]> git.proxmox.com Git - mirror_edk2.git/blob - OvmfPkg/PlatformPei/MemDetect.c
OvmfPkg: PlatformPei: beautify memory HOB order in QemuInitializeRam()
[mirror_edk2.git] / OvmfPkg / PlatformPei / MemDetect.c
1 /**@file
2 Memory Detection for Virtual Machines.
3
4 Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 Module Name:
14
15 MemDetect.c
16
17 **/
18
19 //
20 // The package level header files this module uses
21 //
22 #include <PiPei.h>
23
24 //
25 // The Library classes this module consumes
26 //
27 #include <Library/BaseMemoryLib.h>
28 #include <Library/DebugLib.h>
29 #include <Library/HobLib.h>
30 #include <Library/IoLib.h>
31 #include <Library/PcdLib.h>
32 #include <Library/PeimEntryPoint.h>
33 #include <Library/ResourcePublicationLib.h>
34 #include <Library/MtrrLib.h>
35
36 #include "Platform.h"
37 #include "Cmos.h"
38
39 UINT8 mPhysMemAddressWidth;
40
41 UINT32
42 GetSystemMemorySizeBelow4gb (
43 VOID
44 )
45 {
46 UINT8 Cmos0x34;
47 UINT8 Cmos0x35;
48
49 //
50 // CMOS 0x34/0x35 specifies the system memory above 16 MB.
51 // * CMOS(0x35) is the high byte
52 // * CMOS(0x34) is the low byte
53 // * The size is specified in 64kb chunks
54 // * Since this is memory above 16MB, the 16MB must be added
55 // into the calculation to get the total memory size.
56 //
57
58 Cmos0x34 = (UINT8) CmosRead8 (0x34);
59 Cmos0x35 = (UINT8) CmosRead8 (0x35);
60
61 return (UINT32) (((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);
62 }
63
64
65 STATIC
66 UINT64
67 GetSystemMemorySizeAbove4gb (
68 )
69 {
70 UINT32 Size;
71 UINTN CmosIndex;
72
73 //
74 // CMOS 0x5b-0x5d specifies the system memory above 4GB MB.
75 // * CMOS(0x5d) is the most significant size byte
76 // * CMOS(0x5c) is the middle size byte
77 // * CMOS(0x5b) is the least significant size byte
78 // * The size is specified in 64kb chunks
79 //
80
81 Size = 0;
82 for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {
83 Size = (UINT32) (Size << 8) + (UINT32) CmosRead8 (CmosIndex);
84 }
85
86 return LShiftU64 (Size, 16);
87 }
88
89
90 /**
91 Initialize the mPhysMemAddressWidth variable, based on guest RAM size.
92 **/
93 VOID
94 AddressWidthInitialization (
95 VOID
96 )
97 {
98 UINT64 FirstNonAddress;
99
100 //
101 // As guest-physical memory size grows, the permanent PEI RAM requirements
102 // are dominated by the identity-mapping page tables built by the DXE IPL.
103 // The DXL IPL keys off of the physical address bits advertized in the CPU
104 // HOB. To conserve memory, we calculate the minimum address width here.
105 //
106 FirstNonAddress = BASE_4GB + GetSystemMemorySizeAbove4gb ();
107 mPhysMemAddressWidth = (UINT8)HighBitSet64 (FirstNonAddress);
108
109 //
110 // If FirstNonAddress is not an integral power of two, then we need an
111 // additional bit.
112 //
113 if ((FirstNonAddress & (FirstNonAddress - 1)) != 0) {
114 ++mPhysMemAddressWidth;
115 }
116
117 //
118 // The minimum address width is 36 (covers up to and excluding 64 GB, which
119 // is the maximum for Ia32 + PAE). The theoretical architecture maximum for
120 // X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We
121 // can simply assert that here, since 48 bits are good enough for 256 TB.
122 //
123 if (mPhysMemAddressWidth <= 36) {
124 mPhysMemAddressWidth = 36;
125 }
126 ASSERT (mPhysMemAddressWidth <= 48);
127 }
128
129
130 /**
131 Calculate the cap for the permanent PEI memory.
132 **/
133 STATIC
134 UINT32
135 GetPeiMemoryCap (
136 VOID
137 )
138 {
139 BOOLEAN Page1GSupport;
140 UINT32 RegEax;
141 UINT32 RegEdx;
142 UINT32 Pml4Entries;
143 UINT32 PdpEntries;
144 UINTN TotalPages;
145
146 //
147 // If DXE is 32-bit, then just return the traditional 64 MB cap.
148 //
149 #ifdef MDE_CPU_IA32
150 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
151 return SIZE_64MB;
152 }
153 #endif
154
155 //
156 // Dependent on physical address width, PEI memory allocations can be
157 // dominated by the page tables built for 64-bit DXE. So we key the cap off
158 // of those. The code below is based on CreateIdentityMappingPageTables() in
159 // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c".
160 //
161 Page1GSupport = FALSE;
162 if (PcdGetBool (PcdUse1GPageTable)) {
163 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
164 if (RegEax >= 0x80000001) {
165 AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
166 if ((RegEdx & BIT26) != 0) {
167 Page1GSupport = TRUE;
168 }
169 }
170 }
171
172 if (mPhysMemAddressWidth <= 39) {
173 Pml4Entries = 1;
174 PdpEntries = 1 << (mPhysMemAddressWidth - 30);
175 ASSERT (PdpEntries <= 0x200);
176 } else {
177 Pml4Entries = 1 << (mPhysMemAddressWidth - 39);
178 ASSERT (Pml4Entries <= 0x200);
179 PdpEntries = 512;
180 }
181
182 TotalPages = Page1GSupport ? Pml4Entries + 1 :
183 (PdpEntries + 1) * Pml4Entries + 1;
184 ASSERT (TotalPages <= 0x40201);
185
186 //
187 // Add 64 MB for miscellaneous allocations. Note that for
188 // mPhysMemAddressWidth values close to 36, the cap will actually be
189 // dominated by this increment.
190 //
191 return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB);
192 }
193
194
195 /**
196 Publish PEI core memory
197
198 @return EFI_SUCCESS The PEIM initialized successfully.
199
200 **/
201 EFI_STATUS
202 PublishPeiMemory (
203 VOID
204 )
205 {
206 EFI_STATUS Status;
207 EFI_PHYSICAL_ADDRESS MemoryBase;
208 UINT64 MemorySize;
209 UINT64 LowerMemorySize;
210 UINT32 PeiMemoryCap;
211
212 if (mBootMode == BOOT_ON_S3_RESUME) {
213 MemoryBase = PcdGet32 (PcdS3AcpiReservedMemoryBase);
214 MemorySize = PcdGet32 (PcdS3AcpiReservedMemorySize);
215 } else {
216 LowerMemorySize = GetSystemMemorySizeBelow4gb ();
217
218 PeiMemoryCap = GetPeiMemoryCap ();
219 DEBUG ((EFI_D_INFO, "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",
220 __FUNCTION__, mPhysMemAddressWidth, PeiMemoryCap >> 10));
221
222 //
223 // Determine the range of memory to use during PEI
224 //
225 MemoryBase = PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);
226 MemorySize = LowerMemorySize - MemoryBase;
227 if (MemorySize > PeiMemoryCap) {
228 MemoryBase = LowerMemorySize - PeiMemoryCap;
229 MemorySize = PeiMemoryCap;
230 }
231 }
232
233 //
234 // Publish this memory to the PEI Core
235 //
236 Status = PublishSystemMemory(MemoryBase, MemorySize);
237 ASSERT_EFI_ERROR (Status);
238
239 return Status;
240 }
241
242
243 /**
244 Peform Memory Detection for QEMU / KVM
245
246 **/
247 STATIC
248 VOID
249 QemuInitializeRam (
250 VOID
251 )
252 {
253 UINT64 LowerMemorySize;
254 UINT64 UpperMemorySize;
255
256 DEBUG ((EFI_D_INFO, "%a called\n", __FUNCTION__));
257
258 //
259 // Determine total memory size available
260 //
261 LowerMemorySize = GetSystemMemorySizeBelow4gb ();
262 UpperMemorySize = GetSystemMemorySizeAbove4gb ();
263
264 if (mBootMode != BOOT_ON_S3_RESUME) {
265 //
266 // Create memory HOBs
267 //
268 AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);
269 AddMemoryRangeHob (BASE_1MB, LowerMemorySize);
270 if (UpperMemorySize != 0) {
271 AddUntestedMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);
272 }
273 }
274
275 MtrrSetMemoryAttribute (BASE_1MB, LowerMemorySize - BASE_1MB, CacheWriteBack);
276
277 MtrrSetMemoryAttribute (0, BASE_512KB + BASE_128KB, CacheWriteBack);
278
279 if (UpperMemorySize != 0) {
280 MtrrSetMemoryAttribute (BASE_4GB, UpperMemorySize, CacheWriteBack);
281 }
282 }
283
284 /**
285 Publish system RAM and reserve memory regions
286
287 **/
288 VOID
289 InitializeRamRegions (
290 VOID
291 )
292 {
293 if (!mXen) {
294 QemuInitializeRam ();
295 } else {
296 XenPublishRamRegions ();
297 }
298
299 if (mS3Supported && mBootMode != BOOT_ON_S3_RESUME) {
300 //
301 // This is the memory range that will be used for PEI on S3 resume
302 //
303 BuildMemoryAllocationHob (
304 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdS3AcpiReservedMemoryBase),
305 (UINT64)(UINTN) PcdGet32 (PcdS3AcpiReservedMemorySize),
306 EfiACPIMemoryNVS
307 );
308
309 //
310 // Cover the initial RAM area used as stack and temporary PEI heap.
311 //
312 // This is reserved as ACPI NVS so it can be used on S3 resume.
313 //
314 BuildMemoryAllocationHob (
315 PcdGet32 (PcdOvmfSecPeiTempRamBase),
316 PcdGet32 (PcdOvmfSecPeiTempRamSize),
317 EfiACPIMemoryNVS
318 );
319
320 //
321 // SEC stores its table of GUIDed section handlers here.
322 //
323 BuildMemoryAllocationHob (
324 PcdGet64 (PcdGuidedExtractHandlerTableAddress),
325 PcdGet32 (PcdGuidedExtractHandlerTableSize),
326 EfiACPIMemoryNVS
327 );
328
329 #ifdef MDE_CPU_X64
330 //
331 // Reserve the initial page tables built by the reset vector code.
332 //
333 // Since this memory range will be used by the Reset Vector on S3
334 // resume, it must be reserved as ACPI NVS.
335 //
336 BuildMemoryAllocationHob (
337 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfSecPageTablesBase),
338 (UINT64)(UINTN) PcdGet32 (PcdOvmfSecPageTablesSize),
339 EfiACPIMemoryNVS
340 );
341 #endif
342 }
343
344 if (mBootMode != BOOT_ON_S3_RESUME) {
345 //
346 // Reserve the lock box storage area
347 //
348 // Since this memory range will be used on S3 resume, it must be
349 // reserved as ACPI NVS.
350 //
351 // If S3 is unsupported, then various drivers might still write to the
352 // LockBox area. We ought to prevent DXE from serving allocation requests
353 // such that they would overlap the LockBox storage.
354 //
355 ZeroMem (
356 (VOID*)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),
357 (UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize)
358 );
359 BuildMemoryAllocationHob (
360 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),
361 (UINT64)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize),
362 mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData
363 );
364 }
365 }