]> git.proxmox.com Git - mirror_edk2.git/blob - MdePkg/Library/UefiLib/UefiLib.c
96dccb1477ace083bfee2a5fb5a8e82c7ebddee9
[mirror_edk2.git] / MdePkg / Library / UefiLib / UefiLib.c
1 /** @file
2 The UEFI Library provides functions and macros that simplify the development of
3 UEFI Drivers and UEFI Applications. These functions and macros help manage EFI
4 events, build simple locks utilizing EFI Task Priority Levels (TPLs), install
5 EFI Driver Model related protocols, manage Unicode string tables for UEFI Drivers,
6 and print messages on the console output and standard error devices.
7
8 Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
9 This program and the accompanying materials
10 are licensed and made available under the terms and conditions of the BSD License
11 which accompanies this distribution. The full text of the license may be found at
12 http://opensource.org/licenses/bsd-license.php.
13
14 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
15 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
16
17 **/
18
19
20 #include "UefiLibInternal.h"
21
22 /**
23 Empty constructor function that is required to resolve dependencies between
24 libraries.
25
26 ** DO NOT REMOVE **
27
28 @param ImageHandle The firmware allocated handle for the EFI image.
29 @param SystemTable A pointer to the EFI System Table.
30
31 @retval EFI_SUCCESS The constructor executed correctly.
32
33 **/
34 EFI_STATUS
35 EFIAPI
36 UefiLibConstructor (
37 IN EFI_HANDLE ImageHandle,
38 IN EFI_SYSTEM_TABLE *SystemTable
39 )
40 {
41 return EFI_SUCCESS;
42 }
43
44 /**
45 Compare whether two names of languages are identical.
46
47 @param Language1 Name of language 1.
48 @param Language2 Name of language 2.
49
50 @retval TRUE Language 1 and language 2 are the same.
51 @retval FALSE Language 1 and language 2 are not the same.
52
53 **/
54 BOOLEAN
55 CompareIso639LanguageCode (
56 IN CONST CHAR8 *Language1,
57 IN CONST CHAR8 *Language2
58 )
59 {
60 UINT32 Name1;
61 UINT32 Name2;
62
63 Name1 = ReadUnaligned24 ((CONST UINT32 *) Language1);
64 Name2 = ReadUnaligned24 ((CONST UINT32 *) Language2);
65
66 return (BOOLEAN) (Name1 == Name2);
67 }
68
69 /**
70 Retrieves a pointer to the system configuration table from the EFI System Table
71 based on a specified GUID.
72
73 This function searches the list of configuration tables stored in the EFI System Table
74 for a table with a GUID that matches TableGuid. If a match is found, then a pointer to
75 the configuration table is returned in Table., and EFI_SUCCESS is returned. If a matching GUID
76 is not found, then EFI_NOT_FOUND is returned.
77 If TableGuid is NULL, then ASSERT().
78 If Table is NULL, then ASSERT().
79
80 @param TableGuid The pointer to table's GUID type.
81 @param Table The pointer to the table associated with TableGuid in the EFI System Table.
82
83 @retval EFI_SUCCESS A configuration table matching TableGuid was found.
84 @retval EFI_NOT_FOUND A configuration table matching TableGuid could not be found.
85
86 **/
87 EFI_STATUS
88 EFIAPI
89 EfiGetSystemConfigurationTable (
90 IN EFI_GUID *TableGuid,
91 OUT VOID **Table
92 )
93 {
94 EFI_SYSTEM_TABLE *SystemTable;
95 UINTN Index;
96
97 ASSERT (TableGuid != NULL);
98 ASSERT (Table != NULL);
99
100 SystemTable = gST;
101 *Table = NULL;
102 for (Index = 0; Index < SystemTable->NumberOfTableEntries; Index++) {
103 if (CompareGuid (TableGuid, &(SystemTable->ConfigurationTable[Index].VendorGuid))) {
104 *Table = SystemTable->ConfigurationTable[Index].VendorTable;
105 return EFI_SUCCESS;
106 }
107 }
108
109 return EFI_NOT_FOUND;
110 }
111
112 /**
113 Creates and returns a notification event and registers that event with all the protocol
114 instances specified by ProtocolGuid.
115
116 This function causes the notification function to be executed for every protocol of type
117 ProtocolGuid instance that exists in the system when this function is invoked. If there are
118 no instances of ProtocolGuid in the handle database at the time this function is invoked,
119 then the notification function is still executed one time. In addition, every time a protocol
120 of type ProtocolGuid instance is installed or reinstalled, the notification function is also
121 executed. This function returns the notification event that was created.
122 If ProtocolGuid is NULL, then ASSERT().
123 If NotifyTpl is not a legal TPL value, then ASSERT().
124 If NotifyFunction is NULL, then ASSERT().
125 If Registration is NULL, then ASSERT().
126
127
128 @param ProtocolGuid Supplies GUID of the protocol upon whose installation the event is fired.
129 @param NotifyTpl Supplies the task priority level of the event notifications.
130 @param NotifyFunction Supplies the function to notify when the event is signaled.
131 @param NotifyContext The context parameter to pass to NotifyFunction.
132 @param Registration A pointer to a memory location to receive the registration value.
133 This value is passed to LocateHandle() to obtain new handles that
134 have been added that support the ProtocolGuid-specified protocol.
135
136 @return The notification event that was created.
137
138 **/
139 EFI_EVENT
140 EFIAPI
141 EfiCreateProtocolNotifyEvent(
142 IN EFI_GUID *ProtocolGuid,
143 IN EFI_TPL NotifyTpl,
144 IN EFI_EVENT_NOTIFY NotifyFunction,
145 IN VOID *NotifyContext, OPTIONAL
146 OUT VOID **Registration
147 )
148 {
149 EFI_STATUS Status;
150 EFI_EVENT Event;
151
152 ASSERT (ProtocolGuid != NULL);
153 ASSERT (NotifyFunction != NULL);
154 ASSERT (Registration != NULL);
155
156 //
157 // Create the event
158 //
159
160 Status = gBS->CreateEvent (
161 EVT_NOTIFY_SIGNAL,
162 NotifyTpl,
163 NotifyFunction,
164 NotifyContext,
165 &Event
166 );
167 ASSERT_EFI_ERROR (Status);
168
169 //
170 // Register for protocol notifications on this event
171 //
172
173 Status = gBS->RegisterProtocolNotify (
174 ProtocolGuid,
175 Event,
176 Registration
177 );
178
179 ASSERT_EFI_ERROR (Status);
180
181 //
182 // Kick the event so we will perform an initial pass of
183 // current installed drivers
184 //
185
186 gBS->SignalEvent (Event);
187 return Event;
188 }
189
190 /**
191 Creates a named event that can be signaled with EfiNamedEventSignal().
192
193 This function creates an event using NotifyTpl, NoifyFunction, and NotifyContext.
194 This event is signaled with EfiNamedEventSignal(). This provides the ability for one or more
195 listeners on the same event named by the GUID specified by Name.
196 If Name is NULL, then ASSERT().
197 If NotifyTpl is not a legal TPL value, then ASSERT().
198 If NotifyFunction is NULL, then ASSERT().
199
200 @param Name Supplies the GUID name of the event.
201 @param NotifyTpl Supplies the task priority level of the event notifications.
202 @param NotifyFunction Supplies the function to notify when the event is signaled.
203 @param NotifyContext The context parameter to pass to NotifyFunction.
204 @param Registration A pointer to a memory location to receive the registration value.
205
206 @retval EFI_SUCCESS A named event was created.
207 @retval EFI_OUT_OF_RESOURCES There are not enough resource to create the named event.
208
209 **/
210 EFI_STATUS
211 EFIAPI
212 EfiNamedEventListen (
213 IN CONST EFI_GUID *Name,
214 IN EFI_TPL NotifyTpl,
215 IN EFI_EVENT_NOTIFY NotifyFunction,
216 IN CONST VOID *NotifyContext, OPTIONAL
217 OUT VOID *Registration OPTIONAL
218 )
219 {
220 EFI_STATUS Status;
221 EFI_EVENT Event;
222 VOID *RegistrationLocal;
223
224 ASSERT (Name != NULL);
225 ASSERT (NotifyFunction != NULL);
226 ASSERT (NotifyTpl <= TPL_HIGH_LEVEL);
227
228 //
229 // Create event
230 //
231 Status = gBS->CreateEvent (
232 EVT_NOTIFY_SIGNAL,
233 NotifyTpl,
234 NotifyFunction,
235 (VOID *) NotifyContext,
236 &Event
237 );
238 ASSERT_EFI_ERROR (Status);
239
240 //
241 // The Registration is not optional to RegisterProtocolNotify().
242 // To make it optional to EfiNamedEventListen(), may need to substitute with a local.
243 //
244 if (Registration != NULL) {
245 RegistrationLocal = Registration;
246 } else {
247 RegistrationLocal = &RegistrationLocal;
248 }
249
250 //
251 // Register for an installation of protocol interface
252 //
253
254 Status = gBS->RegisterProtocolNotify (
255 (EFI_GUID *) Name,
256 Event,
257 RegistrationLocal
258 );
259 ASSERT_EFI_ERROR (Status);
260
261 return Status;
262 }
263
264 /**
265 Signals a named event created with EfiNamedEventListen().
266
267 This function signals the named event specified by Name. The named event must have been
268 created with EfiNamedEventListen().
269 If Name is NULL, then ASSERT().
270
271 @param Name Supplies the GUID name of the event.
272
273 @retval EFI_SUCCESS A named event was signaled.
274 @retval EFI_OUT_OF_RESOURCES There are not enough resource to signal the named event.
275
276 **/
277 EFI_STATUS
278 EFIAPI
279 EfiNamedEventSignal (
280 IN CONST EFI_GUID *Name
281 )
282 {
283 EFI_STATUS Status;
284 EFI_HANDLE Handle;
285
286 ASSERT(Name != NULL);
287
288 Handle = NULL;
289 Status = gBS->InstallProtocolInterface (
290 &Handle,
291 (EFI_GUID *) Name,
292 EFI_NATIVE_INTERFACE,
293 NULL
294 );
295 ASSERT_EFI_ERROR (Status);
296
297 Status = gBS->UninstallProtocolInterface (
298 Handle,
299 (EFI_GUID *) Name,
300 NULL
301 );
302 ASSERT_EFI_ERROR (Status);
303
304 return Status;
305 }
306
307 /**
308 Returns the current TPL.
309
310 This function returns the current TPL. There is no EFI service to directly
311 retrieve the current TPL. Instead, the RaiseTPL() function is used to raise
312 the TPL to TPL_HIGH_LEVEL. This will return the current TPL. The TPL level
313 can then immediately be restored back to the current TPL level with a call
314 to RestoreTPL().
315
316 @return The current TPL.
317
318 **/
319 EFI_TPL
320 EFIAPI
321 EfiGetCurrentTpl (
322 VOID
323 )
324 {
325 EFI_TPL Tpl;
326
327 Tpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
328 gBS->RestoreTPL (Tpl);
329
330 return Tpl;
331 }
332
333
334 /**
335 Initializes a basic mutual exclusion lock.
336
337 This function initializes a basic mutual exclusion lock to the released state
338 and returns the lock. Each lock provides mutual exclusion access at its task
339 priority level. Since there is no preemption or multiprocessor support in EFI,
340 acquiring the lock only consists of raising to the locks TPL.
341 If Lock is NULL, then ASSERT().
342 If Priority is not a valid TPL value, then ASSERT().
343
344 @param Lock A pointer to the lock data structure to initialize.
345 @param Priority EFI TPL is associated with the lock.
346
347 @return The lock.
348
349 **/
350 EFI_LOCK *
351 EFIAPI
352 EfiInitializeLock (
353 IN OUT EFI_LOCK *Lock,
354 IN EFI_TPL Priority
355 )
356 {
357 ASSERT (Lock != NULL);
358 ASSERT (Priority <= TPL_HIGH_LEVEL);
359
360 Lock->Tpl = Priority;
361 Lock->OwnerTpl = TPL_APPLICATION;
362 Lock->Lock = EfiLockReleased ;
363 return Lock;
364 }
365
366 /**
367 Acquires ownership of a lock.
368
369 This function raises the system's current task priority level to the task
370 priority level of the mutual exclusion lock. Then, it places the lock in the
371 acquired state.
372 If Lock is NULL, then ASSERT().
373 If Lock is not initialized, then ASSERT().
374 If Lock is already in the acquired state, then ASSERT().
375
376 @param Lock A pointer to the lock to acquire.
377
378 **/
379 VOID
380 EFIAPI
381 EfiAcquireLock (
382 IN EFI_LOCK *Lock
383 )
384 {
385 ASSERT (Lock != NULL);
386 ASSERT (Lock->Lock == EfiLockReleased);
387
388 Lock->OwnerTpl = gBS->RaiseTPL (Lock->Tpl);
389 Lock->Lock = EfiLockAcquired;
390 }
391
392 /**
393 Acquires ownership of a lock.
394
395 This function raises the system's current task priority level to the task priority
396 level of the mutual exclusion lock. Then, it attempts to place the lock in the acquired state.
397 If the lock is already in the acquired state, then EFI_ACCESS_DENIED is returned.
398 Otherwise, EFI_SUCCESS is returned.
399 If Lock is NULL, then ASSERT().
400 If Lock is not initialized, then ASSERT().
401
402 @param Lock A pointer to the lock to acquire.
403
404 @retval EFI_SUCCESS The lock was acquired.
405 @retval EFI_ACCESS_DENIED The lock could not be acquired because it is already owned.
406
407 **/
408 EFI_STATUS
409 EFIAPI
410 EfiAcquireLockOrFail (
411 IN EFI_LOCK *Lock
412 )
413 {
414
415 ASSERT (Lock != NULL);
416 ASSERT (Lock->Lock != EfiLockUninitialized);
417
418 if (Lock->Lock == EfiLockAcquired) {
419 //
420 // Lock is already owned, so bail out
421 //
422 return EFI_ACCESS_DENIED;
423 }
424
425 Lock->OwnerTpl = gBS->RaiseTPL (Lock->Tpl);
426
427 Lock->Lock = EfiLockAcquired;
428
429 return EFI_SUCCESS;
430 }
431
432 /**
433 Releases ownership of a lock.
434
435 This function transitions a mutual exclusion lock from the acquired state to
436 the released state, and restores the system's task priority level to its
437 previous level.
438 If Lock is NULL, then ASSERT().
439 If Lock is not initialized, then ASSERT().
440 If Lock is already in the released state, then ASSERT().
441
442 @param Lock A pointer to the lock to release.
443
444 **/
445 VOID
446 EFIAPI
447 EfiReleaseLock (
448 IN EFI_LOCK *Lock
449 )
450 {
451 EFI_TPL Tpl;
452
453 ASSERT (Lock != NULL);
454 ASSERT (Lock->Lock == EfiLockAcquired);
455
456 Tpl = Lock->OwnerTpl;
457
458 Lock->Lock = EfiLockReleased;
459
460 gBS->RestoreTPL (Tpl);
461 }
462
463 /**
464 Tests whether a controller handle is being managed by a specific driver.
465
466 This function tests whether the driver specified by DriverBindingHandle is
467 currently managing the controller specified by ControllerHandle. This test
468 is performed by evaluating if the the protocol specified by ProtocolGuid is
469 present on ControllerHandle and is was opened by DriverBindingHandle with an
470 attribute of EFI_OPEN_PROTOCOL_BY_DRIVER.
471 If ProtocolGuid is NULL, then ASSERT().
472
473 @param ControllerHandle A handle for a controller to test.
474 @param DriverBindingHandle Specifies the driver binding handle for the
475 driver.
476 @param ProtocolGuid Specifies the protocol that the driver specified
477 by DriverBindingHandle opens in its Start()
478 function.
479
480 @retval EFI_SUCCESS ControllerHandle is managed by the driver
481 specified by DriverBindingHandle.
482 @retval EFI_UNSUPPORTED ControllerHandle is not managed by the driver
483 specified by DriverBindingHandle.
484
485 **/
486 EFI_STATUS
487 EFIAPI
488 EfiTestManagedDevice (
489 IN CONST EFI_HANDLE ControllerHandle,
490 IN CONST EFI_HANDLE DriverBindingHandle,
491 IN CONST EFI_GUID *ProtocolGuid
492 )
493 {
494 EFI_STATUS Status;
495 VOID *ManagedInterface;
496
497 ASSERT (ProtocolGuid != NULL);
498
499 Status = gBS->OpenProtocol (
500 ControllerHandle,
501 (EFI_GUID *) ProtocolGuid,
502 &ManagedInterface,
503 DriverBindingHandle,
504 ControllerHandle,
505 EFI_OPEN_PROTOCOL_BY_DRIVER
506 );
507 if (!EFI_ERROR (Status)) {
508 gBS->CloseProtocol (
509 ControllerHandle,
510 (EFI_GUID *) ProtocolGuid,
511 DriverBindingHandle,
512 ControllerHandle
513 );
514 return EFI_UNSUPPORTED;
515 }
516
517 if (Status != EFI_ALREADY_STARTED) {
518 return EFI_UNSUPPORTED;
519 }
520
521 return EFI_SUCCESS;
522 }
523
524 /**
525 Tests whether a child handle is a child device of the controller.
526
527 This function tests whether ChildHandle is one of the children of
528 ControllerHandle. This test is performed by checking to see if the protocol
529 specified by ProtocolGuid is present on ControllerHandle and opened by
530 ChildHandle with an attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
531 If ProtocolGuid is NULL, then ASSERT().
532
533 @param ControllerHandle A handle for a (parent) controller to test.
534 @param ChildHandle A child handle to test.
535 @param ProtocolGuid Supplies the protocol that the child controller
536 opens on its parent controller.
537
538 @retval EFI_SUCCESS ChildHandle is a child of the ControllerHandle.
539 @retval EFI_UNSUPPORTED ChildHandle is not a child of the
540 ControllerHandle.
541
542 **/
543 EFI_STATUS
544 EFIAPI
545 EfiTestChildHandle (
546 IN CONST EFI_HANDLE ControllerHandle,
547 IN CONST EFI_HANDLE ChildHandle,
548 IN CONST EFI_GUID *ProtocolGuid
549 )
550 {
551 EFI_STATUS Status;
552 EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfoBuffer;
553 UINTN EntryCount;
554 UINTN Index;
555
556 ASSERT (ProtocolGuid != NULL);
557
558 //
559 // Retrieve the list of agents that are consuming the specific protocol
560 // on ControllerHandle.
561 //
562 Status = gBS->OpenProtocolInformation (
563 ControllerHandle,
564 (EFI_GUID *) ProtocolGuid,
565 &OpenInfoBuffer,
566 &EntryCount
567 );
568 if (EFI_ERROR (Status)) {
569 return EFI_UNSUPPORTED;
570 }
571
572 //
573 // Inspect if ChildHandle is one of the agents.
574 //
575 Status = EFI_UNSUPPORTED;
576 for (Index = 0; Index < EntryCount; Index++) {
577 if ((OpenInfoBuffer[Index].ControllerHandle == ChildHandle) &&
578 (OpenInfoBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) != 0) {
579 Status = EFI_SUCCESS;
580 break;
581 }
582 }
583
584 FreePool (OpenInfoBuffer);
585 return Status;
586 }
587
588 /**
589 This function looks up a Unicode string in UnicodeStringTable.
590
591 If Language is a member of SupportedLanguages and a Unicode string is found in
592 UnicodeStringTable that matches the language code specified by Language, then it
593 is returned in UnicodeString.
594
595 @param Language A pointer to the ISO 639-2 language code for the
596 Unicode string to look up and return.
597 @param SupportedLanguages A pointer to the set of ISO 639-2 language codes
598 that the Unicode string table supports. Language
599 must be a member of this set.
600 @param UnicodeStringTable A pointer to the table of Unicode strings.
601 @param UnicodeString A pointer to the Unicode string from UnicodeStringTable
602 that matches the language specified by Language.
603
604 @retval EFI_SUCCESS The Unicode string that matches the language
605 specified by Language was found
606 in the table of Unicode strings UnicodeStringTable,
607 and it was returned in UnicodeString.
608 @retval EFI_INVALID_PARAMETER Language is NULL.
609 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
610 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
611 @retval EFI_UNSUPPORTED UnicodeStringTable is NULL.
612 @retval EFI_UNSUPPORTED The language specified by Language is not a
613 member of SupportedLanguages.
614 @retval EFI_UNSUPPORTED The language specified by Language is not
615 supported by UnicodeStringTable.
616
617 **/
618 EFI_STATUS
619 EFIAPI
620 LookupUnicodeString (
621 IN CONST CHAR8 *Language,
622 IN CONST CHAR8 *SupportedLanguages,
623 IN CONST EFI_UNICODE_STRING_TABLE *UnicodeStringTable,
624 OUT CHAR16 **UnicodeString
625 )
626 {
627 //
628 // Make sure the parameters are valid
629 //
630 if (Language == NULL || UnicodeString == NULL) {
631 return EFI_INVALID_PARAMETER;
632 }
633
634 //
635 // If there are no supported languages, or the Unicode String Table is empty, then the
636 // Unicode String specified by Language is not supported by this Unicode String Table
637 //
638 if (SupportedLanguages == NULL || UnicodeStringTable == NULL) {
639 return EFI_UNSUPPORTED;
640 }
641
642 //
643 // Make sure Language is in the set of Supported Languages
644 //
645 while (*SupportedLanguages != 0) {
646 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
647
648 //
649 // Search the Unicode String Table for the matching Language specifier
650 //
651 while (UnicodeStringTable->Language != NULL) {
652 if (CompareIso639LanguageCode (Language, UnicodeStringTable->Language)) {
653
654 //
655 // A matching string was found, so return it
656 //
657 *UnicodeString = UnicodeStringTable->UnicodeString;
658 return EFI_SUCCESS;
659 }
660
661 UnicodeStringTable++;
662 }
663
664 return EFI_UNSUPPORTED;
665 }
666
667 SupportedLanguages += 3;
668 }
669
670 return EFI_UNSUPPORTED;
671 }
672
673
674
675 /**
676 This function looks up a Unicode string in UnicodeStringTable.
677
678 If Language is a member of SupportedLanguages and a Unicode string is found in
679 UnicodeStringTable that matches the language code specified by Language, then
680 it is returned in UnicodeString.
681
682 @param Language A pointer to an ASCII string containing the ISO 639-2 or the
683 RFC 4646 language code for the Unicode string to look up and
684 return. If Iso639Language is TRUE, then this ASCII string is
685 not assumed to be Null-terminated, and only the first three
686 characters are used. If Iso639Language is FALSE, then this ASCII
687 string must be Null-terminated.
688 @param SupportedLanguages A pointer to a Null-terminated ASCII string that contains a
689 set of ISO 639-2 or RFC 4646 language codes that the Unicode
690 string table supports. Language must be a member of this set.
691 If Iso639Language is TRUE, then this string contains one or more
692 ISO 639-2 language codes with no separator characters. If Iso639Language
693 is FALSE, then is string contains one or more RFC 4646 language
694 codes separated by ';'.
695 @param UnicodeStringTable A pointer to the table of Unicode strings. Type EFI_UNICODE_STRING_TABLE
696 is defined in "Related Definitions".
697 @param UnicodeString A pointer to the Null-terminated Unicode string from UnicodeStringTable
698 that matches the language specified by Language.
699 @param Iso639Language Specifies the supported language code format. If it is TRUE, then
700 Language and SupportedLanguages follow ISO 639-2 language code format.
701 Otherwise, they follow RFC 4646 language code format.
702
703
704 @retval EFI_SUCCESS The Unicode string that matches the language specified by Language
705 was found in the table of Unicode strings UnicodeStringTable, and
706 it was returned in UnicodeString.
707 @retval EFI_INVALID_PARAMETER Language is NULL.
708 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
709 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
710 @retval EFI_UNSUPPORTED UnicodeStringTable is NULL.
711 @retval EFI_UNSUPPORTED The language specified by Language is not a member of SupportedLanguages.
712 @retval EFI_UNSUPPORTED The language specified by Language is not supported by UnicodeStringTable.
713
714 **/
715 EFI_STATUS
716 EFIAPI
717 LookupUnicodeString2 (
718 IN CONST CHAR8 *Language,
719 IN CONST CHAR8 *SupportedLanguages,
720 IN CONST EFI_UNICODE_STRING_TABLE *UnicodeStringTable,
721 OUT CHAR16 **UnicodeString,
722 IN BOOLEAN Iso639Language
723 )
724 {
725 BOOLEAN Found;
726 UINTN Index;
727 CHAR8 *LanguageString;
728
729 //
730 // Make sure the parameters are valid
731 //
732 if (Language == NULL || UnicodeString == NULL) {
733 return EFI_INVALID_PARAMETER;
734 }
735
736 //
737 // If there are no supported languages, or the Unicode String Table is empty, then the
738 // Unicode String specified by Language is not supported by this Unicode String Table
739 //
740 if (SupportedLanguages == NULL || UnicodeStringTable == NULL) {
741 return EFI_UNSUPPORTED;
742 }
743
744 //
745 // Make sure Language is in the set of Supported Languages
746 //
747 Found = FALSE;
748 while (*SupportedLanguages != 0) {
749 if (Iso639Language) {
750 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
751 Found = TRUE;
752 break;
753 }
754 SupportedLanguages += 3;
755 } else {
756 for (Index = 0; SupportedLanguages[Index] != 0 && SupportedLanguages[Index] != ';'; Index++);
757 if ((AsciiStrnCmp(SupportedLanguages, Language, Index) == 0) && (Language[Index] == 0)) {
758 Found = TRUE;
759 break;
760 }
761 SupportedLanguages += Index;
762 for (; *SupportedLanguages != 0 && *SupportedLanguages == ';'; SupportedLanguages++);
763 }
764 }
765
766 //
767 // If Language is not a member of SupportedLanguages, then return EFI_UNSUPPORTED
768 //
769 if (!Found) {
770 return EFI_UNSUPPORTED;
771 }
772
773 //
774 // Search the Unicode String Table for the matching Language specifier
775 //
776 while (UnicodeStringTable->Language != NULL) {
777 LanguageString = UnicodeStringTable->Language;
778 while (0 != *LanguageString) {
779 for (Index = 0 ;LanguageString[Index] != 0 && LanguageString[Index] != ';'; Index++);
780 if (AsciiStrnCmp(LanguageString, Language, Index) == 0) {
781 *UnicodeString = UnicodeStringTable->UnicodeString;
782 return EFI_SUCCESS;
783 }
784 LanguageString += Index;
785 for (Index = 0 ;LanguageString[Index] != 0 && LanguageString[Index] == ';'; Index++);
786 }
787 UnicodeStringTable++;
788 }
789
790 return EFI_UNSUPPORTED;
791 }
792
793
794 /**
795 This function adds a Unicode string to UnicodeStringTable.
796
797 If Language is a member of SupportedLanguages then UnicodeString is added to
798 UnicodeStringTable. New buffers are allocated for both Language and
799 UnicodeString. The contents of Language and UnicodeString are copied into
800 these new buffers. These buffers are automatically freed when
801 FreeUnicodeStringTable() is called.
802
803 @param Language A pointer to the ISO 639-2 language code for the Unicode
804 string to add.
805 @param SupportedLanguages A pointer to the set of ISO 639-2 language codes
806 that the Unicode string table supports.
807 Language must be a member of this set.
808 @param UnicodeStringTable A pointer to the table of Unicode strings.
809 @param UnicodeString A pointer to the Unicode string to add.
810
811 @retval EFI_SUCCESS The Unicode string that matches the language
812 specified by Language was found in the table of
813 Unicode strings UnicodeStringTable, and it was
814 returned in UnicodeString.
815 @retval EFI_INVALID_PARAMETER Language is NULL.
816 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
817 @retval EFI_INVALID_PARAMETER UnicodeString is an empty string.
818 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
819 @retval EFI_ALREADY_STARTED A Unicode string with language Language is
820 already present in UnicodeStringTable.
821 @retval EFI_OUT_OF_RESOURCES There is not enough memory to add another
822 Unicode string to UnicodeStringTable.
823 @retval EFI_UNSUPPORTED The language specified by Language is not a
824 member of SupportedLanguages.
825
826 **/
827 EFI_STATUS
828 EFIAPI
829 AddUnicodeString (
830 IN CONST CHAR8 *Language,
831 IN CONST CHAR8 *SupportedLanguages,
832 IN EFI_UNICODE_STRING_TABLE **UnicodeStringTable,
833 IN CONST CHAR16 *UnicodeString
834 )
835 {
836 UINTN NumberOfEntries;
837 EFI_UNICODE_STRING_TABLE *OldUnicodeStringTable;
838 EFI_UNICODE_STRING_TABLE *NewUnicodeStringTable;
839 UINTN UnicodeStringLength;
840
841 //
842 // Make sure the parameter are valid
843 //
844 if (Language == NULL || UnicodeString == NULL || UnicodeStringTable == NULL) {
845 return EFI_INVALID_PARAMETER;
846 }
847
848 //
849 // If there are no supported languages, then a Unicode String can not be added
850 //
851 if (SupportedLanguages == NULL) {
852 return EFI_UNSUPPORTED;
853 }
854
855 //
856 // If the Unicode String is empty, then a Unicode String can not be added
857 //
858 if (UnicodeString[0] == 0) {
859 return EFI_INVALID_PARAMETER;
860 }
861
862 //
863 // Make sure Language is a member of SupportedLanguages
864 //
865 while (*SupportedLanguages != 0) {
866 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
867
868 //
869 // Determine the size of the Unicode String Table by looking for a NULL Language entry
870 //
871 NumberOfEntries = 0;
872 if (*UnicodeStringTable != NULL) {
873 OldUnicodeStringTable = *UnicodeStringTable;
874 while (OldUnicodeStringTable->Language != NULL) {
875 if (CompareIso639LanguageCode (Language, OldUnicodeStringTable->Language)) {
876 return EFI_ALREADY_STARTED;
877 }
878
879 OldUnicodeStringTable++;
880 NumberOfEntries++;
881 }
882 }
883
884 //
885 // Allocate space for a new Unicode String Table. It must hold the current number of
886 // entries, plus 1 entry for the new Unicode String, plus 1 entry for the end of table
887 // marker
888 //
889 NewUnicodeStringTable = AllocatePool ((NumberOfEntries + 2) * sizeof (EFI_UNICODE_STRING_TABLE));
890 if (NewUnicodeStringTable == NULL) {
891 return EFI_OUT_OF_RESOURCES;
892 }
893
894 //
895 // If the current Unicode String Table contains any entries, then copy them to the
896 // newly allocated Unicode String Table.
897 //
898 if (*UnicodeStringTable != NULL) {
899 CopyMem (
900 NewUnicodeStringTable,
901 *UnicodeStringTable,
902 NumberOfEntries * sizeof (EFI_UNICODE_STRING_TABLE)
903 );
904 }
905
906 //
907 // Allocate space for a copy of the Language specifier
908 //
909 NewUnicodeStringTable[NumberOfEntries].Language = AllocateCopyPool (3, Language);
910 if (NewUnicodeStringTable[NumberOfEntries].Language == NULL) {
911 FreePool (NewUnicodeStringTable);
912 return EFI_OUT_OF_RESOURCES;
913 }
914
915 //
916 // Compute the length of the Unicode String
917 //
918 for (UnicodeStringLength = 0; UnicodeString[UnicodeStringLength] != 0; UnicodeStringLength++)
919 ;
920
921 //
922 // Allocate space for a copy of the Unicode String
923 //
924 NewUnicodeStringTable[NumberOfEntries].UnicodeString = AllocateCopyPool (
925 (UnicodeStringLength + 1) * sizeof (CHAR16),
926 UnicodeString
927 );
928 if (NewUnicodeStringTable[NumberOfEntries].UnicodeString == NULL) {
929 FreePool (NewUnicodeStringTable[NumberOfEntries].Language);
930 FreePool (NewUnicodeStringTable);
931 return EFI_OUT_OF_RESOURCES;
932 }
933
934 //
935 // Mark the end of the Unicode String Table
936 //
937 NewUnicodeStringTable[NumberOfEntries + 1].Language = NULL;
938 NewUnicodeStringTable[NumberOfEntries + 1].UnicodeString = NULL;
939
940 //
941 // Free the old Unicode String Table
942 //
943 if (*UnicodeStringTable != NULL) {
944 FreePool (*UnicodeStringTable);
945 }
946
947 //
948 // Point UnicodeStringTable at the newly allocated Unicode String Table
949 //
950 *UnicodeStringTable = NewUnicodeStringTable;
951
952 return EFI_SUCCESS;
953 }
954
955 SupportedLanguages += 3;
956 }
957
958 return EFI_UNSUPPORTED;
959 }
960
961
962 /**
963 This function adds the Null-terminated Unicode string specified by UnicodeString
964 to UnicodeStringTable.
965
966 If Language is a member of SupportedLanguages then UnicodeString is added to
967 UnicodeStringTable. New buffers are allocated for both Language and UnicodeString.
968 The contents of Language and UnicodeString are copied into these new buffers.
969 These buffers are automatically freed when EfiLibFreeUnicodeStringTable() is called.
970
971 @param Language A pointer to an ASCII string containing the ISO 639-2 or
972 the RFC 4646 language code for the Unicode string to add.
973 If Iso639Language is TRUE, then this ASCII string is not
974 assumed to be Null-terminated, and only the first three
975 chacters are used. If Iso639Language is FALSE, then this
976 ASCII string must be Null-terminated.
977 @param SupportedLanguages A pointer to a Null-terminated ASCII string that contains
978 a set of ISO 639-2 or RFC 4646 language codes that the Unicode
979 string table supports. Language must be a member of this set.
980 If Iso639Language is TRUE, then this string contains one or more
981 ISO 639-2 language codes with no separator characters.
982 If Iso639Language is FALSE, then is string contains one or more
983 RFC 4646 language codes separated by ';'.
984 @param UnicodeStringTable A pointer to the table of Unicode strings. Type EFI_UNICODE_STRING_TABLE
985 is defined in "Related Definitions".
986 @param UnicodeString A pointer to the Unicode string to add.
987 @param Iso639Language Specifies the supported language code format. If it is TRUE,
988 then Language and SupportedLanguages follow ISO 639-2 language code format.
989 Otherwise, they follow RFC 4646 language code format.
990
991 @retval EFI_SUCCESS The Unicode string that matches the language specified by
992 Language was found in the table of Unicode strings UnicodeStringTable,
993 and it was returned in UnicodeString.
994 @retval EFI_INVALID_PARAMETER Language is NULL.
995 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
996 @retval EFI_INVALID_PARAMETER UnicodeString is an empty string.
997 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
998 @retval EFI_ALREADY_STARTED A Unicode string with language Language is already present in
999 UnicodeStringTable.
1000 @retval EFI_OUT_OF_RESOURCES There is not enough memory to add another Unicode string UnicodeStringTable.
1001 @retval EFI_UNSUPPORTED The language specified by Language is not a member of SupportedLanguages.
1002
1003 **/
1004 EFI_STATUS
1005 EFIAPI
1006 AddUnicodeString2 (
1007 IN CONST CHAR8 *Language,
1008 IN CONST CHAR8 *SupportedLanguages,
1009 IN EFI_UNICODE_STRING_TABLE **UnicodeStringTable,
1010 IN CONST CHAR16 *UnicodeString,
1011 IN BOOLEAN Iso639Language
1012 )
1013 {
1014 UINTN NumberOfEntries;
1015 EFI_UNICODE_STRING_TABLE *OldUnicodeStringTable;
1016 EFI_UNICODE_STRING_TABLE *NewUnicodeStringTable;
1017 UINTN UnicodeStringLength;
1018 BOOLEAN Found;
1019 UINTN Index;
1020 CHAR8 *LanguageString;
1021
1022 //
1023 // Make sure the parameter are valid
1024 //
1025 if (Language == NULL || UnicodeString == NULL || UnicodeStringTable == NULL) {
1026 return EFI_INVALID_PARAMETER;
1027 }
1028
1029 //
1030 // If there are no supported languages, then a Unicode String can not be added
1031 //
1032 if (SupportedLanguages == NULL) {
1033 return EFI_UNSUPPORTED;
1034 }
1035
1036 //
1037 // If the Unicode String is empty, then a Unicode String can not be added
1038 //
1039 if (UnicodeString[0] == 0) {
1040 return EFI_INVALID_PARAMETER;
1041 }
1042
1043 //
1044 // Make sure Language is a member of SupportedLanguages
1045 //
1046 Found = FALSE;
1047 while (*SupportedLanguages != 0) {
1048 if (Iso639Language) {
1049 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
1050 Found = TRUE;
1051 break;
1052 }
1053 SupportedLanguages += 3;
1054 } else {
1055 for (Index = 0; SupportedLanguages[Index] != 0 && SupportedLanguages[Index] != ';'; Index++);
1056 if (AsciiStrnCmp(SupportedLanguages, Language, Index) == 0) {
1057 Found = TRUE;
1058 break;
1059 }
1060 SupportedLanguages += Index;
1061 for (; *SupportedLanguages != 0 && *SupportedLanguages == ';'; SupportedLanguages++);
1062 }
1063 }
1064
1065 //
1066 // If Language is not a member of SupportedLanguages, then return EFI_UNSUPPORTED
1067 //
1068 if (!Found) {
1069 return EFI_UNSUPPORTED;
1070 }
1071
1072 //
1073 // Determine the size of the Unicode String Table by looking for a NULL Language entry
1074 //
1075 NumberOfEntries = 0;
1076 if (*UnicodeStringTable != NULL) {
1077 OldUnicodeStringTable = *UnicodeStringTable;
1078 while (OldUnicodeStringTable->Language != NULL) {
1079 LanguageString = OldUnicodeStringTable->Language;
1080
1081 while (*LanguageString != 0) {
1082 for (Index = 0; LanguageString[Index] != 0 && LanguageString[Index] != ';'; Index++);
1083
1084 if (AsciiStrnCmp (Language, LanguageString, Index) == 0) {
1085 return EFI_ALREADY_STARTED;
1086 }
1087 LanguageString += Index;
1088 for (; *LanguageString != 0 && *LanguageString == ';'; LanguageString++);
1089 }
1090 OldUnicodeStringTable++;
1091 NumberOfEntries++;
1092 }
1093 }
1094
1095 //
1096 // Allocate space for a new Unicode String Table. It must hold the current number of
1097 // entries, plus 1 entry for the new Unicode String, plus 1 entry for the end of table
1098 // marker
1099 //
1100 NewUnicodeStringTable = AllocatePool ((NumberOfEntries + 2) * sizeof (EFI_UNICODE_STRING_TABLE));
1101 if (NewUnicodeStringTable == NULL) {
1102 return EFI_OUT_OF_RESOURCES;
1103 }
1104
1105 //
1106 // If the current Unicode String Table contains any entries, then copy them to the
1107 // newly allocated Unicode String Table.
1108 //
1109 if (*UnicodeStringTable != NULL) {
1110 CopyMem (
1111 NewUnicodeStringTable,
1112 *UnicodeStringTable,
1113 NumberOfEntries * sizeof (EFI_UNICODE_STRING_TABLE)
1114 );
1115 }
1116
1117 //
1118 // Allocate space for a copy of the Language specifier
1119 //
1120 NewUnicodeStringTable[NumberOfEntries].Language = AllocateCopyPool (AsciiStrSize(Language), Language);
1121 if (NewUnicodeStringTable[NumberOfEntries].Language == NULL) {
1122 FreePool (NewUnicodeStringTable);
1123 return EFI_OUT_OF_RESOURCES;
1124 }
1125
1126 //
1127 // Compute the length of the Unicode String
1128 //
1129 for (UnicodeStringLength = 0; UnicodeString[UnicodeStringLength] != 0; UnicodeStringLength++);
1130
1131 //
1132 // Allocate space for a copy of the Unicode String
1133 //
1134 NewUnicodeStringTable[NumberOfEntries].UnicodeString = AllocateCopyPool (StrSize (UnicodeString), UnicodeString);
1135 if (NewUnicodeStringTable[NumberOfEntries].UnicodeString == NULL) {
1136 FreePool (NewUnicodeStringTable[NumberOfEntries].Language);
1137 FreePool (NewUnicodeStringTable);
1138 return EFI_OUT_OF_RESOURCES;
1139 }
1140
1141 //
1142 // Mark the end of the Unicode String Table
1143 //
1144 NewUnicodeStringTable[NumberOfEntries + 1].Language = NULL;
1145 NewUnicodeStringTable[NumberOfEntries + 1].UnicodeString = NULL;
1146
1147 //
1148 // Free the old Unicode String Table
1149 //
1150 if (*UnicodeStringTable != NULL) {
1151 FreePool (*UnicodeStringTable);
1152 }
1153
1154 //
1155 // Point UnicodeStringTable at the newly allocated Unicode String Table
1156 //
1157 *UnicodeStringTable = NewUnicodeStringTable;
1158
1159 return EFI_SUCCESS;
1160 }
1161
1162 /**
1163 This function frees the table of Unicode strings in UnicodeStringTable.
1164
1165 If UnicodeStringTable is NULL, then EFI_SUCCESS is returned.
1166 Otherwise, each language code, and each Unicode string in the Unicode string
1167 table are freed, and EFI_SUCCESS is returned.
1168
1169 @param UnicodeStringTable A pointer to the table of Unicode strings.
1170
1171 @retval EFI_SUCCESS The Unicode string table was freed.
1172
1173 **/
1174 EFI_STATUS
1175 EFIAPI
1176 FreeUnicodeStringTable (
1177 IN EFI_UNICODE_STRING_TABLE *UnicodeStringTable
1178 )
1179 {
1180 UINTN Index;
1181
1182 //
1183 // If the Unicode String Table is NULL, then it is already freed
1184 //
1185 if (UnicodeStringTable == NULL) {
1186 return EFI_SUCCESS;
1187 }
1188
1189 //
1190 // Loop through the Unicode String Table until we reach the end of table marker
1191 //
1192 for (Index = 0; UnicodeStringTable[Index].Language != NULL; Index++) {
1193
1194 //
1195 // Free the Language string from the Unicode String Table
1196 //
1197 FreePool (UnicodeStringTable[Index].Language);
1198
1199 //
1200 // Free the Unicode String from the Unicode String Table
1201 //
1202 if (UnicodeStringTable[Index].UnicodeString != NULL) {
1203 FreePool (UnicodeStringTable[Index].UnicodeString);
1204 }
1205 }
1206
1207 //
1208 // Free the Unicode String Table itself
1209 //
1210 FreePool (UnicodeStringTable);
1211
1212 return EFI_SUCCESS;
1213 }
1214
1215 /**
1216 Returns a pointer to an allocated buffer that contains the contents of a
1217 variable retrieved through the UEFI Runtime Service GetVariable(). The
1218 returned buffer is allocated using AllocatePool(). The caller is responsible
1219 for freeing this buffer with FreePool().
1220
1221 If Name is NULL, then ASSERT().
1222 If Guid is NULL, then ASSERT().
1223
1224 @param[in] Name The pointer to a Null-terminated Unicode string.
1225 @param[in] Guid The pointer to an EFI_GUID structure
1226
1227 @retval NULL The variable could not be retrieved.
1228 @retval NULL There are not enough resources available for the variable contents.
1229 @retval Other A pointer to allocated buffer containing the variable contents.
1230
1231 **/
1232 VOID *
1233 EFIAPI
1234 GetVariable (
1235 IN CONST CHAR16 *Name,
1236 IN CONST EFI_GUID *Guid
1237 )
1238 {
1239 EFI_STATUS Status;
1240 UINTN Size;
1241 VOID *Value;
1242
1243 ASSERT (Name != NULL);
1244 ASSERT (Guid != NULL);
1245
1246 //
1247 // Try to get the variable size.
1248 //
1249 Value = NULL;
1250 Size = 0;
1251 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &Size, Value);
1252 if (Status != EFI_BUFFER_TOO_SMALL) {
1253 return NULL;
1254 }
1255
1256 //
1257 // Allocate buffer to get the variable.
1258 //
1259 Value = AllocatePool (Size);
1260 if (Value == NULL) {
1261 return NULL;
1262 }
1263
1264 //
1265 // Get the variable data.
1266 //
1267 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &Size, Value);
1268 if (EFI_ERROR (Status)) {
1269 FreePool(Value);
1270 return NULL;
1271 }
1272
1273 return Value;
1274 }
1275
1276
1277 /**
1278 Returns a pointer to an allocated buffer that contains the contents of a
1279 variable retrieved through the UEFI Runtime Service GetVariable(). This
1280 function always uses the EFI_GLOBAL_VARIABLE GUID to retrieve variables.
1281 The returned buffer is allocated using AllocatePool(). The caller is
1282 responsible for freeing this buffer with FreePool().
1283
1284 If Name is NULL, then ASSERT().
1285
1286 @param[in] Name The pointer to a Null-terminated Unicode string.
1287
1288 @retval NULL The variable could not be retrieved.
1289 @retval NULL There are not enough resources available for the variable contents.
1290 @retval Other A pointer to allocated buffer containing the variable contents.
1291
1292 **/
1293 VOID *
1294 EFIAPI
1295 GetEfiGlobalVariable (
1296 IN CONST CHAR16 *Name
1297 )
1298 {
1299 return GetVariable (Name, &gEfiGlobalVariableGuid);
1300 }
1301
1302
1303 /**
1304 Returns a pointer to an allocated buffer that contains the best matching language
1305 from a set of supported languages.
1306
1307 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1308 code types may not be mixed in a single call to this function. The language
1309 code returned is allocated using AllocatePool(). The caller is responsible for
1310 freeing the allocated buffer using FreePool(). This function supports a variable
1311 argument list that allows the caller to pass in a prioritized list of language
1312 codes to test against all the language codes in SupportedLanguages.
1313
1314 If SupportedLanguages is NULL, then ASSERT().
1315
1316 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1317 contains a set of language codes in the format
1318 specified by Iso639Language.
1319 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1320 in ISO 639-2 format. If FALSE, then all language
1321 codes are assumed to be in RFC 4646 language format
1322 @param[in] ... A variable argument list that contains pointers to
1323 Null-terminated ASCII strings that contain one or more
1324 language codes in the format specified by Iso639Language.
1325 The first language code from each of these language
1326 code lists is used to determine if it is an exact or
1327 close match to any of the language codes in
1328 SupportedLanguages. Close matches only apply to RFC 4646
1329 language codes, and the matching algorithm from RFC 4647
1330 is used to determine if a close match is present. If
1331 an exact or close match is found, then the matching
1332 language code from SupportedLanguages is returned. If
1333 no matches are found, then the next variable argument
1334 parameter is evaluated. The variable argument list
1335 is terminated by a NULL.
1336
1337 @retval NULL The best matching language could not be found in SupportedLanguages.
1338 @retval NULL There are not enough resources available to return the best matching
1339 language.
1340 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1341 language in SupportedLanguages.
1342
1343 **/
1344 CHAR8 *
1345 EFIAPI
1346 GetBestLanguage (
1347 IN CONST CHAR8 *SupportedLanguages,
1348 IN BOOLEAN Iso639Language,
1349 ...
1350 )
1351 {
1352 VA_LIST Args;
1353 CHAR8 *Language;
1354 UINTN CompareLength;
1355 UINTN LanguageLength;
1356 CONST CHAR8 *Supported;
1357 CHAR8 *BestLanguage;
1358
1359 ASSERT (SupportedLanguages != NULL);
1360
1361 VA_START (Args, Iso639Language);
1362 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1363 //
1364 // Default to ISO 639-2 mode
1365 //
1366 CompareLength = 3;
1367 LanguageLength = MIN (3, AsciiStrLen (Language));
1368
1369 //
1370 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1371 //
1372 if (!Iso639Language) {
1373 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1374 }
1375
1376 //
1377 // Trim back the length of Language used until it is empty
1378 //
1379 while (LanguageLength > 0) {
1380 //
1381 // Loop through all language codes in SupportedLanguages
1382 //
1383 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1384 //
1385 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1386 //
1387 if (!Iso639Language) {
1388 //
1389 // Skip ';' characters in Supported
1390 //
1391 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1392 //
1393 // Determine the length of the next language code in Supported
1394 //
1395 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1396 //
1397 // If Language is longer than the Supported, then skip to the next language
1398 //
1399 if (LanguageLength > CompareLength) {
1400 continue;
1401 }
1402 }
1403 //
1404 // See if the first LanguageLength characters in Supported match Language
1405 //
1406 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1407 VA_END (Args);
1408 //
1409 // Allocate, copy, and return the best matching language code from SupportedLanguages
1410 //
1411 BestLanguage = AllocateZeroPool (CompareLength + 1);
1412 if (BestLanguage == NULL) {
1413 return NULL;
1414 }
1415 return CopyMem (BestLanguage, Supported, CompareLength);
1416 }
1417 }
1418
1419 if (Iso639Language) {
1420 //
1421 // If ISO 639 mode, then each language can only be tested once
1422 //
1423 LanguageLength = 0;
1424 } else {
1425 //
1426 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1427 //
1428 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1429 }
1430 }
1431 }
1432 VA_END (Args);
1433
1434 //
1435 // No matches were found
1436 //
1437 return NULL;
1438 }
1439