]> git.proxmox.com Git - mirror_edk2.git/blob - OvmfPkg/Library/PlatformBdsLib/QemuBootOrder.c
OvmfPkg: QemuBootOrder: handle QEMU's "-boot strict=on" option
[mirror_edk2.git] / OvmfPkg / Library / PlatformBdsLib / QemuBootOrder.c
1 /** @file
2 Rewrite the BootOrder NvVar based on QEMU's "bootorder" fw_cfg file.
3
4 Copyright (C) 2012 - 2013, Red Hat, Inc.
5 Copyright (c) 2013, Intel Corporation. All rights reserved.<BR>
6
7 This program and the accompanying materials are licensed and made available
8 under the terms and conditions of the BSD License which accompanies this
9 distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT
13 WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14 **/
15
16 #include <Library/QemuFwCfgLib.h>
17 #include <Library/DebugLib.h>
18 #include <Library/MemoryAllocationLib.h>
19 #include <Library/GenericBdsLib.h>
20 #include <Library/UefiBootServicesTableLib.h>
21 #include <Library/UefiRuntimeServicesTableLib.h>
22 #include <Library/BaseLib.h>
23 #include <Library/PrintLib.h>
24 #include <Library/DevicePathLib.h>
25 #include <Guid/GlobalVariable.h>
26
27
28 /**
29 OpenFirmware to UEFI device path translation output buffer size in CHAR16's.
30 **/
31 #define TRANSLATION_OUTPUT_SIZE 0x100
32
33
34 /**
35 Numbers of nodes in OpenFirmware device paths that are required and examined.
36 **/
37 #define REQUIRED_OFW_NODES 2
38 #define EXAMINED_OFW_NODES 4
39
40
41 /**
42 Simple character classification routines, corresponding to POSIX class names
43 and ASCII encoding.
44 **/
45 STATIC
46 BOOLEAN
47 IsAlnum (
48 IN CHAR8 Chr
49 )
50 {
51 return (('0' <= Chr && Chr <= '9') ||
52 ('A' <= Chr && Chr <= 'Z') ||
53 ('a' <= Chr && Chr <= 'z')
54 );
55 }
56
57
58 STATIC
59 BOOLEAN
60 IsDriverNamePunct (
61 IN CHAR8 Chr
62 )
63 {
64 return (Chr == ',' || Chr == '.' || Chr == '_' ||
65 Chr == '+' || Chr == '-'
66 );
67 }
68
69
70 STATIC
71 BOOLEAN
72 IsPrintNotDelim (
73 IN CHAR8 Chr
74 )
75 {
76 return (32 <= Chr && Chr <= 126 &&
77 Chr != '/' && Chr != '@' && Chr != ':');
78 }
79
80
81 /**
82 Utility types and functions.
83 **/
84 typedef struct {
85 CONST CHAR8 *Ptr; // not necessarily NUL-terminated
86 UINTN Len; // number of non-NUL characters
87 } SUBSTRING;
88
89
90 /**
91
92 Check if Substring and String have identical contents.
93
94 The function relies on the restriction that a SUBSTRING cannot have embedded
95 NULs either.
96
97 @param[in] Substring The SUBSTRING input to the comparison.
98
99 @param[in] String The ASCII string input to the comparison.
100
101
102 @return Whether the inputs have identical contents.
103
104 **/
105 STATIC
106 BOOLEAN
107 SubstringEq (
108 IN SUBSTRING Substring,
109 IN CONST CHAR8 *String
110 )
111 {
112 UINTN Pos;
113 CONST CHAR8 *Chr;
114
115 Pos = 0;
116 Chr = String;
117
118 while (Pos < Substring.Len && Substring.Ptr[Pos] == *Chr) {
119 ++Pos;
120 ++Chr;
121 }
122
123 return (BOOLEAN)(Pos == Substring.Len && *Chr == '\0');
124 }
125
126
127 /**
128
129 Parse a comma-separated list of hexadecimal integers into the elements of an
130 UINT32 array.
131
132 Whitespace, "0x" prefixes, leading or trailing commas, sequences of commas,
133 or an empty string are not allowed; they are rejected.
134
135 The function relies on ASCII encoding.
136
137 @param[in] UnitAddress The substring to parse.
138
139 @param[out] Result The array, allocated by the caller, to receive
140 the parsed values. This parameter may be NULL if
141 NumResults is zero on input.
142
143 @param[in out] NumResults On input, the number of elements allocated for
144 Result. On output, the number of elements it has
145 taken (or would have taken) to parse the string
146 fully.
147
148
149 @retval RETURN_SUCCESS UnitAddress has been fully parsed.
150 NumResults is set to the number of parsed
151 values; the corresponding elements have
152 been set in Result. The rest of Result's
153 elements are unchanged.
154
155 @retval RETURN_BUFFER_TOO_SMALL UnitAddress has been fully parsed.
156 NumResults is set to the number of parsed
157 values, but elements have been stored only
158 up to the input value of NumResults, which
159 is less than what has been parsed.
160
161 @retval RETURN_INVALID_PARAMETER Parse error. The contents of Results is
162 indeterminate. NumResults has not been
163 changed.
164
165 **/
166 STATIC
167 RETURN_STATUS
168 ParseUnitAddressHexList (
169 IN SUBSTRING UnitAddress,
170 OUT UINT32 *Result,
171 IN OUT UINTN *NumResults
172 )
173 {
174 UINTN Entry; // number of entry currently being parsed
175 UINT32 EntryVal; // value being constructed for current entry
176 CHAR8 PrevChr; // UnitAddress character previously checked
177 UINTN Pos; // current position within UnitAddress
178 RETURN_STATUS Status;
179
180 Entry = 0;
181 EntryVal = 0;
182 PrevChr = ',';
183
184 for (Pos = 0; Pos < UnitAddress.Len; ++Pos) {
185 CHAR8 Chr;
186 INT8 Val;
187
188 Chr = UnitAddress.Ptr[Pos];
189 Val = ('a' <= Chr && Chr <= 'f') ? (Chr - 'a' + 10) :
190 ('A' <= Chr && Chr <= 'F') ? (Chr - 'A' + 10) :
191 ('0' <= Chr && Chr <= '9') ? (Chr - '0' ) :
192 -1;
193
194 if (Val >= 0) {
195 if (EntryVal > 0xFFFFFFF) {
196 return RETURN_INVALID_PARAMETER;
197 }
198 EntryVal = (EntryVal << 4) | Val;
199 } else if (Chr == ',') {
200 if (PrevChr == ',') {
201 return RETURN_INVALID_PARAMETER;
202 }
203 if (Entry < *NumResults) {
204 Result[Entry] = EntryVal;
205 }
206 ++Entry;
207 EntryVal = 0;
208 } else {
209 return RETURN_INVALID_PARAMETER;
210 }
211
212 PrevChr = Chr;
213 }
214
215 if (PrevChr == ',') {
216 return RETURN_INVALID_PARAMETER;
217 }
218 if (Entry < *NumResults) {
219 Result[Entry] = EntryVal;
220 Status = RETURN_SUCCESS;
221 } else {
222 Status = RETURN_BUFFER_TOO_SMALL;
223 }
224 ++Entry;
225
226 *NumResults = Entry;
227 return Status;
228 }
229
230
231 /**
232 A simple array of Boot Option ID's.
233 **/
234 typedef struct {
235 UINT16 *Data;
236 UINTN Allocated;
237 UINTN Produced;
238 } BOOT_ORDER;
239
240
241 /**
242 Array element tracking an enumerated boot option that has the
243 LOAD_OPTION_ACTIVE attribute.
244 **/
245 typedef struct {
246 CONST BDS_COMMON_OPTION *BootOption; // reference only, no ownership
247 BOOLEAN Appended; // has been added to a BOOT_ORDER?
248 } ACTIVE_OPTION;
249
250
251 /**
252
253 Append an active boot option to BootOrder, reallocating the latter if needed.
254
255 @param[in out] BootOrder The structure pointing to the array and holding
256 allocation and usage counters.
257
258 @param[in] ActiveOption The active boot option whose ID should be
259 appended to the array.
260
261
262 @retval RETURN_SUCCESS ID of ActiveOption appended.
263
264 @retval RETURN_OUT_OF_RESOURCES Memory reallocation failed.
265
266 **/
267 STATIC
268 RETURN_STATUS
269 BootOrderAppend (
270 IN OUT BOOT_ORDER *BootOrder,
271 IN OUT ACTIVE_OPTION *ActiveOption
272 )
273 {
274 if (BootOrder->Produced == BootOrder->Allocated) {
275 UINTN AllocatedNew;
276 UINT16 *DataNew;
277
278 ASSERT (BootOrder->Allocated > 0);
279 AllocatedNew = BootOrder->Allocated * 2;
280 DataNew = ReallocatePool (
281 BootOrder->Allocated * sizeof (*BootOrder->Data),
282 AllocatedNew * sizeof (*DataNew),
283 BootOrder->Data
284 );
285 if (DataNew == NULL) {
286 return RETURN_OUT_OF_RESOURCES;
287 }
288 BootOrder->Allocated = AllocatedNew;
289 BootOrder->Data = DataNew;
290 }
291
292 BootOrder->Data[BootOrder->Produced++] =
293 ActiveOption->BootOption->BootCurrent;
294 ActiveOption->Appended = TRUE;
295 return RETURN_SUCCESS;
296 }
297
298
299 /**
300
301 Create an array of ACTIVE_OPTION elements for a boot option list.
302
303 @param[in] BootOptionList A boot option list, created with
304 BdsLibEnumerateAllBootOption().
305
306 @param[out] ActiveOption Pointer to the first element in the new array.
307 The caller is responsible for freeing the array
308 with FreePool() after use.
309
310 @param[out] Count Number of elements in the new array.
311
312
313 @retval RETURN_SUCCESS The ActiveOption array has been created.
314
315 @retval RETURN_NOT_FOUND No active entry has been found in
316 BootOptionList.
317
318 @retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
319
320 **/
321 STATIC
322 RETURN_STATUS
323 CollectActiveOptions (
324 IN CONST LIST_ENTRY *BootOptionList,
325 OUT ACTIVE_OPTION **ActiveOption,
326 OUT UINTN *Count
327 )
328 {
329 UINTN ScanMode;
330
331 *ActiveOption = NULL;
332
333 //
334 // Scan the list twice:
335 // - count active entries,
336 // - store links to active entries.
337 //
338 for (ScanMode = 0; ScanMode < 2; ++ScanMode) {
339 CONST LIST_ENTRY *Link;
340
341 Link = BootOptionList->ForwardLink;
342 *Count = 0;
343 while (Link != BootOptionList) {
344 CONST BDS_COMMON_OPTION *Current;
345
346 Current = CR (Link, BDS_COMMON_OPTION, Link, BDS_LOAD_OPTION_SIGNATURE);
347 if (IS_LOAD_OPTION_TYPE (Current->Attribute, LOAD_OPTION_ACTIVE)) {
348 if (ScanMode == 1) {
349 (*ActiveOption)[*Count].BootOption = Current;
350 (*ActiveOption)[*Count].Appended = FALSE;
351 }
352 ++*Count;
353 }
354 Link = Link->ForwardLink;
355 }
356
357 if (ScanMode == 0) {
358 if (*Count == 0) {
359 return RETURN_NOT_FOUND;
360 }
361 *ActiveOption = AllocatePool (*Count * sizeof **ActiveOption);
362 if (*ActiveOption == NULL) {
363 return RETURN_OUT_OF_RESOURCES;
364 }
365 }
366 }
367 return RETURN_SUCCESS;
368 }
369
370
371 /**
372 OpenFirmware device path node
373 **/
374 typedef struct {
375 SUBSTRING DriverName;
376 SUBSTRING UnitAddress;
377 SUBSTRING DeviceArguments;
378 } OFW_NODE;
379
380
381 /**
382
383 Parse an OpenFirmware device path node into the caller-allocated OFW_NODE
384 structure, and advance in the input string.
385
386 The node format is mostly parsed after IEEE 1275-1994, 3.2.1.1 "Node names"
387 (a leading slash is expected and not returned):
388
389 /driver-name@unit-address[:device-arguments][<LF>]
390
391 A single trailing <LF> character is consumed but not returned. A trailing
392 <LF> or NUL character terminates the device path.
393
394 The function relies on ASCII encoding.
395
396 @param[in out] Ptr Address of the pointer pointing to the start of the
397 node string. After successful parsing *Ptr is set to
398 the byte immediately following the consumed
399 characters. On error it points to the byte that
400 caused the error. The input string is never modified.
401
402 @param[out] OfwNode The members of this structure point into the input
403 string, designating components of the node.
404 Separators are never included. If "device-arguments"
405 is missing, then DeviceArguments.Ptr is set to NULL.
406 All components that are present have nonzero length.
407
408 If the call doesn't succeed, the contents of this
409 structure is indeterminate.
410
411 @param[out] IsFinal In case of successul parsing, this parameter signals
412 whether the node just parsed is the final node in the
413 device path. The call after a final node will attempt
414 to start parsing the next path. If the call doesn't
415 succeed, then this parameter is not changed.
416
417
418 @retval RETURN_SUCCESS Parsing successful.
419
420 @retval RETURN_NOT_FOUND Parsing terminated. *Ptr was (and is)
421 pointing to an empty string.
422
423 @retval RETURN_INVALID_PARAMETER Parse error.
424
425 **/
426 STATIC
427 RETURN_STATUS
428 ParseOfwNode (
429 IN OUT CONST CHAR8 **Ptr,
430 OUT OFW_NODE *OfwNode,
431 OUT BOOLEAN *IsFinal
432 )
433 {
434 //
435 // A leading slash is expected. End of string is tolerated.
436 //
437 switch (**Ptr) {
438 case '\0':
439 return RETURN_NOT_FOUND;
440
441 case '/':
442 ++*Ptr;
443 break;
444
445 default:
446 return RETURN_INVALID_PARAMETER;
447 }
448
449 //
450 // driver-name
451 //
452 OfwNode->DriverName.Ptr = *Ptr;
453 OfwNode->DriverName.Len = 0;
454 while (OfwNode->DriverName.Len < 32 &&
455 (IsAlnum (**Ptr) || IsDriverNamePunct (**Ptr))
456 ) {
457 ++*Ptr;
458 ++OfwNode->DriverName.Len;
459 }
460
461 if (OfwNode->DriverName.Len == 0 || OfwNode->DriverName.Len == 32) {
462 return RETURN_INVALID_PARAMETER;
463 }
464
465
466 //
467 // unit-address
468 //
469 if (**Ptr != '@') {
470 return RETURN_INVALID_PARAMETER;
471 }
472 ++*Ptr;
473
474 OfwNode->UnitAddress.Ptr = *Ptr;
475 OfwNode->UnitAddress.Len = 0;
476 while (IsPrintNotDelim (**Ptr)) {
477 ++*Ptr;
478 ++OfwNode->UnitAddress.Len;
479 }
480
481 if (OfwNode->UnitAddress.Len == 0) {
482 return RETURN_INVALID_PARAMETER;
483 }
484
485
486 //
487 // device-arguments, may be omitted
488 //
489 OfwNode->DeviceArguments.Len = 0;
490 if (**Ptr == ':') {
491 ++*Ptr;
492 OfwNode->DeviceArguments.Ptr = *Ptr;
493
494 while (IsPrintNotDelim (**Ptr)) {
495 ++*Ptr;
496 ++OfwNode->DeviceArguments.Len;
497 }
498
499 if (OfwNode->DeviceArguments.Len == 0) {
500 return RETURN_INVALID_PARAMETER;
501 }
502 }
503 else {
504 OfwNode->DeviceArguments.Ptr = NULL;
505 }
506
507 switch (**Ptr) {
508 case '\n':
509 ++*Ptr;
510 //
511 // fall through
512 //
513
514 case '\0':
515 *IsFinal = TRUE;
516 break;
517
518 case '/':
519 *IsFinal = FALSE;
520 break;
521
522 default:
523 return RETURN_INVALID_PARAMETER;
524 }
525
526 DEBUG ((
527 DEBUG_VERBOSE,
528 "%a: DriverName=\"%.*a\" UnitAddress=\"%.*a\" DeviceArguments=\"%.*a\"\n",
529 __FUNCTION__,
530 OfwNode->DriverName.Len, OfwNode->DriverName.Ptr,
531 OfwNode->UnitAddress.Len, OfwNode->UnitAddress.Ptr,
532 OfwNode->DeviceArguments.Len,
533 OfwNode->DeviceArguments.Ptr == NULL ? "" : OfwNode->DeviceArguments.Ptr
534 ));
535 return RETURN_SUCCESS;
536 }
537
538
539 /**
540
541 Translate an array of OpenFirmware device nodes to a UEFI device path
542 fragment.
543
544 @param[in] OfwNode Array of OpenFirmware device nodes to
545 translate, constituting the beginning of an
546 OpenFirmware device path.
547
548 @param[in] NumNodes Number of elements in OfwNode.
549
550 @param[out] Translated Destination array receiving the UEFI path
551 fragment, allocated by the caller. If the
552 return value differs from RETURN_SUCCESS, its
553 contents is indeterminate.
554
555 @param[in out] TranslatedSize On input, the number of CHAR16's in
556 Translated. On RETURN_SUCCESS this parameter
557 is assigned the number of non-NUL CHAR16's
558 written to Translated. In case of other return
559 values, TranslatedSize is indeterminate.
560
561
562 @retval RETURN_SUCCESS Translation successful.
563
564 @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
565 of bytes provided.
566
567 @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
568 be translated in the current implementation.
569
570 **/
571 STATIC
572 RETURN_STATUS
573 TranslateOfwNodes (
574 IN CONST OFW_NODE *OfwNode,
575 IN UINTN NumNodes,
576 OUT CHAR16 *Translated,
577 IN OUT UINTN *TranslatedSize
578 )
579 {
580 UINT32 PciDevFun[2];
581 UINTN NumEntries;
582 UINTN Written;
583
584 //
585 // Get PCI device and optional PCI function. Assume a single PCI root.
586 //
587 if (NumNodes < REQUIRED_OFW_NODES ||
588 !SubstringEq (OfwNode[0].DriverName, "pci")
589 ) {
590 return RETURN_UNSUPPORTED;
591 }
592 PciDevFun[1] = 0;
593 NumEntries = sizeof (PciDevFun) / sizeof (PciDevFun[0]);
594 if (ParseUnitAddressHexList (
595 OfwNode[1].UnitAddress,
596 PciDevFun,
597 &NumEntries
598 ) != RETURN_SUCCESS
599 ) {
600 return RETURN_UNSUPPORTED;
601 }
602
603 if (NumNodes >= 4 &&
604 SubstringEq (OfwNode[1].DriverName, "ide") &&
605 SubstringEq (OfwNode[2].DriverName, "drive") &&
606 SubstringEq (OfwNode[3].DriverName, "disk")
607 ) {
608 //
609 // OpenFirmware device path (IDE disk, IDE CD-ROM):
610 //
611 // /pci@i0cf8/ide@1,1/drive@0/disk@0
612 // ^ ^ ^ ^ ^
613 // | | | | master or slave
614 // | | | primary or secondary
615 // | PCI slot & function holding IDE controller
616 // PCI root at system bus port, PIO
617 //
618 // UEFI device path:
619 //
620 // PciRoot(0x0)/Pci(0x1,0x1)/Ata(Primary,Master,0x0)
621 // ^
622 // fixed LUN
623 //
624 UINT32 Secondary;
625 UINT32 Slave;
626
627 NumEntries = 1;
628 if (ParseUnitAddressHexList (
629 OfwNode[2].UnitAddress,
630 &Secondary,
631 &NumEntries
632 ) != RETURN_SUCCESS ||
633 Secondary > 1 ||
634 ParseUnitAddressHexList (
635 OfwNode[3].UnitAddress,
636 &Slave,
637 &NumEntries // reuse after previous single-element call
638 ) != RETURN_SUCCESS ||
639 Slave > 1
640 ) {
641 return RETURN_UNSUPPORTED;
642 }
643
644 Written = UnicodeSPrintAsciiFormat (
645 Translated,
646 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
647 "PciRoot(0x0)/Pci(0x%x,0x%x)/Ata(%a,%a,0x0)",
648 PciDevFun[0],
649 PciDevFun[1],
650 Secondary ? "Secondary" : "Primary",
651 Slave ? "Slave" : "Master"
652 );
653 } else if (NumNodes >= 4 &&
654 SubstringEq (OfwNode[1].DriverName, "isa") &&
655 SubstringEq (OfwNode[2].DriverName, "fdc") &&
656 SubstringEq (OfwNode[3].DriverName, "floppy")
657 ) {
658 //
659 // OpenFirmware device path (floppy disk):
660 //
661 // /pci@i0cf8/isa@1/fdc@03f0/floppy@0
662 // ^ ^ ^ ^
663 // | | | A: or B:
664 // | | ISA controller io-port (hex)
665 // | PCI slot holding ISA controller
666 // PCI root at system bus port, PIO
667 //
668 // UEFI device path:
669 //
670 // PciRoot(0x0)/Pci(0x1,0x0)/Floppy(0x0)
671 // ^
672 // ACPI UID
673 //
674 UINT32 AcpiUid;
675
676 NumEntries = 1;
677 if (ParseUnitAddressHexList (
678 OfwNode[3].UnitAddress,
679 &AcpiUid,
680 &NumEntries
681 ) != RETURN_SUCCESS ||
682 AcpiUid > 1
683 ) {
684 return RETURN_UNSUPPORTED;
685 }
686
687 Written = UnicodeSPrintAsciiFormat (
688 Translated,
689 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
690 "PciRoot(0x0)/Pci(0x%x,0x%x)/Floppy(0x%x)",
691 PciDevFun[0],
692 PciDevFun[1],
693 AcpiUid
694 );
695 } else if (NumNodes >= 3 &&
696 SubstringEq (OfwNode[1].DriverName, "scsi") &&
697 SubstringEq (OfwNode[2].DriverName, "disk")
698 ) {
699 //
700 // OpenFirmware device path (virtio-blk disk):
701 //
702 // /pci@i0cf8/scsi@6[,3]/disk@0,0
703 // ^ ^ ^ ^ ^
704 // | | | fixed
705 // | | PCI function corresponding to disk (optional)
706 // | PCI slot holding disk
707 // PCI root at system bus port, PIO
708 //
709 // UEFI device path prefix:
710 //
711 // PciRoot(0x0)/Pci(0x6,0x0)/HD( -- if PCI function is 0 or absent
712 // PciRoot(0x0)/Pci(0x6,0x3)/HD( -- if PCI function is present and nonzero
713 //
714 Written = UnicodeSPrintAsciiFormat (
715 Translated,
716 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
717 "PciRoot(0x0)/Pci(0x%x,0x%x)/HD(",
718 PciDevFun[0],
719 PciDevFun[1]
720 );
721 } else if (NumNodes >= 4 &&
722 SubstringEq (OfwNode[1].DriverName, "scsi") &&
723 SubstringEq (OfwNode[2].DriverName, "channel") &&
724 SubstringEq (OfwNode[3].DriverName, "disk")
725 ) {
726 //
727 // OpenFirmware device path (virtio-scsi disk):
728 //
729 // /pci@i0cf8/scsi@7[,3]/channel@0/disk@2,3
730 // ^ ^ ^ ^ ^
731 // | | | | LUN
732 // | | | target
733 // | | channel (unused, fixed 0)
734 // | PCI slot[, function] holding SCSI controller
735 // PCI root at system bus port, PIO
736 //
737 // UEFI device path prefix:
738 //
739 // PciRoot(0x0)/Pci(0x7,0x0)/Scsi(0x2,0x3)
740 // -- if PCI function is 0 or absent
741 // PciRoot(0x0)/Pci(0x7,0x3)/Scsi(0x2,0x3)
742 // -- if PCI function is present and nonzero
743 //
744 UINT32 TargetLun[2];
745
746 TargetLun[1] = 0;
747 NumEntries = sizeof (TargetLun) / sizeof (TargetLun[0]);
748 if (ParseUnitAddressHexList (
749 OfwNode[3].UnitAddress,
750 TargetLun,
751 &NumEntries
752 ) != RETURN_SUCCESS
753 ) {
754 return RETURN_UNSUPPORTED;
755 }
756
757 Written = UnicodeSPrintAsciiFormat (
758 Translated,
759 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
760 "PciRoot(0x0)/Pci(0x%x,0x%x)/Scsi(0x%x,0x%x)",
761 PciDevFun[0],
762 PciDevFun[1],
763 TargetLun[0],
764 TargetLun[1]
765 );
766 } else if (NumNodes >= 3 &&
767 SubstringEq (OfwNode[1].DriverName, "ethernet") &&
768 SubstringEq (OfwNode[2].DriverName, "ethernet-phy")
769 ) {
770 //
771 // OpenFirmware device path (Ethernet NIC):
772 //
773 // /pci@i0cf8/ethernet@3[,2]/ethernet-phy@0
774 // ^ ^ ^
775 // | | fixed
776 // | PCI slot[, function] holding Ethernet card
777 // PCI root at system bus port, PIO
778 //
779 // UEFI device path prefix (dependent on presence of nonzero PCI function):
780 //
781 // PciRoot(0x0)/Pci(0x3,0x0)/MAC(525400E15EEF,0x1)
782 // PciRoot(0x0)/Pci(0x3,0x2)/MAC(525400E15EEF,0x1)
783 // ^ ^
784 // MAC address IfType (1 == Ethernet)
785 //
786 // (Some UEFI NIC drivers don't set 0x1 for IfType.)
787 //
788 Written = UnicodeSPrintAsciiFormat (
789 Translated,
790 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
791 "PciRoot(0x0)/Pci(0x%x,0x%x)/MAC",
792 PciDevFun[0],
793 PciDevFun[1]
794 );
795 } else {
796 return RETURN_UNSUPPORTED;
797 }
798
799 //
800 // There's no way to differentiate between "completely used up without
801 // truncation" and "truncated", so treat the former as the latter, and return
802 // success only for "some room left unused".
803 //
804 if (Written + 1 < *TranslatedSize) {
805 *TranslatedSize = Written;
806 return RETURN_SUCCESS;
807 }
808
809 return RETURN_BUFFER_TOO_SMALL;
810 }
811
812
813 /**
814
815 Translate an OpenFirmware device path fragment to a UEFI device path
816 fragment, and advance in the input string.
817
818 @param[in out] Ptr Address of the pointer pointing to the start
819 of the path string. After successful
820 translation (RETURN_SUCCESS) or at least
821 successful parsing (RETURN_UNSUPPORTED,
822 RETURN_BUFFER_TOO_SMALL), *Ptr is set to the
823 byte immediately following the consumed
824 characters. In other error cases, it points to
825 the byte that caused the error.
826
827 @param[out] Translated Destination array receiving the UEFI path
828 fragment, allocated by the caller. If the
829 return value differs from RETURN_SUCCESS, its
830 contents is indeterminate.
831
832 @param[in out] TranslatedSize On input, the number of CHAR16's in
833 Translated. On RETURN_SUCCESS this parameter
834 is assigned the number of non-NUL CHAR16's
835 written to Translated. In case of other return
836 values, TranslatedSize is indeterminate.
837
838
839 @retval RETURN_SUCCESS Translation successful.
840
841 @retval RETURN_BUFFER_TOO_SMALL The OpenFirmware device path was parsed
842 successfully, but its translation did not
843 fit into the number of bytes provided.
844 Further calls to this function are
845 possible.
846
847 @retval RETURN_UNSUPPORTED The OpenFirmware device path was parsed
848 successfully, but it can't be translated in
849 the current implementation. Further calls
850 to this function are possible.
851
852 @retval RETURN_NOT_FOUND Translation terminated. On input, *Ptr was
853 pointing to the empty string or "HALT". On
854 output, *Ptr points to the empty string
855 (ie. "HALT" is consumed transparently when
856 present).
857
858 @retval RETURN_INVALID_PARAMETER Parse error. This is a permanent error.
859
860 **/
861 STATIC
862 RETURN_STATUS
863 TranslateOfwPath (
864 IN OUT CONST CHAR8 **Ptr,
865 OUT CHAR16 *Translated,
866 IN OUT UINTN *TranslatedSize
867 )
868 {
869 UINTN NumNodes;
870 RETURN_STATUS Status;
871 OFW_NODE Node[EXAMINED_OFW_NODES];
872 BOOLEAN IsFinal;
873 OFW_NODE Skip;
874
875 NumNodes = 0;
876 if (AsciiStrCmp (*Ptr, "HALT") == 0) {
877 *Ptr += 4;
878 Status = RETURN_NOT_FOUND;
879 } else {
880 Status = ParseOfwNode (Ptr, &Node[NumNodes], &IsFinal);
881 }
882
883 if (Status == RETURN_NOT_FOUND) {
884 DEBUG ((DEBUG_VERBOSE, "%a: no more nodes\n", __FUNCTION__));
885 return RETURN_NOT_FOUND;
886 }
887
888 while (Status == RETURN_SUCCESS && !IsFinal) {
889 ++NumNodes;
890 Status = ParseOfwNode (
891 Ptr,
892 (NumNodes < EXAMINED_OFW_NODES) ? &Node[NumNodes] : &Skip,
893 &IsFinal
894 );
895 }
896
897 switch (Status) {
898 case RETURN_SUCCESS:
899 ++NumNodes;
900 break;
901
902 case RETURN_INVALID_PARAMETER:
903 DEBUG ((DEBUG_VERBOSE, "%a: parse error\n", __FUNCTION__));
904 return RETURN_INVALID_PARAMETER;
905
906 default:
907 ASSERT (0);
908 }
909
910 Status = TranslateOfwNodes (
911 Node,
912 NumNodes < EXAMINED_OFW_NODES ? NumNodes : EXAMINED_OFW_NODES,
913 Translated,
914 TranslatedSize);
915 switch (Status) {
916 case RETURN_SUCCESS:
917 DEBUG ((DEBUG_VERBOSE, "%a: success: \"%s\"\n", __FUNCTION__, Translated));
918 break;
919
920 case RETURN_BUFFER_TOO_SMALL:
921 DEBUG ((DEBUG_VERBOSE, "%a: buffer too small\n", __FUNCTION__));
922 break;
923
924 case RETURN_UNSUPPORTED:
925 DEBUG ((DEBUG_VERBOSE, "%a: unsupported\n", __FUNCTION__));
926 break;
927
928 default:
929 ASSERT (0);
930 }
931 return Status;
932 }
933
934
935 /**
936
937 Convert the UEFI DevicePath to full text representation with DevPathToText,
938 then match the UEFI device path fragment in Translated against it.
939
940 @param[in] Translated UEFI device path fragment, translated from
941 OpenFirmware format, to search for.
942
943 @param[in] TranslatedLength The length of Translated in CHAR16's.
944
945 @param[in] DevicePath Boot option device path whose textual rendering
946 to search in.
947
948 @param[in] DevPathToText Binary-to-text conversion protocol for DevicePath.
949
950
951 @retval TRUE If Translated was found at the beginning of DevicePath after
952 converting the latter to text.
953
954 @retval FALSE If DevicePath was NULL, or it could not be converted, or there
955 was no match.
956
957 **/
958 STATIC
959 BOOLEAN
960 Match (
961 IN CONST CHAR16 *Translated,
962 IN UINTN TranslatedLength,
963 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
964 )
965 {
966 CHAR16 *Converted;
967 BOOLEAN Result;
968
969 Converted = ConvertDevicePathToText (
970 DevicePath,
971 FALSE, // DisplayOnly
972 FALSE // AllowShortcuts
973 );
974 if (Converted == NULL) {
975 return FALSE;
976 }
977
978 //
979 // Attempt to expand any relative UEFI device path starting with HD() to an
980 // absolute device path first. The logic imitates BdsLibBootViaBootOption().
981 // We don't have to free the absolute device path,
982 // BdsExpandPartitionPartialDevicePathToFull() has internal caching.
983 //
984 Result = FALSE;
985 if (DevicePathType (DevicePath) == MEDIA_DEVICE_PATH &&
986 DevicePathSubType (DevicePath) == MEDIA_HARDDRIVE_DP) {
987 EFI_DEVICE_PATH_PROTOCOL *AbsDevicePath;
988 CHAR16 *AbsConverted;
989
990 AbsDevicePath = BdsExpandPartitionPartialDevicePathToFull (
991 (HARDDRIVE_DEVICE_PATH *) DevicePath);
992 if (AbsDevicePath == NULL) {
993 goto Exit;
994 }
995 AbsConverted = ConvertDevicePathToText (AbsDevicePath, FALSE, FALSE);
996 if (AbsConverted == NULL) {
997 goto Exit;
998 }
999 DEBUG ((DEBUG_VERBOSE,
1000 "%a: expanded relative device path \"%s\" for prefix matching\n",
1001 __FUNCTION__, Converted));
1002 FreePool (Converted);
1003 Converted = AbsConverted;
1004 }
1005
1006 //
1007 // Is Translated a prefix of Converted?
1008 //
1009 Result = (BOOLEAN)(StrnCmp (Converted, Translated, TranslatedLength) == 0);
1010 DEBUG ((
1011 DEBUG_VERBOSE,
1012 "%a: against \"%s\": %a\n",
1013 __FUNCTION__,
1014 Converted,
1015 Result ? "match" : "no match"
1016 ));
1017 Exit:
1018 FreePool (Converted);
1019 return Result;
1020 }
1021
1022
1023 /**
1024 Append some of the unselected active boot options to the boot order.
1025
1026 This function should accommodate any further policy changes in "boot option
1027 survival". Currently we're adding back everything that starts with neither
1028 PciRoot() nor HD().
1029
1030 @param[in,out] BootOrder The structure holding the boot order to
1031 complete. The caller is responsible for
1032 initializing (and potentially populating) it
1033 before calling this function.
1034
1035 @param[in,out] ActiveOption The array of active boot options to scan.
1036 Entries marked as Appended will be skipped.
1037 Those of the rest that satisfy the survival
1038 policy will be added to BootOrder with
1039 BootOrderAppend().
1040
1041 @param[in] ActiveCount Number of elements in ActiveOption.
1042
1043
1044 @retval RETURN_SUCCESS BootOrder has been extended with any eligible boot
1045 options.
1046
1047 @return Error codes returned by BootOrderAppend().
1048 **/
1049 STATIC
1050 RETURN_STATUS
1051 BootOrderComplete (
1052 IN OUT BOOT_ORDER *BootOrder,
1053 IN OUT ACTIVE_OPTION *ActiveOption,
1054 IN UINTN ActiveCount
1055 )
1056 {
1057 RETURN_STATUS Status;
1058 UINTN Idx;
1059
1060 Status = RETURN_SUCCESS;
1061 Idx = 0;
1062 while (!RETURN_ERROR (Status) && Idx < ActiveCount) {
1063 if (!ActiveOption[Idx].Appended) {
1064 CONST BDS_COMMON_OPTION *Current;
1065 CONST EFI_DEVICE_PATH_PROTOCOL *FirstNode;
1066
1067 Current = ActiveOption[Idx].BootOption;
1068 FirstNode = Current->DevicePath;
1069 if (FirstNode != NULL) {
1070 CHAR16 *Converted;
1071 STATIC CHAR16 ConvFallBack[] = L"<unable to convert>";
1072 BOOLEAN Keep;
1073
1074 Converted = ConvertDevicePathToText (FirstNode, FALSE, FALSE);
1075 if (Converted == NULL) {
1076 Converted = ConvFallBack;
1077 }
1078
1079 Keep = TRUE;
1080 if (DevicePathType(FirstNode) == MEDIA_DEVICE_PATH &&
1081 DevicePathSubType(FirstNode) == MEDIA_HARDDRIVE_DP) {
1082 //
1083 // drop HD()
1084 //
1085 Keep = FALSE;
1086 } else if (DevicePathType(FirstNode) == ACPI_DEVICE_PATH &&
1087 DevicePathSubType(FirstNode) == ACPI_DP) {
1088 ACPI_HID_DEVICE_PATH *Acpi;
1089
1090 Acpi = (ACPI_HID_DEVICE_PATH *) FirstNode;
1091 if ((Acpi->HID & PNP_EISA_ID_MASK) == PNP_EISA_ID_CONST &&
1092 EISA_ID_TO_NUM (Acpi->HID) == 0x0a03) {
1093 //
1094 // drop PciRoot()
1095 //
1096 Keep = FALSE;
1097 }
1098 }
1099
1100 if (Keep) {
1101 Status = BootOrderAppend (BootOrder, &ActiveOption[Idx]);
1102 if (!RETURN_ERROR (Status)) {
1103 DEBUG ((DEBUG_VERBOSE, "%a: keeping \"%s\"\n", __FUNCTION__,
1104 Converted));
1105 }
1106 } else {
1107 DEBUG ((DEBUG_VERBOSE, "%a: dropping \"%s\"\n", __FUNCTION__,
1108 Converted));
1109 }
1110
1111 if (Converted != ConvFallBack) {
1112 FreePool (Converted);
1113 }
1114 }
1115 }
1116 ++Idx;
1117 }
1118 return Status;
1119 }
1120
1121
1122 /**
1123
1124 Set the boot order based on configuration retrieved from QEMU.
1125
1126 Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the
1127 OpenFirmware device paths therein to UEFI device path fragments. Match the
1128 translated fragments against BootOptionList, and rewrite the BootOrder NvVar
1129 so that it corresponds to the order described in fw_cfg.
1130
1131 @param[in] BootOptionList A boot option list, created with
1132 BdsLibEnumerateAllBootOption ().
1133
1134
1135 @retval RETURN_SUCCESS BootOrder NvVar rewritten.
1136
1137 @retval RETURN_UNSUPPORTED QEMU's fw_cfg is not supported.
1138
1139 @retval RETURN_NOT_FOUND Empty or nonexistent "bootorder" fw_cfg
1140 file, or no match found between the
1141 "bootorder" fw_cfg file and BootOptionList.
1142
1143 @retval RETURN_INVALID_PARAMETER Parse error in the "bootorder" fw_cfg file.
1144
1145 @retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
1146
1147 @return Values returned by gBS->LocateProtocol ()
1148 or gRT->SetVariable ().
1149
1150 **/
1151 RETURN_STATUS
1152 SetBootOrderFromQemu (
1153 IN CONST LIST_ENTRY *BootOptionList
1154 )
1155 {
1156 RETURN_STATUS Status;
1157 FIRMWARE_CONFIG_ITEM FwCfgItem;
1158 UINTN FwCfgSize;
1159 CHAR8 *FwCfg;
1160 CONST CHAR8 *FwCfgPtr;
1161
1162 BOOT_ORDER BootOrder;
1163 ACTIVE_OPTION *ActiveOption;
1164 UINTN ActiveCount;
1165
1166 UINTN TranslatedSize;
1167 CHAR16 Translated[TRANSLATION_OUTPUT_SIZE];
1168
1169 Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize);
1170 if (Status != RETURN_SUCCESS) {
1171 return Status;
1172 }
1173
1174 if (FwCfgSize == 0) {
1175 return RETURN_NOT_FOUND;
1176 }
1177
1178 FwCfg = AllocatePool (FwCfgSize);
1179 if (FwCfg == NULL) {
1180 return RETURN_OUT_OF_RESOURCES;
1181 }
1182
1183 QemuFwCfgSelectItem (FwCfgItem);
1184 QemuFwCfgReadBytes (FwCfgSize, FwCfg);
1185 if (FwCfg[FwCfgSize - 1] != '\0') {
1186 Status = RETURN_INVALID_PARAMETER;
1187 goto ErrorFreeFwCfg;
1188 }
1189
1190 DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__));
1191 DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg));
1192 DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: <end>\n", __FUNCTION__));
1193 FwCfgPtr = FwCfg;
1194
1195 BootOrder.Produced = 0;
1196 BootOrder.Allocated = 1;
1197 BootOrder.Data = AllocatePool (
1198 BootOrder.Allocated * sizeof (*BootOrder.Data)
1199 );
1200 if (BootOrder.Data == NULL) {
1201 Status = RETURN_OUT_OF_RESOURCES;
1202 goto ErrorFreeFwCfg;
1203 }
1204
1205 Status = CollectActiveOptions (BootOptionList, &ActiveOption, &ActiveCount);
1206 if (RETURN_ERROR (Status)) {
1207 goto ErrorFreeBootOrder;
1208 }
1209
1210 //
1211 // translate each OpenFirmware path
1212 //
1213 TranslatedSize = sizeof (Translated) / sizeof (Translated[0]);
1214 Status = TranslateOfwPath (&FwCfgPtr, Translated, &TranslatedSize);
1215 while (Status == RETURN_SUCCESS ||
1216 Status == RETURN_UNSUPPORTED ||
1217 Status == RETURN_BUFFER_TOO_SMALL) {
1218 if (Status == RETURN_SUCCESS) {
1219 UINTN Idx;
1220
1221 //
1222 // match translated OpenFirmware path against all active boot options
1223 //
1224 for (Idx = 0; Idx < ActiveCount; ++Idx) {
1225 if (Match (
1226 Translated,
1227 TranslatedSize, // contains length, not size, in CHAR16's here
1228 ActiveOption[Idx].BootOption->DevicePath
1229 )
1230 ) {
1231 //
1232 // match found, store ID and continue with next OpenFirmware path
1233 //
1234 Status = BootOrderAppend (&BootOrder, &ActiveOption[Idx]);
1235 if (Status != RETURN_SUCCESS) {
1236 goto ErrorFreeActiveOption;
1237 }
1238 break;
1239 }
1240 } // scanned all active boot options
1241 } // translation successful
1242
1243 TranslatedSize = sizeof (Translated) / sizeof (Translated[0]);
1244 Status = TranslateOfwPath (&FwCfgPtr, Translated, &TranslatedSize);
1245 } // scanning of OpenFirmware paths done
1246
1247 if (Status == RETURN_NOT_FOUND && BootOrder.Produced > 0) {
1248 //
1249 // No more OpenFirmware paths, some matches found: rewrite BootOrder NvVar.
1250 // Some of the active boot options that have not been selected over fw_cfg
1251 // should be preserved at the end of the boot order.
1252 //
1253 Status = BootOrderComplete (&BootOrder, ActiveOption, ActiveCount);
1254 if (RETURN_ERROR (Status)) {
1255 goto ErrorFreeActiveOption;
1256 }
1257
1258 //
1259 // See Table 10 in the UEFI Spec 2.3.1 with Errata C for the required
1260 // attributes.
1261 //
1262 Status = gRT->SetVariable (
1263 L"BootOrder",
1264 &gEfiGlobalVariableGuid,
1265 EFI_VARIABLE_NON_VOLATILE |
1266 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1267 EFI_VARIABLE_RUNTIME_ACCESS,
1268 BootOrder.Produced * sizeof (*BootOrder.Data),
1269 BootOrder.Data
1270 );
1271 DEBUG ((
1272 DEBUG_INFO,
1273 "%a: setting BootOrder: %a\n",
1274 __FUNCTION__,
1275 Status == EFI_SUCCESS ? "success" : "error"
1276 ));
1277 }
1278
1279 ErrorFreeActiveOption:
1280 FreePool (ActiveOption);
1281
1282 ErrorFreeBootOrder:
1283 FreePool (BootOrder.Data);
1284
1285 ErrorFreeFwCfg:
1286 FreePool (FwCfg);
1287
1288 return Status;
1289 }