]> git.proxmox.com Git - mirror_edk2.git/blob - NetworkPkg/IpSecDxe/IpSecImpl.c
NetworkPkg: Remove unused variables from IpSecDxe to fix GCC build.
[mirror_edk2.git] / NetworkPkg / IpSecDxe / IpSecImpl.c
1 /** @file
2 The implementation of IPsec.
3
4 (C) Copyright 2015 Hewlett-Packard Development Company, L.P.<BR>
5 Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR>
6
7 This program and the accompanying materials
8 are licensed and made available under the terms and conditions of the BSD License
9 which accompanies this distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php.
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
13 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14
15 **/
16
17 #include "IpSecImpl.h"
18 #include "IkeService.h"
19 #include "IpSecDebug.h"
20 #include "IpSecCryptIo.h"
21 #include "IpSecConfigImpl.h"
22
23 /**
24 Check if the specified Address is the Valid Address Range.
25
26 This function checks if the bytes after prefixed length are all Zero in this
27 Address. This Address is supposed to point to a range address. That means it
28 should gives the correct prefixed address and the bytes outside the prefixed are
29 zero.
30
31 @param[in] IpVersion The IP version.
32 @param[in] Address Points to EFI_IP_ADDRESS to be checked.
33 @param[in] PrefixLength The PrefixeLength of this address.
34
35 @retval TRUE The address is a vaild address range.
36 @retval FALSE The address is not a vaild address range.
37
38 **/
39 BOOLEAN
40 IpSecValidAddressRange (
41 IN UINT8 IpVersion,
42 IN EFI_IP_ADDRESS *Address,
43 IN UINT8 PrefixLength
44 )
45 {
46 UINT8 Div;
47 UINT8 Mod;
48 UINT8 Mask;
49 UINT8 AddrLen;
50 UINT8 *Addr;
51 EFI_IP_ADDRESS ZeroAddr;
52
53 if (PrefixLength == 0) {
54 return TRUE;
55 }
56
57 AddrLen = (UINT8) ((IpVersion == IP_VERSION_4) ? 32 : 128);
58
59 if (AddrLen <= PrefixLength) {
60 return FALSE;
61 }
62
63 Div = (UINT8) (PrefixLength / 8);
64 Mod = (UINT8) (PrefixLength % 8);
65 Addr = (UINT8 *) Address;
66 ZeroMem (&ZeroAddr, sizeof (EFI_IP_ADDRESS));
67
68 //
69 // Check whether the mod part of host scope is zero or not.
70 //
71 if (Mod > 0) {
72 Mask = (UINT8) (0xFF << (8 - Mod));
73
74 if ((Addr[Div] | Mask) != Mask) {
75 return FALSE;
76 }
77
78 Div++;
79 }
80 //
81 // Check whether the div part of host scope is zero or not.
82 //
83 if (CompareMem (
84 &Addr[Div],
85 &ZeroAddr,
86 sizeof (EFI_IP_ADDRESS) - Div
87 ) != 0) {
88 return FALSE;
89 }
90
91 return TRUE;
92 }
93
94 /**
95 Extrct the Address Range from a Address.
96
97 This function keep the prefix address and zero other part address.
98
99 @param[in] Address Point to a specified address.
100 @param[in] PrefixLength The prefix length.
101 @param[out] Range Contain the return Address Range.
102
103 **/
104 VOID
105 IpSecExtractAddressRange (
106 IN EFI_IP_ADDRESS *Address,
107 IN UINT8 PrefixLength,
108 OUT EFI_IP_ADDRESS *Range
109 )
110 {
111 UINT8 Div;
112 UINT8 Mod;
113 UINT8 Mask;
114 UINT8 *Addr;
115
116 if (PrefixLength == 0) {
117 return ;
118 }
119
120 Div = (UINT8) (PrefixLength / 8);
121 Mod = (UINT8) (PrefixLength % 8);
122 Addr = (UINT8 *) Range;
123
124 CopyMem (Range, Address, sizeof (EFI_IP_ADDRESS));
125
126 //
127 // Zero the mod part of host scope.
128 //
129 if (Mod > 0) {
130 Mask = (UINT8) (0xFF << (8 - Mod));
131 Addr[Div] = (UINT8) (Addr[Div] & Mask);
132 Div++;
133 }
134 //
135 // Zero the div part of host scope.
136 //
137 ZeroMem (&Addr[Div], sizeof (EFI_IP_ADDRESS) - Div);
138
139 }
140
141 /**
142 Checks if the IP Address in the address range of AddressInfos specified.
143
144 @param[in] IpVersion The IP version.
145 @param[in] IpAddr Point to EFI_IP_ADDRESS to be check.
146 @param[in] AddressInfo A list of EFI_IP_ADDRESS_INFO that is used to check
147 the IP Address is matched.
148 @param[in] AddressCount The total numbers of the AddressInfo.
149
150 @retval TRUE If the Specified IP Address is in the range of the AddressInfos specified.
151 @retval FALSE If the Specified IP Address is not in the range of the AddressInfos specified.
152
153 **/
154 BOOLEAN
155 IpSecMatchIpAddress (
156 IN UINT8 IpVersion,
157 IN EFI_IP_ADDRESS *IpAddr,
158 IN EFI_IP_ADDRESS_INFO *AddressInfo,
159 IN UINT32 AddressCount
160 )
161 {
162 EFI_IP_ADDRESS Range;
163 UINT32 Index;
164 BOOLEAN IsMatch;
165
166 IsMatch = FALSE;
167
168 for (Index = 0; Index < AddressCount; Index++) {
169 //
170 // Check whether the target address is in the address range
171 // if it's a valid range of address.
172 //
173 if (IpSecValidAddressRange (
174 IpVersion,
175 &AddressInfo[Index].Address,
176 AddressInfo[Index].PrefixLength
177 )) {
178 //
179 // Get the range of the target address belongs to.
180 //
181 ZeroMem (&Range, sizeof (EFI_IP_ADDRESS));
182 IpSecExtractAddressRange (
183 IpAddr,
184 AddressInfo[Index].PrefixLength,
185 &Range
186 );
187
188 if (CompareMem (
189 &Range,
190 &AddressInfo[Index].Address,
191 sizeof (EFI_IP_ADDRESS)
192 ) == 0) {
193 //
194 // The target address is in the address range.
195 //
196 IsMatch = TRUE;
197 break;
198 }
199 }
200
201 if (CompareMem (
202 IpAddr,
203 &AddressInfo[Index].Address,
204 sizeof (EFI_IP_ADDRESS)
205 ) == 0) {
206 //
207 // The target address is exact same as the address.
208 //
209 IsMatch = TRUE;
210 break;
211 }
212 }
213 return IsMatch;
214 }
215
216 /**
217 Check if the specified Protocol and Prot is supported by the specified SPD Entry.
218
219 This function is the subfunction of IPsecLookUpSpdEntry() that is used to
220 check if the sent/received IKE packet has the related SPD entry support.
221
222 @param[in] Protocol The Protocol to be checked.
223 @param[in] IpPayload Point to IP Payload to be check.
224 @param[in] SpdProtocol The Protocol supported by SPD.
225 @param[in] SpdLocalPort The Local Port in SPD.
226 @param[in] SpdRemotePort The Remote Port in SPD.
227 @param[in] IsOutbound Flag to indicate the is for IKE Packet sending or recieving.
228
229 @retval TRUE The Protocol and Port are supported by the SPD Entry.
230 @retval FALSE The Protocol and Port are not supported by the SPD Entry.
231
232 **/
233 BOOLEAN
234 IpSecMatchNextLayerProtocol (
235 IN UINT8 Protocol,
236 IN UINT8 *IpPayload,
237 IN UINT16 SpdProtocol,
238 IN UINT16 SpdLocalPort,
239 IN UINT16 SpdRemotePort,
240 IN BOOLEAN IsOutbound
241 )
242 {
243 BOOLEAN IsMatch;
244
245 if (SpdProtocol == EFI_IPSEC_ANY_PROTOCOL) {
246 return TRUE;
247 }
248
249 IsMatch = FALSE;
250
251 if (SpdProtocol == Protocol) {
252 switch (Protocol) {
253 case EFI_IP_PROTO_UDP:
254 case EFI_IP_PROTO_TCP:
255 //
256 // For udp and tcp, (0, 0) means no need to check local and remote
257 // port. The payload is passed from upper level, which means it should
258 // be in network order.
259 //
260 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
261 IsMatch = (BOOLEAN) (IsMatch ||
262 (IsOutbound &&
263 (BOOLEAN)(
264 NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdLocalPort &&
265 NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdRemotePort
266 )
267 ));
268
269 IsMatch = (BOOLEAN) (IsMatch ||
270 (!IsOutbound &&
271 (BOOLEAN)(
272 NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdLocalPort &&
273 NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdRemotePort
274 )
275 ));
276 break;
277
278 case EFI_IP_PROTO_ICMP:
279 //
280 // For icmpv4, type code is replaced with local port and remote port,
281 // and (0, 0) means no need to check.
282 //
283 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
284 IsMatch = (BOOLEAN) (IsMatch ||
285 (BOOLEAN) (((IP4_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
286 ((IP4_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
287 )
288 );
289 break;
290
291 case IP6_ICMP:
292 //
293 // For icmpv6, type code is replaced with local port and remote port,
294 // and (0, 0) means no need to check.
295 //
296 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
297
298 IsMatch = (BOOLEAN) (IsMatch ||
299 (BOOLEAN) (((IP6_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
300 ((IP6_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
301 )
302 );
303 break;
304
305 default:
306 IsMatch = TRUE;
307 break;
308 }
309 }
310
311 return IsMatch;
312 }
313
314 /**
315 Find the SAD through a specified SPD's SAD list.
316
317 @param[in] SadList SAD list related to a specified SPD entry.
318 @param[in] DestAddress The destination address used to find the SAD entry.
319 @param[in] IpVersion The IP version. Ip4 or Ip6.
320
321 @return The pointer to a certain SAD entry.
322
323 **/
324 IPSEC_SAD_ENTRY *
325 IpSecLookupSadBySpd (
326 IN LIST_ENTRY *SadList,
327 IN EFI_IP_ADDRESS *DestAddress,
328 IN UINT8 IpVersion
329 )
330 {
331 LIST_ENTRY *Entry;
332 IPSEC_SAD_ENTRY *SadEntry;
333
334 NET_LIST_FOR_EACH (Entry, SadList) {
335
336 SadEntry = IPSEC_SAD_ENTRY_FROM_SPD (Entry);
337 //
338 // Find the right SAD entry which contains the appointed dest address.
339 //
340 if (IpSecMatchIpAddress (
341 IpVersion,
342 DestAddress,
343 SadEntry->Data->SpdSelector->RemoteAddress,
344 SadEntry->Data->SpdSelector->RemoteAddressCount
345 )){
346 return SadEntry;
347 }
348 }
349
350 return NULL;
351 }
352
353 /**
354 Find the SAD through whole SAD list.
355
356 @param[in] Spi The SPI used to search the SAD entry.
357 @param[in] DestAddress The destination used to search the SAD entry.
358 @param[in] IpVersion The IP version. Ip4 or Ip6.
359
360 @return the pointer to a certain SAD entry.
361
362 **/
363 IPSEC_SAD_ENTRY *
364 IpSecLookupSadBySpi (
365 IN UINT32 Spi,
366 IN EFI_IP_ADDRESS *DestAddress,
367 IN UINT8 IpVersion
368 )
369 {
370 LIST_ENTRY *Entry;
371 LIST_ENTRY *SadList;
372 IPSEC_SAD_ENTRY *SadEntry;
373
374 SadList = &mConfigData[IPsecConfigDataTypeSad];
375
376 NET_LIST_FOR_EACH (Entry, SadList) {
377
378 SadEntry = IPSEC_SAD_ENTRY_FROM_LIST (Entry);
379
380 //
381 // Find the right SAD entry which contain the appointed spi and dest addr.
382 //
383 if (SadEntry->Id->Spi == Spi) {
384 if (SadEntry->Data->Mode == EfiIPsecTunnel) {
385 if (CompareMem (
386 &DestAddress,
387 &SadEntry->Data->TunnelDestAddress,
388 sizeof (EFI_IP_ADDRESS)
389 )) {
390 return SadEntry;
391 }
392 } else {
393 if (SadEntry->Data->SpdSelector != NULL &&
394 IpSecMatchIpAddress (
395 IpVersion,
396 DestAddress,
397 SadEntry->Data->SpdSelector->RemoteAddress,
398 SadEntry->Data->SpdSelector->RemoteAddressCount
399 )
400 ) {
401 return SadEntry;
402 }
403 }
404 }
405 }
406 return NULL;
407 }
408
409 /**
410 Look up if there is existing SAD entry for specified IP packet sending.
411
412 This function is called by the IPsecProcess when there is some IP packet needed to
413 send out. This function checks if there is an existing SAD entry that can be serviced
414 to this IP packet sending. If no existing SAD entry could be used, this
415 function will invoke an IPsec Key Exchange Negotiation.
416
417 @param[in] Private Points to private data.
418 @param[in] NicHandle Points to a NIC handle.
419 @param[in] IpVersion The version of IP.
420 @param[in] IpHead The IP Header of packet to be sent out.
421 @param[in] IpPayload The IP Payload to be sent out.
422 @param[in] OldLastHead The Last protocol of the IP packet.
423 @param[in] SpdEntry Points to a related SPD entry.
424 @param[out] SadEntry Contains the Point of a related SAD entry.
425
426 @retval EFI_DEVICE_ERROR One of following conditions is TRUE:
427 - If don't find related UDP service.
428 - Sequence Number is used up.
429 - Extension Sequence Number is used up.
430 @retval EFI_NOT_READY No existing SAD entry could be used.
431 @retval EFI_SUCCESS Find the related SAD entry.
432
433 **/
434 EFI_STATUS
435 IpSecLookupSadEntry (
436 IN IPSEC_PRIVATE_DATA *Private,
437 IN EFI_HANDLE NicHandle,
438 IN UINT8 IpVersion,
439 IN VOID *IpHead,
440 IN UINT8 *IpPayload,
441 IN UINT8 OldLastHead,
442 IN IPSEC_SPD_ENTRY *SpdEntry,
443 OUT IPSEC_SAD_ENTRY **SadEntry
444 )
445 {
446 IKE_UDP_SERVICE *UdpService;
447 IPSEC_SAD_ENTRY *Entry;
448 IPSEC_SAD_DATA *Data;
449 EFI_IP_ADDRESS DestIp;
450 UINT32 SeqNum32;
451
452 *SadEntry = NULL;
453 UdpService = IkeLookupUdp (Private, NicHandle, IpVersion);
454
455 if (UdpService == NULL) {
456 return EFI_DEVICE_ERROR;
457 }
458 //
459 // Parse the destination address from ip header.
460 //
461 ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
462 if (IpVersion == IP_VERSION_4) {
463 CopyMem (
464 &DestIp,
465 &((IP4_HEAD *) IpHead)->Dst,
466 sizeof (IP4_ADDR)
467 );
468 } else {
469 CopyMem (
470 &DestIp,
471 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
472 sizeof (EFI_IP_ADDRESS)
473 );
474 }
475
476 //
477 // Find the SAD entry in the spd.sas list according to the dest address.
478 //
479 Entry = IpSecLookupSadBySpd (&SpdEntry->Data->Sas, &DestIp, IpVersion);
480
481 if (Entry == NULL) {
482 if (OldLastHead != IP6_ICMP ||
483 (OldLastHead == IP6_ICMP && *IpPayload == ICMP_V6_ECHO_REQUEST)
484 ) {
485 //
486 // Start ike negotiation process except the request packet of ping.
487 //
488 if (SpdEntry->Data->ProcessingPolicy->Mode == EfiIPsecTunnel) {
489 IkeNegotiate (
490 UdpService,
491 SpdEntry,
492 &SpdEntry->Data->ProcessingPolicy->TunnelOption->RemoteTunnelAddress
493 );
494 } else {
495 IkeNegotiate (
496 UdpService,
497 SpdEntry,
498 &DestIp
499 );
500 }
501
502 }
503
504 return EFI_NOT_READY;
505 }
506
507 Data = Entry->Data;
508
509 if (!Data->ManualSet) {
510 if (Data->ESNEnabled) {
511 //
512 // Validate the 64bit sn number if 64bit sn enabled.
513 //
514 if ((UINT64) (Data->SequenceNumber + 1) == 0) {
515 //
516 // TODO: Re-negotiate SA
517 //
518 return EFI_DEVICE_ERROR;
519 }
520 } else {
521 //
522 // Validate the 32bit sn number if 64bit sn disabled.
523 //
524 SeqNum32 = (UINT32) Data->SequenceNumber;
525 if ((UINT32) (SeqNum32 + 1) == 0) {
526 //
527 // TODO: Re-negotiate SA
528 //
529 return EFI_DEVICE_ERROR;
530 }
531 }
532 }
533
534 *SadEntry = Entry;
535
536 return EFI_SUCCESS;
537 }
538
539 /**
540 Find a PAD entry according to a remote IP address.
541
542 @param[in] IpVersion The version of IP.
543 @param[in] IpAddr Points to remote IP address.
544
545 @return the pointer of related PAD entry.
546
547 **/
548 IPSEC_PAD_ENTRY *
549 IpSecLookupPadEntry (
550 IN UINT8 IpVersion,
551 IN EFI_IP_ADDRESS *IpAddr
552 )
553 {
554 LIST_ENTRY *PadList;
555 LIST_ENTRY *Entry;
556 EFI_IP_ADDRESS_INFO *IpAddrInfo;
557 IPSEC_PAD_ENTRY *PadEntry;
558
559 PadList = &mConfigData[IPsecConfigDataTypePad];
560
561 for (Entry = PadList->ForwardLink; Entry != PadList; Entry = Entry->ForwardLink) {
562
563 PadEntry = IPSEC_PAD_ENTRY_FROM_LIST (Entry);
564 IpAddrInfo = &PadEntry->Id->Id.IpAddress;
565 //
566 // Find the right pad entry which contain the appointed dest addr.
567 //
568 if (IpSecMatchIpAddress (IpVersion, IpAddr, IpAddrInfo, 1)) {
569 return PadEntry;
570 }
571 }
572
573 return NULL;
574 }
575
576 /**
577 Check if the specified IP packet can be serviced by this SPD entry.
578
579 @param[in] SpdEntry Point to SPD entry.
580 @param[in] IpVersion Version of IP.
581 @param[in] IpHead Point to IP header.
582 @param[in] IpPayload Point to IP payload.
583 @param[in] Protocol The Last protocol of IP packet.
584 @param[in] IsOutbound Traffic direction.
585 @param[out] Action The support action of SPD entry.
586
587 @retval EFI_SUCCESS Find the related SPD.
588 @retval EFI_NOT_FOUND Not find the related SPD entry;
589
590 **/
591 EFI_STATUS
592 IpSecLookupSpdEntry (
593 IN IPSEC_SPD_ENTRY *SpdEntry,
594 IN UINT8 IpVersion,
595 IN VOID *IpHead,
596 IN UINT8 *IpPayload,
597 IN UINT8 Protocol,
598 IN BOOLEAN IsOutbound,
599 OUT EFI_IPSEC_ACTION *Action
600 )
601 {
602 EFI_IPSEC_SPD_SELECTOR *SpdSel;
603 IP4_HEAD *Ip4;
604 EFI_IP6_HEADER *Ip6;
605 EFI_IP_ADDRESS SrcAddr;
606 EFI_IP_ADDRESS DstAddr;
607 BOOLEAN SpdMatch;
608
609 ASSERT (SpdEntry != NULL);
610 SpdSel = SpdEntry->Selector;
611 Ip4 = (IP4_HEAD *) IpHead;
612 Ip6 = (EFI_IP6_HEADER *) IpHead;
613
614 ZeroMem (&SrcAddr, sizeof (EFI_IP_ADDRESS));
615 ZeroMem (&DstAddr, sizeof (EFI_IP_ADDRESS));
616
617 //
618 // Parse the source and destination address from ip header.
619 //
620 if (IpVersion == IP_VERSION_4) {
621 CopyMem (&SrcAddr, &Ip4->Src, sizeof (IP4_ADDR));
622 CopyMem (&DstAddr, &Ip4->Dst, sizeof (IP4_ADDR));
623 } else {
624 CopyMem (&SrcAddr, &Ip6->SourceAddress, sizeof (EFI_IPv6_ADDRESS));
625 CopyMem (&DstAddr, &Ip6->DestinationAddress, sizeof (EFI_IPv6_ADDRESS));
626 }
627 //
628 // Check the local and remote addresses for outbound traffic
629 //
630 SpdMatch = (BOOLEAN)(IsOutbound &&
631 IpSecMatchIpAddress (
632 IpVersion,
633 &SrcAddr,
634 SpdSel->LocalAddress,
635 SpdSel->LocalAddressCount
636 ) &&
637 IpSecMatchIpAddress (
638 IpVersion,
639 &DstAddr,
640 SpdSel->RemoteAddress,
641 SpdSel->RemoteAddressCount
642 )
643 );
644
645 //
646 // Check the local and remote addresses for inbound traffic
647 //
648 SpdMatch = (BOOLEAN) (SpdMatch ||
649 (!IsOutbound &&
650 IpSecMatchIpAddress (
651 IpVersion,
652 &DstAddr,
653 SpdSel->LocalAddress,
654 SpdSel->LocalAddressCount
655 ) &&
656 IpSecMatchIpAddress (
657 IpVersion,
658 &SrcAddr,
659 SpdSel->RemoteAddress,
660 SpdSel->RemoteAddressCount
661 )
662 ));
663
664 //
665 // Check the next layer protocol and local and remote ports.
666 //
667 SpdMatch = (BOOLEAN) (SpdMatch &&
668 IpSecMatchNextLayerProtocol (
669 Protocol,
670 IpPayload,
671 SpdSel->NextLayerProtocol,
672 SpdSel->LocalPort,
673 SpdSel->RemotePort,
674 IsOutbound
675 )
676 );
677
678 if (SpdMatch) {
679 //
680 // Find the right SPD entry if match the 5 key elements.
681 //
682 *Action = SpdEntry->Data->Action;
683 return EFI_SUCCESS;
684 }
685
686 return EFI_NOT_FOUND;
687 }
688
689 /**
690 The call back function of NetbufFromExt.
691
692 @param[in] Arg The argument passed from the caller.
693
694 **/
695 VOID
696 EFIAPI
697 IpSecOnRecyclePacket (
698 IN VOID *Arg
699 )
700 {
701 }
702
703 /**
704 This is a Notification function. It is called when the related IP6_TXTOKEN_WRAP
705 is released.
706
707 @param[in] Event The related event.
708 @param[in] Context The data passed by the caller.
709
710 **/
711 VOID
712 EFIAPI
713 IpSecRecycleCallback (
714 IN EFI_EVENT Event,
715 IN VOID *Context
716 )
717 {
718 IPSEC_RECYCLE_CONTEXT *RecycleContext;
719
720 RecycleContext = (IPSEC_RECYCLE_CONTEXT *) Context;
721
722 if (RecycleContext->FragmentTable != NULL) {
723 FreePool (RecycleContext->FragmentTable);
724 }
725
726 if (RecycleContext->PayloadBuffer != NULL) {
727 FreePool (RecycleContext->PayloadBuffer);
728 }
729
730 FreePool (RecycleContext);
731 gBS->CloseEvent (Event);
732
733 }
734
735 /**
736 Calculate the extension hader of IP. The return length only doesn't contain
737 the fixed IP header length.
738
739 @param[in] IpHead Points to an IP head to be calculated.
740 @param[in] LastHead Points to the last header of the IP header.
741
742 @return The length of the extension header.
743
744 **/
745 UINT16
746 IpSecGetPlainExtHeadSize (
747 IN VOID *IpHead,
748 IN UINT8 *LastHead
749 )
750 {
751 UINT16 Size;
752
753 Size = (UINT16) (LastHead - (UINT8 *) IpHead);
754
755 if (Size > sizeof (EFI_IP6_HEADER)) {
756 //
757 // * (LastHead+1) point the last header's length but not include the first
758 // 8 octers, so this formluation add 8 at the end.
759 //
760 Size = (UINT16) (Size - sizeof (EFI_IP6_HEADER) + *(LastHead + 1) + 8);
761 } else {
762 Size = 0;
763 }
764
765 return Size;
766 }
767
768 /**
769 Verify if the Authentication payload is correct.
770
771 @param[in] EspBuffer Points to the ESP wrapped buffer.
772 @param[in] EspSize The size of the ESP wrapped buffer.
773 @param[in] SadEntry The related SAD entry to store the authentication
774 algorithm key.
775 @param[in] IcvSize The length of ICV.
776
777 @retval EFI_SUCCESS The authentication data is correct.
778 @retval EFI_ACCESS_DENIED The authentication data is not correct.
779
780 **/
781 EFI_STATUS
782 IpSecEspAuthVerifyPayload (
783 IN UINT8 *EspBuffer,
784 IN UINTN EspSize,
785 IN IPSEC_SAD_ENTRY *SadEntry,
786 IN UINTN IcvSize
787 )
788 {
789 EFI_STATUS Status;
790 UINTN AuthSize;
791 UINT8 IcvBuffer[12];
792 HASH_DATA_FRAGMENT HashFragment[1];
793
794 //
795 // Calculate the size of authentication payload.
796 //
797 AuthSize = EspSize - IcvSize;
798
799 //
800 // Calculate the icv buffer and size of the payload.
801 //
802 HashFragment[0].Data = EspBuffer;
803 HashFragment[0].DataSize = AuthSize;
804
805 Status = IpSecCryptoIoHmac (
806 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
807 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
808 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
809 HashFragment,
810 1,
811 IcvBuffer,
812 IcvSize
813 );
814 if (EFI_ERROR (Status)) {
815 return Status;
816 }
817
818 //
819 // Compare the calculated icv and the appended original icv.
820 //
821 if (CompareMem (EspBuffer + AuthSize, IcvBuffer, IcvSize) == 0) {
822 return EFI_SUCCESS;
823 }
824
825 DEBUG ((DEBUG_ERROR, "Error auth verify payload\n"));
826 return EFI_ACCESS_DENIED;
827 }
828
829 /**
830 Search the related SAD entry by the input .
831
832 @param[in] IpHead The pointer to IP header.
833 @param[in] IpVersion The version of IP (IP4 or IP6).
834 @param[in] Spi The SPI used to search the related SAD entry.
835
836
837 @retval NULL Not find the related SAD entry.
838 @retval IPSEC_SAD_ENTRY Return the related SAD entry.
839
840 **/
841 IPSEC_SAD_ENTRY *
842 IpSecFoundSadFromInboundPacket (
843 UINT8 *IpHead,
844 UINT8 IpVersion,
845 UINT32 Spi
846 )
847 {
848 EFI_IP_ADDRESS DestIp;
849
850 //
851 // Parse destination address from ip header.
852 //
853 ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
854 if (IpVersion == IP_VERSION_4) {
855 CopyMem (
856 &DestIp,
857 &((IP4_HEAD *) IpHead)->Dst,
858 sizeof (IP4_ADDR)
859 );
860 } else {
861 CopyMem (
862 &DestIp,
863 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
864 sizeof (EFI_IPv6_ADDRESS)
865 );
866 }
867
868 //
869 // Lookup SAD entry according to the spi and dest address.
870 //
871 return IpSecLookupSadBySpi (Spi, &DestIp, IpVersion);
872 }
873
874 /**
875 Validate the IP6 extension header format for both the packets we received
876 and that we will transmit.
877
878 @param[in] NextHeader The next header field in IPv6 basic header.
879 @param[in] ExtHdrs The first bye of the option.
880 @param[in] ExtHdrsLen The length of the whole option.
881 @param[out] LastHeader The pointer of NextHeader of the last extension
882 header processed by IP6.
883 @param[out] RealExtsLen The length of extension headers processed by IP6 layer.
884 This is an optional parameter that may be NULL.
885
886 @retval TRUE The option is properly formated.
887 @retval FALSE The option is malformated.
888
889 **/
890 BOOLEAN
891 IpSecIsIp6ExtsValid (
892 IN UINT8 *NextHeader,
893 IN UINT8 *ExtHdrs,
894 IN UINT32 ExtHdrsLen,
895 OUT UINT8 **LastHeader,
896 OUT UINT32 *RealExtsLen OPTIONAL
897 )
898 {
899 UINT32 Pointer;
900 UINT8 *Option;
901 UINT8 OptionLen;
902 UINT8 CountD;
903 UINT8 CountF;
904 UINT8 CountA;
905
906 if (RealExtsLen != NULL) {
907 *RealExtsLen = 0;
908 }
909
910 *LastHeader = NextHeader;
911
912 if (ExtHdrs == NULL && ExtHdrsLen == 0) {
913 return TRUE;
914 }
915
916 if ((ExtHdrs == NULL && ExtHdrsLen != 0) || (ExtHdrs != NULL && ExtHdrsLen == 0)) {
917 return FALSE;
918 }
919
920 Pointer = 0;
921 CountD = 0;
922 CountF = 0;
923 CountA = 0;
924
925 while (Pointer <= ExtHdrsLen) {
926
927 switch (*NextHeader) {
928 case IP6_HOP_BY_HOP:
929 if (Pointer != 0) {
930 return FALSE;
931 }
932
933 //
934 // Fall through
935 //
936 case IP6_DESTINATION:
937 if (*NextHeader == IP6_DESTINATION) {
938 CountD++;
939 }
940
941 if (CountD > 2) {
942 return FALSE;
943 }
944
945 NextHeader = ExtHdrs + Pointer;
946
947 Pointer++;
948 Option = ExtHdrs + Pointer;
949 OptionLen = (UINT8) ((*Option + 1) * 8 - 2);
950 Option++;
951 Pointer++;
952
953 Pointer = Pointer + OptionLen;
954 break;
955
956 case IP6_FRAGMENT:
957 if (++CountF > 1) {
958 return FALSE;
959 }
960 //
961 // RFC2402, AH header should after fragment header.
962 //
963 if (CountA > 1) {
964 return FALSE;
965 }
966
967 NextHeader = ExtHdrs + Pointer;
968 Pointer = Pointer + 8;
969 break;
970
971 case IP6_AH:
972 if (++CountA > 1) {
973 return FALSE;
974 }
975
976 Option = ExtHdrs + Pointer;
977 NextHeader = Option;
978 Option++;
979 //
980 // RFC2402, Payload length is specified in 32-bit words, minus "2".
981 //
982 OptionLen = (UINT8) ((*Option + 2) * 4);
983 Pointer = Pointer + OptionLen;
984 break;
985
986 default:
987 *LastHeader = NextHeader;
988 if (RealExtsLen != NULL) {
989 *RealExtsLen = Pointer;
990 }
991
992 return TRUE;
993 }
994 }
995
996 *LastHeader = NextHeader;
997
998 if (RealExtsLen != NULL) {
999 *RealExtsLen = Pointer;
1000 }
1001
1002 return TRUE;
1003 }
1004
1005 /**
1006 The actual entry to process the tunnel header and inner header for tunnel mode
1007 outbound traffic.
1008
1009 This function is the subfunction of IpSecEspInboundPacket(). It change the destination
1010 Ip address to the station address and recalculate the uplayyer's checksum.
1011
1012
1013 @param[in, out] IpHead Points to the IP header containing the ESP header
1014 to be trimed on input, and without ESP header
1015 on return.
1016 @param[in] IpPayload The decrypted Ip payload. It start from the inner
1017 header.
1018 @param[in] IpVersion The version of IP.
1019 @param[in] SadData Pointer of the relevant SAD.
1020 @param[in, out] LastHead The Last Header in IP header on return.
1021
1022 **/
1023 VOID
1024 IpSecTunnelInboundPacket (
1025 IN OUT UINT8 *IpHead,
1026 IN UINT8 *IpPayload,
1027 IN UINT8 IpVersion,
1028 IN IPSEC_SAD_DATA *SadData,
1029 IN OUT UINT8 *LastHead
1030 )
1031 {
1032 EFI_UDP_HEADER *UdpHeader;
1033 TCP_HEAD *TcpHeader;
1034 UINT16 *Checksum;
1035 UINT16 PseudoChecksum;
1036 UINT16 PacketChecksum;
1037 UINT32 OptionLen;
1038 IP6_ICMP_HEAD *Icmp6Head;
1039
1040 Checksum = NULL;
1041
1042 if (IpVersion == IP_VERSION_4) {
1043 //
1044 // Zero OutIP header use this to indicate the input packet is under
1045 // IPsec Tunnel protected.
1046 //
1047 ZeroMem (
1048 (IP4_HEAD *)IpHead,
1049 sizeof (IP4_HEAD)
1050 );
1051 CopyMem (
1052 &((IP4_HEAD *)IpPayload)->Dst,
1053 &SadData->TunnelDestAddress.v4,
1054 sizeof (EFI_IPv4_ADDRESS)
1055 );
1056
1057 //
1058 // Recalculate IpHeader Checksum
1059 //
1060 if (((IP4_HEAD *)(IpPayload))->Checksum != 0 ) {
1061 ((IP4_HEAD *)(IpPayload))->Checksum = 0;
1062 ((IP4_HEAD *)(IpPayload))->Checksum = (UINT16) (~NetblockChecksum (
1063 (UINT8 *)IpPayload,
1064 ((IP4_HEAD *)IpPayload)->HeadLen << 2
1065 ));
1066
1067
1068 }
1069
1070 //
1071 // Recalcualte PseudoChecksum
1072 //
1073 switch (((IP4_HEAD *)IpPayload)->Protocol) {
1074 case EFI_IP_PROTO_UDP :
1075 UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
1076 Checksum = & UdpHeader->Checksum;
1077 *Checksum = 0;
1078 break;
1079
1080 case EFI_IP_PROTO_TCP:
1081 TcpHeader = (TCP_HEAD *) ((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
1082 Checksum = &TcpHeader->Checksum;
1083 *Checksum = 0;
1084 break;
1085
1086 default:
1087 break;
1088 }
1089 PacketChecksum = NetblockChecksum (
1090 (UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2),
1091 NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)
1092 );
1093 PseudoChecksum = NetPseudoHeadChecksum (
1094 ((IP4_HEAD *)IpPayload)->Src,
1095 ((IP4_HEAD *)IpPayload)->Dst,
1096 ((IP4_HEAD *)IpPayload)->Protocol,
1097 0
1098 );
1099
1100 if (Checksum != NULL) {
1101 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1102 *Checksum = (UINT16) ~(NetAddChecksum (*Checksum, HTONS((UINT16)(NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)))));
1103 }
1104 }else {
1105 //
1106 // Zero OutIP header use this to indicate the input packet is under
1107 // IPsec Tunnel protected.
1108 //
1109 ZeroMem (
1110 IpHead,
1111 sizeof (EFI_IP6_HEADER)
1112 );
1113 CopyMem (
1114 &((EFI_IP6_HEADER*)IpPayload)->DestinationAddress,
1115 &SadData->TunnelDestAddress.v6,
1116 sizeof (EFI_IPv6_ADDRESS)
1117 );
1118
1119 //
1120 // Get the Extension Header and Header length.
1121 //
1122 IpSecIsIp6ExtsValid (
1123 &((EFI_IP6_HEADER *)IpPayload)->NextHeader,
1124 IpPayload + sizeof (EFI_IP6_HEADER),
1125 ((EFI_IP6_HEADER *)IpPayload)->PayloadLength,
1126 &LastHead,
1127 &OptionLen
1128 );
1129
1130 //
1131 // Recalcualte PseudoChecksum
1132 //
1133 switch (*LastHead) {
1134 case EFI_IP_PROTO_UDP:
1135 UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1136 Checksum = &UdpHeader->Checksum;
1137 *Checksum = 0;
1138 break;
1139
1140 case EFI_IP_PROTO_TCP:
1141 TcpHeader = (TCP_HEAD *)(IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1142 Checksum = &TcpHeader->Checksum;
1143 *Checksum = 0;
1144 break;
1145
1146 case IP6_ICMP:
1147 Icmp6Head = (IP6_ICMP_HEAD *) (IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1148 Checksum = &Icmp6Head->Checksum;
1149 *Checksum = 0;
1150 break;
1151 }
1152 PacketChecksum = NetblockChecksum (
1153 IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen,
1154 NTOHS(((EFI_IP6_HEADER *)IpPayload)->PayloadLength) - OptionLen
1155 );
1156 PseudoChecksum = NetIp6PseudoHeadChecksum (
1157 &((EFI_IP6_HEADER *)IpPayload)->SourceAddress,
1158 &((EFI_IP6_HEADER *)IpPayload)->DestinationAddress,
1159 *LastHead,
1160 0
1161 );
1162
1163 if (Checksum != NULL) {
1164 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1165 *Checksum = (UINT16) ~(NetAddChecksum (
1166 *Checksum,
1167 HTONS ((UINT16)((NTOHS (((EFI_IP6_HEADER *)(IpPayload))->PayloadLength)) - OptionLen))
1168 ));
1169 }
1170 }
1171 }
1172
1173 /**
1174 The actual entry to create inner header for tunnel mode inbound traffic.
1175
1176 This function is the subfunction of IpSecEspOutboundPacket(). It create
1177 the sending packet by encrypting its payload and inserting ESP header in the orginal
1178 IP header, then return the IpHeader and IPsec protected Fragmentable.
1179
1180 @param[in, out] IpHead Points to IP header containing the orginal IP header
1181 to be processed on input, and inserted ESP header
1182 on return.
1183 @param[in] IpVersion The version of IP.
1184 @param[in] SadData The related SAD data.
1185 @param[in, out] LastHead The Last Header in IP header.
1186 @param[in] OptionsBuffer Pointer to the options buffer.
1187 @param[in] OptionsLength Length of the options buffer.
1188 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
1189 IPsec on input, and with IPsec protected
1190 on return.
1191 @param[in] FragmentCount The number of fragments.
1192
1193 @retval EFI_SUCCESS The operation was successful.
1194 @retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
1195
1196 **/
1197 UINT8 *
1198 IpSecTunnelOutboundPacket (
1199 IN OUT UINT8 *IpHead,
1200 IN UINT8 IpVersion,
1201 IN IPSEC_SAD_DATA *SadData,
1202 IN OUT UINT8 *LastHead,
1203 IN VOID **OptionsBuffer,
1204 IN UINT32 *OptionsLength,
1205 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1206 IN UINT32 *FragmentCount
1207 )
1208 {
1209 UINT8 *InnerHead;
1210 NET_BUF *Packet;
1211 UINT16 PacketChecksum;
1212 UINT16 *Checksum;
1213 UINT16 PseudoChecksum;
1214 IP6_ICMP_HEAD *IcmpHead;
1215
1216 Checksum = NULL;
1217 if (OptionsLength == NULL) {
1218 return NULL;
1219 }
1220
1221 if (IpVersion == IP_VERSION_4) {
1222 InnerHead = AllocateZeroPool (sizeof (IP4_HEAD) + *OptionsLength);
1223 ASSERT (InnerHead != NULL);
1224 CopyMem (
1225 InnerHead,
1226 IpHead,
1227 sizeof (IP4_HEAD)
1228 );
1229 CopyMem (
1230 InnerHead + sizeof (IP4_HEAD),
1231 *OptionsBuffer,
1232 *OptionsLength
1233 );
1234 } else {
1235 InnerHead = AllocateZeroPool (sizeof (EFI_IP6_HEADER) + *OptionsLength);
1236 ASSERT (InnerHead != NULL);
1237 CopyMem (
1238 InnerHead,
1239 IpHead,
1240 sizeof (EFI_IP6_HEADER)
1241 );
1242 CopyMem (
1243 InnerHead + sizeof (EFI_IP6_HEADER),
1244 *OptionsBuffer,
1245 *OptionsLength
1246 );
1247 }
1248 if (OptionsBuffer != NULL) {
1249 if (*OptionsLength != 0) {
1250
1251 *OptionsBuffer = NULL;
1252 *OptionsLength = 0;
1253 }
1254 }
1255
1256 //
1257 // 2. Reassamlbe Fragment into Packet
1258 //
1259 Packet = NetbufFromExt (
1260 (NET_FRAGMENT *)(*FragmentTable),
1261 *FragmentCount,
1262 0,
1263 0,
1264 IpSecOnRecyclePacket,
1265 NULL
1266 );
1267 ASSERT (Packet != NULL);
1268 //
1269 // 3. Check the Last Header, if it is TCP, UDP or ICMP recalcualate its pesudo
1270 // CheckSum.
1271 //
1272 switch (*LastHead) {
1273 case EFI_IP_PROTO_UDP:
1274 Packet->Udp = (EFI_UDP_HEADER *) NetbufGetByte (Packet, 0, 0);
1275 ASSERT (Packet->Udp != NULL);
1276 Checksum = &Packet->Udp->Checksum;
1277 *Checksum = 0;
1278 break;
1279
1280 case EFI_IP_PROTO_TCP:
1281 Packet->Tcp = (TCP_HEAD *) NetbufGetByte (Packet, 0, 0);
1282 ASSERT (Packet->Tcp != NULL);
1283 Checksum = &Packet->Tcp->Checksum;
1284 *Checksum = 0;
1285 break;
1286
1287 case IP6_ICMP:
1288 IcmpHead = (IP6_ICMP_HEAD *) NetbufGetByte (Packet, 0, NULL);
1289 ASSERT (IcmpHead != NULL);
1290 Checksum = &IcmpHead->Checksum;
1291 *Checksum = 0;
1292 break;
1293
1294 default:
1295 break;
1296 }
1297
1298 PacketChecksum = NetbufChecksum (Packet);
1299
1300 if (IpVersion == IP_VERSION_4) {
1301 //
1302 // Replace the source address of Inner Header.
1303 //
1304 CopyMem (
1305 &((IP4_HEAD *)InnerHead)->Src,
1306 &SadData->SpdSelector->LocalAddress[0].Address.v4,
1307 sizeof (EFI_IPv4_ADDRESS)
1308 );
1309
1310 PacketChecksum = NetbufChecksum (Packet);
1311 PseudoChecksum = NetPseudoHeadChecksum (
1312 ((IP4_HEAD *)InnerHead)->Src,
1313 ((IP4_HEAD *)InnerHead)->Dst,
1314 *LastHead,
1315 0
1316 );
1317
1318 } else {
1319 //
1320 // Replace the source address of Inner Header.
1321 //
1322 CopyMem (
1323 &((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
1324 &(SadData->SpdSelector->LocalAddress[0].Address.v6),
1325 sizeof (EFI_IPv6_ADDRESS)
1326 );
1327 PacketChecksum = NetbufChecksum (Packet);
1328 PseudoChecksum = NetIp6PseudoHeadChecksum (
1329 &((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
1330 &((EFI_IP6_HEADER *)InnerHead)->DestinationAddress,
1331 *LastHead,
1332 0
1333 );
1334
1335 }
1336 if (Checksum != NULL) {
1337 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1338 *Checksum = (UINT16) ~(NetAddChecksum ((UINT16)*Checksum, HTONS ((UINT16) Packet->TotalSize)));
1339 }
1340
1341 if (Packet != NULL) {
1342 NetbufFree (Packet);
1343 }
1344 return InnerHead;
1345 }
1346
1347 /**
1348 The actual entry to relative function processes the inbound traffic of ESP header.
1349
1350 This function is the subfunction of IpSecProtectInboundPacket(). It checks the
1351 received packet security property and trim the ESP header and then returns without
1352 an IPsec protected IP Header and FramgmentTable.
1353
1354 @param[in] IpVersion The version of IP.
1355 @param[in, out] IpHead Points to the IP header containing the ESP header
1356 to be trimed on input, and without ESP header
1357 on return.
1358 @param[out] LastHead The Last Header in IP header on return.
1359 @param[in, out] OptionsBuffer Pointer to the options buffer.
1360 @param[in, out] OptionsLength Length of the options buffer.
1361 @param[in, out] FragmentTable Pointer to a list of fragments in the form of IPsec
1362 protected on input, and without IPsec protected
1363 on return.
1364 @param[in, out] FragmentCount The number of fragments.
1365 @param[out] SpdSelector Pointer to contain the address of SPD selector on return.
1366 @param[out] RecycleEvent The event for recycling of resources.
1367
1368 @retval EFI_SUCCESS The operation was successful.
1369 @retval EFI_ACCESS_DENIED One or more following conditions is TRUE:
1370 - ESP header was not found or mal-format.
1371 - The related SAD entry was not found.
1372 - The related SAD entry does not support the ESP protocol.
1373 @retval EFI_OUT_OF_RESOURCES The required system resource can't be allocated.
1374
1375 **/
1376 EFI_STATUS
1377 IpSecEspInboundPacket (
1378 IN UINT8 IpVersion,
1379 IN OUT VOID *IpHead,
1380 OUT UINT8 *LastHead,
1381 IN OUT VOID **OptionsBuffer,
1382 IN OUT UINT32 *OptionsLength,
1383 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1384 IN OUT UINT32 *FragmentCount,
1385 OUT EFI_IPSEC_SPD_SELECTOR **SpdSelector,
1386 OUT EFI_EVENT *RecycleEvent
1387 )
1388 {
1389 EFI_STATUS Status;
1390 NET_BUF *Payload;
1391 UINTN EspSize;
1392 UINTN IvSize;
1393 UINTN BlockSize;
1394 UINTN MiscSize;
1395 UINTN PlainPayloadSize;
1396 UINTN PaddingSize;
1397 UINTN IcvSize;
1398 UINT8 *ProcessBuffer;
1399 EFI_ESP_HEADER *EspHeader;
1400 EFI_ESP_TAIL *EspTail;
1401 EFI_IPSEC_SA_ID *SaId;
1402 IPSEC_SAD_DATA *SadData;
1403 IPSEC_SAD_ENTRY *SadEntry;
1404 IPSEC_RECYCLE_CONTEXT *RecycleContext;
1405 UINT8 NextHeader;
1406 UINT16 IpSecHeadSize;
1407 UINT8 *InnerHead;
1408
1409 Status = EFI_SUCCESS;
1410 Payload = NULL;
1411 ProcessBuffer = NULL;
1412 RecycleContext = NULL;
1413 *RecycleEvent = NULL;
1414 PlainPayloadSize = 0;
1415 NextHeader = 0;
1416
1417 //
1418 // Build netbuf from fragment table first.
1419 //
1420 Payload = NetbufFromExt (
1421 (NET_FRAGMENT *) *FragmentTable,
1422 *FragmentCount,
1423 0,
1424 sizeof (EFI_ESP_HEADER),
1425 IpSecOnRecyclePacket,
1426 NULL
1427 );
1428 if (Payload == NULL) {
1429 Status = EFI_OUT_OF_RESOURCES;
1430 goto ON_EXIT;
1431 }
1432
1433 //
1434 // Get the esp size and esp header from netbuf.
1435 //
1436 EspSize = Payload->TotalSize;
1437 EspHeader = (EFI_ESP_HEADER *) NetbufGetByte (Payload, 0, NULL);
1438
1439 if (EspHeader == NULL) {
1440 Status = EFI_ACCESS_DENIED;
1441 goto ON_EXIT;
1442 }
1443
1444 //
1445 // Parse destination address from ip header and found the related SAD Entry.
1446 //
1447 SadEntry = IpSecFoundSadFromInboundPacket (
1448 IpHead,
1449 IpVersion,
1450 NTOHL (EspHeader->Spi)
1451 );
1452
1453 if (SadEntry == NULL) {
1454 Status = EFI_ACCESS_DENIED;
1455 goto ON_EXIT;
1456 }
1457
1458 SaId = SadEntry->Id;
1459 SadData = SadEntry->Data;
1460
1461 //
1462 // Only support esp protocol currently.
1463 //
1464 if (SaId->Proto != EfiIPsecESP) {
1465 Status = EFI_ACCESS_DENIED;
1466 goto ON_EXIT;
1467 }
1468
1469 if (!SadData->ManualSet) {
1470 //
1471 // TODO: Check SA lifetime and sequence number
1472 //
1473 }
1474
1475 //
1476 // Allocate buffer for decryption and authentication.
1477 //
1478 ProcessBuffer = AllocateZeroPool (EspSize);
1479 if (ProcessBuffer == NULL) {
1480 Status = EFI_OUT_OF_RESOURCES;
1481 goto ON_EXIT;
1482 }
1483
1484 NetbufCopy (Payload, 0, (UINT32) EspSize, ProcessBuffer);
1485
1486 //
1487 // Get the IcvSize for authentication and BlockSize/IvSize for Decryption.
1488 //
1489 IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
1490 IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1491 BlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1492
1493 //
1494 // Make sure the ESP packet is not mal-formt.
1495 // 1. Check whether the Espsize is larger than ESP header + IvSize + EspTail + IcvSize.
1496 // 2. Check whether the left payload size is multiple of IvSize.
1497 //
1498 MiscSize = sizeof (EFI_ESP_HEADER) + IvSize + IcvSize;
1499 if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL))) {
1500 Status = EFI_ACCESS_DENIED;
1501 goto ON_EXIT;
1502 }
1503 if ((EspSize - MiscSize) % BlockSize != 0) {
1504 Status = EFI_ACCESS_DENIED;
1505 goto ON_EXIT;
1506 }
1507
1508 //
1509 // Authenticate the ESP packet.
1510 //
1511 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1512 Status = IpSecEspAuthVerifyPayload (
1513 ProcessBuffer,
1514 EspSize,
1515 SadEntry,
1516 IcvSize
1517 );
1518 if (EFI_ERROR (Status)) {
1519 goto ON_EXIT;
1520 }
1521 }
1522 //
1523 // Decrypt the payload by the SAD entry if it has decrypt key.
1524 //
1525 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1526 Status = IpSecCryptoIoDecrypt (
1527 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
1528 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
1529 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
1530 ProcessBuffer + sizeof (EFI_ESP_HEADER),
1531 ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize,
1532 EspSize - sizeof (EFI_ESP_HEADER) - IvSize - IcvSize,
1533 ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize
1534 );
1535 if (EFI_ERROR (Status)) {
1536 goto ON_EXIT;
1537 }
1538 }
1539
1540 //
1541 // Parse EspTail and compute the plain payload size.
1542 //
1543 EspTail = (EFI_ESP_TAIL *) (ProcessBuffer + EspSize - IcvSize - sizeof (EFI_ESP_TAIL));
1544 PaddingSize = EspTail->PaddingLength;
1545 NextHeader = EspTail->NextHeader;
1546
1547 if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL) + PaddingSize)) {
1548 Status = EFI_ACCESS_DENIED;
1549 goto ON_EXIT;
1550 }
1551 PlainPayloadSize = EspSize - MiscSize - sizeof (EFI_ESP_TAIL) - PaddingSize;
1552
1553 //
1554 // TODO: handle anti-replay window
1555 //
1556 //
1557 // Decryption and authentication with esp has been done, so it's time to
1558 // reload the new packet, create recycle event and fixup ip header.
1559 //
1560 RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
1561 if (RecycleContext == NULL) {
1562 Status = EFI_OUT_OF_RESOURCES;
1563 goto ON_EXIT;
1564 }
1565
1566 Status = gBS->CreateEvent (
1567 EVT_NOTIFY_SIGNAL,
1568 TPL_NOTIFY,
1569 IpSecRecycleCallback,
1570 RecycleContext,
1571 RecycleEvent
1572 );
1573 if (EFI_ERROR (Status)) {
1574 goto ON_EXIT;
1575 }
1576
1577 //
1578 // The caller will take responsible to handle the original fragment table
1579 //
1580 *FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
1581 if (*FragmentTable == NULL) {
1582 Status = EFI_OUT_OF_RESOURCES;
1583 goto ON_EXIT;
1584 }
1585
1586 RecycleContext->PayloadBuffer = ProcessBuffer;
1587 RecycleContext->FragmentTable = *FragmentTable;
1588
1589 //
1590 // If Tunnel, recalculate upper-layyer PesudoCheckSum and trim the out
1591 //
1592 if (SadData->Mode == EfiIPsecTunnel) {
1593 InnerHead = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
1594 IpSecTunnelInboundPacket (
1595 IpHead,
1596 InnerHead,
1597 IpVersion,
1598 SadData,
1599 LastHead
1600 );
1601
1602 if (IpVersion == IP_VERSION_4) {
1603 (*FragmentTable)[0].FragmentBuffer = InnerHead ;
1604 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1605
1606 }else {
1607 (*FragmentTable)[0].FragmentBuffer = InnerHead;
1608 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1609 }
1610 } else {
1611 (*FragmentTable)[0].FragmentBuffer = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
1612 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1613 }
1614
1615 *FragmentCount = 1;
1616
1617 //
1618 // Update the total length field in ip header since processed by esp.
1619 //
1620 if (!SadData->Mode == EfiIPsecTunnel) {
1621 if (IpVersion == IP_VERSION_4) {
1622 ((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + PlainPayloadSize));
1623 } else {
1624 IpSecHeadSize = IpSecGetPlainExtHeadSize (IpHead, LastHead);
1625 ((EFI_IP6_HEADER *) IpHead)->PayloadLength = HTONS ((UINT16)(IpSecHeadSize + PlainPayloadSize));
1626 }
1627 //
1628 // Update the next layer field in ip header since esp header inserted.
1629 //
1630 *LastHead = NextHeader;
1631 }
1632
1633
1634 //
1635 // Update the SPD association of the SAD entry.
1636 //
1637 *SpdSelector = SadData->SpdSelector;
1638
1639 ON_EXIT:
1640 if (Payload != NULL) {
1641 NetbufFree (Payload);
1642 }
1643
1644 if (EFI_ERROR (Status)) {
1645 if (ProcessBuffer != NULL) {
1646 FreePool (ProcessBuffer);
1647 }
1648
1649 if (RecycleContext != NULL) {
1650 FreePool (RecycleContext);
1651 }
1652
1653 if (*RecycleEvent != NULL) {
1654 gBS->CloseEvent (*RecycleEvent);
1655 }
1656 }
1657
1658 return Status;
1659 }
1660
1661 /**
1662 The actual entry to the relative function processes the output traffic using the ESP protocol.
1663
1664 This function is the subfunction of IpSecProtectOutboundPacket(). It protected
1665 the sending packet by encrypting its payload and inserting ESP header in the orginal
1666 IP header, then return the IpHeader and IPsec protected Fragmentable.
1667
1668 @param[in] IpVersion The version of IP.
1669 @param[in, out] IpHead Points to IP header containing the orginal IP header
1670 to be processed on input, and inserted ESP header
1671 on return.
1672 @param[in, out] LastHead The Last Header in IP header.
1673 @param[in, out] OptionsBuffer Pointer to the options buffer.
1674 @param[in, out] OptionsLength Length of the options buffer.
1675 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
1676 IPsec on input, and with IPsec protected
1677 on return.
1678 @param[in, out] FragmentCount The number of fragments.
1679 @param[in] SadEntry The related SAD entry.
1680 @param[out] RecycleEvent The event for recycling of resources.
1681
1682 @retval EFI_SUCCESS The operation was successful.
1683 @retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
1684
1685 **/
1686 EFI_STATUS
1687 IpSecEspOutboundPacket (
1688 IN UINT8 IpVersion,
1689 IN OUT VOID *IpHead,
1690 IN OUT UINT8 *LastHead,
1691 IN OUT VOID **OptionsBuffer,
1692 IN OUT UINT32 *OptionsLength,
1693 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1694 IN OUT UINT32 *FragmentCount,
1695 IN IPSEC_SAD_ENTRY *SadEntry,
1696 OUT EFI_EVENT *RecycleEvent
1697 )
1698 {
1699 EFI_STATUS Status;
1700 UINTN Index;
1701 EFI_IPSEC_SA_ID *SaId;
1702 IPSEC_SAD_DATA *SadData;
1703 IPSEC_RECYCLE_CONTEXT *RecycleContext;
1704 UINT8 *ProcessBuffer;
1705 UINTN BytesCopied;
1706 INTN EncryptBlockSize;// Size of encryption block, 4 bytes aligned and >= 4
1707 UINTN EspSize; // Total size of esp wrapped ip payload
1708 UINTN IvSize; // Size of IV, optional, might be 0
1709 UINTN PlainPayloadSize;// Original IP payload size
1710 UINTN PaddingSize; // Size of padding
1711 UINTN EncryptSize; // Size of data to be encrypted, start after IV and
1712 // stop before ICV
1713 UINTN IcvSize; // Size of ICV, optional, might be 0
1714 UINT8 *RestOfPayload; // Start of Payload after IV
1715 UINT8 *Padding; // Start address of padding
1716 EFI_ESP_HEADER *EspHeader; // Start address of ESP frame
1717 EFI_ESP_TAIL *EspTail; // Address behind padding
1718 UINT8 *InnerHead;
1719 HASH_DATA_FRAGMENT HashFragment[1];
1720
1721 Status = EFI_ACCESS_DENIED;
1722 SaId = SadEntry->Id;
1723 SadData = SadEntry->Data;
1724 ProcessBuffer = NULL;
1725 RecycleContext = NULL;
1726 *RecycleEvent = NULL;
1727 InnerHead = NULL;
1728
1729 if (!SadData->ManualSet &&
1730 SadData->AlgoInfo.EspAlgoInfo.EncKey == NULL &&
1731 SadData->AlgoInfo.EspAlgoInfo.AuthKey == NULL
1732 ) {
1733 //
1734 // Invalid manual SAD entry configuration.
1735 //
1736 goto ON_EXIT;
1737 }
1738
1739 //
1740 // Create OutHeader according to Inner Header
1741 //
1742 if (SadData->Mode == EfiIPsecTunnel) {
1743 InnerHead = IpSecTunnelOutboundPacket (
1744 IpHead,
1745 IpVersion,
1746 SadData,
1747 LastHead,
1748 OptionsBuffer,
1749 OptionsLength,
1750 FragmentTable,
1751 FragmentCount
1752 );
1753
1754 if (InnerHead == NULL) {
1755 return EFI_INVALID_PARAMETER;
1756 }
1757
1758 }
1759
1760 //
1761 // Calculate enctrypt block size, need iv by default and 4 bytes alignment.
1762 //
1763 EncryptBlockSize = 4;
1764
1765 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1766 EncryptBlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1767
1768 if (EncryptBlockSize < 0 || (EncryptBlockSize != 1 && EncryptBlockSize % 4 != 0)) {
1769 goto ON_EXIT;
1770 }
1771 }
1772
1773 //
1774 // Calculate the plain payload size accroding to the fragment table.
1775 //
1776 PlainPayloadSize = 0;
1777 for (Index = 0; Index < *FragmentCount; Index++) {
1778 PlainPayloadSize += (*FragmentTable)[Index].FragmentLength;
1779 }
1780
1781 //
1782 // Add IPHeader size for Tunnel Mode
1783 //
1784 if (SadData->Mode == EfiIPsecTunnel) {
1785 if (IpVersion == IP_VERSION_4) {
1786 PlainPayloadSize += sizeof (IP4_HEAD);
1787 } else {
1788 PlainPayloadSize += sizeof (EFI_IP6_HEADER);
1789 }
1790 //
1791 // OPtions should be encryption into it
1792 //
1793 PlainPayloadSize += *OptionsLength;
1794 }
1795
1796
1797 //
1798 // Calculate icv size, optional by default and 4 bytes alignment.
1799 //
1800 IcvSize = 0;
1801 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1802 IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
1803 if (IcvSize % 4 != 0) {
1804 goto ON_EXIT;
1805 }
1806 }
1807
1808 //
1809 // Calcuate the total size of esp wrapped ip payload.
1810 //
1811 IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1812 EncryptSize = (PlainPayloadSize + sizeof (EFI_ESP_TAIL) + EncryptBlockSize - 1) / EncryptBlockSize * EncryptBlockSize;
1813 PaddingSize = EncryptSize - PlainPayloadSize - sizeof (EFI_ESP_TAIL);
1814 EspSize = sizeof (EFI_ESP_HEADER) + IvSize + EncryptSize + IcvSize;
1815
1816 ProcessBuffer = AllocateZeroPool (EspSize);
1817 if (ProcessBuffer == NULL) {
1818 Status = EFI_OUT_OF_RESOURCES;
1819 goto ON_EXIT;
1820 }
1821
1822 //
1823 // Calculate esp header and esp tail including header, payload and padding.
1824 //
1825 EspHeader = (EFI_ESP_HEADER *) ProcessBuffer;
1826 RestOfPayload = (UINT8 *) (EspHeader + 1) + IvSize;
1827 Padding = RestOfPayload + PlainPayloadSize;
1828 EspTail = (EFI_ESP_TAIL *) (Padding + PaddingSize);
1829
1830 //
1831 // Fill the sn and spi fields in esp header.
1832 //
1833 EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber + 1);
1834 //EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber);
1835 EspHeader->Spi = HTONL (SaId->Spi);
1836
1837 //
1838 // Copy the rest of payload (after iv) from the original fragment buffer.
1839 //
1840 BytesCopied = 0;
1841
1842 //
1843 // For Tunnel Mode
1844 //
1845 if (SadData->Mode == EfiIPsecTunnel) {
1846 if (IpVersion == IP_VERSION_4) {
1847 //
1848 // HeadLen, Total Length
1849 //
1850 ((IP4_HEAD *)InnerHead)->HeadLen = (UINT8) ((sizeof (IP4_HEAD) + *OptionsLength) >> 2);
1851 ((IP4_HEAD *)InnerHead)->TotalLen = HTONS ((UINT16) PlainPayloadSize);
1852 ((IP4_HEAD *)InnerHead)->Checksum = 0;
1853 ((IP4_HEAD *)InnerHead)->Checksum = (UINT16) (~NetblockChecksum (
1854 (UINT8 *)InnerHead,
1855 sizeof(IP4_HEAD)
1856 ));
1857 CopyMem (
1858 RestOfPayload + BytesCopied,
1859 InnerHead,
1860 sizeof (IP4_HEAD) + *OptionsLength
1861 );
1862 BytesCopied += sizeof (IP4_HEAD) + *OptionsLength;
1863
1864 } else {
1865 ((EFI_IP6_HEADER *)InnerHead)->PayloadLength = HTONS ((UINT16) (PlainPayloadSize - sizeof (EFI_IP6_HEADER)));
1866 CopyMem (
1867 RestOfPayload + BytesCopied,
1868 InnerHead,
1869 sizeof (EFI_IP6_HEADER) + *OptionsLength
1870 );
1871 BytesCopied += sizeof (EFI_IP6_HEADER) + *OptionsLength;
1872 }
1873 }
1874
1875 for (Index = 0; Index < *FragmentCount; Index++) {
1876 CopyMem (
1877 (RestOfPayload + BytesCopied),
1878 (*FragmentTable)[Index].FragmentBuffer,
1879 (*FragmentTable)[Index].FragmentLength
1880 );
1881 BytesCopied += (*FragmentTable)[Index].FragmentLength;
1882 }
1883 //
1884 // Fill the padding buffer by natural number sequence.
1885 //
1886 for (Index = 0; Index < PaddingSize; Index++) {
1887 Padding[Index] = (UINT8) (Index + 1);
1888 }
1889 //
1890 // Fill the padding length and next header fields in esp tail.
1891 //
1892 EspTail->PaddingLength = (UINT8) PaddingSize;
1893 EspTail->NextHeader = *LastHead;
1894
1895 //
1896 // Fill the next header for Tunnel mode.
1897 //
1898 if (SadData->Mode == EfiIPsecTunnel) {
1899 if (IpVersion == IP_VERSION_4) {
1900 EspTail->NextHeader = 4;
1901 } else {
1902 EspTail->NextHeader = 41;
1903 }
1904 }
1905
1906 //
1907 // Generate iv at random by crypt library.
1908 //
1909 Status = IpSecGenerateIv (
1910 (UINT8 *) (EspHeader + 1),
1911 IvSize
1912 );
1913
1914
1915 if (EFI_ERROR (Status)) {
1916 goto ON_EXIT;
1917 }
1918
1919 //
1920 // Encryption the payload (after iv) by the SAD entry if has encrypt key.
1921 //
1922 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1923 Status = IpSecCryptoIoEncrypt (
1924 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
1925 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
1926 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
1927 (UINT8 *)(EspHeader + 1),
1928 RestOfPayload,
1929 EncryptSize,
1930 RestOfPayload
1931 );
1932
1933 if (EFI_ERROR (Status)) {
1934 goto ON_EXIT;
1935 }
1936 }
1937
1938 //
1939 // Authenticate the esp wrapped buffer by the SAD entry if it has auth key.
1940 //
1941 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1942
1943 HashFragment[0].Data = ProcessBuffer;
1944 HashFragment[0].DataSize = EspSize - IcvSize;
1945 Status = IpSecCryptoIoHmac (
1946 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
1947 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
1948 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
1949 HashFragment,
1950 1,
1951 ProcessBuffer + EspSize - IcvSize,
1952 IcvSize
1953 );
1954 if (EFI_ERROR (Status)) {
1955 goto ON_EXIT;
1956 }
1957 }
1958
1959 //
1960 // Encryption and authentication with esp has been done, so it's time to
1961 // reload the new packet, create recycle event and fixup ip header.
1962 //
1963 RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
1964 if (RecycleContext == NULL) {
1965 Status = EFI_OUT_OF_RESOURCES;
1966 goto ON_EXIT;
1967 }
1968
1969 Status = gBS->CreateEvent (
1970 EVT_NOTIFY_SIGNAL,
1971 TPL_NOTIFY,
1972 IpSecRecycleCallback,
1973 RecycleContext,
1974 RecycleEvent
1975 );
1976 if (EFI_ERROR (Status)) {
1977 goto ON_EXIT;
1978 }
1979 //
1980 // Caller take responsible to handle the original fragment table.
1981 //
1982 *FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
1983 if (*FragmentTable == NULL) {
1984 Status = EFI_OUT_OF_RESOURCES;
1985 goto ON_EXIT;
1986 }
1987
1988 RecycleContext->FragmentTable = *FragmentTable;
1989 RecycleContext->PayloadBuffer = ProcessBuffer;
1990 (*FragmentTable)[0].FragmentBuffer = ProcessBuffer;
1991 (*FragmentTable)[0].FragmentLength = (UINT32) EspSize;
1992 *FragmentCount = 1;
1993
1994 //
1995 // Update the total length field in ip header since processed by esp.
1996 //
1997 if (IpVersion == IP_VERSION_4) {
1998 ((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + EspSize));
1999 } else {
2000 ((EFI_IP6_HEADER *) IpHead)->PayloadLength = (UINT16) (IpSecGetPlainExtHeadSize (IpHead, LastHead) + EspSize);
2001 }
2002
2003 //
2004 // If tunnel mode, it should change the outer Ip header with tunnel source address
2005 // and destination tunnel address.
2006 //
2007 if (SadData->Mode == EfiIPsecTunnel) {
2008 if (IpVersion == IP_VERSION_4) {
2009 CopyMem (
2010 &((IP4_HEAD *) IpHead)->Src,
2011 &SadData->TunnelSourceAddress.v4,
2012 sizeof (EFI_IPv4_ADDRESS)
2013 );
2014 CopyMem (
2015 &((IP4_HEAD *) IpHead)->Dst,
2016 &SadData->TunnelDestAddress.v4,
2017 sizeof (EFI_IPv4_ADDRESS)
2018 );
2019 } else {
2020 CopyMem (
2021 &((EFI_IP6_HEADER *) IpHead)->SourceAddress,
2022 &SadData->TunnelSourceAddress.v6,
2023 sizeof (EFI_IPv6_ADDRESS)
2024 );
2025 CopyMem (
2026 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
2027 &SadData->TunnelDestAddress.v6,
2028 sizeof (EFI_IPv6_ADDRESS)
2029 );
2030 }
2031 }
2032
2033 //
2034 // Update the next layer field in ip header since esp header inserted.
2035 //
2036 *LastHead = IPSEC_ESP_PROTOCOL;
2037
2038 //
2039 // Increase the sn number in SAD entry according to rfc4303.
2040 //
2041 SadData->SequenceNumber++;
2042
2043 ON_EXIT:
2044 if (EFI_ERROR (Status)) {
2045 if (ProcessBuffer != NULL) {
2046 FreePool (ProcessBuffer);
2047 }
2048
2049 if (RecycleContext != NULL) {
2050 FreePool (RecycleContext);
2051 }
2052
2053 if (*RecycleEvent != NULL) {
2054 gBS->CloseEvent (*RecycleEvent);
2055 }
2056 }
2057
2058 return Status;
2059 }
2060
2061 /**
2062 This function processes the inbound traffic with IPsec.
2063
2064 It checks the received packet security property, trims the ESP/AH header, and then
2065 returns without an IPsec protected IP Header and FragmentTable.
2066
2067 @param[in] IpVersion The version of IP.
2068 @param[in, out] IpHead Points to IP header containing the ESP/AH header
2069 to be trimed on input, and without ESP/AH header
2070 on return.
2071 @param[in, out] LastHead The Last Header in IP header on return.
2072 @param[in, out] OptionsBuffer Pointer to the options buffer.
2073 @param[in, out] OptionsLength Length of the options buffer.
2074 @param[in, out] FragmentTable Pointer to a list of fragments in form of IPsec
2075 protected on input, and without IPsec protected
2076 on return.
2077 @param[in, out] FragmentCount The number of fragments.
2078 @param[out] SpdEntry Pointer to contain the address of SPD entry on return.
2079 @param[out] RecycleEvent The event for recycling of resources.
2080
2081 @retval EFI_SUCCESS The operation was successful.
2082 @retval EFI_UNSUPPORTED The IPSEC protocol is not supported.
2083
2084 **/
2085 EFI_STATUS
2086 IpSecProtectInboundPacket (
2087 IN UINT8 IpVersion,
2088 IN OUT VOID *IpHead,
2089 IN OUT UINT8 *LastHead,
2090 IN OUT VOID **OptionsBuffer,
2091 IN OUT UINT32 *OptionsLength,
2092 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
2093 IN OUT UINT32 *FragmentCount,
2094 OUT EFI_IPSEC_SPD_SELECTOR **SpdEntry,
2095 OUT EFI_EVENT *RecycleEvent
2096 )
2097 {
2098 if (*LastHead == IPSEC_ESP_PROTOCOL) {
2099 //
2100 // Process the esp ipsec header of the inbound traffic.
2101 //
2102 return IpSecEspInboundPacket (
2103 IpVersion,
2104 IpHead,
2105 LastHead,
2106 OptionsBuffer,
2107 OptionsLength,
2108 FragmentTable,
2109 FragmentCount,
2110 SpdEntry,
2111 RecycleEvent
2112 );
2113 }
2114 //
2115 // The other protocols are not supported.
2116 //
2117 return EFI_UNSUPPORTED;
2118 }
2119
2120 /**
2121 This fucntion processes the output traffic with IPsec.
2122
2123 It protected the sending packet by encrypting it payload and inserting ESP/AH header
2124 in the orginal IP header, then return the IpHeader and IPsec protected Fragmentable.
2125
2126 @param[in] IpVersion The version of IP.
2127 @param[in, out] IpHead Point to IP header containing the orginal IP header
2128 to be processed on input, and inserted ESP/AH header
2129 on return.
2130 @param[in, out] LastHead The Last Header in IP header.
2131 @param[in, out] OptionsBuffer Pointer to the options buffer.
2132 @param[in, out] OptionsLength Length of the options buffer.
2133 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
2134 IPsec on input, and with IPsec protected
2135 on return.
2136 @param[in, out] FragmentCount Number of fragments.
2137 @param[in] SadEntry Related SAD entry.
2138 @param[out] RecycleEvent Event for recycling of resources.
2139
2140 @retval EFI_SUCCESS The operation is successful.
2141 @retval EFI_UNSUPPORTED If the IPSEC protocol is not supported.
2142
2143 **/
2144 EFI_STATUS
2145 IpSecProtectOutboundPacket (
2146 IN UINT8 IpVersion,
2147 IN OUT VOID *IpHead,
2148 IN OUT UINT8 *LastHead,
2149 IN OUT VOID **OptionsBuffer,
2150 IN OUT UINT32 *OptionsLength,
2151 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
2152 IN OUT UINT32 *FragmentCount,
2153 IN IPSEC_SAD_ENTRY *SadEntry,
2154 OUT EFI_EVENT *RecycleEvent
2155 )
2156 {
2157 if (SadEntry->Id->Proto == EfiIPsecESP) {
2158 //
2159 // Process the esp ipsec header of the outbound traffic.
2160 //
2161 return IpSecEspOutboundPacket (
2162 IpVersion,
2163 IpHead,
2164 LastHead,
2165 OptionsBuffer,
2166 OptionsLength,
2167 FragmentTable,
2168 FragmentCount,
2169 SadEntry,
2170 RecycleEvent
2171 );
2172 }
2173 //
2174 // The other protocols are not supported.
2175 //
2176 return EFI_UNSUPPORTED;
2177 }