]> git.proxmox.com Git - mirror_edk2.git/blob - NetworkPkg/UefiPxeBcDxe/PxeBcImpl.c
NetworkPkg: Fix potential ASSERT if NetIp4IsUnicast is called
[mirror_edk2.git] / NetworkPkg / UefiPxeBcDxe / PxeBcImpl.c
1 /** @file
2 This implementation of EFI_PXE_BASE_CODE_PROTOCOL and EFI_LOAD_FILE_PROTOCOL.
3
4 Copyright (c) 2007 - 2017, Intel Corporation. All rights reserved.<BR>
5
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php.
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "PxeBcImpl.h"
17
18
19 /**
20 Enables the use of the PXE Base Code Protocol functions.
21
22 This function enables the use of the PXE Base Code Protocol functions. If the
23 Started field of the EFI_PXE_BASE_CODE_MODE structure is already TRUE, then
24 EFI_ALREADY_STARTED will be returned. If UseIpv6 is TRUE, then IPv6 formatted
25 addresses will be used in this session. If UseIpv6 is FALSE, then IPv4 formatted
26 addresses will be used in this session. If UseIpv6 is TRUE, and the Ipv6Supported
27 field of the EFI_PXE_BASE_CODE_MODE structure is FALSE, then EFI_UNSUPPORTED will
28 be returned. If there is not enough memory or other resources to start the PXE
29 Base Code Protocol, then EFI_OUT_OF_RESOURCES will be returned. Otherwise, the
30 PXE Base Code Protocol will be started.
31
32 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
33 @param[in] UseIpv6 Specifies the type of IP addresses that are to be
34 used during the session that is being started.
35 Set to TRUE for IPv6, and FALSE for IPv4.
36
37 @retval EFI_SUCCESS The PXE Base Code Protocol was started.
38 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
39 @retval EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the
40 EFI_PXE_BASE_CODE_MODE structure is FALSE.
41 @retval EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state.
42 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
43 EFI_PXE_BASE_CODE_PROTOCOL structure.
44 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the
45 PXE Base Code Protocol.
46
47 **/
48 EFI_STATUS
49 EFIAPI
50 EfiPxeBcStart (
51 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
52 IN BOOLEAN UseIpv6
53 )
54 {
55 PXEBC_PRIVATE_DATA *Private;
56 EFI_PXE_BASE_CODE_MODE *Mode;
57 UINTN Index;
58 EFI_STATUS Status;
59
60 if (This == NULL) {
61 return EFI_INVALID_PARAMETER;
62 }
63
64 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
65 Mode = Private->PxeBc.Mode;
66
67 if (Mode->Started) {
68 return EFI_ALREADY_STARTED;
69 }
70
71 //
72 // Detect whether using IPv6 or not, and set it into mode data.
73 //
74 if (UseIpv6 && Mode->Ipv6Available && Mode->Ipv6Supported && Private->Ip6Nic != NULL) {
75 Mode->UsingIpv6 = TRUE;
76 } else if (!UseIpv6 && Private->Ip4Nic != NULL) {
77 Mode->UsingIpv6 = FALSE;
78 } else {
79 return EFI_UNSUPPORTED;
80 }
81
82 if (Mode->UsingIpv6) {
83 AsciiPrint ("\n>>Start PXE over IPv6");
84 //
85 // Configure udp6 instance to receive data.
86 //
87 Status = Private->Udp6Read->Configure (
88 Private->Udp6Read,
89 &Private->Udp6CfgData
90 );
91 if (EFI_ERROR (Status)) {
92 goto ON_ERROR;
93 }
94
95 //
96 // Configure block size for TFTP as a default value to handle all link layers.
97 //
98 Private->BlockSize = Private->Ip6MaxPacketSize -
99 PXEBC_DEFAULT_UDP_OVERHEAD_SIZE - PXEBC_DEFAULT_TFTP_OVERHEAD_SIZE;
100
101 //
102 // PXE over IPv6 starts here, initialize the fields and list header.
103 //
104 Private->Ip6Policy = PXEBC_IP6_POLICY_MAX;
105 Private->ProxyOffer.Dhcp6.Packet.Offer.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE;
106 Private->DhcpAck.Dhcp6.Packet.Ack.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE;
107 Private->PxeReply.Dhcp6.Packet.Ack.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE;
108
109 for (Index = 0; Index < PXEBC_OFFER_MAX_NUM; Index++) {
110 Private->OfferBuffer[Index].Dhcp6.Packet.Offer.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE;
111 }
112
113 //
114 // Create event and set status for token to capture ICMP6 error message.
115 //
116 Private->Icmp6Token.Status = EFI_NOT_READY;
117 Status = gBS->CreateEvent (
118 EVT_NOTIFY_SIGNAL,
119 TPL_NOTIFY,
120 PxeBcIcmp6ErrorUpdate,
121 Private,
122 &Private->Icmp6Token.Event
123 );
124 if (EFI_ERROR (Status)) {
125 goto ON_ERROR;
126 }
127
128 //
129 // Set Ip6 policy to Automatic to start the IP6 router discovery.
130 //
131 Status = PxeBcSetIp6Policy (Private);
132 if (EFI_ERROR (Status)) {
133 goto ON_ERROR;
134 }
135 } else {
136 AsciiPrint ("\n>>Start PXE over IPv4");
137 //
138 // Configure udp4 instance to receive data.
139 //
140 Status = Private->Udp4Read->Configure (
141 Private->Udp4Read,
142 &Private->Udp4CfgData
143 );
144 if (EFI_ERROR (Status)) {
145 goto ON_ERROR;
146 }
147
148 //
149 // Configure block size for TFTP as a default value to handle all link layers.
150 //
151 Private->BlockSize = Private->Ip4MaxPacketSize -
152 PXEBC_DEFAULT_UDP_OVERHEAD_SIZE - PXEBC_DEFAULT_TFTP_OVERHEAD_SIZE;
153
154 //
155 // PXE over IPv4 starts here, initialize the fields.
156 //
157 Private->ProxyOffer.Dhcp4.Packet.Offer.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE;
158 Private->DhcpAck.Dhcp4.Packet.Ack.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE;
159 Private->PxeReply.Dhcp4.Packet.Ack.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE;
160
161 for (Index = 0; Index < PXEBC_OFFER_MAX_NUM; Index++) {
162 Private->OfferBuffer[Index].Dhcp4.Packet.Offer.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE;
163 }
164
165 PxeBcSeedDhcp4Packet (&Private->SeedPacket, Private->Udp4Read);
166
167 //
168 // Create the event for Arp cache update.
169 //
170 Status = gBS->CreateEvent (
171 EVT_TIMER | EVT_NOTIFY_SIGNAL,
172 TPL_CALLBACK,
173 PxeBcArpCacheUpdate,
174 Private,
175 &Private->ArpUpdateEvent
176 );
177 if (EFI_ERROR (Status)) {
178 goto ON_ERROR;
179 }
180
181 //
182 // Start a periodic timer by second to update Arp cache.
183 //
184 Status = gBS->SetTimer (
185 Private->ArpUpdateEvent,
186 TimerPeriodic,
187 TICKS_PER_SECOND
188 );
189 if (EFI_ERROR (Status)) {
190 goto ON_ERROR;
191 }
192
193 //
194 // Create event and set status for token to capture ICMP error message.
195 //
196 Private->Icmp6Token.Status = EFI_NOT_READY;
197 Status = gBS->CreateEvent (
198 EVT_NOTIFY_SIGNAL,
199 TPL_NOTIFY,
200 PxeBcIcmpErrorUpdate,
201 Private,
202 &Private->IcmpToken.Event
203 );
204 if (EFI_ERROR (Status)) {
205 goto ON_ERROR;
206 }
207
208 //
209 //DHCP4 service allows only one of its children to be configured in
210 //the active state, If the DHCP4 D.O.R.A started by IP4 auto
211 //configuration and has not been completed, the Dhcp4 state machine
212 //will not be in the right state for the PXE to start a new round D.O.R.A.
213 //so we need to switch it's policy to static.
214 //
215 Status = PxeBcSetIp4Policy (Private);
216 if (EFI_ERROR (Status)) {
217 goto ON_ERROR;
218 }
219 }
220
221 //
222 // If PcdTftpBlockSize is set to non-zero, override the default value.
223 //
224 if (PcdGet64 (PcdTftpBlockSize) != 0) {
225 Private->BlockSize = (UINTN) PcdGet64 (PcdTftpBlockSize);
226 }
227
228 //
229 // Create event for UdpRead/UdpWrite timeout since they are both blocking API.
230 //
231 Status = gBS->CreateEvent (
232 EVT_TIMER,
233 TPL_CALLBACK,
234 NULL,
235 NULL,
236 &Private->UdpTimeOutEvent
237 );
238 if (EFI_ERROR (Status)) {
239 goto ON_ERROR;
240 }
241
242 Private->IsAddressOk = FALSE;
243 Mode->Started = TRUE;
244
245 return EFI_SUCCESS;
246
247 ON_ERROR:
248 if (Mode->UsingIpv6) {
249 if (Private->Icmp6Token.Event != NULL) {
250 gBS->CloseEvent (Private->Icmp6Token.Event);
251 Private->Icmp6Token.Event = NULL;
252 }
253 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
254 Private->Ip6->Configure (Private->Ip6, NULL);
255 } else {
256 if (Private->ArpUpdateEvent != NULL) {
257 gBS->CloseEvent (Private->ArpUpdateEvent);
258 Private->ArpUpdateEvent = NULL;
259 }
260 if (Private->IcmpToken.Event != NULL) {
261 gBS->CloseEvent (Private->IcmpToken.Event);
262 Private->IcmpToken.Event = NULL;
263 }
264 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
265 Private->Ip4->Configure (Private->Ip4, NULL);
266 }
267 return Status;
268 }
269
270
271 /**
272 Disable the use of the PXE Base Code Protocol functions.
273
274 This function stops all activity on the network device. All the resources allocated
275 in Start() are released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is
276 set to FALSE, and EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE
277 structure is already FALSE, then EFI_NOT_STARTED will be returned.
278
279 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
280
281 @retval EFI_SUCCESS The PXE Base Code Protocol was stopped.
282 @retval EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state.
283 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
284 EFI_PXE_BASE_CODE_PROTOCOL structure.
285 @retval Others
286
287 **/
288 EFI_STATUS
289 EFIAPI
290 EfiPxeBcStop (
291 IN EFI_PXE_BASE_CODE_PROTOCOL *This
292 )
293 {
294 PXEBC_PRIVATE_DATA *Private;
295 EFI_PXE_BASE_CODE_MODE *Mode;
296 BOOLEAN Ipv6Supported;
297 BOOLEAN Ipv6Available;
298
299 if (This == NULL) {
300 return EFI_INVALID_PARAMETER;
301 }
302
303 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
304 Mode = Private->PxeBc.Mode;
305 Ipv6Supported = Mode->Ipv6Supported;
306 Ipv6Available = Mode->Ipv6Available;
307
308 if (!Mode->Started) {
309 return EFI_NOT_STARTED;
310 }
311
312 if (Mode->UsingIpv6) {
313 //
314 // Configure all the instances for IPv6 as NULL.
315 //
316 ZeroMem (&Private->Udp6CfgData.StationAddress, sizeof (EFI_IPv6_ADDRESS));
317 ZeroMem (&Private->Ip6CfgData.StationAddress, sizeof (EFI_IPv6_ADDRESS));
318 Private->Dhcp6->Stop (Private->Dhcp6);
319 Private->Dhcp6->Configure (Private->Dhcp6, NULL);
320 Private->Udp6Write->Configure (Private->Udp6Write, NULL);
321 Private->Udp6Read->Groups (Private->Udp6Read, FALSE, NULL);
322 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
323 Private->Ip6->Cancel (Private->Ip6, &Private->Icmp6Token);
324 Private->Ip6->Configure (Private->Ip6, NULL);
325 PxeBcUnregisterIp6Address (Private);
326 if (Private->Icmp6Token.Event != NULL) {
327 gBS->CloseEvent (Private->Icmp6Token.Event);
328 Private->Icmp6Token.Event = NULL;
329 }
330 if (Private->Dhcp6Request != NULL) {
331 FreePool (Private->Dhcp6Request);
332 Private->Dhcp6Request = NULL;
333 }
334 if (Private->BootFileName != NULL) {
335 FreePool (Private->BootFileName);
336 Private->BootFileName = NULL;
337 }
338 } else {
339 //
340 // Configure all the instances for IPv4 as NULL.
341 //
342 ZeroMem (&Private->Udp4CfgData.StationAddress, sizeof (EFI_IPv4_ADDRESS));
343 ZeroMem (&Private->Udp4CfgData.SubnetMask, sizeof (EFI_IPv4_ADDRESS));
344 ZeroMem (&Private->Ip4CfgData.StationAddress, sizeof (EFI_IPv4_ADDRESS));
345 ZeroMem (&Private->Ip4CfgData.SubnetMask, sizeof (EFI_IPv4_ADDRESS));
346 Private->Dhcp4->Stop (Private->Dhcp4);
347 Private->Dhcp4->Configure (Private->Dhcp4, NULL);
348 Private->Udp4Write->Configure (Private->Udp4Write, NULL);
349 Private->Udp4Read->Groups (Private->Udp4Read, FALSE, NULL);
350 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
351 Private->Ip4->Cancel (Private->Ip4, &Private->IcmpToken);
352 Private->Ip4->Configure (Private->Ip4, NULL);
353 if (Private->ArpUpdateEvent != NULL) {
354 gBS->CloseEvent (Private->ArpUpdateEvent);
355 Private->ArpUpdateEvent = NULL;
356 }
357 if (Private->IcmpToken.Event != NULL) {
358 gBS->CloseEvent (Private->IcmpToken.Event);
359 Private->IcmpToken.Event = NULL;
360 }
361 Private->BootFileName = NULL;
362 }
363
364 gBS->CloseEvent (Private->UdpTimeOutEvent);
365 Private->CurSrcPort = 0;
366 Private->BootFileSize = 0;
367 Private->SolicitTimes = 0;
368 Private->ElapsedTime = 0;
369 ZeroMem (&Private->StationIp, sizeof (EFI_IP_ADDRESS));
370 ZeroMem (&Private->SubnetMask, sizeof (EFI_IP_ADDRESS));
371 ZeroMem (&Private->GatewayIp, sizeof (EFI_IP_ADDRESS));
372 ZeroMem (&Private->ServerIp, sizeof (EFI_IP_ADDRESS));
373
374 //
375 // Reset the mode data.
376 //
377 ZeroMem (Mode, sizeof (EFI_PXE_BASE_CODE_MODE));
378 Mode->Ipv6Available = Ipv6Available;
379 Mode->Ipv6Supported = Ipv6Supported;
380 Mode->AutoArp = TRUE;
381 Mode->TTL = DEFAULT_TTL;
382 Mode->ToS = DEFAULT_ToS;
383
384 return EFI_SUCCESS;
385 }
386
387
388 /**
389 Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6
390 S.A.R.R (solicit / advertise / request / reply) sequence.
391
392 If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before
393 they are tried. If SortOffers is FALSE, then the cached DHCP offer packets will
394 be tried in the order in which they are received. Please see the Preboot Execution
395 Environment (PXE) Specification and Unified Extensible Firmware Interface (UEFI)
396 Specification for additional details on the implementation of DHCP.
397 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
398 then the DHCP sequence will be stopped and EFI_ABORTED will be returned.
399
400 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
401 @param[in] SortOffers TRUE if the offers received should be sorted. Set to FALSE to
402 try the offers in the order that they are received.
403
404 @retval EFI_SUCCESS Valid DHCP has completed.
405 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
406 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
407 EFI_PXE_BASE_CODE_PROTOCOL structure.
408 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
409 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol.
410 @retval EFI_ABORTED The callback function aborted the DHCP Protocol.
411 @retval EFI_TIMEOUT The DHCP Protocol timed out.
412 @retval EFI_ICMP_ERROR An ICMP error packet was received during the DHCP session.
413 @retval EFI_NO_RESPONSE Valid PXE offer was not received.
414
415 **/
416 EFI_STATUS
417 EFIAPI
418 EfiPxeBcDhcp (
419 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
420 IN BOOLEAN SortOffers
421 )
422 {
423 PXEBC_PRIVATE_DATA *Private;
424 EFI_PXE_BASE_CODE_MODE *Mode;
425 EFI_STATUS Status;
426 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
427
428 if (This == NULL) {
429 return EFI_INVALID_PARAMETER;
430 }
431
432 Status = EFI_SUCCESS;
433 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
434 Mode = Private->PxeBc.Mode;
435 Mode->IcmpErrorReceived = FALSE;
436 Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DHCP;
437 Private->IsOfferSorted = SortOffers;
438 Private->SolicitTimes = 0;
439 Private->ElapsedTime = 0;
440
441 if (!Mode->Started) {
442 return EFI_NOT_STARTED;
443 }
444
445 if (Mode->UsingIpv6) {
446
447 //
448 // Stop Udp6Read instance
449 //
450 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
451
452 //
453 // Start S.A.R.R. process to get a IPv6 address and other boot information.
454 //
455 Status = PxeBcDhcp6Sarr (Private, Private->Dhcp6);
456 } else {
457
458 //
459 // Stop Udp4Read instance
460 //
461 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
462
463 //
464 // Start D.O.R.A. process to get a IPv4 address and other boot information.
465 //
466 Status = PxeBcDhcp4Dora (Private, Private->Dhcp4);
467 }
468
469 //
470 // Reconfigure the UDP instance with the default configuration.
471 //
472 if (Mode->UsingIpv6) {
473 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData);
474 } else {
475 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
476 }
477 //
478 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
479 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
480 //
481 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
482 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
483 This->SetIpFilter (This, &IpFilter);
484
485 return Status;
486 }
487
488
489 /**
490 Attempts to complete the PXE Boot Server and/or boot image discovery sequence.
491
492 This function attempts to complete the PXE Boot Server and/or boot image discovery
493 sequence. If this sequence is completed, then EFI_SUCCESS is returned, and the
494 PxeDiscoverValid, PxeDiscover, PxeReplyReceived, and PxeReply fields of the
495 EFI_PXE_BASE_CODE_MODE structure are filled in. If UseBis is TRUE, then the
496 PxeBisReplyReceived and PxeBisReply fields of the EFI_PXE_BASE_CODE_MODE structure
497 will also be filled in. If UseBis is FALSE, then PxeBisReplyValid will be set to FALSE.
498 In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[],
499 has two uses: It is the Boot Server IP address list used for unicast discovery
500 (if the UseUCast field is TRUE), and it is the list used for Boot Server verification
501 (if the MustUseList field is TRUE). Also, if the MustUseList field in that structure
502 is TRUE and the AcceptAnyResponse field in the SrvList[] array is TRUE, any Boot
503 Server reply of that type will be accepted. If the AcceptAnyResponse field is
504 FALSE, only responses from Boot Servers with matching IP addresses will be accepted.
505 This function can take at least 10 seconds to timeout and return control to the
506 caller. If the Discovery sequence does not complete, then EFI_TIMEOUT will be
507 returned. Please see the Preboot Execution Environment (PXE) Specification for
508 additional details on the implementation of the Discovery sequence.
509 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
510 then the Discovery sequence is stopped and EFI_ABORTED will be returned.
511
512 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
513 @param[in] Type The type of bootstrap to perform.
514 @param[in] Layer Pointer to the boot server layer number to discover, which must be
515 PXE_BOOT_LAYER_INITIAL when a new server type is being
516 discovered.
517 @param[in] UseBis TRUE if Boot Integrity Services are to be used. FALSE otherwise.
518 @param[in] Info Pointer to a data structure that contains additional information
519 on the type of discovery operation that is to be performed.
520 It is optional.
521
522 @retval EFI_SUCCESS The Discovery sequence has been completed.
523 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
524 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
525 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
526 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery.
527 @retval EFI_ABORTED The callback function aborted the Discovery sequence.
528 @retval EFI_TIMEOUT The Discovery sequence timed out.
529 @retval EFI_ICMP_ERROR An ICMP error packet was received during the PXE discovery
530 session.
531
532 **/
533 EFI_STATUS
534 EFIAPI
535 EfiPxeBcDiscover (
536 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
537 IN UINT16 Type,
538 IN UINT16 *Layer,
539 IN BOOLEAN UseBis,
540 IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL
541 )
542 {
543 PXEBC_PRIVATE_DATA *Private;
544 EFI_PXE_BASE_CODE_MODE *Mode;
545 EFI_PXE_BASE_CODE_DISCOVER_INFO DefaultInfo;
546 EFI_PXE_BASE_CODE_SRVLIST *SrvList;
547 PXEBC_BOOT_SVR_ENTRY *BootSvrEntry;
548 UINT16 Index;
549 EFI_STATUS Status;
550 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
551 EFI_PXE_BASE_CODE_DISCOVER_INFO *NewCreatedInfo;
552
553 if (This == NULL) {
554 return EFI_INVALID_PARAMETER;
555 }
556
557 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
558 Mode = Private->PxeBc.Mode;
559 Mode->IcmpErrorReceived = FALSE;
560 BootSvrEntry = NULL;
561 SrvList = NULL;
562 Status = EFI_DEVICE_ERROR;
563 Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DISCOVER;
564 NewCreatedInfo = NULL;
565
566 if (!Mode->Started) {
567 return EFI_NOT_STARTED;
568 }
569
570 //
571 // Station address should be ready before do discover.
572 //
573 if (!Private->IsAddressOk) {
574 return EFI_INVALID_PARAMETER;
575 }
576
577 if (Mode->UsingIpv6) {
578
579 //
580 // Stop Udp6Read instance
581 //
582 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
583 } else {
584
585 //
586 // Stop Udp4Read instance
587 //
588 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
589 }
590
591 //
592 // There are 3 methods to get the information for discover.
593 //
594 ZeroMem (&DefaultInfo, sizeof (EFI_PXE_BASE_CODE_DISCOVER_INFO));
595 if (*Layer != EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL) {
596 //
597 // 1. Take the previous setting as the discover info.
598 //
599 if (!Mode->PxeDiscoverValid ||
600 !Mode->PxeReplyReceived ||
601 (!Mode->PxeBisReplyReceived && UseBis)) {
602 Status = EFI_INVALID_PARAMETER;
603 goto ON_EXIT;
604 }
605
606 Info = &DefaultInfo;
607 Info->IpCnt = 1;
608 Info->UseUCast = TRUE;
609 SrvList = Info->SrvList;
610 SrvList[0].Type = Type;
611 SrvList[0].AcceptAnyResponse = FALSE;
612
613 CopyMem (&SrvList->IpAddr, &Private->ServerIp, sizeof (EFI_IP_ADDRESS));
614
615 } else if (Info == NULL) {
616 //
617 // 2. Extract the discover information from the cached packets if unspecified.
618 //
619 NewCreatedInfo = &DefaultInfo;
620 Status = PxeBcExtractDiscoverInfo (Private, Type, &NewCreatedInfo, &BootSvrEntry, &SrvList);
621 if (EFI_ERROR (Status)) {
622 goto ON_EXIT;
623 }
624 ASSERT (NewCreatedInfo != NULL);
625 Info = NewCreatedInfo;
626 } else {
627 //
628 // 3. Take the pass-in information as the discover info, and validate the server list.
629 //
630 SrvList = Info->SrvList;
631
632 if (!SrvList[0].AcceptAnyResponse) {
633 for (Index = 1; Index < Info->IpCnt; Index++) {
634 if (SrvList[Index].AcceptAnyResponse) {
635 break;
636 }
637 }
638 if (Index != Info->IpCnt) {
639 //
640 // It's invalid if the first server doesn't accecpt any response
641 // but any of the other servers does accept any response.
642 //
643 Status = EFI_INVALID_PARAMETER;
644 goto ON_EXIT;
645 }
646 }
647 }
648
649 //
650 // Info and BootSvrEntry/SrvList are all ready by now, so execute discover by UniCast/BroadCast/MultiCast.
651 //
652 if ((!Info->UseUCast && !Info->UseBCast && !Info->UseMCast) ||
653 (Info->MustUseList && Info->IpCnt == 0)) {
654 Status = EFI_INVALID_PARAMETER;
655 goto ON_EXIT;
656 }
657
658 Private->IsDoDiscover = TRUE;
659
660 if (Info->UseMCast) {
661 //
662 // Do discover by multicast.
663 //
664 Status = PxeBcDiscoverBootServer (
665 Private,
666 Type,
667 Layer,
668 UseBis,
669 &Info->ServerMCastIp,
670 Info->IpCnt,
671 SrvList
672 );
673
674 } else if (Info->UseBCast) {
675 //
676 // Do discover by broadcast, but only valid for IPv4.
677 //
678 ASSERT (!Mode->UsingIpv6);
679 Status = PxeBcDiscoverBootServer (
680 Private,
681 Type,
682 Layer,
683 UseBis,
684 NULL,
685 Info->IpCnt,
686 SrvList
687 );
688
689 } else if (Info->UseUCast) {
690 //
691 // Do discover by unicast.
692 //
693 for (Index = 0; Index < Info->IpCnt; Index++) {
694 if (BootSvrEntry == NULL) {
695 CopyMem (&Private->ServerIp, &SrvList[Index].IpAddr, sizeof (EFI_IP_ADDRESS));
696 } else {
697 ASSERT (!Mode->UsingIpv6);
698 ZeroMem (&Private->ServerIp, sizeof (EFI_IP_ADDRESS));
699 CopyMem (&Private->ServerIp, &BootSvrEntry->IpAddr[Index], sizeof (EFI_IPv4_ADDRESS));
700 }
701
702 Status = PxeBcDiscoverBootServer (
703 Private,
704 Type,
705 Layer,
706 UseBis,
707 &Private->ServerIp,
708 Info->IpCnt,
709 SrvList
710 );
711 }
712 }
713
714 if (!EFI_ERROR (Status)) {
715 //
716 // Parse the cached PXE reply packet, and store it into mode data if valid.
717 //
718 if (Mode->UsingIpv6) {
719 Status = PxeBcParseDhcp6Packet (&Private->PxeReply.Dhcp6);
720 if (!EFI_ERROR (Status)) {
721 CopyMem (
722 &Mode->PxeReply.Dhcpv6,
723 &Private->PxeReply.Dhcp6.Packet.Ack.Dhcp6,
724 Private->PxeReply.Dhcp6.Packet.Ack.Length
725 );
726 Mode->PxeReplyReceived = TRUE;
727 Mode->PxeDiscoverValid = TRUE;
728 }
729 } else {
730 Status = PxeBcParseDhcp4Packet (&Private->PxeReply.Dhcp4);
731 if (!EFI_ERROR (Status)) {
732 CopyMem (
733 &Mode->PxeReply.Dhcpv4,
734 &Private->PxeReply.Dhcp4.Packet.Ack.Dhcp4,
735 Private->PxeReply.Dhcp4.Packet.Ack.Length
736 );
737 Mode->PxeReplyReceived = TRUE;
738 Mode->PxeDiscoverValid = TRUE;
739 }
740 }
741 }
742
743 ON_EXIT:
744
745 if (NewCreatedInfo != NULL && NewCreatedInfo != &DefaultInfo) {
746 FreePool (NewCreatedInfo);
747 }
748
749 if (Mode->UsingIpv6) {
750 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData);
751 } else {
752 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
753 }
754
755 //
756 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
757 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
758 //
759 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
760 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
761 This->SetIpFilter (This, &IpFilter);
762
763 return Status;
764 }
765
766
767 /**
768 Used to perform TFTP and MTFTP services.
769
770 This function is used to perform TFTP and MTFTP services. This includes the
771 TFTP operations to get the size of a file, read a directory, read a file, and
772 write a file. It also includes the MTFTP operations to get the size of a file,
773 read a directory, and read a file. The type of operation is specified by Operation.
774 If the callback function that is invoked during the TFTP/MTFTP operation does
775 not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will
776 be returned.
777 For read operations, the return data will be placed in the buffer specified by
778 BufferPtr. If BufferSize is too small to contain the entire downloaded file,
779 then EFI_BUFFER_TOO_SMALL will be returned and BufferSize will be set to zero,
780 or the size of the requested file. (NOTE: the size of the requested file is only returned
781 if the TFTP server supports TFTP options). If BufferSize is large enough for the
782 read operation, then BufferSize will be set to the size of the downloaded file,
783 and EFI_SUCCESS will be returned. Applications using the PxeBc.Mtftp() services
784 should use the get-file-size operations to determine the size of the downloaded
785 file prior to using the read-file operations-especially when downloading large
786 (greater than 64 MB) files-instead of making two calls to the read-file operation.
787 Following this recommendation will save time if the file is larger than expected
788 and the TFTP server does not support TFTP option extensions. Without TFTP option
789 extension support, the client must download the entire file, counting and discarding
790 the received packets, to determine the file size.
791 For write operations, the data to be sent is in the buffer specified by BufferPtr.
792 BufferSize specifies the number of bytes to send. If the write operation completes
793 successfully, then EFI_SUCCESS will be returned.
794 For TFTP "get file size" operations, the size of the requested file or directory
795 is returned in BufferSize, and EFI_SUCCESS will be returned. If the TFTP server
796 does not support options, the file will be downloaded into a bit bucket and the
797 length of the downloaded file will be returned. For MTFTP "get file size" operations,
798 if the MTFTP server does not support the "get file size" option, EFI_UNSUPPORTED
799 will be returned.
800 This function can take up to 10 seconds to timeout and return control to the caller.
801 If the TFTP sequence does not complete, EFI_TIMEOUT will be returned.
802 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
803 then the TFTP sequence is stopped and EFI_ABORTED will be returned.
804
805 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
806 @param[in] Operation The type of operation to perform.
807 @param[in, out] BufferPtr A pointer to the data buffer.
808 @param[in] Overwrite Only used on write file operations. TRUE if a file on a remote
809 server can be overwritten.
810 @param[in, out] BufferSize For get-file-size operations, *BufferSize returns the size of the
811 requested file.
812 @param[in] BlockSize The requested block size to be used during a TFTP transfer.
813 @param[in] ServerIp The TFTP / MTFTP server IP address.
814 @param[in] Filename A Null-terminated ASCII string that specifies a directory name
815 or a file name.
816 @param[in] Info Pointer to the MTFTP information.
817 @param[in] DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation.
818
819 @retval EFI_SUCCESS The TFTP/MTFTP operation was completed.
820 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
821 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
822 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
823 @retval EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation.
824 @retval EFI_ABORTED The callback function aborted the TFTP/MTFTP operation.
825 @retval EFI_TIMEOUT The TFTP/MTFTP operation timed out.
826 @retval EFI_ICMP_ERROR An ICMP error packet was received during the MTFTP session.
827 @retval EFI_TFTP_ERROR A TFTP error packet was received during the MTFTP session.
828
829 **/
830 EFI_STATUS
831 EFIAPI
832 EfiPxeBcMtftp (
833 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
834 IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
835 IN OUT VOID *BufferPtr OPTIONAL,
836 IN BOOLEAN Overwrite,
837 IN OUT UINT64 *BufferSize,
838 IN UINTN *BlockSize OPTIONAL,
839 IN EFI_IP_ADDRESS *ServerIp,
840 IN UINT8 *Filename,
841 IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info OPTIONAL,
842 IN BOOLEAN DontUseBuffer
843 )
844 {
845 PXEBC_PRIVATE_DATA *Private;
846 EFI_PXE_BASE_CODE_MODE *Mode;
847 EFI_MTFTP4_CONFIG_DATA Mtftp4Config;
848 EFI_MTFTP6_CONFIG_DATA Mtftp6Config;
849 VOID *Config;
850 EFI_STATUS Status;
851 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
852
853
854 if ((This == NULL) ||
855 (Filename == NULL) ||
856 (BufferSize == NULL) ||
857 (ServerIp == NULL) ||
858 ((BufferPtr == NULL) && DontUseBuffer) ||
859 ((BlockSize != NULL) && (*BlockSize < PXE_MTFTP_DEFAULT_BLOCK_SIZE))) {
860 return EFI_INVALID_PARAMETER;
861 }
862
863 Config = NULL;
864 Status = EFI_DEVICE_ERROR;
865 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
866 Mode = Private->PxeBc.Mode;
867
868 if (Mode->UsingIpv6) {
869 if (!NetIp6IsValidUnicast (&ServerIp->v6)) {
870 return EFI_INVALID_PARAMETER;
871 }
872 } else {
873 if (IP4_IS_UNSPECIFIED (NTOHL (ServerIp->Addr[0])) || IP4_IS_LOCAL_BROADCAST (NTOHL (ServerIp->Addr[0]))) {
874 return EFI_INVALID_PARAMETER;
875 }
876 }
877
878 if (Mode->UsingIpv6) {
879 //
880 // Set configuration data for Mtftp6 instance.
881 //
882 ZeroMem (&Mtftp6Config, sizeof (EFI_MTFTP6_CONFIG_DATA));
883 Config = &Mtftp6Config;
884 Mtftp6Config.TimeoutValue = PXEBC_MTFTP_TIMEOUT;
885 Mtftp6Config.TryCount = PXEBC_MTFTP_RETRIES;
886 CopyMem (&Mtftp6Config.StationIp, &Private->StationIp.v6, sizeof (EFI_IPv6_ADDRESS));
887 CopyMem (&Mtftp6Config.ServerIp, &ServerIp->v6, sizeof (EFI_IPv6_ADDRESS));
888 //
889 // Stop Udp6Read instance
890 //
891 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
892 } else {
893 //
894 // Set configuration data for Mtftp4 instance.
895 //
896 ZeroMem (&Mtftp4Config, sizeof (EFI_MTFTP4_CONFIG_DATA));
897 Config = &Mtftp4Config;
898 Mtftp4Config.UseDefaultSetting = FALSE;
899 Mtftp4Config.TimeoutValue = PXEBC_MTFTP_TIMEOUT;
900 Mtftp4Config.TryCount = PXEBC_MTFTP_RETRIES;
901 CopyMem (&Mtftp4Config.StationIp, &Private->StationIp.v4, sizeof (EFI_IPv4_ADDRESS));
902 CopyMem (&Mtftp4Config.SubnetMask, &Private->SubnetMask.v4, sizeof (EFI_IPv4_ADDRESS));
903 CopyMem (&Mtftp4Config.GatewayIp, &Private->GatewayIp.v4, sizeof (EFI_IPv4_ADDRESS));
904 CopyMem (&Mtftp4Config.ServerIp, &ServerIp->v4, sizeof (EFI_IPv4_ADDRESS));
905 //
906 // Stop Udp4Read instance
907 //
908 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
909 }
910
911 Mode->TftpErrorReceived = FALSE;
912 Mode->IcmpErrorReceived = FALSE;
913
914 switch (Operation) {
915
916 case EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE:
917 //
918 // Send TFTP request to get file size.
919 //
920 Status = PxeBcTftpGetFileSize (
921 Private,
922 Config,
923 Filename,
924 BlockSize,
925 BufferSize
926 );
927
928 break;
929
930 case EFI_PXE_BASE_CODE_TFTP_READ_FILE:
931 //
932 // Send TFTP request to read file.
933 //
934 Status = PxeBcTftpReadFile (
935 Private,
936 Config,
937 Filename,
938 BlockSize,
939 BufferPtr,
940 BufferSize,
941 DontUseBuffer
942 );
943
944 break;
945
946 case EFI_PXE_BASE_CODE_TFTP_WRITE_FILE:
947 //
948 // Send TFTP request to write file.
949 //
950 Status = PxeBcTftpWriteFile (
951 Private,
952 Config,
953 Filename,
954 Overwrite,
955 BlockSize,
956 BufferPtr,
957 BufferSize
958 );
959
960 break;
961
962 case EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY:
963 //
964 // Send TFTP request to read directory.
965 //
966 Status = PxeBcTftpReadDirectory (
967 Private,
968 Config,
969 Filename,
970 BlockSize,
971 BufferPtr,
972 BufferSize,
973 DontUseBuffer
974 );
975
976 break;
977
978 case EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE:
979 case EFI_PXE_BASE_CODE_MTFTP_READ_FILE:
980 case EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY:
981 Status = EFI_UNSUPPORTED;
982
983 break;
984
985 default:
986 Status = EFI_INVALID_PARAMETER;
987
988 break;
989 }
990
991 if (Status == EFI_ICMP_ERROR) {
992 Mode->IcmpErrorReceived = TRUE;
993 }
994
995 //
996 // Reconfigure the UDP instance with the default configuration.
997 //
998 if (Mode->UsingIpv6) {
999 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData);
1000 } else {
1001 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
1002 }
1003 //
1004 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
1005 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
1006 //
1007 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
1008 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
1009 This->SetIpFilter (This, &IpFilter);
1010
1011 return Status;
1012 }
1013
1014
1015 /**
1016 Writes a UDP packet to the network interface.
1017
1018 This function writes a UDP packet specified by the (optional HeaderPtr and)
1019 BufferPtr parameters to the network interface. The UDP header is automatically
1020 built by this routine. It uses the parameters OpFlags, DestIp, DestPort, GatewayIp,
1021 SrcIp, and SrcPort to build this header. If the packet is successfully built and
1022 transmitted through the network interface, then EFI_SUCCESS will be returned.
1023 If a timeout occurs during the transmission of the packet, then EFI_TIMEOUT will
1024 be returned. If an ICMP error occurs during the transmission of the packet, then
1025 the IcmpErrorReceived field is set to TRUE, the IcmpError field is filled in and
1026 EFI_ICMP_ERROR will be returned. If the Callback Protocol does not return
1027 EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be returned.
1028
1029 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1030 @param[in] OpFlags The UDP operation flags.
1031 @param[in] DestIp The destination IP address.
1032 @param[in] DestPort The destination UDP port number.
1033 @param[in] GatewayIp The gateway IP address.
1034 @param[in] SrcIp The source IP address.
1035 @param[in, out] SrcPort The source UDP port number.
1036 @param[in] HeaderSize An optional field which may be set to the length of a header
1037 at HeaderPtr to be prefixed to the data at BufferPtr.
1038 @param[in] HeaderPtr If HeaderSize is not NULL, a pointer to a header to be
1039 prefixed to the data at BufferPtr.
1040 @param[in] BufferSize A pointer to the size of the data at BufferPtr.
1041 @param[in] BufferPtr A pointer to the data to be written.
1042
1043 @retval EFI_SUCCESS The UDP Write operation completed.
1044 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1045 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1046 @retval EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted.
1047 @retval EFI_ABORTED The callback function aborted the UDP Write operation.
1048 @retval EFI_TIMEOUT The UDP Write operation timed out.
1049 @retval EFI_ICMP_ERROR An ICMP error packet was received during the UDP write session.
1050
1051 **/
1052 EFI_STATUS
1053 EFIAPI
1054 EfiPxeBcUdpWrite (
1055 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1056 IN UINT16 OpFlags,
1057 IN EFI_IP_ADDRESS *DestIp,
1058 IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort,
1059 IN EFI_IP_ADDRESS *GatewayIp OPTIONAL,
1060 IN EFI_IP_ADDRESS *SrcIp OPTIONAL,
1061 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL,
1062 IN UINTN *HeaderSize OPTIONAL,
1063 IN VOID *HeaderPtr OPTIONAL,
1064 IN UINTN *BufferSize,
1065 IN VOID *BufferPtr
1066 )
1067 {
1068 PXEBC_PRIVATE_DATA *Private;
1069 EFI_PXE_BASE_CODE_MODE *Mode;
1070 EFI_UDP4_SESSION_DATA Udp4Session;
1071 EFI_UDP6_SESSION_DATA Udp6Session;
1072 EFI_STATUS Status;
1073 BOOLEAN DoNotFragment;
1074
1075 if (This == NULL || DestIp == NULL || DestPort == NULL) {
1076 return EFI_INVALID_PARAMETER;
1077 }
1078
1079 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1080 Mode = Private->PxeBc.Mode;
1081
1082 if ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_MAY_FRAGMENT) != 0) {
1083 DoNotFragment = FALSE;
1084 } else {
1085 DoNotFragment = TRUE;
1086 }
1087
1088 if (!Mode->UsingIpv6 && GatewayIp != NULL && Mode->SubnetMask.Addr[0] != 0 &&
1089 !NetIp4IsUnicast (NTOHL (GatewayIp->Addr[0]), EFI_NTOHL(Mode->SubnetMask))) {
1090 //
1091 // Gateway is provided but it's not a unicast IPv4 address, while it will be ignored for IPv6.
1092 //
1093 return EFI_INVALID_PARAMETER;
1094 }
1095
1096 if (HeaderSize != NULL && (*HeaderSize == 0 || HeaderPtr == NULL)) {
1097 return EFI_INVALID_PARAMETER;
1098 }
1099
1100 if (BufferSize == NULL || (*BufferSize != 0 && BufferPtr == NULL)) {
1101 return EFI_INVALID_PARAMETER;
1102 }
1103
1104 if (!Mode->Started) {
1105 return EFI_NOT_STARTED;
1106 }
1107
1108 if (!Private->IsAddressOk && SrcIp == NULL) {
1109 return EFI_INVALID_PARAMETER;
1110 }
1111
1112 if (Private->CurSrcPort == 0 ||
1113 (SrcPort != NULL && *SrcPort != Private->CurSrcPort)) {
1114 //
1115 // Reconfigure UDPv4/UDPv6 for UdpWrite if the source port changed.
1116 //
1117 if (SrcPort != NULL) {
1118 Private->CurSrcPort = *SrcPort;
1119 }
1120 }
1121
1122 if (Mode->UsingIpv6) {
1123 Status = PxeBcConfigUdp6Write (
1124 Private->Udp6Write,
1125 &Private->StationIp.v6,
1126 &Private->CurSrcPort
1127 );
1128 } else {
1129 //
1130 // Configure the UDPv4 instance with gateway information from DHCP server as default.
1131 //
1132 Status = PxeBcConfigUdp4Write (
1133 Private->Udp4Write,
1134 &Private->StationIp.v4,
1135 &Private->SubnetMask.v4,
1136 &Private->GatewayIp.v4,
1137 &Private->CurSrcPort,
1138 DoNotFragment,
1139 Private->Mode.TTL,
1140 Private->Mode.ToS
1141 );
1142 }
1143
1144 if (EFI_ERROR (Status)) {
1145 Private->CurSrcPort = 0;
1146 return EFI_INVALID_PARAMETER;
1147 } else if (SrcPort != NULL) {
1148 *SrcPort = Private->CurSrcPort;
1149 }
1150
1151 //
1152 // Start a timer as timeout event for this blocking API.
1153 //
1154 gBS->SetTimer (Private->UdpTimeOutEvent, TimerRelative, PXEBC_UDP_TIMEOUT);
1155
1156 if (Mode->UsingIpv6) {
1157 //
1158 // Construct UDPv6 session data.
1159 //
1160 ZeroMem (&Udp6Session, sizeof (EFI_UDP6_SESSION_DATA));
1161 CopyMem (&Udp6Session.DestinationAddress, DestIp, sizeof (EFI_IPv6_ADDRESS));
1162 Udp6Session.DestinationPort = *DestPort;
1163 if (SrcIp != NULL) {
1164 CopyMem (&Udp6Session.SourceAddress, SrcIp, sizeof (EFI_IPv6_ADDRESS));
1165 }
1166 if (SrcPort != NULL) {
1167 Udp6Session.SourcePort = *SrcPort;
1168 }
1169
1170 Status = PxeBcUdp6Write (
1171 Private->Udp6Write,
1172 &Udp6Session,
1173 Private->UdpTimeOutEvent,
1174 HeaderSize,
1175 HeaderPtr,
1176 BufferSize,
1177 BufferPtr
1178 );
1179 } else {
1180 //
1181 // Construct UDPv4 session data.
1182 //
1183 ZeroMem (&Udp4Session, sizeof (EFI_UDP4_SESSION_DATA));
1184 CopyMem (&Udp4Session.DestinationAddress, DestIp, sizeof (EFI_IPv4_ADDRESS));
1185 Udp4Session.DestinationPort = *DestPort;
1186 if (SrcIp != NULL) {
1187 CopyMem (&Udp4Session.SourceAddress, SrcIp, sizeof (EFI_IPv4_ADDRESS));
1188 }
1189 if (SrcPort != NULL) {
1190 Udp4Session.SourcePort = *SrcPort;
1191 }
1192 //
1193 // Override the gateway information if user specified.
1194 //
1195 Status = PxeBcUdp4Write (
1196 Private->Udp4Write,
1197 &Udp4Session,
1198 Private->UdpTimeOutEvent,
1199 (EFI_IPv4_ADDRESS *) GatewayIp,
1200 HeaderSize,
1201 HeaderPtr,
1202 BufferSize,
1203 BufferPtr
1204 );
1205 }
1206
1207 gBS->SetTimer (Private->UdpTimeOutEvent, TimerCancel, 0);
1208
1209
1210 //
1211 // Reset the UdpWrite instance.
1212 //
1213 if (Mode->UsingIpv6) {
1214 Private->Udp6Write->Configure (Private->Udp6Write, NULL);
1215 } else {
1216 Private->Udp4Write->Configure (Private->Udp4Write, NULL);
1217 }
1218
1219 return Status;
1220 }
1221
1222
1223 /**
1224 Reads a UDP packet from the network interface.
1225 +
1226 This function reads a UDP packet from a network interface. The data contents
1227 are returned in (the optional HeaderPtr and) BufferPtr, and the size of the
1228 buffer received is returned in BufferSize . If the input BufferSize is smaller
1229 than the UDP packet received (less optional HeaderSize), it will be set to the
1230 required size, and EFI_BUFFER_TOO_SMALL will be returned. In this case, the
1231 contents of BufferPtr are undefined, and the packet is lost. If a UDP packet is
1232 successfully received, then EFI_SUCCESS will be returned, and the information
1233 from the UDP header will be returned in DestIp, DestPort, SrcIp, and SrcPort if
1234 they are not NULL. Depending on the values of OpFlags and the DestIp, DestPort,
1235 SrcIp, and SrcPort input values, different types of UDP packet receive filtering
1236 will be performed. The following tables summarize these receive filter operations.
1237
1238 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1239 @param[in] OpFlags The UDP operation flags.
1240 @param[in, out] DestIp The destination IP address.
1241 @param[in, out] DestPort The destination UDP port number.
1242 @param[in, out] SrcIp The source IP address.
1243 @param[in, out] SrcPort The source UDP port number.
1244 @param[in] HeaderSize An optional field which may be set to the length of a
1245 header at HeaderPtr to be prefixed to the data at BufferPtr.
1246 @param[in] HeaderPtr If HeaderSize is not NULL, a pointer to a header to be
1247 prefixed to the data at BufferPtr.
1248 @param[in, out] BufferSize A pointer to the size of the data at BufferPtr.
1249 @param[in] BufferPtr A pointer to the data to be read.
1250
1251 @retval EFI_SUCCESS The UDP Read operation was completed.
1252 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1253 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1254 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
1255 @retval EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold.
1256 @retval EFI_ABORTED The callback function aborted the UDP Read operation.
1257 @retval EFI_TIMEOUT The UDP Read operation timed out.
1258
1259 **/
1260 EFI_STATUS
1261 EFIAPI
1262 EfiPxeBcUdpRead (
1263 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1264 IN UINT16 OpFlags,
1265 IN OUT EFI_IP_ADDRESS *DestIp OPTIONAL,
1266 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort OPTIONAL,
1267 IN OUT EFI_IP_ADDRESS *SrcIp OPTIONAL,
1268 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL,
1269 IN UINTN *HeaderSize OPTIONAL,
1270 IN VOID *HeaderPtr OPTIONAL,
1271 IN OUT UINTN *BufferSize,
1272 IN VOID *BufferPtr
1273 )
1274 {
1275 PXEBC_PRIVATE_DATA *Private;
1276 EFI_PXE_BASE_CODE_MODE *Mode;
1277 EFI_UDP4_COMPLETION_TOKEN Udp4Token;
1278 EFI_UDP6_COMPLETION_TOKEN Udp6Token;
1279 EFI_UDP4_RECEIVE_DATA *Udp4Rx;
1280 EFI_UDP6_RECEIVE_DATA *Udp6Rx;
1281 EFI_STATUS Status;
1282 BOOLEAN IsDone;
1283 BOOLEAN IsMatched;
1284 UINTN CopiedLen;
1285 UINTN HeaderLen;
1286 UINTN HeaderCopiedLen;
1287 UINTN BufferCopiedLen;
1288 UINT32 FragmentLength;
1289 UINTN FragmentIndex;
1290 UINT8 *FragmentBuffer;
1291
1292 if (This == NULL) {
1293 return EFI_INVALID_PARAMETER;
1294 }
1295
1296 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1297 Mode = Private->PxeBc.Mode;
1298 IsDone = FALSE;
1299 IsMatched = FALSE;
1300 Udp4Rx = NULL;
1301 Udp6Rx = NULL;
1302
1303 if (((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT) == 0 && DestPort == NULL) ||
1304 ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP) == 0 && SrcIp == NULL) ||
1305 ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT) == 0 && SrcPort == NULL)) {
1306 return EFI_INVALID_PARAMETER;
1307 }
1308
1309 if ((HeaderSize != NULL && *HeaderSize == 0) || (HeaderSize != NULL && HeaderPtr == NULL)) {
1310 return EFI_INVALID_PARAMETER;
1311 }
1312
1313 if ((BufferSize == NULL) || (BufferPtr == NULL)) {
1314 return EFI_INVALID_PARAMETER;
1315 }
1316
1317 if (!Mode->Started) {
1318 return EFI_NOT_STARTED;
1319 }
1320
1321 ZeroMem (&Udp6Token, sizeof (EFI_UDP6_COMPLETION_TOKEN));
1322 ZeroMem (&Udp4Token, sizeof (EFI_UDP4_COMPLETION_TOKEN));
1323
1324 if (Mode->UsingIpv6) {
1325 Status = gBS->CreateEvent (
1326 EVT_NOTIFY_SIGNAL,
1327 TPL_NOTIFY,
1328 PxeBcCommonNotify,
1329 &IsDone,
1330 &Udp6Token.Event
1331 );
1332 if (EFI_ERROR (Status)) {
1333 return EFI_OUT_OF_RESOURCES;
1334 }
1335 } else {
1336 Status = gBS->CreateEvent (
1337 EVT_NOTIFY_SIGNAL,
1338 TPL_NOTIFY,
1339 PxeBcCommonNotify,
1340 &IsDone,
1341 &Udp4Token.Event
1342 );
1343 if (EFI_ERROR (Status)) {
1344 return EFI_OUT_OF_RESOURCES;
1345 }
1346 }
1347
1348 //
1349 // Start a timer as timeout event for this blocking API.
1350 //
1351 gBS->SetTimer (Private->UdpTimeOutEvent, TimerRelative, PXEBC_UDP_TIMEOUT);
1352 Mode->IcmpErrorReceived = FALSE;
1353
1354 //
1355 // Read packet by Udp4Read/Udp6Read until matched or timeout.
1356 //
1357 while (!IsMatched && !EFI_ERROR (Status)) {
1358 if (Mode->UsingIpv6) {
1359 Status = PxeBcUdp6Read (
1360 Private->Udp6Read,
1361 &Udp6Token,
1362 Mode,
1363 Private->UdpTimeOutEvent,
1364 OpFlags,
1365 &IsDone,
1366 &IsMatched,
1367 DestIp,
1368 DestPort,
1369 SrcIp,
1370 SrcPort
1371 );
1372 } else {
1373 Status = PxeBcUdp4Read (
1374 Private->Udp4Read,
1375 &Udp4Token,
1376 Mode,
1377 Private->UdpTimeOutEvent,
1378 OpFlags,
1379 &IsDone,
1380 &IsMatched,
1381 DestIp,
1382 DestPort,
1383 SrcIp,
1384 SrcPort
1385 );
1386 }
1387 }
1388
1389 if (Status == EFI_ICMP_ERROR ||
1390 Status == EFI_NETWORK_UNREACHABLE ||
1391 Status == EFI_HOST_UNREACHABLE ||
1392 Status == EFI_PROTOCOL_UNREACHABLE ||
1393 Status == EFI_PORT_UNREACHABLE) {
1394 //
1395 // Get different return status for icmp error from Udp, refers to UEFI spec.
1396 //
1397 Mode->IcmpErrorReceived = TRUE;
1398 }
1399 gBS->SetTimer (Private->UdpTimeOutEvent, TimerCancel, 0);
1400
1401 if (IsMatched) {
1402 //
1403 // Copy the rececived packet to user if matched by filter.
1404 //
1405 if (Mode->UsingIpv6) {
1406 Udp6Rx = Udp6Token.Packet.RxData;
1407 ASSERT (Udp6Rx != NULL);
1408
1409 HeaderLen = 0;
1410 if (HeaderSize != NULL) {
1411 HeaderLen = MIN (*HeaderSize, Udp6Rx->DataLength);
1412 }
1413
1414 if (Udp6Rx->DataLength - HeaderLen > *BufferSize) {
1415 Status = EFI_BUFFER_TOO_SMALL;
1416 } else {
1417 if (HeaderSize != NULL) {
1418 *HeaderSize = HeaderLen;
1419 }
1420 *BufferSize = Udp6Rx->DataLength - HeaderLen;
1421
1422 HeaderCopiedLen = 0;
1423 BufferCopiedLen = 0;
1424 for (FragmentIndex = 0; FragmentIndex < Udp6Rx->FragmentCount; FragmentIndex++) {
1425 FragmentLength = Udp6Rx->FragmentTable[FragmentIndex].FragmentLength;
1426 FragmentBuffer = Udp6Rx->FragmentTable[FragmentIndex].FragmentBuffer;
1427 if (HeaderCopiedLen + FragmentLength < HeaderLen) {
1428 //
1429 // Copy the header part of received data.
1430 //
1431 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, FragmentLength);
1432 HeaderCopiedLen += FragmentLength;
1433 } else if (HeaderCopiedLen < HeaderLen) {
1434 //
1435 // Copy the header part of received data.
1436 //
1437 CopiedLen = HeaderLen - HeaderCopiedLen;
1438 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, CopiedLen);
1439 HeaderCopiedLen += CopiedLen;
1440
1441 //
1442 // Copy the other part of received data.
1443 //
1444 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer + CopiedLen, FragmentLength - CopiedLen);
1445 BufferCopiedLen += (FragmentLength - CopiedLen);
1446 } else {
1447 //
1448 // Copy the other part of received data.
1449 //
1450 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer, FragmentLength);
1451 BufferCopiedLen += FragmentLength;
1452 }
1453 }
1454 }
1455 //
1456 // Recycle the receiving buffer after copy to user.
1457 //
1458 gBS->SignalEvent (Udp6Rx->RecycleSignal);
1459 } else {
1460 Udp4Rx = Udp4Token.Packet.RxData;
1461 ASSERT (Udp4Rx != NULL);
1462
1463 HeaderLen = 0;
1464 if (HeaderSize != NULL) {
1465 HeaderLen = MIN (*HeaderSize, Udp4Rx->DataLength);
1466 }
1467
1468 if (Udp4Rx->DataLength - HeaderLen > *BufferSize) {
1469 Status = EFI_BUFFER_TOO_SMALL;
1470 } else {
1471 if (HeaderSize != NULL) {
1472 *HeaderSize = HeaderLen;
1473 }
1474 *BufferSize = Udp4Rx->DataLength - HeaderLen;
1475
1476 HeaderCopiedLen = 0;
1477 BufferCopiedLen = 0;
1478 for (FragmentIndex = 0; FragmentIndex < Udp4Rx->FragmentCount; FragmentIndex++) {
1479 FragmentLength = Udp4Rx->FragmentTable[FragmentIndex].FragmentLength;
1480 FragmentBuffer = Udp4Rx->FragmentTable[FragmentIndex].FragmentBuffer;
1481 if (HeaderCopiedLen + FragmentLength < HeaderLen) {
1482 //
1483 // Copy the header part of received data.
1484 //
1485 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, FragmentLength);
1486 HeaderCopiedLen += FragmentLength;
1487 } else if (HeaderCopiedLen < HeaderLen) {
1488 //
1489 // Copy the header part of received data.
1490 //
1491 CopiedLen = HeaderLen - HeaderCopiedLen;
1492 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, CopiedLen);
1493 HeaderCopiedLen += CopiedLen;
1494
1495 //
1496 // Copy the other part of received data.
1497 //
1498 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer + CopiedLen, FragmentLength - CopiedLen);
1499 BufferCopiedLen += (FragmentLength - CopiedLen);
1500 } else {
1501 //
1502 // Copy the other part of received data.
1503 //
1504 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer, FragmentLength);
1505 BufferCopiedLen += FragmentLength;
1506 }
1507 }
1508 }
1509 //
1510 // Recycle the receiving buffer after copy to user.
1511 //
1512 gBS->SignalEvent (Udp4Rx->RecycleSignal);
1513 }
1514 }
1515
1516 if (Mode->UsingIpv6) {
1517 Private->Udp6Read->Cancel (Private->Udp6Read, &Udp6Token);
1518 gBS->CloseEvent (Udp6Token.Event);
1519 } else {
1520 Private->Udp4Read->Cancel (Private->Udp4Read, &Udp4Token);
1521 gBS->CloseEvent (Udp4Token.Event);
1522 }
1523
1524 return Status;
1525 }
1526
1527
1528 /**
1529 Updates the IP receive filters of a network device and enables software filtering.
1530
1531 The NewFilter field is used to modify the network device's current IP receive
1532 filter settings and to enable a software filter. This function updates the IpFilter
1533 field of the EFI_PXE_BASE_CODE_MODE structure with the contents of NewIpFilter.
1534 The software filter is used when the USE_FILTER in OpFlags is set to UdpRead().
1535 The current hardware filter remains in effect no matter what the settings of OpFlags.
1536 This is so that the meaning of ANY_DEST_IP set in OpFlags to UdpRead() is from those
1537 packets whose reception is enabled in hardware-physical NIC address (unicast),
1538 broadcast address, logical address or addresses (multicast), or all (promiscuous).
1539 UdpRead() does not modify the IP filter settings.
1540 Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive
1541 filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
1542 If an application or driver wishes to preserve the IP receive filter settings,
1543 it will have to preserve the IP receive filter settings before these calls, and
1544 use SetIpFilter() to restore them after the calls. If incompatible filtering is
1545 requested (for example, PROMISCUOUS with anything else), or if the device does not
1546 support a requested filter setting and it cannot be accommodated in software
1547 (for example, PROMISCUOUS not supported), EFI_INVALID_PARAMETER will be returned.
1548 The IPlist field is used to enable IPs other than the StationIP. They may be
1549 multicast or unicast. If IPcnt is set as well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP,
1550 then both the StationIP and the IPs from the IPlist will be used.
1551
1552 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1553 @param[in] NewFilter Pointer to the new set of IP receive filters.
1554
1555 @retval EFI_SUCCESS The IP receive filter settings were updated.
1556 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1557 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1558
1559 **/
1560 EFI_STATUS
1561 EFIAPI
1562 EfiPxeBcSetIpFilter (
1563 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1564 IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter
1565 )
1566 {
1567 EFI_STATUS Status;
1568 PXEBC_PRIVATE_DATA *Private;
1569 EFI_PXE_BASE_CODE_MODE *Mode;
1570 EFI_UDP4_CONFIG_DATA *Udp4Cfg;
1571 EFI_UDP6_CONFIG_DATA *Udp6Cfg;
1572 UINTN Index;
1573 BOOLEAN NeedPromiscuous;
1574 BOOLEAN AcceptPromiscuous;
1575 BOOLEAN AcceptBroadcast;
1576 BOOLEAN MultiCastUpdate;
1577
1578 if (This == NULL || NewFilter == NULL) {
1579 return EFI_INVALID_PARAMETER;
1580 }
1581
1582 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1583 Mode = Private->PxeBc.Mode;
1584 Status = EFI_SUCCESS;
1585 NeedPromiscuous = FALSE;
1586
1587 if (!Mode->Started) {
1588 return EFI_NOT_STARTED;
1589 }
1590
1591 for (Index = 0; Index < NewFilter->IpCnt; Index++) {
1592 ASSERT (Index < EFI_PXE_BASE_CODE_MAX_IPCNT);
1593 if (!Mode->UsingIpv6 &&
1594 IP4_IS_LOCAL_BROADCAST (EFI_IP4 (NewFilter->IpList[Index].v4))) {
1595 //
1596 // IPv4 broadcast address should not be in IP filter.
1597 //
1598 return EFI_INVALID_PARAMETER;
1599 }
1600 if (Mode->UsingIpv6) {
1601 if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0 &&
1602 NetIp6IsValidUnicast (&NewFilter->IpList[Index].v6)) {
1603 NeedPromiscuous = TRUE;
1604 }
1605 } else if ((EFI_NTOHL(Mode->StationIp) != 0) &&
1606 (EFI_NTOHL(Mode->SubnetMask) != 0) &&
1607 IP4_NET_EQUAL(EFI_NTOHL(Mode->StationIp), EFI_NTOHL(NewFilter->IpList[Index].v4), EFI_NTOHL(Mode->SubnetMask.v4)) &&
1608 NetIp4IsUnicast (EFI_IP4 (NewFilter->IpList[Index].v4), EFI_NTOHL(Mode->SubnetMask)) &&
1609 ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0)) {
1610 NeedPromiscuous = TRUE;
1611 }
1612 }
1613
1614 AcceptPromiscuous = FALSE;
1615 AcceptBroadcast = FALSE;
1616 MultiCastUpdate = FALSE;
1617
1618 if (NeedPromiscuous ||
1619 (NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS) != 0 ||
1620 (NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST) != 0) {
1621 //
1622 // Configure UDPv4/UDPv6 as promiscuous mode to receive all packets.
1623 //
1624 AcceptPromiscuous = TRUE;
1625 } else if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST) != 0) {
1626 //
1627 // Configure UDPv4 to receive all broadcast packets.
1628 //
1629 AcceptBroadcast = TRUE;
1630 }
1631
1632 //
1633 // In multicast condition when Promiscuous FALSE and IpCnt no-zero.
1634 // Here check if there is any update of the multicast ip address. If yes,
1635 // we need leave the old multicast group (by Config UDP instance to NULL),
1636 // and join the new multicast group.
1637 //
1638 if (!AcceptPromiscuous) {
1639 if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0) {
1640 if (Mode->IpFilter.IpCnt != NewFilter->IpCnt) {
1641 MultiCastUpdate = TRUE;
1642 } else if (CompareMem (Mode->IpFilter.IpList, NewFilter->IpList, NewFilter->IpCnt * sizeof (EFI_IP_ADDRESS)) != 0 ) {
1643 MultiCastUpdate = TRUE;
1644 }
1645 }
1646 }
1647
1648 if (!Mode->UsingIpv6) {
1649 //
1650 // Check whether we need reconfigure the UDP4 instance.
1651 //
1652 Udp4Cfg = &Private->Udp4CfgData;
1653 if ((AcceptPromiscuous != Udp4Cfg->AcceptPromiscuous) ||
1654 (AcceptBroadcast != Udp4Cfg->AcceptBroadcast) || MultiCastUpdate) {
1655 //
1656 // Clear the UDP4 instance configuration, all joined groups will be left
1657 // during the operation.
1658 //
1659 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
1660
1661 //
1662 // Configure the UDP instance with the new configuration.
1663 //
1664 Udp4Cfg->AcceptPromiscuous = AcceptPromiscuous;
1665 Udp4Cfg->AcceptBroadcast = AcceptBroadcast;
1666 Status = Private->Udp4Read->Configure (Private->Udp4Read, Udp4Cfg);
1667 if (EFI_ERROR (Status)) {
1668 return Status;
1669 }
1670
1671 //
1672 // In not Promiscuous mode, need to join the new multicast group.
1673 //
1674 if (!AcceptPromiscuous) {
1675 for (Index = 0; Index < NewFilter->IpCnt; ++Index) {
1676 if (IP4_IS_MULTICAST (EFI_NTOHL (NewFilter->IpList[Index].v4))) {
1677 //
1678 // Join the mutilcast group.
1679 //
1680 Status = Private->Udp4Read->Groups (Private->Udp4Read, TRUE, &NewFilter->IpList[Index].v4);
1681 if (EFI_ERROR (Status)) {
1682 return Status;
1683 }
1684 }
1685 }
1686 }
1687 }
1688 } else {
1689 //
1690 // Check whether we need reconfigure the UDP6 instance.
1691 //
1692 Udp6Cfg = &Private->Udp6CfgData;
1693 if ((AcceptPromiscuous != Udp6Cfg->AcceptPromiscuous) || MultiCastUpdate) {
1694 //
1695 // Clear the UDP6 instance configuration, all joined groups will be left
1696 // during the operation.
1697 //
1698 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
1699
1700 //
1701 // Configure the UDP instance with the new configuration.
1702 //
1703 Udp6Cfg->AcceptPromiscuous = AcceptPromiscuous;
1704 Status = Private->Udp6Read->Configure (Private->Udp6Read, Udp6Cfg);
1705 if (EFI_ERROR (Status)) {
1706 return Status;
1707 }
1708
1709 //
1710 // In not Promiscuous mode, need to join the new multicast group.
1711 //
1712 if (!AcceptPromiscuous) {
1713 for (Index = 0; Index < NewFilter->IpCnt; ++Index) {
1714 if (IP6_IS_MULTICAST (&NewFilter->IpList[Index].v6)) {
1715 //
1716 // Join the mutilcast group.
1717 //
1718 Status = Private->Udp6Read->Groups (Private->Udp6Read, TRUE, &NewFilter->IpList[Index].v6);
1719 if (EFI_ERROR (Status)) {
1720 return Status;
1721 }
1722 }
1723 }
1724 }
1725 }
1726 }
1727
1728 //
1729 // Save the new IP filter into mode data.
1730 //
1731 CopyMem (&Mode->IpFilter, NewFilter, sizeof (Mode->IpFilter));
1732
1733 return Status;
1734 }
1735
1736
1737 /**
1738 Uses the ARP protocol to resolve a MAC address. It is not supported for IPv6.
1739
1740 This function uses the ARP protocol to resolve a MAC address. The IP address specified
1741 by IpAddr is used to resolve a MAC address. If the ARP protocol succeeds in resolving
1742 the specified address, then the ArpCacheEntries and ArpCache fields of the mode data
1743 are updated, and EFI_SUCCESS is returned. If MacAddr is not NULL, the resolved
1744 MAC address is placed there as well. If the PXE Base Code protocol is in the
1745 stopped state, then EFI_NOT_STARTED is returned. If the ARP protocol encounters
1746 a timeout condition while attempting to resolve an address, then EFI_TIMEOUT is
1747 returned. If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
1748 then EFI_ABORTED is returned.
1749
1750 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1751 @param[in] IpAddr Pointer to the IP address that is used to resolve a MAC address.
1752 @param[in] MacAddr If not NULL, a pointer to the MAC address that was resolved with the
1753 ARP protocol.
1754
1755 @retval EFI_SUCCESS The IP or MAC address was resolved.
1756 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1757 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1758 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
1759 @retval EFI_ICMP_ERROR An error occur with the ICMP packet message.
1760
1761 **/
1762 EFI_STATUS
1763 EFIAPI
1764 EfiPxeBcArp (
1765 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1766 IN EFI_IP_ADDRESS *IpAddr,
1767 IN EFI_MAC_ADDRESS *MacAddr OPTIONAL
1768 )
1769 {
1770 PXEBC_PRIVATE_DATA *Private;
1771 EFI_PXE_BASE_CODE_MODE *Mode;
1772 EFI_EVENT ResolvedEvent;
1773 EFI_STATUS Status;
1774 EFI_MAC_ADDRESS TempMac;
1775 EFI_MAC_ADDRESS ZeroMac;
1776 BOOLEAN IsResolved;
1777
1778 if (This == NULL || IpAddr == NULL) {
1779 return EFI_INVALID_PARAMETER;
1780 }
1781
1782 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1783 Mode = Private->PxeBc.Mode;
1784 ResolvedEvent = NULL;
1785 Status = EFI_SUCCESS;
1786 IsResolved = FALSE;
1787
1788 if (!Mode->Started) {
1789 return EFI_NOT_STARTED;
1790 }
1791
1792 if (Mode->UsingIpv6) {
1793 return EFI_UNSUPPORTED;
1794 }
1795
1796 //
1797 // Station address should be ready before do arp.
1798 //
1799 if (!Private->IsAddressOk) {
1800 return EFI_INVALID_PARAMETER;
1801 }
1802
1803 Mode->IcmpErrorReceived = FALSE;
1804 ZeroMem (&TempMac, sizeof (EFI_MAC_ADDRESS));
1805 ZeroMem (&ZeroMac, sizeof (EFI_MAC_ADDRESS));
1806
1807 if (!Mode->AutoArp) {
1808 //
1809 // If AutoArp is FALSE, only search in the current Arp cache.
1810 //
1811 PxeBcArpCacheUpdate (NULL, Private);
1812 if (!PxeBcCheckArpCache (Mode, &IpAddr->v4, &TempMac)) {
1813 Status = EFI_DEVICE_ERROR;
1814 goto ON_EXIT;
1815 }
1816 } else {
1817 Status = gBS->CreateEvent (
1818 EVT_NOTIFY_SIGNAL,
1819 TPL_NOTIFY,
1820 PxeBcCommonNotify,
1821 &IsResolved,
1822 &ResolvedEvent
1823 );
1824 if (EFI_ERROR (Status)) {
1825 goto ON_EXIT;
1826 }
1827
1828 //
1829 // If AutoArp is TRUE, try to send Arp request on initiative.
1830 //
1831 Status = Private->Arp->Request (Private->Arp, &IpAddr->v4, ResolvedEvent, &TempMac);
1832 if (EFI_ERROR (Status) && Status != EFI_NOT_READY) {
1833 goto ON_EXIT;
1834 }
1835
1836 while (!IsResolved) {
1837 if (CompareMem (&TempMac, &ZeroMac, sizeof (EFI_MAC_ADDRESS)) != 0) {
1838 break;
1839 }
1840 }
1841 if (CompareMem (&TempMac, &ZeroMac, sizeof (EFI_MAC_ADDRESS)) != 0) {
1842 Status = EFI_SUCCESS;
1843 } else {
1844 Status = EFI_TIMEOUT;
1845 }
1846 }
1847
1848 //
1849 // Copy the Mac address to user if needed.
1850 //
1851 if (MacAddr != NULL && !EFI_ERROR (Status)) {
1852 CopyMem (MacAddr, &TempMac, sizeof (EFI_MAC_ADDRESS));
1853 }
1854
1855 ON_EXIT:
1856 if (ResolvedEvent != NULL) {
1857 gBS->CloseEvent (ResolvedEvent);
1858 }
1859 return Status;
1860 }
1861
1862
1863 /**
1864 Updates the parameters that affect the operation of the PXE Base Code Protocol.
1865
1866 This function sets parameters that affect the operation of the PXE Base Code Protocol.
1867 The parameter specified by NewAutoArp is used to control the generation of ARP
1868 protocol packets. If NewAutoArp is TRUE, then ARP Protocol packets will be generated
1869 as required by the PXE Base Code Protocol. If NewAutoArp is FALSE, then no ARP
1870 Protocol packets will be generated. In this case, the only mappings that are
1871 available are those stored in the ArpCache of the EFI_PXE_BASE_CODE_MODE structure.
1872 If there are not enough mappings in the ArpCache to perform a PXE Base Code Protocol
1873 service, then the service will fail. This function updates the AutoArp field of
1874 the EFI_PXE_BASE_CODE_MODE structure to NewAutoArp.
1875 The SetParameters() call must be invoked after a Callback Protocol is installed
1876 to enable the use of callbacks.
1877
1878 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1879 @param[in] NewAutoArp If not NULL, a pointer to a value that specifies whether to replace the
1880 current value of AutoARP.
1881 @param[in] NewSendGUID If not NULL, a pointer to a value that specifies whether to replace the
1882 current value of SendGUID.
1883 @param[in] NewTTL If not NULL, a pointer to be used in place of the current value of TTL,
1884 the "time to live" field of the IP header.
1885 @param[in] NewToS If not NULL, a pointer to be used in place of the current value of ToS,
1886 the "type of service" field of the IP header.
1887 @param[in] NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace the
1888 current value of the MakeCallback field of the Mode structure.
1889
1890 @retval EFI_SUCCESS The new parameters values were updated.
1891 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1892 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1893
1894 **/
1895 EFI_STATUS
1896 EFIAPI
1897 EfiPxeBcSetParameters (
1898 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1899 IN BOOLEAN *NewAutoArp OPTIONAL,
1900 IN BOOLEAN *NewSendGUID OPTIONAL,
1901 IN UINT8 *NewTTL OPTIONAL,
1902 IN UINT8 *NewToS OPTIONAL,
1903 IN BOOLEAN *NewMakeCallback OPTIONAL
1904 )
1905 {
1906 PXEBC_PRIVATE_DATA *Private;
1907 EFI_PXE_BASE_CODE_MODE *Mode;
1908 EFI_GUID SystemGuid;
1909 EFI_STATUS Status;
1910
1911 if (This == NULL) {
1912 return EFI_INVALID_PARAMETER;
1913 }
1914
1915 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1916 Mode = Private->PxeBc.Mode;
1917
1918 if (!Mode->Started) {
1919 return EFI_NOT_STARTED;
1920 }
1921
1922 if (NewMakeCallback != NULL) {
1923 if (*NewMakeCallback) {
1924 //
1925 // Update the previous PxeBcCallback protocol.
1926 //
1927 Status = gBS->HandleProtocol (
1928 Private->Controller,
1929 &gEfiPxeBaseCodeCallbackProtocolGuid,
1930 (VOID **) &Private->PxeBcCallback
1931 );
1932
1933 if (EFI_ERROR (Status) || (Private->PxeBcCallback->Callback == NULL)) {
1934 return EFI_INVALID_PARAMETER;
1935 }
1936 } else {
1937 Private->PxeBcCallback = NULL;
1938 }
1939 Mode->MakeCallbacks = *NewMakeCallback;
1940 }
1941
1942 if (NewSendGUID != NULL) {
1943 if (*NewSendGUID && EFI_ERROR (NetLibGetSystemGuid (&SystemGuid))) {
1944 return EFI_INVALID_PARAMETER;
1945 }
1946 Mode->SendGUID = *NewSendGUID;
1947 }
1948
1949 if (NewAutoArp != NULL) {
1950 Mode->AutoArp = *NewAutoArp;
1951 }
1952
1953 if (NewTTL != NULL) {
1954 Mode->TTL = *NewTTL;
1955 }
1956
1957 if (NewToS != NULL) {
1958 Mode->ToS = *NewToS;
1959 }
1960
1961 return EFI_SUCCESS;
1962 }
1963
1964
1965 /**
1966 Updates the station IP address and/or subnet mask values of a network device.
1967
1968 This function updates the station IP address and/or subnet mask values of a network
1969 device. The NewStationIp field is used to modify the network device's current IP address.
1970 If NewStationIP is NULL, then the current IP address will not be modified. Otherwise,
1971 this function updates the StationIp field of the EFI_PXE_BASE_CODE_MODE structure
1972 with NewStationIp. The NewSubnetMask field is used to modify the network device's current subnet
1973 mask. If NewSubnetMask is NULL, then the current subnet mask will not be modified.
1974 Otherwise, this function updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE
1975 structure with NewSubnetMask.
1976
1977 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1978 @param[in] NewStationIp Pointer to the new IP address to be used by the network device.
1979 @param[in] NewSubnetMask Pointer to the new subnet mask to be used by the network device.
1980
1981 @retval EFI_SUCCESS The new station IP address and/or subnet mask were updated.
1982 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1983 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1984
1985 **/
1986 EFI_STATUS
1987 EFIAPI
1988 EfiPxeBcSetStationIP (
1989 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1990 IN EFI_IP_ADDRESS *NewStationIp OPTIONAL,
1991 IN EFI_IP_ADDRESS *NewSubnetMask OPTIONAL
1992 )
1993 {
1994 EFI_STATUS Status;
1995 PXEBC_PRIVATE_DATA *Private;
1996 EFI_PXE_BASE_CODE_MODE *Mode;
1997 EFI_ARP_CONFIG_DATA ArpConfigData;
1998
1999 if (This == NULL) {
2000 return EFI_INVALID_PARAMETER;
2001 }
2002
2003 if (NewStationIp != NULL && !NetIp6IsValidUnicast (&NewStationIp->v6)) {
2004 return EFI_INVALID_PARAMETER;
2005 }
2006
2007 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
2008 Mode = Private->PxeBc.Mode;
2009 Status = EFI_SUCCESS;
2010
2011 if (!Mode->UsingIpv6 &&
2012 NewSubnetMask != NULL &&
2013 !IP4_IS_VALID_NETMASK (NTOHL (NewSubnetMask->Addr[0]))) {
2014 return EFI_INVALID_PARAMETER;
2015 }
2016
2017 if (!Mode->UsingIpv6 && NewStationIp != NULL) {
2018 if (IP4_IS_UNSPECIFIED(NTOHL (NewStationIp->Addr[0])) ||
2019 IP4_IS_LOCAL_BROADCAST(NTOHL (NewStationIp->Addr[0])) ||
2020 (NewSubnetMask != NULL && NewSubnetMask->Addr[0] != 0 && !NetIp4IsUnicast (NTOHL (NewStationIp->Addr[0]), NTOHL (NewSubnetMask->Addr[0])))) {
2021 return EFI_INVALID_PARAMETER;
2022 }
2023 }
2024
2025 if (!Mode->Started) {
2026 return EFI_NOT_STARTED;
2027 }
2028
2029 if (Mode->UsingIpv6 && NewStationIp != NULL) {
2030 //
2031 // Set the IPv6 address by Ip6Config protocol.
2032 //
2033 Status = PxeBcRegisterIp6Address (Private, &NewStationIp->v6);
2034 if (EFI_ERROR (Status)) {
2035 goto ON_EXIT;
2036 }
2037 } else if (!Mode->UsingIpv6 && NewStationIp != NULL) {
2038 //
2039 // Configure the corresponding ARP with the IPv4 address.
2040 //
2041 ZeroMem (&ArpConfigData, sizeof (EFI_ARP_CONFIG_DATA));
2042
2043 ArpConfigData.SwAddressType = 0x0800;
2044 ArpConfigData.SwAddressLength = (UINT8) sizeof (EFI_IPv4_ADDRESS);
2045 ArpConfigData.StationAddress = &NewStationIp->v4;
2046
2047 Private->Arp->Configure (Private->Arp, NULL);
2048 Private->Arp->Configure (Private->Arp, &ArpConfigData);
2049
2050 if (NewSubnetMask != NULL) {
2051 Mode->RouteTableEntries = 1;
2052 Mode->RouteTable[0].IpAddr.Addr[0] = NewStationIp->Addr[0] & NewSubnetMask->Addr[0];
2053 Mode->RouteTable[0].SubnetMask.Addr[0] = NewSubnetMask->Addr[0];
2054 Mode->RouteTable[0].GwAddr.Addr[0] = 0;
2055 }
2056
2057 Private->IsAddressOk = TRUE;
2058 }
2059
2060 if (NewStationIp != NULL) {
2061 CopyMem (&Mode->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS));
2062 CopyMem (&Private->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS));
2063 }
2064
2065 if (!Mode->UsingIpv6 && NewSubnetMask != NULL) {
2066 CopyMem (&Mode->SubnetMask, NewSubnetMask, sizeof (EFI_IP_ADDRESS));
2067 CopyMem (&Private->SubnetMask ,NewSubnetMask, sizeof (EFI_IP_ADDRESS));
2068 }
2069
2070 Status = PxeBcFlushStationIp (Private, NewStationIp, NewSubnetMask);
2071 ON_EXIT:
2072 return Status;
2073 }
2074
2075
2076 /**
2077 Updates the contents of the cached DHCP and Discover packets.
2078
2079 The pointers to the new packets are used to update the contents of the cached
2080 packets in the EFI_PXE_BASE_CODE_MODE structure.
2081
2082 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
2083 @param[in] NewDhcpDiscoverValid Pointer to a value that will replace the current
2084 DhcpDiscoverValid field.
2085 @param[in] NewDhcpAckReceived Pointer to a value that will replace the current
2086 DhcpAckReceived field.
2087 @param[in] NewProxyOfferReceived Pointer to a value that will replace the current
2088 ProxyOfferReceived field.
2089 @param[in] NewPxeDiscoverValid Pointer to a value that will replace the current
2090 ProxyOfferReceived field.
2091 @param[in] NewPxeReplyReceived Pointer to a value that will replace the current
2092 PxeReplyReceived field.
2093 @param[in] NewPxeBisReplyReceived Pointer to a value that will replace the current
2094 PxeBisReplyReceived field.
2095 @param[in] NewDhcpDiscover Pointer to the new cached DHCP Discover packet contents.
2096 @param[in] NewDhcpAck Pointer to the new cached DHCP Ack packet contents.
2097 @param[in] NewProxyOffer Pointer to the new cached Proxy Offer packet contents.
2098 @param[in] NewPxeDiscover Pointer to the new cached PXE Discover packet contents.
2099 @param[in] NewPxeReply Pointer to the new cached PXE Reply packet contents.
2100 @param[in] NewPxeBisReply Pointer to the new cached PXE BIS Reply packet contents.
2101
2102 @retval EFI_SUCCESS The cached packet contents were updated.
2103 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
2104 @retval EFI_INVALID_PARAMETER This is NULL or does not point to a valid
2105 EFI_PXE_BASE_CODE_PROTOCOL structure.
2106
2107 **/
2108 EFI_STATUS
2109 EFIAPI
2110 EfiPxeBcSetPackets (
2111 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
2112 IN BOOLEAN *NewDhcpDiscoverValid OPTIONAL,
2113 IN BOOLEAN *NewDhcpAckReceived OPTIONAL,
2114 IN BOOLEAN *NewProxyOfferReceived OPTIONAL,
2115 IN BOOLEAN *NewPxeDiscoverValid OPTIONAL,
2116 IN BOOLEAN *NewPxeReplyReceived OPTIONAL,
2117 IN BOOLEAN *NewPxeBisReplyReceived OPTIONAL,
2118 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpDiscover OPTIONAL,
2119 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpAck OPTIONAL,
2120 IN EFI_PXE_BASE_CODE_PACKET *NewProxyOffer OPTIONAL,
2121 IN EFI_PXE_BASE_CODE_PACKET *NewPxeDiscover OPTIONAL,
2122 IN EFI_PXE_BASE_CODE_PACKET *NewPxeReply OPTIONAL,
2123 IN EFI_PXE_BASE_CODE_PACKET *NewPxeBisReply OPTIONAL
2124 )
2125 {
2126 PXEBC_PRIVATE_DATA *Private;
2127 EFI_PXE_BASE_CODE_MODE *Mode;
2128
2129 if (This == NULL) {
2130 return EFI_INVALID_PARAMETER;
2131 }
2132
2133 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
2134 Mode = Private->PxeBc.Mode;
2135
2136 if (!Mode->Started) {
2137 return EFI_NOT_STARTED;
2138 }
2139
2140 if (NewDhcpDiscoverValid != NULL) {
2141 Mode->DhcpDiscoverValid = *NewDhcpDiscoverValid;
2142 }
2143
2144 if (NewDhcpAckReceived != NULL) {
2145 Mode->DhcpAckReceived = *NewDhcpAckReceived;
2146 }
2147
2148 if (NewProxyOfferReceived != NULL) {
2149 Mode->ProxyOfferReceived = *NewProxyOfferReceived;
2150 }
2151
2152 if (NewPxeDiscoverValid != NULL) {
2153 Mode->PxeDiscoverValid = *NewPxeDiscoverValid;
2154 }
2155
2156 if (NewPxeReplyReceived != NULL) {
2157 Mode->PxeReplyReceived = *NewPxeReplyReceived;
2158 }
2159
2160 if (NewPxeBisReplyReceived != NULL) {
2161 Mode->PxeBisReplyReceived = *NewPxeBisReplyReceived;
2162 }
2163
2164 if (NewDhcpDiscover != NULL) {
2165 CopyMem (&Mode->DhcpDiscover, NewDhcpDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET));
2166 }
2167
2168 if (NewDhcpAck != NULL) {
2169 CopyMem (&Mode->DhcpAck, NewDhcpAck, sizeof (EFI_PXE_BASE_CODE_PACKET));
2170 }
2171
2172 if (NewProxyOffer != NULL) {
2173 CopyMem (&Mode->ProxyOffer, NewProxyOffer, sizeof (EFI_PXE_BASE_CODE_PACKET));
2174 }
2175
2176 if (NewPxeDiscover != NULL) {
2177 CopyMem (&Mode->PxeDiscover, NewPxeDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET));
2178 }
2179
2180 if (NewPxeReply != NULL) {
2181 CopyMem (&Mode->PxeReply, NewPxeReply, sizeof (EFI_PXE_BASE_CODE_PACKET));
2182 }
2183
2184 if (NewPxeBisReply != NULL) {
2185 CopyMem (&Mode->PxeBisReply, NewPxeBisReply, sizeof (EFI_PXE_BASE_CODE_PACKET));
2186 }
2187
2188 return EFI_SUCCESS;
2189 }
2190
2191 EFI_PXE_BASE_CODE_PROTOCOL gPxeBcProtocolTemplate = {
2192 EFI_PXE_BASE_CODE_PROTOCOL_REVISION,
2193 EfiPxeBcStart,
2194 EfiPxeBcStop,
2195 EfiPxeBcDhcp,
2196 EfiPxeBcDiscover,
2197 EfiPxeBcMtftp,
2198 EfiPxeBcUdpWrite,
2199 EfiPxeBcUdpRead,
2200 EfiPxeBcSetIpFilter,
2201 EfiPxeBcArp,
2202 EfiPxeBcSetParameters,
2203 EfiPxeBcSetStationIP,
2204 EfiPxeBcSetPackets,
2205 NULL
2206 };
2207
2208
2209 /**
2210 Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has
2211 received, or is waiting to receive a packet.
2212
2213 This function is invoked when the PXE Base Code Protocol is about to transmit, has received,
2214 or is waiting to receive a packet. Parameters Function and Received specify the type of event.
2215 Parameters PacketLen and Packet specify the packet that generated the event. If these fields
2216 are zero and NULL respectively, then this is a status update callback. If the operation specified
2217 by Function is to continue, then CALLBACK_STATUS_CONTINUE should be returned. If the operation
2218 specified by Function should be aborted, then CALLBACK_STATUS_ABORT should be returned. Due to
2219 the polling nature of UEFI device drivers, a callback function should not execute for more than 5 ms.
2220 The SetParameters() function must be called after a Callback Protocol is installed to enable the
2221 use of callbacks.
2222
2223 @param[in] This Pointer to the EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL instance.
2224 @param[in] Function The PXE Base Code Protocol function that is waiting for an event.
2225 @param[in] Received TRUE if the callback is being invoked due to a receive event. FALSE if
2226 the callback is being invoked due to a transmit event.
2227 @param[in] PacketLength The length, in bytes, of Packet. This field will have a value of zero if
2228 this is a wait for receive event.
2229 @param[in] PacketPtr If Received is TRUE, a pointer to the packet that was just received;
2230 otherwise a pointer to the packet that is about to be transmitted.
2231
2232 @retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE If Function specifies a continue operation.
2233 @retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT If Function specifies an abort operation.
2234
2235 **/
2236 EFI_PXE_BASE_CODE_CALLBACK_STATUS
2237 EFIAPI
2238 EfiPxeLoadFileCallback (
2239 IN EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL *This,
2240 IN EFI_PXE_BASE_CODE_FUNCTION Function,
2241 IN BOOLEAN Received,
2242 IN UINT32 PacketLength,
2243 IN EFI_PXE_BASE_CODE_PACKET *PacketPtr OPTIONAL
2244 )
2245 {
2246 EFI_INPUT_KEY Key;
2247 EFI_STATUS Status;
2248
2249 //
2250 // Catch Ctrl-C or ESC to abort.
2251 //
2252 Status = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key);
2253
2254 if (!EFI_ERROR (Status)) {
2255
2256 if (Key.ScanCode == SCAN_ESC || Key.UnicodeChar == (0x1F & 'c')) {
2257
2258 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT;
2259 }
2260 }
2261 //
2262 // No print if receive packet
2263 //
2264 if (Received) {
2265 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2266 }
2267 //
2268 // Print only for three functions
2269 //
2270 switch (Function) {
2271
2272 case EFI_PXE_BASE_CODE_FUNCTION_MTFTP:
2273 //
2274 // Print only for open MTFTP packets, not every MTFTP packets
2275 //
2276 if (PacketLength != 0 && PacketPtr != NULL) {
2277 if (PacketPtr->Raw[0x1C] != 0x00 || PacketPtr->Raw[0x1D] != 0x01) {
2278 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2279 }
2280 }
2281 break;
2282
2283 case EFI_PXE_BASE_CODE_FUNCTION_DHCP:
2284 case EFI_PXE_BASE_CODE_FUNCTION_DISCOVER:
2285 break;
2286
2287 default:
2288 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2289 }
2290
2291 if (PacketLength != 0 && PacketPtr != NULL) {
2292 //
2293 // Print '.' when transmit a packet
2294 //
2295 AsciiPrint (".");
2296 }
2297
2298 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2299 }
2300
2301 EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL gPxeBcCallBackTemplate = {
2302 EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_REVISION,
2303 EfiPxeLoadFileCallback
2304 };
2305
2306
2307 /**
2308 Causes the driver to load a specified file.
2309
2310 @param[in] This Protocol instance pointer.
2311 @param[in] FilePath The device specific path of the file to load.
2312 @param[in] BootPolicy If TRUE, indicates that the request originates from the
2313 boot manager is attempting to load FilePath as a boot
2314 selection. If FALSE, then FilePath must match an exact file
2315 to be loaded.
2316 @param[in, out] BufferSize On input the size of Buffer in bytes. On output with a return
2317 code of EFI_SUCCESS, the amount of data transferred to
2318 Buffer. On output with a return code of EFI_BUFFER_TOO_SMALL,
2319 the size of Buffer required to retrieve the requested file.
2320 @param[in] Buffer The memory buffer to transfer the file to. IF Buffer is NULL,
2321 then no the size of the requested file is returned in
2322 BufferSize.
2323
2324 @retval EFI_SUCCESS The file was loaded.
2325 @retval EFI_UNSUPPORTED The device does not support the provided BootPolicy.
2326 @retval EFI_INVALID_PARAMETER FilePath is not a valid device path, or
2327 BufferSize is NULL.
2328 @retval EFI_NO_MEDIA No medium was present to load the file.
2329 @retval EFI_DEVICE_ERROR The file was not loaded due to a device error.
2330 @retval EFI_NO_RESPONSE The remote system did not respond.
2331 @retval EFI_NOT_FOUND The file was not found.
2332 @retval EFI_ABORTED The file load process was manually cancelled.
2333
2334 **/
2335 EFI_STATUS
2336 EFIAPI
2337 EfiPxeLoadFile (
2338 IN EFI_LOAD_FILE_PROTOCOL *This,
2339 IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
2340 IN BOOLEAN BootPolicy,
2341 IN OUT UINTN *BufferSize,
2342 IN VOID *Buffer OPTIONAL
2343 )
2344 {
2345 PXEBC_PRIVATE_DATA *Private;
2346 PXEBC_VIRTUAL_NIC *VirtualNic;
2347 EFI_PXE_BASE_CODE_PROTOCOL *PxeBc;
2348 BOOLEAN UsingIpv6;
2349 EFI_STATUS Status;
2350 BOOLEAN MediaPresent;
2351
2352 if (FilePath == NULL || !IsDevicePathEnd (FilePath)) {
2353 return EFI_INVALID_PARAMETER;
2354 }
2355
2356 VirtualNic = PXEBC_VIRTUAL_NIC_FROM_LOADFILE (This);
2357 Private = VirtualNic->Private;
2358 PxeBc = &Private->PxeBc;
2359 UsingIpv6 = FALSE;
2360 Status = EFI_DEVICE_ERROR;
2361
2362 if (This == NULL || BufferSize == NULL) {
2363 return EFI_INVALID_PARAMETER;
2364 }
2365
2366 //
2367 // Only support BootPolicy
2368 //
2369 if (!BootPolicy) {
2370 return EFI_UNSUPPORTED;
2371 }
2372
2373 //
2374 // Check media status before PXE start
2375 //
2376 MediaPresent = TRUE;
2377 NetLibDetectMedia (Private->Controller, &MediaPresent);
2378 if (!MediaPresent) {
2379 return EFI_NO_MEDIA;
2380 }
2381
2382 //
2383 // Check whether the virtual nic is using IPv6 or not.
2384 //
2385 if (VirtualNic == Private->Ip6Nic) {
2386 UsingIpv6 = TRUE;
2387 }
2388
2389 //
2390 // Start Pxe Base Code to initialize PXE boot.
2391 //
2392 Status = PxeBc->Start (PxeBc, UsingIpv6);
2393 if (Status == EFI_ALREADY_STARTED && UsingIpv6 != PxeBc->Mode->UsingIpv6) {
2394 //
2395 // PxeBc protocol has already been started but not on the required IP version, restart it.
2396 //
2397 Status = PxeBc->Stop (PxeBc);
2398 if (!EFI_ERROR (Status)) {
2399 Status = PxeBc->Start (PxeBc, UsingIpv6);
2400 }
2401 }
2402 if (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED) {
2403 Status = PxeBcLoadBootFile (Private, BufferSize, Buffer);
2404 }
2405
2406 if (Status != EFI_SUCCESS &&
2407 Status != EFI_UNSUPPORTED &&
2408 Status != EFI_BUFFER_TOO_SMALL) {
2409 //
2410 // There are three cases, which needn't stop pxebc here.
2411 // 1. success to download file.
2412 // 2. success to get file size.
2413 // 3. unsupported.
2414 //
2415 PxeBc->Stop (PxeBc);
2416 } else {
2417 //
2418 // The DHCP4 can have only one configured child instance so we need to stop
2419 // reset the DHCP4 child before we return. Otherwise these programs which
2420 // also need to use DHCP4 will be impacted.
2421 //
2422 if (!PxeBc->Mode->UsingIpv6) {
2423 Private->Dhcp4->Stop (Private->Dhcp4);
2424 Private->Dhcp4->Configure (Private->Dhcp4, NULL);
2425 }
2426 }
2427
2428 return Status;
2429 }
2430
2431 EFI_LOAD_FILE_PROTOCOL gLoadFileProtocolTemplate = { EfiPxeLoadFile };
2432