. The format of the input ASCII string String is as follows:
2491 D and P are decimal digit characters in the range [0-9]. The running zero in
2492 the beginning of D and P will be ignored. /P is optional.
2494 When /P is not in the String, the function stops at the first character that is
2495 not a valid decimal digit character after four D's are converted.
2497 When /P is in the String, the function stops at the first character that is not
2498 a valid decimal digit character after P is converted.
2500 If String is NULL, then ASSERT().
2502 If Address is NULL, then ASSERT().
2504 If EndPointer is not NULL and Address is translated from String, a pointer
2505 to the character that stopped the scan is stored at the location pointed to
2508 @param String Pointer to a Null-terminated ASCII string.
2509 @param EndPointer Pointer to character that stops scan.
2510 @param Address Pointer to the converted IPv4 address.
2511 @param PrefixLength Pointer to the converted IPv4 address prefix
2512 length. MAX_UINT8 is returned when /P is
2515 @retval RETURN_SUCCESS Address is translated from String.
2516 @retval RETURN_INVALID_PARAMETER If String is NULL.
2518 @retval RETURN_UNSUPPORTED If String is not in the correct format.
2519 If any decimal number converted from D
2521 If the decimal number converted from P
2527 AsciiStrToIpv4Address (
2528 IN CONST CHAR8
*String
,
2529 OUT CHAR8
**EndPointer
, OPTIONAL
2530 OUT IPv4_ADDRESS
*Address
,
2531 OUT UINT8
*PrefixLength OPTIONAL
2535 Convert a Null-terminated ASCII GUID string to a value of type
2538 This function outputs a GUID value by interpreting the contents of
2539 the ASCII string specified by String. The format of the input
2540 ASCII string String consists of 36 characters, as follows:
2542 aabbccdd-eeff-gghh-iijj-kkllmmnnoopp
2544 The pairs aa - pp are two characters in the range [0-9], [a-f] and
2545 [A-F], with each pair representing a single byte hexadecimal value.
2547 The mapping between String and the EFI_GUID structure is as follows:
2565 If String is NULL, then ASSERT().
2566 If Guid is NULL, then ASSERT().
2568 @param String Pointer to a Null-terminated ASCII string.
2569 @param Guid Pointer to the converted GUID.
2571 @retval RETURN_SUCCESS Guid is translated from String.
2572 @retval RETURN_INVALID_PARAMETER If String is NULL.
2574 @retval RETURN_UNSUPPORTED If String is not as the above format.
2580 IN CONST CHAR8
*String
,
2585 Convert a Null-terminated ASCII hexadecimal string to a byte array.
2587 This function outputs a byte array by interpreting the contents of
2588 the ASCII string specified by String in hexadecimal format. The format of
2589 the input ASCII string String is:
2593 X is a hexadecimal digit character in the range [0-9], [a-f] and [A-F].
2594 The function decodes every two hexadecimal digit characters as one byte. The
2595 decoding stops after Length of characters and outputs Buffer containing
2598 If String is NULL, then ASSERT().
2600 If Buffer is NULL, then ASSERT().
2602 If Length is not multiple of 2, then ASSERT().
2604 If PcdMaximumAsciiStringLength is not zero and Length is greater than
2605 PcdMaximumAsciiStringLength, then ASSERT().
2607 If MaxBufferSize is less than (Length / 2), then ASSERT().
2609 @param String Pointer to a Null-terminated ASCII string.
2610 @param Length The number of ASCII characters to decode.
2611 @param Buffer Pointer to the converted bytes array.
2612 @param MaxBufferSize The maximum size of Buffer.
2614 @retval RETURN_SUCCESS Buffer is translated from String.
2615 @retval RETURN_INVALID_PARAMETER If String is NULL.
2617 If Length is not multiple of 2.
2618 If PcdMaximumAsciiStringLength is not zero,
2619 and Length is greater than
2620 PcdMaximumAsciiStringLength.
2621 @retval RETURN_UNSUPPORTED If Length of characters from String contain
2622 a character that is not valid hexadecimal
2623 digit characters, or a Null-terminator.
2624 @retval RETURN_BUFFER_TOO_SMALL If MaxBufferSize is less than (Length / 2).
2628 AsciiStrHexToBytes (
2629 IN CONST CHAR8
*String
,
2632 IN UINTN MaxBufferSize
2635 #ifndef DISABLE_NEW_DEPRECATED_INTERFACES
2638 [ATTENTION] This function is deprecated for security reason.
2640 Convert one Null-terminated ASCII string to a Null-terminated
2641 Unicode string and returns the Unicode string.
2643 This function converts the contents of the ASCII string Source to the Unicode
2644 string Destination, and returns Destination. The function terminates the
2645 Unicode string Destination by appending a Null-terminator character at the end.
2646 The caller is responsible to make sure Destination points to a buffer with size
2647 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.
2649 If Destination is NULL, then ASSERT().
2650 If Destination is not aligned on a 16-bit boundary, then ASSERT().
2651 If Source is NULL, then ASSERT().
2652 If Source and Destination overlap, then ASSERT().
2653 If PcdMaximumAsciiStringLength is not zero, and Source contains more than
2654 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,
2656 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
2657 PcdMaximumUnicodeStringLength ASCII characters not including the
2658 Null-terminator, then ASSERT().
2660 @param Source The pointer to a Null-terminated ASCII string.
2661 @param Destination The pointer to a Null-terminated Unicode string.
2663 @return Destination.
2668 AsciiStrToUnicodeStr (
2669 IN CONST CHAR8
*Source
,
2670 OUT CHAR16
*Destination
2673 #endif // !defined (DISABLE_NEW_DEPRECATED_INTERFACES)
2676 Convert one Null-terminated ASCII string to a Null-terminated
2679 This function is similar to StrCpyS.
2681 This function converts the contents of the ASCII string Source to the Unicode
2682 string Destination. The function terminates the Unicode string Destination by
2683 appending a Null-terminator character at the end.
2685 The caller is responsible to make sure Destination points to a buffer with size
2686 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.
2688 If Destination is not aligned on a 16-bit boundary, then ASSERT().
2689 If an error would be returned, then the function will also ASSERT().
2691 If an error is returned, then the Destination is unmodified.
2693 @param Source The pointer to a Null-terminated ASCII string.
2694 @param Destination The pointer to a Null-terminated Unicode string.
2695 @param DestMax The maximum number of Destination Unicode
2696 char, including terminating null char.
2698 @retval RETURN_SUCCESS String is converted.
2699 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than StrLen(Source).
2700 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
2702 If PcdMaximumUnicodeStringLength is not zero,
2703 and DestMax is greater than
2704 PcdMaximumUnicodeStringLength.
2705 If PcdMaximumAsciiStringLength is not zero,
2706 and DestMax is greater than
2707 PcdMaximumAsciiStringLength.
2709 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
2714 AsciiStrToUnicodeStrS (
2715 IN CONST CHAR8
*Source
,
2716 OUT CHAR16
*Destination
,
2721 Convert not more than Length successive characters from a Null-terminated
2722 Ascii string to a Null-terminated Unicode string. If no null char is copied
2723 from Source, then Destination[Length] is always set to null.
2725 This function converts not more than Length successive characters from the
2726 Ascii string Source to the Unicode string Destination. The function
2727 terminates the Unicode string Destination by appending a Null-terminator
2728 character at the end.
2730 The caller is responsible to make sure Destination points to a buffer with
2731 size not smaller than
2732 ((MIN(AsciiStrLen(Source), Length) + 1) * sizeof (CHAR8)) in bytes.
2734 If Destination is not aligned on a 16-bit boundary, then ASSERT().
2735 If an error would be returned, then the function will also ASSERT().
2737 If an error is returned, then Destination and DestinationLength are
2740 @param Source The pointer to a Null-terminated Ascii string.
2741 @param Length The maximum number of Ascii characters to convert.
2742 @param Destination The pointer to a Null-terminated Unicode string.
2743 @param DestMax The maximum number of Destination Unicode char,
2744 including terminating null char.
2745 @param DestinationLength The number of Ascii characters converted.
2747 @retval RETURN_SUCCESS String is converted.
2748 @retval RETURN_INVALID_PARAMETER If Destination is NULL.
2750 If DestinationLength is NULL.
2751 If PcdMaximumUnicodeStringLength is not
2752 zero, and Length or DestMax is greater than
2753 PcdMaximumUnicodeStringLength.
2754 If PcdMaximumAsciiStringLength is not zero,
2755 and Length or DestMax is greater than
2756 PcdMaximumAsciiStringLength.
2758 @retval RETURN_BUFFER_TOO_SMALL If DestMax is NOT greater than
2759 MIN(AsciiStrLen(Source), Length).
2760 @retval RETURN_ACCESS_DENIED If Source and Destination overlap.
2765 AsciiStrnToUnicodeStrS (
2766 IN CONST CHAR8
*Source
,
2768 OUT CHAR16
*Destination
,
2770 OUT UINTN
*DestinationLength
2774 Converts an 8-bit value to an 8-bit BCD value.
2776 Converts the 8-bit value specified by Value to BCD. The BCD value is
2779 If Value >= 100, then ASSERT().
2781 @param Value The 8-bit value to convert to BCD. Range 0..99.
2783 @return The BCD value.
2794 Converts an 8-bit BCD value to an 8-bit value.
2796 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit
2799 If Value >= 0xA0, then ASSERT().
2800 If (Value & 0x0F) >= 0x0A, then ASSERT().
2802 @param Value The 8-bit BCD value to convert to an 8-bit value.
2804 @return The 8-bit value is returned.
2814 // File Path Manipulation Functions
2818 Removes the last directory or file entry in a path.
2820 @param[in, out] Path The pointer to the path to modify.
2822 @retval FALSE Nothing was found to remove.
2823 @retval TRUE A directory or file was removed.
2832 Function to clean up paths.
2833 - Single periods in the path are removed.
2834 - Double periods in the path are removed along with a single parent directory.
2835 - Forward slashes L'/' are converted to backward slashes L'\'.
2837 This will be done inline and the existing buffer may be larger than required
2840 @param[in] Path The pointer to the string containing the path.
2842 @return Returns Path, otherwise returns NULL to indicate that an error has occurred.
2846 PathCleanUpDirectories(
2851 // Linked List Functions and Macros
2855 Initializes the head node of a doubly linked list that is declared as a
2856 global variable in a module.
2858 Initializes the forward and backward links of a new linked list. After
2859 initializing a linked list with this macro, the other linked list functions
2860 may be used to add and remove nodes from the linked list. This macro results
2861 in smaller executables by initializing the linked list in the data section,
2862 instead if calling the InitializeListHead() function to perform the
2863 equivalent operation.
2865 @param ListHead The head note of a list to initialize.
2868 #define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}
2872 Checks whether FirstEntry and SecondEntry are part of the same doubly-linked
2875 If FirstEntry is NULL, then ASSERT().
2876 If FirstEntry->ForwardLink is NULL, then ASSERT().
2877 If FirstEntry->BackLink is NULL, then ASSERT().
2878 If SecondEntry is NULL, then ASSERT();
2879 If PcdMaximumLinkedListLength is not zero, and List contains more than
2880 PcdMaximumLinkedListLength nodes, then ASSERT().
2882 @param FirstEntry A pointer to a node in a linked list.
2883 @param SecondEntry A pointer to the node to locate.
2885 @retval TRUE SecondEntry is in the same doubly-linked list as FirstEntry.
2886 @retval FALSE SecondEntry isn't in the same doubly-linked list as FirstEntry,
2887 or FirstEntry is invalid.
2893 IN CONST LIST_ENTRY
*FirstEntry
,
2894 IN CONST LIST_ENTRY
*SecondEntry
2899 Initializes the head node of a doubly linked list, and returns the pointer to
2900 the head node of the doubly linked list.
2902 Initializes the forward and backward links of a new linked list. After
2903 initializing a linked list with this function, the other linked list
2904 functions may be used to add and remove nodes from the linked list. It is up
2905 to the caller of this function to allocate the memory for ListHead.
2907 If ListHead is NULL, then ASSERT().
2909 @param ListHead A pointer to the head node of a new doubly linked list.
2916 InitializeListHead (
2917 IN OUT LIST_ENTRY
*ListHead
2922 Adds a node to the beginning of a doubly linked list, and returns the pointer
2923 to the head node of the doubly linked list.
2925 Adds the node Entry at the beginning of the doubly linked list denoted by
2926 ListHead, and returns ListHead.
2928 If ListHead is NULL, then ASSERT().
2929 If Entry is NULL, then ASSERT().
2930 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or
2931 InitializeListHead(), then ASSERT().
2932 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number
2933 of nodes in ListHead, including the ListHead node, is greater than or
2934 equal to PcdMaximumLinkedListLength, then ASSERT().
2936 @param ListHead A pointer to the head node of a doubly linked list.
2937 @param Entry A pointer to a node that is to be inserted at the beginning
2938 of a doubly linked list.
2946 IN OUT LIST_ENTRY
*ListHead
,
2947 IN OUT LIST_ENTRY
*Entry
2952 Adds a node to the end of a doubly linked list, and returns the pointer to
2953 the head node of the doubly linked list.
2955 Adds the node Entry to the end of the doubly linked list denoted by ListHead,
2956 and returns ListHead.
2958 If ListHead is NULL, then ASSERT().
2959 If Entry is NULL, then ASSERT().
2960 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or
2961 InitializeListHead(), then ASSERT().
2962 If PcdMaximumLinkedListLength is not zero, and prior to insertion the number
2963 of nodes in ListHead, including the ListHead node, is greater than or
2964 equal to PcdMaximumLinkedListLength, then ASSERT().
2966 @param ListHead A pointer to the head node of a doubly linked list.
2967 @param Entry A pointer to a node that is to be added at the end of the
2976 IN OUT LIST_ENTRY
*ListHead
,
2977 IN OUT LIST_ENTRY
*Entry
2982 Retrieves the first node of a doubly linked list.
2984 Returns the first node of a doubly linked list. List must have been
2985 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().
2986 If List is empty, then List is returned.
2988 If List is NULL, then ASSERT().
2989 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or
2990 InitializeListHead(), then ASSERT().
2991 If PcdMaximumLinkedListLength is not zero, and the number of nodes
2992 in List, including the List node, is greater than or equal to
2993 PcdMaximumLinkedListLength, then ASSERT().
2995 @param List A pointer to the head node of a doubly linked list.
2997 @return The first node of a doubly linked list.
2998 @retval List The list is empty.
3004 IN CONST LIST_ENTRY
*List
3009 Retrieves the next node of a doubly linked list.
3011 Returns the node of a doubly linked list that follows Node.
3012 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()
3013 or InitializeListHead(). If List is empty, then List is returned.
3015 If List is NULL, then ASSERT().
3016 If Node is NULL, then ASSERT().
3017 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or
3018 InitializeListHead(), then ASSERT().
3019 If PcdMaximumLinkedListLength is not zero, and List contains more than
3020 PcdMaximumLinkedListLength nodes, then ASSERT().
3021 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().
3023 @param List A pointer to the head node of a doubly linked list.
3024 @param Node A pointer to a node in the doubly linked list.
3026 @return The pointer to the next node if one exists. Otherwise List is returned.
3032 IN CONST LIST_ENTRY
*List
,
3033 IN CONST LIST_ENTRY
*Node
3038 Retrieves the previous node of a doubly linked list.
3040 Returns the node of a doubly linked list that precedes Node.
3041 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()
3042 or InitializeListHead(). If List is empty, then List is returned.
3044 If List is NULL, then ASSERT().
3045 If Node is NULL, then ASSERT().
3046 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or
3047 InitializeListHead(), then ASSERT().
3048 If PcdMaximumLinkedListLength is not zero, and List contains more than
3049 PcdMaximumLinkedListLength nodes, then ASSERT().
3050 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().
3052 @param List A pointer to the head node of a doubly linked list.
3053 @param Node A pointer to a node in the doubly linked list.
3055 @return The pointer to the previous node if one exists. Otherwise List is returned.
3061 IN CONST LIST_ENTRY
*List
,
3062 IN CONST LIST_ENTRY
*Node
3067 Checks to see if a doubly linked list is empty or not.
3069 Checks to see if the doubly linked list is empty. If the linked list contains
3070 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.
3072 If ListHead is NULL, then ASSERT().
3073 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or
3074 InitializeListHead(), then ASSERT().
3075 If PcdMaximumLinkedListLength is not zero, and the number of nodes
3076 in List, including the List node, is greater than or equal to
3077 PcdMaximumLinkedListLength, then ASSERT().
3079 @param ListHead A pointer to the head node of a doubly linked list.
3081 @retval TRUE The linked list is empty.
3082 @retval FALSE The linked list is not empty.
3088 IN CONST LIST_ENTRY
*ListHead
3093 Determines if a node in a doubly linked list is the head node of a the same
3094 doubly linked list. This function is typically used to terminate a loop that
3095 traverses all the nodes in a doubly linked list starting with the head node.
3097 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the
3098 nodes in the doubly linked list specified by List. List must have been
3099 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().
3101 If List is NULL, then ASSERT().
3102 If Node is NULL, then ASSERT().
3103 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(),
3105 If PcdMaximumLinkedListLength is not zero, and the number of nodes
3106 in List, including the List node, is greater than or equal to
3107 PcdMaximumLinkedListLength, then ASSERT().
3108 If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal
3109 to List, then ASSERT().
3111 @param List A pointer to the head node of a doubly linked list.
3112 @param Node A pointer to a node in the doubly linked list.
3114 @retval TRUE Node is the head of the doubly-linked list pointed by List.
3115 @retval FALSE Node is not the head of the doubly-linked list pointed by List.
3121 IN CONST LIST_ENTRY
*List
,
3122 IN CONST LIST_ENTRY
*Node
3127 Determines if a node the last node in a doubly linked list.
3129 Returns TRUE if Node is the last node in the doubly linked list specified by
3130 List. Otherwise, FALSE is returned. List must have been initialized with
3131 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().
3133 If List is NULL, then ASSERT().
3134 If Node is NULL, then ASSERT().
3135 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or
3136 InitializeListHead(), then ASSERT().
3137 If PcdMaximumLinkedListLength is not zero, and the number of nodes
3138 in List, including the List node, is greater than or equal to
3139 PcdMaximumLinkedListLength, then ASSERT().
3140 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().
3142 @param List A pointer to the head node of a doubly linked list.
3143 @param Node A pointer to a node in the doubly linked list.
3145 @retval TRUE Node is the last node in the linked list.
3146 @retval FALSE Node is not the last node in the linked list.
3152 IN CONST LIST_ENTRY
*List
,
3153 IN CONST LIST_ENTRY
*Node
3158 Swaps the location of two nodes in a doubly linked list, and returns the
3159 first node after the swap.
3161 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.
3162 Otherwise, the location of the FirstEntry node is swapped with the location
3163 of the SecondEntry node in a doubly linked list. SecondEntry must be in the
3164 same double linked list as FirstEntry and that double linked list must have
3165 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().
3166 SecondEntry is returned after the nodes are swapped.
3168 If FirstEntry is NULL, then ASSERT().
3169 If SecondEntry is NULL, then ASSERT().
3170 If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the
3171 same linked list, then ASSERT().
3172 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
3173 linked list containing the FirstEntry and SecondEntry nodes, including
3174 the FirstEntry and SecondEntry nodes, is greater than or equal to
3175 PcdMaximumLinkedListLength, then ASSERT().
3177 @param FirstEntry A pointer to a node in a linked list.
3178 @param SecondEntry A pointer to another node in the same linked list.
3180 @return SecondEntry.
3186 IN OUT LIST_ENTRY
*FirstEntry
,
3187 IN OUT LIST_ENTRY
*SecondEntry
3192 Removes a node from a doubly linked list, and returns the node that follows
3195 Removes the node Entry from a doubly linked list. It is up to the caller of
3196 this function to release the memory used by this node if that is required. On
3197 exit, the node following Entry in the doubly linked list is returned. If
3198 Entry is the only node in the linked list, then the head node of the linked
3201 If Entry is NULL, then ASSERT().
3202 If Entry is the head node of an empty list, then ASSERT().
3203 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the
3204 linked list containing Entry, including the Entry node, is greater than
3205 or equal to PcdMaximumLinkedListLength, then ASSERT().
3207 @param Entry A pointer to a node in a linked list.
3215 IN CONST LIST_ENTRY
*Entry
3223 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled
3224 with zeros. The shifted value is returned.
3226 This function shifts the 64-bit value Operand to the left by Count bits. The
3227 low Count bits are set to zero. The shifted value is returned.
3229 If Count is greater than 63, then ASSERT().
3231 @param Operand The 64-bit operand to shift left.
3232 @param Count The number of bits to shift left.
3234 @return Operand << Count.
3246 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are
3247 filled with zeros. The shifted value is returned.
3249 This function shifts the 64-bit value Operand to the right by Count bits. The
3250 high Count bits are set to zero. The shifted value is returned.
3252 If Count is greater than 63, then ASSERT().
3254 @param Operand The 64-bit operand to shift right.
3255 @param Count The number of bits to shift right.
3257 @return Operand >> Count
3269 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled
3270 with original integer's bit 63. The shifted value is returned.
3272 This function shifts the 64-bit value Operand to the right by Count bits. The
3273 high Count bits are set to bit 63 of Operand. The shifted value is returned.
3275 If Count is greater than 63, then ASSERT().
3277 @param Operand The 64-bit operand to shift right.
3278 @param Count The number of bits to shift right.
3280 @return Operand >> Count
3292 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits
3293 with the high bits that were rotated.
3295 This function rotates the 32-bit value Operand to the left by Count bits. The
3296 low Count bits are fill with the high Count bits of Operand. The rotated
3299 If Count is greater than 31, then ASSERT().
3301 @param Operand The 32-bit operand to rotate left.
3302 @param Count The number of bits to rotate left.
3304 @return Operand << Count
3316 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits
3317 with the low bits that were rotated.
3319 This function rotates the 32-bit value Operand to the right by Count bits.
3320 The high Count bits are fill with the low Count bits of Operand. The rotated
3323 If Count is greater than 31, then ASSERT().
3325 @param Operand The 32-bit operand to rotate right.
3326 @param Count The number of bits to rotate right.
3328 @return Operand >> Count
3340 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits
3341 with the high bits that were rotated.
3343 This function rotates the 64-bit value Operand to the left by Count bits. The
3344 low Count bits are fill with the high Count bits of Operand. The rotated
3347 If Count is greater than 63, then ASSERT().
3349 @param Operand The 64-bit operand to rotate left.
3350 @param Count The number of bits to rotate left.
3352 @return Operand << Count
3364 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits
3365 with the high low bits that were rotated.
3367 This function rotates the 64-bit value Operand to the right by Count bits.
3368 The high Count bits are fill with the low Count bits of Operand. The rotated
3371 If Count is greater than 63, then ASSERT().
3373 @param Operand The 64-bit operand to rotate right.
3374 @param Count The number of bits to rotate right.
3376 @return Operand >> Count
3388 Returns the bit position of the lowest bit set in a 32-bit value.
3390 This function computes the bit position of the lowest bit set in the 32-bit
3391 value specified by Operand. If Operand is zero, then -1 is returned.
3392 Otherwise, a value between 0 and 31 is returned.
3394 @param Operand The 32-bit operand to evaluate.
3396 @retval 0..31 The lowest bit set in Operand was found.
3397 @retval -1 Operand is zero.
3408 Returns the bit position of the lowest bit set in a 64-bit value.
3410 This function computes the bit position of the lowest bit set in the 64-bit
3411 value specified by Operand. If Operand is zero, then -1 is returned.
3412 Otherwise, a value between 0 and 63 is returned.
3414 @param Operand The 64-bit operand to evaluate.
3416 @retval 0..63 The lowest bit set in Operand was found.
3417 @retval -1 Operand is zero.
3429 Returns the bit position of the highest bit set in a 32-bit value. Equivalent
3432 This function computes the bit position of the highest bit set in the 32-bit
3433 value specified by Operand. If Operand is zero, then -1 is returned.
3434 Otherwise, a value between 0 and 31 is returned.
3436 @param Operand The 32-bit operand to evaluate.
3438 @retval 0..31 Position of the highest bit set in Operand if found.
3439 @retval -1 Operand is zero.
3450 Returns the bit position of the highest bit set in a 64-bit value. Equivalent
3453 This function computes the bit position of the highest bit set in the 64-bit
3454 value specified by Operand. If Operand is zero, then -1 is returned.
3455 Otherwise, a value between 0 and 63 is returned.
3457 @param Operand The 64-bit operand to evaluate.
3459 @retval 0..63 Position of the highest bit set in Operand if found.
3460 @retval -1 Operand is zero.
3471 Returns the value of the highest bit set in a 32-bit value. Equivalent to
3474 This function computes the value of the highest bit set in the 32-bit value
3475 specified by Operand. If Operand is zero, then zero is returned.
3477 @param Operand The 32-bit operand to evaluate.
3479 @return 1 << HighBitSet32(Operand)
3480 @retval 0 Operand is zero.
3491 Returns the value of the highest bit set in a 64-bit value. Equivalent to
3494 This function computes the value of the highest bit set in the 64-bit value
3495 specified by Operand. If Operand is zero, then zero is returned.
3497 @param Operand The 64-bit operand to evaluate.
3499 @return 1 << HighBitSet64(Operand)
3500 @retval 0 Operand is zero.
3511 Switches the endianness of a 16-bit integer.
3513 This function swaps the bytes in a 16-bit unsigned value to switch the value
3514 from little endian to big endian or vice versa. The byte swapped value is
3517 @param Value A 16-bit unsigned value.
3519 @return The byte swapped Value.
3530 Switches the endianness of a 32-bit integer.
3532 This function swaps the bytes in a 32-bit unsigned value to switch the value
3533 from little endian to big endian or vice versa. The byte swapped value is
3536 @param Value A 32-bit unsigned value.
3538 @return The byte swapped Value.
3549 Switches the endianness of a 64-bit integer.
3551 This function swaps the bytes in a 64-bit unsigned value to switch the value
3552 from little endian to big endian or vice versa. The byte swapped value is
3555 @param Value A 64-bit unsigned value.
3557 @return The byte swapped Value.
3568 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and
3569 generates a 64-bit unsigned result.
3571 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit
3572 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
3573 bit unsigned result is returned.
3575 @param Multiplicand A 64-bit unsigned value.
3576 @param Multiplier A 32-bit unsigned value.
3578 @return Multiplicand * Multiplier
3584 IN UINT64 Multiplicand
,
3585 IN UINT32 Multiplier
3590 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and
3591 generates a 64-bit unsigned result.
3593 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit
3594 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-
3595 bit unsigned result is returned.
3597 @param Multiplicand A 64-bit unsigned value.
3598 @param Multiplier A 64-bit unsigned value.
3600 @return Multiplicand * Multiplier.
3606 IN UINT64 Multiplicand
,
3607 IN UINT64 Multiplier
3612 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a
3613 64-bit signed result.
3615 This function multiples the 64-bit signed value Multiplicand by the 64-bit
3616 signed value Multiplier and generates a 64-bit signed result. This 64-bit
3617 signed result is returned.
3619 @param Multiplicand A 64-bit signed value.
3620 @param Multiplier A 64-bit signed value.
3622 @return Multiplicand * Multiplier
3628 IN INT64 Multiplicand