]> git.proxmox.com Git - mirror_edk2.git/blob - OvmfPkg/Library/QemuNewBootOrderLib/QemuBootOrderLib.c
OvmfPkg, ArmVirtPkg: clean up SetBootOrderFromQemu() parameter list
[mirror_edk2.git] / OvmfPkg / Library / QemuNewBootOrderLib / QemuBootOrderLib.c
1 /** @file
2 Rewrite the BootOrder NvVar based on QEMU's "bootorder" fw_cfg file.
3
4 Copyright (C) 2012 - 2014, Red Hat, Inc.
5 Copyright (c) 2013 - 2016, Intel Corporation. All rights reserved.<BR>
6
7 This program and the accompanying materials are licensed and made available
8 under the terms and conditions of the BSD License which accompanies this
9 distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT
13 WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14 **/
15
16 #include <Library/QemuFwCfgLib.h>
17 #include <Library/DebugLib.h>
18 #include <Library/MemoryAllocationLib.h>
19 #include <Library/UefiBootManagerLib.h>
20 #include <Library/UefiBootServicesTableLib.h>
21 #include <Library/UefiRuntimeServicesTableLib.h>
22 #include <Library/BaseLib.h>
23 #include <Library/PrintLib.h>
24 #include <Library/DevicePathLib.h>
25 #include <Library/QemuBootOrderLib.h>
26 #include <Library/BaseMemoryLib.h>
27 #include <Guid/GlobalVariable.h>
28 #include <Guid/VirtioMmioTransport.h>
29
30 #include "ExtraRootBusMap.h"
31
32 /**
33 OpenFirmware to UEFI device path translation output buffer size in CHAR16's.
34 **/
35 #define TRANSLATION_OUTPUT_SIZE 0x100
36
37 /**
38 Output buffer size for OpenFirmware to UEFI device path fragment translation,
39 in CHAR16's, for a sequence of PCI bridges.
40 **/
41 #define BRIDGE_TRANSLATION_OUTPUT_SIZE 0x40
42
43 /**
44 Numbers of nodes in OpenFirmware device paths that are required and examined.
45 **/
46 #define REQUIRED_PCI_OFW_NODES 2
47 #define REQUIRED_MMIO_OFW_NODES 1
48 #define EXAMINED_OFW_NODES 6
49
50
51 /**
52 Simple character classification routines, corresponding to POSIX class names
53 and ASCII encoding.
54 **/
55 STATIC
56 BOOLEAN
57 IsAlnum (
58 IN CHAR8 Chr
59 )
60 {
61 return (('0' <= Chr && Chr <= '9') ||
62 ('A' <= Chr && Chr <= 'Z') ||
63 ('a' <= Chr && Chr <= 'z')
64 );
65 }
66
67
68 STATIC
69 BOOLEAN
70 IsDriverNamePunct (
71 IN CHAR8 Chr
72 )
73 {
74 return (Chr == ',' || Chr == '.' || Chr == '_' ||
75 Chr == '+' || Chr == '-'
76 );
77 }
78
79
80 STATIC
81 BOOLEAN
82 IsPrintNotDelim (
83 IN CHAR8 Chr
84 )
85 {
86 return (32 <= Chr && Chr <= 126 &&
87 Chr != '/' && Chr != '@' && Chr != ':');
88 }
89
90
91 /**
92 Utility types and functions.
93 **/
94 typedef struct {
95 CONST CHAR8 *Ptr; // not necessarily NUL-terminated
96 UINTN Len; // number of non-NUL characters
97 } SUBSTRING;
98
99
100 /**
101
102 Check if Substring and String have identical contents.
103
104 The function relies on the restriction that a SUBSTRING cannot have embedded
105 NULs either.
106
107 @param[in] Substring The SUBSTRING input to the comparison.
108
109 @param[in] String The ASCII string input to the comparison.
110
111
112 @return Whether the inputs have identical contents.
113
114 **/
115 STATIC
116 BOOLEAN
117 SubstringEq (
118 IN SUBSTRING Substring,
119 IN CONST CHAR8 *String
120 )
121 {
122 UINTN Pos;
123 CONST CHAR8 *Chr;
124
125 Pos = 0;
126 Chr = String;
127
128 while (Pos < Substring.Len && Substring.Ptr[Pos] == *Chr) {
129 ++Pos;
130 ++Chr;
131 }
132
133 return (BOOLEAN)(Pos == Substring.Len && *Chr == '\0');
134 }
135
136
137 /**
138
139 Parse a comma-separated list of hexadecimal integers into the elements of an
140 UINT64 array.
141
142 Whitespace, "0x" prefixes, leading or trailing commas, sequences of commas,
143 or an empty string are not allowed; they are rejected.
144
145 The function relies on ASCII encoding.
146
147 @param[in] UnitAddress The substring to parse.
148
149 @param[out] Result The array, allocated by the caller, to receive
150 the parsed values. This parameter may be NULL if
151 NumResults is zero on input.
152
153 @param[in out] NumResults On input, the number of elements allocated for
154 Result. On output, the number of elements it has
155 taken (or would have taken) to parse the string
156 fully.
157
158
159 @retval RETURN_SUCCESS UnitAddress has been fully parsed.
160 NumResults is set to the number of parsed
161 values; the corresponding elements have
162 been set in Result. The rest of Result's
163 elements are unchanged.
164
165 @retval RETURN_BUFFER_TOO_SMALL UnitAddress has been fully parsed.
166 NumResults is set to the number of parsed
167 values, but elements have been stored only
168 up to the input value of NumResults, which
169 is less than what has been parsed.
170
171 @retval RETURN_INVALID_PARAMETER Parse error. The contents of Results is
172 indeterminate. NumResults has not been
173 changed.
174
175 **/
176 STATIC
177 RETURN_STATUS
178 ParseUnitAddressHexList (
179 IN SUBSTRING UnitAddress,
180 OUT UINT64 *Result,
181 IN OUT UINTN *NumResults
182 )
183 {
184 UINTN Entry; // number of entry currently being parsed
185 UINT64 EntryVal; // value being constructed for current entry
186 CHAR8 PrevChr; // UnitAddress character previously checked
187 UINTN Pos; // current position within UnitAddress
188 RETURN_STATUS Status;
189
190 Entry = 0;
191 EntryVal = 0;
192 PrevChr = ',';
193
194 for (Pos = 0; Pos < UnitAddress.Len; ++Pos) {
195 CHAR8 Chr;
196 INT8 Val;
197
198 Chr = UnitAddress.Ptr[Pos];
199 Val = ('a' <= Chr && Chr <= 'f') ? (Chr - 'a' + 10) :
200 ('A' <= Chr && Chr <= 'F') ? (Chr - 'A' + 10) :
201 ('0' <= Chr && Chr <= '9') ? (Chr - '0' ) :
202 -1;
203
204 if (Val >= 0) {
205 if (EntryVal > 0xFFFFFFFFFFFFFFFull) {
206 return RETURN_INVALID_PARAMETER;
207 }
208 EntryVal = LShiftU64 (EntryVal, 4) | Val;
209 } else if (Chr == ',') {
210 if (PrevChr == ',') {
211 return RETURN_INVALID_PARAMETER;
212 }
213 if (Entry < *NumResults) {
214 Result[Entry] = EntryVal;
215 }
216 ++Entry;
217 EntryVal = 0;
218 } else {
219 return RETURN_INVALID_PARAMETER;
220 }
221
222 PrevChr = Chr;
223 }
224
225 if (PrevChr == ',') {
226 return RETURN_INVALID_PARAMETER;
227 }
228 if (Entry < *NumResults) {
229 Result[Entry] = EntryVal;
230 Status = RETURN_SUCCESS;
231 } else {
232 Status = RETURN_BUFFER_TOO_SMALL;
233 }
234 ++Entry;
235
236 *NumResults = Entry;
237 return Status;
238 }
239
240
241 /**
242 A simple array of Boot Option ID's.
243 **/
244 typedef struct {
245 UINT16 *Data;
246 UINTN Allocated;
247 UINTN Produced;
248 } BOOT_ORDER;
249
250
251 /**
252 Array element tracking an enumerated boot option that has the
253 LOAD_OPTION_ACTIVE attribute.
254 **/
255 typedef struct {
256 CONST EFI_BOOT_MANAGER_LOAD_OPTION *BootOption; // reference only, no
257 // ownership
258 BOOLEAN Appended; // has been added to a
259 // BOOT_ORDER?
260 } ACTIVE_OPTION;
261
262
263 /**
264
265 Append an active boot option to BootOrder, reallocating the latter if needed.
266
267 @param[in out] BootOrder The structure pointing to the array and holding
268 allocation and usage counters.
269
270 @param[in] ActiveOption The active boot option whose ID should be
271 appended to the array.
272
273
274 @retval RETURN_SUCCESS ID of ActiveOption appended.
275
276 @retval RETURN_OUT_OF_RESOURCES Memory reallocation failed.
277
278 **/
279 STATIC
280 RETURN_STATUS
281 BootOrderAppend (
282 IN OUT BOOT_ORDER *BootOrder,
283 IN OUT ACTIVE_OPTION *ActiveOption
284 )
285 {
286 if (BootOrder->Produced == BootOrder->Allocated) {
287 UINTN AllocatedNew;
288 UINT16 *DataNew;
289
290 ASSERT (BootOrder->Allocated > 0);
291 AllocatedNew = BootOrder->Allocated * 2;
292 DataNew = ReallocatePool (
293 BootOrder->Allocated * sizeof (*BootOrder->Data),
294 AllocatedNew * sizeof (*DataNew),
295 BootOrder->Data
296 );
297 if (DataNew == NULL) {
298 return RETURN_OUT_OF_RESOURCES;
299 }
300 BootOrder->Allocated = AllocatedNew;
301 BootOrder->Data = DataNew;
302 }
303
304 BootOrder->Data[BootOrder->Produced++] =
305 (UINT16) ActiveOption->BootOption->OptionNumber;
306 ActiveOption->Appended = TRUE;
307 return RETURN_SUCCESS;
308 }
309
310
311 /**
312
313 Create an array of ACTIVE_OPTION elements for a boot option array.
314
315 @param[in] BootOptions A boot option array, created with
316 EfiBootManagerRefreshAllBootOption () and
317 EfiBootManagerGetLoadOptions ().
318
319 @param[in] BootOptionCount The number of elements in BootOptions.
320
321 @param[out] ActiveOption Pointer to the first element in the new array.
322 The caller is responsible for freeing the array
323 with FreePool() after use.
324
325 @param[out] Count Number of elements in the new array.
326
327
328 @retval RETURN_SUCCESS The ActiveOption array has been created.
329
330 @retval RETURN_NOT_FOUND No active entry has been found in
331 BootOptions.
332
333 @retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
334
335 **/
336 STATIC
337 RETURN_STATUS
338 CollectActiveOptions (
339 IN CONST EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions,
340 IN UINTN BootOptionCount,
341 OUT ACTIVE_OPTION **ActiveOption,
342 OUT UINTN *Count
343 )
344 {
345 UINTN Index;
346 UINTN ScanMode;
347
348 *ActiveOption = NULL;
349
350 //
351 // Scan the list twice:
352 // - count active entries,
353 // - store links to active entries.
354 //
355 for (ScanMode = 0; ScanMode < 2; ++ScanMode) {
356 *Count = 0;
357 for (Index = 0; Index < BootOptionCount; Index++) {
358 if ((BootOptions[Index].Attributes & LOAD_OPTION_ACTIVE) != 0) {
359 if (ScanMode == 1) {
360 (*ActiveOption)[*Count].BootOption = &BootOptions[Index];
361 (*ActiveOption)[*Count].Appended = FALSE;
362 }
363 ++*Count;
364 }
365 }
366
367 if (ScanMode == 0) {
368 if (*Count == 0) {
369 return RETURN_NOT_FOUND;
370 }
371 *ActiveOption = AllocatePool (*Count * sizeof **ActiveOption);
372 if (*ActiveOption == NULL) {
373 return RETURN_OUT_OF_RESOURCES;
374 }
375 }
376 }
377 return RETURN_SUCCESS;
378 }
379
380
381 /**
382 OpenFirmware device path node
383 **/
384 typedef struct {
385 SUBSTRING DriverName;
386 SUBSTRING UnitAddress;
387 SUBSTRING DeviceArguments;
388 } OFW_NODE;
389
390
391 /**
392
393 Parse an OpenFirmware device path node into the caller-allocated OFW_NODE
394 structure, and advance in the input string.
395
396 The node format is mostly parsed after IEEE 1275-1994, 3.2.1.1 "Node names"
397 (a leading slash is expected and not returned):
398
399 /driver-name@unit-address[:device-arguments][<LF>]
400
401 A single trailing <LF> character is consumed but not returned. A trailing
402 <LF> or NUL character terminates the device path.
403
404 The function relies on ASCII encoding.
405
406 @param[in out] Ptr Address of the pointer pointing to the start of the
407 node string. After successful parsing *Ptr is set to
408 the byte immediately following the consumed
409 characters. On error it points to the byte that
410 caused the error. The input string is never modified.
411
412 @param[out] OfwNode The members of this structure point into the input
413 string, designating components of the node.
414 Separators are never included. If "device-arguments"
415 is missing, then DeviceArguments.Ptr is set to NULL.
416 All components that are present have nonzero length.
417
418 If the call doesn't succeed, the contents of this
419 structure is indeterminate.
420
421 @param[out] IsFinal In case of successul parsing, this parameter signals
422 whether the node just parsed is the final node in the
423 device path. The call after a final node will attempt
424 to start parsing the next path. If the call doesn't
425 succeed, then this parameter is not changed.
426
427
428 @retval RETURN_SUCCESS Parsing successful.
429
430 @retval RETURN_NOT_FOUND Parsing terminated. *Ptr was (and is)
431 pointing to an empty string.
432
433 @retval RETURN_INVALID_PARAMETER Parse error.
434
435 **/
436 STATIC
437 RETURN_STATUS
438 ParseOfwNode (
439 IN OUT CONST CHAR8 **Ptr,
440 OUT OFW_NODE *OfwNode,
441 OUT BOOLEAN *IsFinal
442 )
443 {
444 //
445 // A leading slash is expected. End of string is tolerated.
446 //
447 switch (**Ptr) {
448 case '\0':
449 return RETURN_NOT_FOUND;
450
451 case '/':
452 ++*Ptr;
453 break;
454
455 default:
456 return RETURN_INVALID_PARAMETER;
457 }
458
459 //
460 // driver-name
461 //
462 OfwNode->DriverName.Ptr = *Ptr;
463 OfwNode->DriverName.Len = 0;
464 while (OfwNode->DriverName.Len < 32 &&
465 (IsAlnum (**Ptr) || IsDriverNamePunct (**Ptr))
466 ) {
467 ++*Ptr;
468 ++OfwNode->DriverName.Len;
469 }
470
471 if (OfwNode->DriverName.Len == 0 || OfwNode->DriverName.Len == 32) {
472 return RETURN_INVALID_PARAMETER;
473 }
474
475
476 //
477 // unit-address
478 //
479 if (**Ptr != '@') {
480 return RETURN_INVALID_PARAMETER;
481 }
482 ++*Ptr;
483
484 OfwNode->UnitAddress.Ptr = *Ptr;
485 OfwNode->UnitAddress.Len = 0;
486 while (IsPrintNotDelim (**Ptr)) {
487 ++*Ptr;
488 ++OfwNode->UnitAddress.Len;
489 }
490
491 if (OfwNode->UnitAddress.Len == 0) {
492 return RETURN_INVALID_PARAMETER;
493 }
494
495
496 //
497 // device-arguments, may be omitted
498 //
499 OfwNode->DeviceArguments.Len = 0;
500 if (**Ptr == ':') {
501 ++*Ptr;
502 OfwNode->DeviceArguments.Ptr = *Ptr;
503
504 while (IsPrintNotDelim (**Ptr)) {
505 ++*Ptr;
506 ++OfwNode->DeviceArguments.Len;
507 }
508
509 if (OfwNode->DeviceArguments.Len == 0) {
510 return RETURN_INVALID_PARAMETER;
511 }
512 }
513 else {
514 OfwNode->DeviceArguments.Ptr = NULL;
515 }
516
517 switch (**Ptr) {
518 case '\n':
519 ++*Ptr;
520 //
521 // fall through
522 //
523
524 case '\0':
525 *IsFinal = TRUE;
526 break;
527
528 case '/':
529 *IsFinal = FALSE;
530 break;
531
532 default:
533 return RETURN_INVALID_PARAMETER;
534 }
535
536 DEBUG ((
537 DEBUG_VERBOSE,
538 "%a: DriverName=\"%.*a\" UnitAddress=\"%.*a\" DeviceArguments=\"%.*a\"\n",
539 __FUNCTION__,
540 OfwNode->DriverName.Len, OfwNode->DriverName.Ptr,
541 OfwNode->UnitAddress.Len, OfwNode->UnitAddress.Ptr,
542 OfwNode->DeviceArguments.Len,
543 OfwNode->DeviceArguments.Ptr == NULL ? "" : OfwNode->DeviceArguments.Ptr
544 ));
545 return RETURN_SUCCESS;
546 }
547
548
549 /**
550
551 Translate a PCI-like array of OpenFirmware device nodes to a UEFI device path
552 fragment.
553
554 @param[in] OfwNode Array of OpenFirmware device nodes to
555 translate, constituting the beginning of an
556 OpenFirmware device path.
557
558 @param[in] NumNodes Number of elements in OfwNode.
559
560 @param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with
561 CreateExtraRootBusMap(), to be used for
562 translating positions of extra root buses to
563 bus numbers.
564
565 @param[out] Translated Destination array receiving the UEFI path
566 fragment, allocated by the caller. If the
567 return value differs from RETURN_SUCCESS, its
568 contents is indeterminate.
569
570 @param[in out] TranslatedSize On input, the number of CHAR16's in
571 Translated. On RETURN_SUCCESS this parameter
572 is assigned the number of non-NUL CHAR16's
573 written to Translated. In case of other return
574 values, TranslatedSize is indeterminate.
575
576
577 @retval RETURN_SUCCESS Translation successful.
578
579 @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
580 of bytes provided.
581
582 @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
583 be translated in the current implementation.
584
585 @retval RETURN_PROTOCOL_ERROR The initial OpenFirmware node refers to an
586 extra PCI root bus (by serial number) that
587 is invalid according to ExtraPciRoots.
588
589 **/
590 STATIC
591 RETURN_STATUS
592 TranslatePciOfwNodes (
593 IN CONST OFW_NODE *OfwNode,
594 IN UINTN NumNodes,
595 IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots,
596 OUT CHAR16 *Translated,
597 IN OUT UINTN *TranslatedSize
598 )
599 {
600 UINT32 PciRoot;
601 CHAR8 *Comma;
602 UINTN FirstNonBridge;
603 CHAR16 Bridges[BRIDGE_TRANSLATION_OUTPUT_SIZE];
604 UINTN BridgesLen;
605 UINT64 PciDevFun[2];
606 UINTN NumEntries;
607 UINTN Written;
608
609 //
610 // Resolve the PCI root bus number.
611 //
612 // The initial OFW node for the main root bus (ie. bus number 0) is:
613 //
614 // /pci@i0cf8
615 //
616 // For extra root buses, the initial OFW node is
617 //
618 // /pci@i0cf8,4
619 // ^
620 // root bus serial number (not PCI bus number)
621 //
622 if (NumNodes < REQUIRED_PCI_OFW_NODES ||
623 !SubstringEq (OfwNode[0].DriverName, "pci")
624 ) {
625 return RETURN_UNSUPPORTED;
626 }
627
628 PciRoot = 0;
629 Comma = ScanMem8 (OfwNode[0].UnitAddress.Ptr, OfwNode[0].UnitAddress.Len,
630 ',');
631 if (Comma != NULL) {
632 SUBSTRING PciRootSerialSubString;
633 UINT64 PciRootSerial;
634
635 //
636 // Parse the root bus serial number from the unit address after the comma.
637 //
638 PciRootSerialSubString.Ptr = Comma + 1;
639 PciRootSerialSubString.Len = OfwNode[0].UnitAddress.Len -
640 (PciRootSerialSubString.Ptr -
641 OfwNode[0].UnitAddress.Ptr);
642 NumEntries = 1;
643 if (RETURN_ERROR (ParseUnitAddressHexList (PciRootSerialSubString,
644 &PciRootSerial, &NumEntries))) {
645 return RETURN_UNSUPPORTED;
646 }
647
648 //
649 // Map the extra root bus's serial number to its actual bus number.
650 //
651 if (EFI_ERROR (MapRootBusPosToBusNr (ExtraPciRoots, PciRootSerial,
652 &PciRoot))) {
653 return RETURN_PROTOCOL_ERROR;
654 }
655 }
656
657 //
658 // Translate a sequence of PCI bridges. For each bridge, the OFW node is:
659 //
660 // pci-bridge@1e[,0]
661 // ^ ^
662 // PCI slot & function on the parent, holding the bridge
663 //
664 // and the UEFI device path node is:
665 //
666 // Pci(0x1E,0x0)
667 //
668 FirstNonBridge = 1;
669 Bridges[0] = L'\0';
670 BridgesLen = 0;
671 do {
672 UINT64 BridgeDevFun[2];
673 UINTN BridgesFreeBytes;
674
675 if (!SubstringEq (OfwNode[FirstNonBridge].DriverName, "pci-bridge")) {
676 break;
677 }
678
679 BridgeDevFun[1] = 0;
680 NumEntries = sizeof BridgeDevFun / sizeof BridgeDevFun[0];
681 if (ParseUnitAddressHexList (OfwNode[FirstNonBridge].UnitAddress,
682 BridgeDevFun, &NumEntries) != RETURN_SUCCESS) {
683 return RETURN_UNSUPPORTED;
684 }
685
686 BridgesFreeBytes = sizeof Bridges - BridgesLen * sizeof Bridges[0];
687 Written = UnicodeSPrintAsciiFormat (Bridges + BridgesLen, BridgesFreeBytes,
688 "/Pci(0x%Lx,0x%Lx)", BridgeDevFun[0], BridgeDevFun[1]);
689 BridgesLen += Written;
690
691 //
692 // There's no way to differentiate between "completely used up without
693 // truncation" and "truncated", so treat the former as the latter.
694 //
695 if (BridgesLen + 1 == BRIDGE_TRANSLATION_OUTPUT_SIZE) {
696 return RETURN_UNSUPPORTED;
697 }
698
699 ++FirstNonBridge;
700 } while (FirstNonBridge < NumNodes);
701
702 if (FirstNonBridge == NumNodes) {
703 return RETURN_UNSUPPORTED;
704 }
705
706 //
707 // Parse the OFW nodes starting with the first non-bridge node.
708 //
709 PciDevFun[1] = 0;
710 NumEntries = sizeof (PciDevFun) / sizeof (PciDevFun[0]);
711 if (ParseUnitAddressHexList (
712 OfwNode[FirstNonBridge].UnitAddress,
713 PciDevFun,
714 &NumEntries
715 ) != RETURN_SUCCESS
716 ) {
717 return RETURN_UNSUPPORTED;
718 }
719
720 if (NumNodes >= FirstNonBridge + 3 &&
721 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "ide") &&
722 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") &&
723 SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
724 ) {
725 //
726 // OpenFirmware device path (IDE disk, IDE CD-ROM):
727 //
728 // /pci@i0cf8/ide@1,1/drive@0/disk@0
729 // ^ ^ ^ ^ ^
730 // | | | | master or slave
731 // | | | primary or secondary
732 // | PCI slot & function holding IDE controller
733 // PCI root at system bus port, PIO
734 //
735 // UEFI device path:
736 //
737 // PciRoot(0x0)/Pci(0x1,0x1)/Ata(Primary,Master,0x0)
738 // ^
739 // fixed LUN
740 //
741 UINT64 Secondary;
742 UINT64 Slave;
743
744 NumEntries = 1;
745 if (ParseUnitAddressHexList (
746 OfwNode[FirstNonBridge + 1].UnitAddress,
747 &Secondary,
748 &NumEntries
749 ) != RETURN_SUCCESS ||
750 Secondary > 1 ||
751 ParseUnitAddressHexList (
752 OfwNode[FirstNonBridge + 2].UnitAddress,
753 &Slave,
754 &NumEntries // reuse after previous single-element call
755 ) != RETURN_SUCCESS ||
756 Slave > 1
757 ) {
758 return RETURN_UNSUPPORTED;
759 }
760
761 Written = UnicodeSPrintAsciiFormat (
762 Translated,
763 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
764 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Ata(%a,%a,0x0)",
765 PciRoot,
766 Bridges,
767 PciDevFun[0],
768 PciDevFun[1],
769 Secondary ? "Secondary" : "Primary",
770 Slave ? "Slave" : "Master"
771 );
772 } else if (NumNodes >= FirstNonBridge + 3 &&
773 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,2922") &&
774 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") &&
775 SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
776 ) {
777 //
778 // OpenFirmware device path (Q35 SATA disk and CD-ROM):
779 //
780 // /pci@i0cf8/pci8086,2922@1f,2/drive@1/disk@0
781 // ^ ^ ^ ^ ^
782 // | | | | device number (fixed 0)
783 // | | | channel (port) number
784 // | PCI slot & function holding SATA HBA
785 // PCI root at system bus port, PIO
786 //
787 // UEFI device path:
788 //
789 // PciRoot(0x0)/Pci(0x1F,0x2)/Sata(0x1,0xFFFF,0x0)
790 // ^ ^ ^
791 // | | LUN (always 0 on Q35)
792 // | port multiplier port number,
793 // | always 0xFFFF on Q35
794 // channel (port) number
795 //
796 UINT64 Channel;
797
798 NumEntries = 1;
799 if (RETURN_ERROR (ParseUnitAddressHexList (
800 OfwNode[FirstNonBridge + 1].UnitAddress, &Channel,
801 &NumEntries))) {
802 return RETURN_UNSUPPORTED;
803 }
804
805 Written = UnicodeSPrintAsciiFormat (
806 Translated,
807 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
808 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Sata(0x%Lx,0xFFFF,0x0)",
809 PciRoot,
810 Bridges,
811 PciDevFun[0],
812 PciDevFun[1],
813 Channel
814 );
815 } else if (NumNodes >= FirstNonBridge + 3 &&
816 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "isa") &&
817 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "fdc") &&
818 SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "floppy")
819 ) {
820 //
821 // OpenFirmware device path (floppy disk):
822 //
823 // /pci@i0cf8/isa@1/fdc@03f0/floppy@0
824 // ^ ^ ^ ^
825 // | | | A: or B:
826 // | | ISA controller io-port (hex)
827 // | PCI slot holding ISA controller
828 // PCI root at system bus port, PIO
829 //
830 // UEFI device path:
831 //
832 // PciRoot(0x0)/Pci(0x1,0x0)/Floppy(0x0)
833 // ^
834 // ACPI UID
835 //
836 UINT64 AcpiUid;
837
838 NumEntries = 1;
839 if (ParseUnitAddressHexList (
840 OfwNode[FirstNonBridge + 2].UnitAddress,
841 &AcpiUid,
842 &NumEntries
843 ) != RETURN_SUCCESS ||
844 AcpiUid > 1
845 ) {
846 return RETURN_UNSUPPORTED;
847 }
848
849 Written = UnicodeSPrintAsciiFormat (
850 Translated,
851 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
852 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Floppy(0x%Lx)",
853 PciRoot,
854 Bridges,
855 PciDevFun[0],
856 PciDevFun[1],
857 AcpiUid
858 );
859 } else if (NumNodes >= FirstNonBridge + 2 &&
860 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") &&
861 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "disk")
862 ) {
863 //
864 // OpenFirmware device path (virtio-blk disk):
865 //
866 // /pci@i0cf8/scsi@6[,3]/disk@0,0
867 // ^ ^ ^ ^ ^
868 // | | | fixed
869 // | | PCI function corresponding to disk (optional)
870 // | PCI slot holding disk
871 // PCI root at system bus port, PIO
872 //
873 // UEFI device path prefix:
874 //
875 // PciRoot(0x0)/Pci(0x6,0x0)/HD( -- if PCI function is 0 or absent
876 // PciRoot(0x0)/Pci(0x6,0x3)/HD( -- if PCI function is present and nonzero
877 //
878 Written = UnicodeSPrintAsciiFormat (
879 Translated,
880 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
881 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/HD(",
882 PciRoot,
883 Bridges,
884 PciDevFun[0],
885 PciDevFun[1]
886 );
887 } else if (NumNodes >= FirstNonBridge + 3 &&
888 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") &&
889 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "channel") &&
890 SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
891 ) {
892 //
893 // OpenFirmware device path (virtio-scsi disk):
894 //
895 // /pci@i0cf8/scsi@7[,3]/channel@0/disk@2,3
896 // ^ ^ ^ ^ ^
897 // | | | | LUN
898 // | | | target
899 // | | channel (unused, fixed 0)
900 // | PCI slot[, function] holding SCSI controller
901 // PCI root at system bus port, PIO
902 //
903 // UEFI device path prefix:
904 //
905 // PciRoot(0x0)/Pci(0x7,0x0)/Scsi(0x2,0x3)
906 // -- if PCI function is 0 or absent
907 // PciRoot(0x0)/Pci(0x7,0x3)/Scsi(0x2,0x3)
908 // -- if PCI function is present and nonzero
909 //
910 UINT64 TargetLun[2];
911
912 TargetLun[1] = 0;
913 NumEntries = sizeof (TargetLun) / sizeof (TargetLun[0]);
914 if (ParseUnitAddressHexList (
915 OfwNode[FirstNonBridge + 2].UnitAddress,
916 TargetLun,
917 &NumEntries
918 ) != RETURN_SUCCESS
919 ) {
920 return RETURN_UNSUPPORTED;
921 }
922
923 Written = UnicodeSPrintAsciiFormat (
924 Translated,
925 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
926 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Scsi(0x%Lx,0x%Lx)",
927 PciRoot,
928 Bridges,
929 PciDevFun[0],
930 PciDevFun[1],
931 TargetLun[0],
932 TargetLun[1]
933 );
934 } else if (NumNodes >= FirstNonBridge + 2 &&
935 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,5845") &&
936 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "namespace")
937 ) {
938 //
939 // OpenFirmware device path (NVMe device):
940 //
941 // /pci@i0cf8/pci8086,5845@6[,1]/namespace@1,0
942 // ^ ^ ^ ^ ^
943 // | | | | Extended Unique Identifier
944 // | | | | (EUI-64), big endian interp.
945 // | | | namespace ID
946 // | PCI slot & function holding NVMe controller
947 // PCI root at system bus port, PIO
948 //
949 // UEFI device path:
950 //
951 // PciRoot(0x0)/Pci(0x6,0x1)/NVMe(0x1,00-00-00-00-00-00-00-00)
952 // ^ ^
953 // | octets of the EUI-64
954 // | in address order
955 // namespace ID
956 //
957 UINT64 Namespace[2];
958 UINTN RequiredEntries;
959 UINT8 *Eui64;
960
961 RequiredEntries = sizeof (Namespace) / sizeof (Namespace[0]);
962 NumEntries = RequiredEntries;
963 if (ParseUnitAddressHexList (
964 OfwNode[FirstNonBridge + 1].UnitAddress,
965 Namespace,
966 &NumEntries
967 ) != RETURN_SUCCESS ||
968 NumEntries != RequiredEntries ||
969 Namespace[0] == 0 ||
970 Namespace[0] >= MAX_UINT32
971 ) {
972 return RETURN_UNSUPPORTED;
973 }
974
975 Eui64 = (UINT8 *)&Namespace[1];
976 Written = UnicodeSPrintAsciiFormat (
977 Translated,
978 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
979 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/"
980 "NVMe(0x%Lx,%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x)",
981 PciRoot,
982 Bridges,
983 PciDevFun[0],
984 PciDevFun[1],
985 Namespace[0],
986 Eui64[7], Eui64[6], Eui64[5], Eui64[4],
987 Eui64[3], Eui64[2], Eui64[1], Eui64[0]
988 );
989 } else {
990 //
991 // Generic OpenFirmware device path for PCI devices:
992 //
993 // /pci@i0cf8/ethernet@3[,2]
994 // ^ ^
995 // | PCI slot[, function] holding Ethernet card
996 // PCI root at system bus port, PIO
997 //
998 // UEFI device path prefix (dependent on presence of nonzero PCI function):
999 //
1000 // PciRoot(0x0)/Pci(0x3,0x0)
1001 // PciRoot(0x0)/Pci(0x3,0x2)
1002 //
1003 Written = UnicodeSPrintAsciiFormat (
1004 Translated,
1005 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
1006 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)",
1007 PciRoot,
1008 Bridges,
1009 PciDevFun[0],
1010 PciDevFun[1]
1011 );
1012 }
1013
1014 //
1015 // There's no way to differentiate between "completely used up without
1016 // truncation" and "truncated", so treat the former as the latter, and return
1017 // success only for "some room left unused".
1018 //
1019 if (Written + 1 < *TranslatedSize) {
1020 *TranslatedSize = Written;
1021 return RETURN_SUCCESS;
1022 }
1023
1024 return RETURN_BUFFER_TOO_SMALL;
1025 }
1026
1027
1028 //
1029 // A type providing easy raw access to the base address of a virtio-mmio
1030 // transport.
1031 //
1032 typedef union {
1033 UINT64 Uint64;
1034 UINT8 Raw[8];
1035 } VIRTIO_MMIO_BASE_ADDRESS;
1036
1037
1038 /**
1039
1040 Translate an MMIO-like array of OpenFirmware device nodes to a UEFI device
1041 path fragment.
1042
1043 @param[in] OfwNode Array of OpenFirmware device nodes to
1044 translate, constituting the beginning of an
1045 OpenFirmware device path.
1046
1047 @param[in] NumNodes Number of elements in OfwNode.
1048
1049 @param[out] Translated Destination array receiving the UEFI path
1050 fragment, allocated by the caller. If the
1051 return value differs from RETURN_SUCCESS, its
1052 contents is indeterminate.
1053
1054 @param[in out] TranslatedSize On input, the number of CHAR16's in
1055 Translated. On RETURN_SUCCESS this parameter
1056 is assigned the number of non-NUL CHAR16's
1057 written to Translated. In case of other return
1058 values, TranslatedSize is indeterminate.
1059
1060
1061 @retval RETURN_SUCCESS Translation successful.
1062
1063 @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
1064 of bytes provided.
1065
1066 @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
1067 be translated in the current implementation.
1068
1069 **/
1070 STATIC
1071 RETURN_STATUS
1072 TranslateMmioOfwNodes (
1073 IN CONST OFW_NODE *OfwNode,
1074 IN UINTN NumNodes,
1075 OUT CHAR16 *Translated,
1076 IN OUT UINTN *TranslatedSize
1077 )
1078 {
1079 VIRTIO_MMIO_BASE_ADDRESS VirtioMmioBase;
1080 CHAR16 VenHwString[60 + 1];
1081 UINTN NumEntries;
1082 UINTN Written;
1083
1084 //
1085 // Get the base address of the virtio-mmio transport.
1086 //
1087 if (NumNodes < REQUIRED_MMIO_OFW_NODES ||
1088 !SubstringEq (OfwNode[0].DriverName, "virtio-mmio")
1089 ) {
1090 return RETURN_UNSUPPORTED;
1091 }
1092 NumEntries = 1;
1093 if (ParseUnitAddressHexList (
1094 OfwNode[0].UnitAddress,
1095 &VirtioMmioBase.Uint64,
1096 &NumEntries
1097 ) != RETURN_SUCCESS
1098 ) {
1099 return RETURN_UNSUPPORTED;
1100 }
1101
1102 UnicodeSPrintAsciiFormat (VenHwString, sizeof VenHwString,
1103 "VenHw(%g,%02X%02X%02X%02X%02X%02X%02X%02X)", &gVirtioMmioTransportGuid,
1104 VirtioMmioBase.Raw[0], VirtioMmioBase.Raw[1], VirtioMmioBase.Raw[2],
1105 VirtioMmioBase.Raw[3], VirtioMmioBase.Raw[4], VirtioMmioBase.Raw[5],
1106 VirtioMmioBase.Raw[6], VirtioMmioBase.Raw[7]);
1107
1108 if (NumNodes >= 2 &&
1109 SubstringEq (OfwNode[1].DriverName, "disk")) {
1110 //
1111 // OpenFirmware device path (virtio-blk disk):
1112 //
1113 // /virtio-mmio@000000000a003c00/disk@0,0
1114 // ^ ^ ^
1115 // | fixed
1116 // base address of virtio-mmio register block
1117 //
1118 // UEFI device path prefix:
1119 //
1120 // <VenHwString>/HD(
1121 //
1122 Written = UnicodeSPrintAsciiFormat (
1123 Translated,
1124 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
1125 "%s/HD(",
1126 VenHwString
1127 );
1128 } else if (NumNodes >= 3 &&
1129 SubstringEq (OfwNode[1].DriverName, "channel") &&
1130 SubstringEq (OfwNode[2].DriverName, "disk")) {
1131 //
1132 // OpenFirmware device path (virtio-scsi disk):
1133 //
1134 // /virtio-mmio@000000000a003a00/channel@0/disk@2,3
1135 // ^ ^ ^ ^
1136 // | | | LUN
1137 // | | target
1138 // | channel (unused, fixed 0)
1139 // base address of virtio-mmio register block
1140 //
1141 // UEFI device path prefix:
1142 //
1143 // <VenHwString>/Scsi(0x2,0x3)
1144 //
1145 UINT64 TargetLun[2];
1146
1147 TargetLun[1] = 0;
1148 NumEntries = sizeof (TargetLun) / sizeof (TargetLun[0]);
1149 if (ParseUnitAddressHexList (
1150 OfwNode[2].UnitAddress,
1151 TargetLun,
1152 &NumEntries
1153 ) != RETURN_SUCCESS
1154 ) {
1155 return RETURN_UNSUPPORTED;
1156 }
1157
1158 Written = UnicodeSPrintAsciiFormat (
1159 Translated,
1160 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
1161 "%s/Scsi(0x%Lx,0x%Lx)",
1162 VenHwString,
1163 TargetLun[0],
1164 TargetLun[1]
1165 );
1166 } else if (NumNodes >= 2 &&
1167 SubstringEq (OfwNode[1].DriverName, "ethernet-phy")) {
1168 //
1169 // OpenFirmware device path (virtio-net NIC):
1170 //
1171 // /virtio-mmio@000000000a003e00/ethernet-phy@0
1172 // ^ ^
1173 // | fixed
1174 // base address of virtio-mmio register block
1175 //
1176 // UEFI device path prefix (dependent on presence of nonzero PCI function):
1177 //
1178 // <VenHwString>/MAC(
1179 //
1180 Written = UnicodeSPrintAsciiFormat (
1181 Translated,
1182 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
1183 "%s/MAC(",
1184 VenHwString
1185 );
1186 } else {
1187 return RETURN_UNSUPPORTED;
1188 }
1189
1190 //
1191 // There's no way to differentiate between "completely used up without
1192 // truncation" and "truncated", so treat the former as the latter, and return
1193 // success only for "some room left unused".
1194 //
1195 if (Written + 1 < *TranslatedSize) {
1196 *TranslatedSize = Written;
1197 return RETURN_SUCCESS;
1198 }
1199
1200 return RETURN_BUFFER_TOO_SMALL;
1201 }
1202
1203
1204 /**
1205
1206 Translate an array of OpenFirmware device nodes to a UEFI device path
1207 fragment.
1208
1209 @param[in] OfwNode Array of OpenFirmware device nodes to
1210 translate, constituting the beginning of an
1211 OpenFirmware device path.
1212
1213 @param[in] NumNodes Number of elements in OfwNode.
1214
1215 @param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with
1216 CreateExtraRootBusMap(), to be used for
1217 translating positions of extra root buses to
1218 bus numbers.
1219
1220 @param[out] Translated Destination array receiving the UEFI path
1221 fragment, allocated by the caller. If the
1222 return value differs from RETURN_SUCCESS, its
1223 contents is indeterminate.
1224
1225 @param[in out] TranslatedSize On input, the number of CHAR16's in
1226 Translated. On RETURN_SUCCESS this parameter
1227 is assigned the number of non-NUL CHAR16's
1228 written to Translated. In case of other return
1229 values, TranslatedSize is indeterminate.
1230
1231
1232 @retval RETURN_SUCCESS Translation successful.
1233
1234 @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
1235 of bytes provided.
1236
1237 @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
1238 be translated in the current implementation.
1239
1240 @retval RETURN_PROTOCOL_ERROR The array of OpenFirmware device nodes has
1241 been (partially) recognized, but it contains
1242 a logic error / doesn't match system state.
1243
1244 **/
1245 STATIC
1246 RETURN_STATUS
1247 TranslateOfwNodes (
1248 IN CONST OFW_NODE *OfwNode,
1249 IN UINTN NumNodes,
1250 IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots,
1251 OUT CHAR16 *Translated,
1252 IN OUT UINTN *TranslatedSize
1253 )
1254 {
1255 RETURN_STATUS Status;
1256
1257 Status = RETURN_UNSUPPORTED;
1258
1259 if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
1260 Status = TranslatePciOfwNodes (OfwNode, NumNodes, ExtraPciRoots,
1261 Translated, TranslatedSize);
1262 }
1263 if (Status == RETURN_UNSUPPORTED &&
1264 FeaturePcdGet (PcdQemuBootOrderMmioTranslation)) {
1265 Status = TranslateMmioOfwNodes (OfwNode, NumNodes, Translated,
1266 TranslatedSize);
1267 }
1268 return Status;
1269 }
1270
1271 /**
1272
1273 Translate an OpenFirmware device path fragment to a UEFI device path
1274 fragment, and advance in the input string.
1275
1276 @param[in out] Ptr Address of the pointer pointing to the start
1277 of the path string. After successful
1278 translation (RETURN_SUCCESS) or at least
1279 successful parsing (RETURN_UNSUPPORTED,
1280 RETURN_BUFFER_TOO_SMALL), *Ptr is set to the
1281 byte immediately following the consumed
1282 characters. In other error cases, it points to
1283 the byte that caused the error.
1284
1285 @param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with
1286 CreateExtraRootBusMap(), to be used for
1287 translating positions of extra root buses to
1288 bus numbers.
1289
1290 @param[out] Translated Destination array receiving the UEFI path
1291 fragment, allocated by the caller. If the
1292 return value differs from RETURN_SUCCESS, its
1293 contents is indeterminate.
1294
1295 @param[in out] TranslatedSize On input, the number of CHAR16's in
1296 Translated. On RETURN_SUCCESS this parameter
1297 is assigned the number of non-NUL CHAR16's
1298 written to Translated. In case of other return
1299 values, TranslatedSize is indeterminate.
1300
1301
1302 @retval RETURN_SUCCESS Translation successful.
1303
1304 @retval RETURN_BUFFER_TOO_SMALL The OpenFirmware device path was parsed
1305 successfully, but its translation did not
1306 fit into the number of bytes provided.
1307 Further calls to this function are
1308 possible.
1309
1310 @retval RETURN_UNSUPPORTED The OpenFirmware device path was parsed
1311 successfully, but it can't be translated in
1312 the current implementation. Further calls
1313 to this function are possible.
1314
1315 @retval RETURN_PROTOCOL_ERROR The OpenFirmware device path has been
1316 (partially) recognized, but it contains a
1317 logic error / doesn't match system state.
1318 Further calls to this function are
1319 possible.
1320
1321 @retval RETURN_NOT_FOUND Translation terminated. On input, *Ptr was
1322 pointing to the empty string or "HALT". On
1323 output, *Ptr points to the empty string
1324 (ie. "HALT" is consumed transparently when
1325 present).
1326
1327 @retval RETURN_INVALID_PARAMETER Parse error. This is a permanent error.
1328
1329 **/
1330 STATIC
1331 RETURN_STATUS
1332 TranslateOfwPath (
1333 IN OUT CONST CHAR8 **Ptr,
1334 IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots,
1335 OUT CHAR16 *Translated,
1336 IN OUT UINTN *TranslatedSize
1337 )
1338 {
1339 UINTN NumNodes;
1340 RETURN_STATUS Status;
1341 OFW_NODE Node[EXAMINED_OFW_NODES];
1342 BOOLEAN IsFinal;
1343 OFW_NODE Skip;
1344
1345 IsFinal = FALSE;
1346 NumNodes = 0;
1347 if (AsciiStrCmp (*Ptr, "HALT") == 0) {
1348 *Ptr += 4;
1349 Status = RETURN_NOT_FOUND;
1350 } else {
1351 Status = ParseOfwNode (Ptr, &Node[NumNodes], &IsFinal);
1352 }
1353
1354 if (Status == RETURN_NOT_FOUND) {
1355 DEBUG ((DEBUG_VERBOSE, "%a: no more nodes\n", __FUNCTION__));
1356 return RETURN_NOT_FOUND;
1357 }
1358
1359 while (Status == RETURN_SUCCESS && !IsFinal) {
1360 ++NumNodes;
1361 Status = ParseOfwNode (
1362 Ptr,
1363 (NumNodes < EXAMINED_OFW_NODES) ? &Node[NumNodes] : &Skip,
1364 &IsFinal
1365 );
1366 }
1367
1368 switch (Status) {
1369 case RETURN_SUCCESS:
1370 ++NumNodes;
1371 break;
1372
1373 case RETURN_INVALID_PARAMETER:
1374 DEBUG ((DEBUG_VERBOSE, "%a: parse error\n", __FUNCTION__));
1375 return RETURN_INVALID_PARAMETER;
1376
1377 default:
1378 ASSERT (0);
1379 }
1380
1381 Status = TranslateOfwNodes (
1382 Node,
1383 NumNodes < EXAMINED_OFW_NODES ? NumNodes : EXAMINED_OFW_NODES,
1384 ExtraPciRoots,
1385 Translated,
1386 TranslatedSize);
1387 switch (Status) {
1388 case RETURN_SUCCESS:
1389 DEBUG ((DEBUG_VERBOSE, "%a: success: \"%s\"\n", __FUNCTION__, Translated));
1390 break;
1391
1392 case RETURN_BUFFER_TOO_SMALL:
1393 DEBUG ((DEBUG_VERBOSE, "%a: buffer too small\n", __FUNCTION__));
1394 break;
1395
1396 case RETURN_UNSUPPORTED:
1397 DEBUG ((DEBUG_VERBOSE, "%a: unsupported\n", __FUNCTION__));
1398 break;
1399
1400 case RETURN_PROTOCOL_ERROR:
1401 DEBUG ((DEBUG_VERBOSE, "%a: logic error / system state mismatch\n",
1402 __FUNCTION__));
1403 break;
1404
1405 default:
1406 ASSERT (0);
1407 }
1408 return Status;
1409 }
1410
1411
1412 /**
1413
1414 Convert the UEFI DevicePath to full text representation with DevPathToText,
1415 then match the UEFI device path fragment in Translated against it.
1416
1417 @param[in] Translated UEFI device path fragment, translated from
1418 OpenFirmware format, to search for.
1419
1420 @param[in] TranslatedLength The length of Translated in CHAR16's.
1421
1422 @param[in] DevicePath Boot option device path whose textual rendering
1423 to search in.
1424
1425 @param[in] DevPathToText Binary-to-text conversion protocol for DevicePath.
1426
1427
1428 @retval TRUE If Translated was found at the beginning of DevicePath after
1429 converting the latter to text.
1430
1431 @retval FALSE If DevicePath was NULL, or it could not be converted, or there
1432 was no match.
1433
1434 **/
1435 STATIC
1436 BOOLEAN
1437 Match (
1438 IN CONST CHAR16 *Translated,
1439 IN UINTN TranslatedLength,
1440 IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
1441 )
1442 {
1443 CHAR16 *Converted;
1444 BOOLEAN Result;
1445 VOID *FileBuffer;
1446 UINTN FileSize;
1447 EFI_DEVICE_PATH_PROTOCOL *AbsDevicePath;
1448 CHAR16 *AbsConverted;
1449 BOOLEAN Shortform;
1450 EFI_DEVICE_PATH_PROTOCOL *Node;
1451
1452 Converted = ConvertDevicePathToText (
1453 DevicePath,
1454 FALSE, // DisplayOnly
1455 FALSE // AllowShortcuts
1456 );
1457 if (Converted == NULL) {
1458 return FALSE;
1459 }
1460
1461 Result = FALSE;
1462 Shortform = FALSE;
1463 //
1464 // Expand the short-form device path to full device path
1465 //
1466 if ((DevicePathType (DevicePath) == MEDIA_DEVICE_PATH) &&
1467 (DevicePathSubType (DevicePath) == MEDIA_HARDDRIVE_DP)) {
1468 //
1469 // Harddrive shortform device path
1470 //
1471 Shortform = TRUE;
1472 } else if ((DevicePathType (DevicePath) == MEDIA_DEVICE_PATH) &&
1473 (DevicePathSubType (DevicePath) == MEDIA_FILEPATH_DP)) {
1474 //
1475 // File-path shortform device path
1476 //
1477 Shortform = TRUE;
1478 } else if ((DevicePathType (DevicePath) == MESSAGING_DEVICE_PATH) &&
1479 (DevicePathSubType (DevicePath) == MSG_URI_DP)) {
1480 //
1481 // URI shortform device path
1482 //
1483 Shortform = TRUE;
1484 } else {
1485 for ( Node = DevicePath
1486 ; !IsDevicePathEnd (Node)
1487 ; Node = NextDevicePathNode (Node)
1488 ) {
1489 if ((DevicePathType (Node) == MESSAGING_DEVICE_PATH) &&
1490 ((DevicePathSubType (Node) == MSG_USB_CLASS_DP) ||
1491 (DevicePathSubType (Node) == MSG_USB_WWID_DP))) {
1492 Shortform = TRUE;
1493 break;
1494 }
1495 }
1496 }
1497
1498 //
1499 // Attempt to expand any relative UEFI device path to
1500 // an absolute device path first.
1501 //
1502 if (Shortform) {
1503 FileBuffer = EfiBootManagerGetLoadOptionBuffer (
1504 DevicePath, &AbsDevicePath, &FileSize
1505 );
1506 if (FileBuffer == NULL) {
1507 goto Exit;
1508 }
1509 FreePool (FileBuffer);
1510 AbsConverted = ConvertDevicePathToText (AbsDevicePath, FALSE, FALSE);
1511 FreePool (AbsDevicePath);
1512 if (AbsConverted == NULL) {
1513 goto Exit;
1514 }
1515 DEBUG ((DEBUG_VERBOSE,
1516 "%a: expanded relative device path \"%s\" for prefix matching\n",
1517 __FUNCTION__, Converted));
1518 FreePool (Converted);
1519 Converted = AbsConverted;
1520 }
1521
1522 //
1523 // Is Translated a prefix of Converted?
1524 //
1525 Result = (BOOLEAN)(StrnCmp (Converted, Translated, TranslatedLength) == 0);
1526 DEBUG ((
1527 DEBUG_VERBOSE,
1528 "%a: against \"%s\": %a\n",
1529 __FUNCTION__,
1530 Converted,
1531 Result ? "match" : "no match"
1532 ));
1533 Exit:
1534 FreePool (Converted);
1535 return Result;
1536 }
1537
1538
1539 /**
1540 Append some of the unselected active boot options to the boot order.
1541
1542 This function should accommodate any further policy changes in "boot option
1543 survival". Currently we're adding back everything that starts with neither
1544 PciRoot() nor HD() nor a virtio-mmio VenHw() node.
1545
1546 @param[in,out] BootOrder The structure holding the boot order to
1547 complete. The caller is responsible for
1548 initializing (and potentially populating) it
1549 before calling this function.
1550
1551 @param[in,out] ActiveOption The array of active boot options to scan.
1552 Entries marked as Appended will be skipped.
1553 Those of the rest that satisfy the survival
1554 policy will be added to BootOrder with
1555 BootOrderAppend().
1556
1557 @param[in] ActiveCount Number of elements in ActiveOption.
1558
1559
1560 @retval RETURN_SUCCESS BootOrder has been extended with any eligible boot
1561 options.
1562
1563 @return Error codes returned by BootOrderAppend().
1564 **/
1565 STATIC
1566 RETURN_STATUS
1567 BootOrderComplete (
1568 IN OUT BOOT_ORDER *BootOrder,
1569 IN OUT ACTIVE_OPTION *ActiveOption,
1570 IN UINTN ActiveCount
1571 )
1572 {
1573 RETURN_STATUS Status;
1574 UINTN Idx;
1575
1576 Status = RETURN_SUCCESS;
1577 Idx = 0;
1578 while (!RETURN_ERROR (Status) && Idx < ActiveCount) {
1579 if (!ActiveOption[Idx].Appended) {
1580 CONST EFI_BOOT_MANAGER_LOAD_OPTION *Current;
1581 CONST EFI_DEVICE_PATH_PROTOCOL *FirstNode;
1582
1583 Current = ActiveOption[Idx].BootOption;
1584 FirstNode = Current->FilePath;
1585 if (FirstNode != NULL) {
1586 CHAR16 *Converted;
1587 STATIC CHAR16 ConvFallBack[] = L"<unable to convert>";
1588 BOOLEAN Keep;
1589
1590 Converted = ConvertDevicePathToText (FirstNode, FALSE, FALSE);
1591 if (Converted == NULL) {
1592 Converted = ConvFallBack;
1593 }
1594
1595 Keep = TRUE;
1596 if (DevicePathType(FirstNode) == MEDIA_DEVICE_PATH &&
1597 DevicePathSubType(FirstNode) == MEDIA_HARDDRIVE_DP) {
1598 //
1599 // drop HD()
1600 //
1601 Keep = FALSE;
1602 } else if (DevicePathType(FirstNode) == ACPI_DEVICE_PATH &&
1603 DevicePathSubType(FirstNode) == ACPI_DP) {
1604 ACPI_HID_DEVICE_PATH *Acpi;
1605
1606 Acpi = (ACPI_HID_DEVICE_PATH *) FirstNode;
1607 if ((Acpi->HID & PNP_EISA_ID_MASK) == PNP_EISA_ID_CONST &&
1608 EISA_ID_TO_NUM (Acpi->HID) == 0x0a03) {
1609 //
1610 // drop PciRoot() if we enabled the user to select PCI-like boot
1611 // options, by providing translation for such OFW device path
1612 // fragments
1613 //
1614 Keep = !FeaturePcdGet (PcdQemuBootOrderPciTranslation);
1615 }
1616 } else if (DevicePathType(FirstNode) == HARDWARE_DEVICE_PATH &&
1617 DevicePathSubType(FirstNode) == HW_VENDOR_DP) {
1618 VENDOR_DEVICE_PATH *VenHw;
1619
1620 VenHw = (VENDOR_DEVICE_PATH *)FirstNode;
1621 if (CompareGuid (&VenHw->Guid, &gVirtioMmioTransportGuid)) {
1622 //
1623 // drop virtio-mmio if we enabled the user to select boot options
1624 // referencing such device paths
1625 //
1626 Keep = !FeaturePcdGet (PcdQemuBootOrderMmioTranslation);
1627 }
1628 }
1629
1630 if (Keep) {
1631 Status = BootOrderAppend (BootOrder, &ActiveOption[Idx]);
1632 if (!RETURN_ERROR (Status)) {
1633 DEBUG ((DEBUG_VERBOSE, "%a: keeping \"%s\"\n", __FUNCTION__,
1634 Converted));
1635 }
1636 } else {
1637 DEBUG ((DEBUG_VERBOSE, "%a: dropping \"%s\"\n", __FUNCTION__,
1638 Converted));
1639 }
1640
1641 if (Converted != ConvFallBack) {
1642 FreePool (Converted);
1643 }
1644 }
1645 }
1646 ++Idx;
1647 }
1648 return Status;
1649 }
1650
1651
1652 /**
1653 Delete Boot#### variables that stand for such active boot options that have
1654 been dropped (ie. have not been selected by either matching or "survival
1655 policy").
1656
1657 @param[in] ActiveOption The array of active boot options to scan. Each
1658 entry not marked as appended will trigger the
1659 deletion of the matching Boot#### variable.
1660
1661 @param[in] ActiveCount Number of elements in ActiveOption.
1662 **/
1663 STATIC
1664 VOID
1665 PruneBootVariables (
1666 IN CONST ACTIVE_OPTION *ActiveOption,
1667 IN UINTN ActiveCount
1668 )
1669 {
1670 UINTN Idx;
1671
1672 for (Idx = 0; Idx < ActiveCount; ++Idx) {
1673 if (!ActiveOption[Idx].Appended) {
1674 CHAR16 VariableName[9];
1675
1676 UnicodeSPrintAsciiFormat (VariableName, sizeof VariableName, "Boot%04x",
1677 ActiveOption[Idx].BootOption->OptionNumber);
1678
1679 //
1680 // "The space consumed by the deleted variable may not be available until
1681 // the next power cycle", but that's good enough.
1682 //
1683 gRT->SetVariable (VariableName, &gEfiGlobalVariableGuid,
1684 0, // Attributes, 0 means deletion
1685 0, // DataSize, 0 means deletion
1686 NULL // Data
1687 );
1688 }
1689 }
1690 }
1691
1692
1693 /**
1694
1695 Set the boot order based on configuration retrieved from QEMU.
1696
1697 Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the
1698 OpenFirmware device paths therein to UEFI device path fragments. Match the
1699 translated fragments against the current list of boot options, and rewrite
1700 the BootOrder NvVar so that it corresponds to the order described in fw_cfg.
1701
1702 Platform BDS should call this function after EfiBootManagerConnectAll () and
1703 EfiBootManagerRefreshAllBootOption () return.
1704
1705 @retval RETURN_SUCCESS BootOrder NvVar rewritten.
1706
1707 @retval RETURN_UNSUPPORTED QEMU's fw_cfg is not supported.
1708
1709 @retval RETURN_NOT_FOUND Empty or nonexistent "bootorder" fw_cfg
1710 file, or no match found between the
1711 "bootorder" fw_cfg file and BootOptionList.
1712
1713 @retval RETURN_INVALID_PARAMETER Parse error in the "bootorder" fw_cfg file.
1714
1715 @retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
1716
1717 @return Values returned by gBS->LocateProtocol ()
1718 or gRT->SetVariable ().
1719
1720 **/
1721 RETURN_STATUS
1722 SetBootOrderFromQemu (
1723 VOID
1724 )
1725 {
1726 RETURN_STATUS Status;
1727 FIRMWARE_CONFIG_ITEM FwCfgItem;
1728 UINTN FwCfgSize;
1729 CHAR8 *FwCfg;
1730 CONST CHAR8 *FwCfgPtr;
1731
1732 BOOT_ORDER BootOrder;
1733 ACTIVE_OPTION *ActiveOption;
1734 UINTN ActiveCount;
1735
1736 EXTRA_ROOT_BUS_MAP *ExtraPciRoots;
1737
1738 UINTN TranslatedSize;
1739 CHAR16 Translated[TRANSLATION_OUTPUT_SIZE];
1740 EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions;
1741 UINTN BootOptionCount;
1742
1743 Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize);
1744 if (Status != RETURN_SUCCESS) {
1745 return Status;
1746 }
1747
1748 if (FwCfgSize == 0) {
1749 return RETURN_NOT_FOUND;
1750 }
1751
1752 FwCfg = AllocatePool (FwCfgSize);
1753 if (FwCfg == NULL) {
1754 return RETURN_OUT_OF_RESOURCES;
1755 }
1756
1757 QemuFwCfgSelectItem (FwCfgItem);
1758 QemuFwCfgReadBytes (FwCfgSize, FwCfg);
1759 if (FwCfg[FwCfgSize - 1] != '\0') {
1760 Status = RETURN_INVALID_PARAMETER;
1761 goto ErrorFreeFwCfg;
1762 }
1763
1764 DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__));
1765 DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg));
1766 DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: <end>\n", __FUNCTION__));
1767 FwCfgPtr = FwCfg;
1768
1769 BootOrder.Produced = 0;
1770 BootOrder.Allocated = 1;
1771 BootOrder.Data = AllocatePool (
1772 BootOrder.Allocated * sizeof (*BootOrder.Data)
1773 );
1774 if (BootOrder.Data == NULL) {
1775 Status = RETURN_OUT_OF_RESOURCES;
1776 goto ErrorFreeFwCfg;
1777 }
1778
1779 BootOptions = EfiBootManagerGetLoadOptions (
1780 &BootOptionCount, LoadOptionTypeBoot
1781 );
1782 if (BootOptions == NULL) {
1783 Status = RETURN_NOT_FOUND;
1784 goto ErrorFreeBootOrder;
1785 }
1786
1787 Status = CollectActiveOptions (
1788 BootOptions, BootOptionCount, &ActiveOption, &ActiveCount
1789 );
1790 if (RETURN_ERROR (Status)) {
1791 goto ErrorFreeBootOptions;
1792 }
1793
1794 if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
1795 Status = CreateExtraRootBusMap (&ExtraPciRoots);
1796 if (EFI_ERROR (Status)) {
1797 goto ErrorFreeActiveOption;
1798 }
1799 } else {
1800 ExtraPciRoots = NULL;
1801 }
1802
1803 //
1804 // translate each OpenFirmware path
1805 //
1806 TranslatedSize = sizeof (Translated) / sizeof (Translated[0]);
1807 Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated,
1808 &TranslatedSize);
1809 while (Status == RETURN_SUCCESS ||
1810 Status == RETURN_UNSUPPORTED ||
1811 Status == RETURN_PROTOCOL_ERROR ||
1812 Status == RETURN_BUFFER_TOO_SMALL) {
1813 if (Status == RETURN_SUCCESS) {
1814 UINTN Idx;
1815
1816 //
1817 // match translated OpenFirmware path against all active boot options
1818 //
1819 for (Idx = 0; Idx < ActiveCount; ++Idx) {
1820 if (Match (
1821 Translated,
1822 TranslatedSize, // contains length, not size, in CHAR16's here
1823 ActiveOption[Idx].BootOption->FilePath
1824 )
1825 ) {
1826 //
1827 // match found, store ID and continue with next OpenFirmware path
1828 //
1829 Status = BootOrderAppend (&BootOrder, &ActiveOption[Idx]);
1830 if (Status != RETURN_SUCCESS) {
1831 goto ErrorFreeExtraPciRoots;
1832 }
1833 break;
1834 }
1835 } // scanned all active boot options
1836 } // translation successful
1837
1838 TranslatedSize = sizeof (Translated) / sizeof (Translated[0]);
1839 Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated,
1840 &TranslatedSize);
1841 } // scanning of OpenFirmware paths done
1842
1843 if (Status == RETURN_NOT_FOUND && BootOrder.Produced > 0) {
1844 //
1845 // No more OpenFirmware paths, some matches found: rewrite BootOrder NvVar.
1846 // Some of the active boot options that have not been selected over fw_cfg
1847 // should be preserved at the end of the boot order.
1848 //
1849 Status = BootOrderComplete (&BootOrder, ActiveOption, ActiveCount);
1850 if (RETURN_ERROR (Status)) {
1851 goto ErrorFreeExtraPciRoots;
1852 }
1853
1854 //
1855 // See Table 10 in the UEFI Spec 2.3.1 with Errata C for the required
1856 // attributes.
1857 //
1858 Status = gRT->SetVariable (
1859 L"BootOrder",
1860 &gEfiGlobalVariableGuid,
1861 EFI_VARIABLE_NON_VOLATILE |
1862 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1863 EFI_VARIABLE_RUNTIME_ACCESS,
1864 BootOrder.Produced * sizeof (*BootOrder.Data),
1865 BootOrder.Data
1866 );
1867 if (EFI_ERROR (Status)) {
1868 DEBUG ((DEBUG_ERROR, "%a: setting BootOrder: %r\n", __FUNCTION__, Status));
1869 goto ErrorFreeExtraPciRoots;
1870 }
1871
1872 DEBUG ((DEBUG_INFO, "%a: setting BootOrder: success\n", __FUNCTION__));
1873 PruneBootVariables (ActiveOption, ActiveCount);
1874 }
1875
1876 ErrorFreeExtraPciRoots:
1877 if (ExtraPciRoots != NULL) {
1878 DestroyExtraRootBusMap (ExtraPciRoots);
1879 }
1880
1881 ErrorFreeActiveOption:
1882 FreePool (ActiveOption);
1883
1884 ErrorFreeBootOptions:
1885 EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount);
1886
1887 ErrorFreeBootOrder:
1888 FreePool (BootOrder.Data);
1889
1890 ErrorFreeFwCfg:
1891 FreePool (FwCfg);
1892
1893 return Status;
1894 }
1895
1896
1897 /**
1898 Calculate the number of seconds we should be showing the FrontPage progress
1899 bar for.
1900
1901 @return The TimeoutDefault argument for PlatformBdsEnterFrontPage().
1902 **/
1903 UINT16
1904 GetFrontPageTimeoutFromQemu (
1905 VOID
1906 )
1907 {
1908 FIRMWARE_CONFIG_ITEM BootMenuWaitItem;
1909 UINTN BootMenuWaitSize;
1910
1911 QemuFwCfgSelectItem (QemuFwCfgItemBootMenu);
1912 if (QemuFwCfgRead16 () == 0) {
1913 //
1914 // The user specified "-boot menu=off", or didn't specify "-boot
1915 // menu=(on|off)" at all. Return the platform default.
1916 //
1917 return PcdGet16 (PcdPlatformBootTimeOut);
1918 }
1919
1920 if (RETURN_ERROR (QemuFwCfgFindFile ("etc/boot-menu-wait", &BootMenuWaitItem,
1921 &BootMenuWaitSize)) ||
1922 BootMenuWaitSize != sizeof (UINT16)) {
1923 //
1924 // "-boot menu=on" was specified without "splash-time=N". In this case,
1925 // return three seconds if the platform default would cause us to skip the
1926 // front page, and return the platform default otherwise.
1927 //
1928 UINT16 Timeout;
1929
1930 Timeout = PcdGet16 (PcdPlatformBootTimeOut);
1931 if (Timeout == 0) {
1932 Timeout = 3;
1933 }
1934 return Timeout;
1935 }
1936
1937 //
1938 // "-boot menu=on,splash-time=N" was specified, where N is in units of
1939 // milliseconds. The Intel BDS Front Page progress bar only supports whole
1940 // seconds, round N up.
1941 //
1942 QemuFwCfgSelectItem (BootMenuWaitItem);
1943 return (UINT16)((QemuFwCfgRead16 () + 999) / 1000);
1944 }