]> git.proxmox.com Git - mirror_edk2.git/blob - OvmfPkg/PlatformPei/MemDetect.c
OvmfPkg: decompress FVs on S3 resume if SMM_REQUIRE is set
[mirror_edk2.git] / OvmfPkg / PlatformPei / MemDetect.c
1 /**@file
2 Memory Detection for Virtual Machines.
3
4 Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 Module Name:
14
15 MemDetect.c
16
17 **/
18
19 //
20 // The package level header files this module uses
21 //
22 #include <PiPei.h>
23
24 //
25 // The Library classes this module consumes
26 //
27 #include <Library/BaseMemoryLib.h>
28 #include <Library/DebugLib.h>
29 #include <Library/HobLib.h>
30 #include <Library/IoLib.h>
31 #include <Library/PcdLib.h>
32 #include <Library/PeimEntryPoint.h>
33 #include <Library/ResourcePublicationLib.h>
34 #include <Library/MtrrLib.h>
35
36 #include "Platform.h"
37 #include "Cmos.h"
38
39 UINT8 mPhysMemAddressWidth;
40
41 UINT32
42 GetSystemMemorySizeBelow4gb (
43 VOID
44 )
45 {
46 UINT8 Cmos0x34;
47 UINT8 Cmos0x35;
48
49 //
50 // CMOS 0x34/0x35 specifies the system memory above 16 MB.
51 // * CMOS(0x35) is the high byte
52 // * CMOS(0x34) is the low byte
53 // * The size is specified in 64kb chunks
54 // * Since this is memory above 16MB, the 16MB must be added
55 // into the calculation to get the total memory size.
56 //
57
58 Cmos0x34 = (UINT8) CmosRead8 (0x34);
59 Cmos0x35 = (UINT8) CmosRead8 (0x35);
60
61 return (UINT32) (((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);
62 }
63
64
65 STATIC
66 UINT64
67 GetSystemMemorySizeAbove4gb (
68 )
69 {
70 UINT32 Size;
71 UINTN CmosIndex;
72
73 //
74 // CMOS 0x5b-0x5d specifies the system memory above 4GB MB.
75 // * CMOS(0x5d) is the most significant size byte
76 // * CMOS(0x5c) is the middle size byte
77 // * CMOS(0x5b) is the least significant size byte
78 // * The size is specified in 64kb chunks
79 //
80
81 Size = 0;
82 for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) {
83 Size = (UINT32) (Size << 8) + (UINT32) CmosRead8 (CmosIndex);
84 }
85
86 return LShiftU64 (Size, 16);
87 }
88
89
90 /**
91 Initialize the mPhysMemAddressWidth variable, based on guest RAM size.
92 **/
93 VOID
94 AddressWidthInitialization (
95 VOID
96 )
97 {
98 UINT64 FirstNonAddress;
99
100 //
101 // As guest-physical memory size grows, the permanent PEI RAM requirements
102 // are dominated by the identity-mapping page tables built by the DXE IPL.
103 // The DXL IPL keys off of the physical address bits advertized in the CPU
104 // HOB. To conserve memory, we calculate the minimum address width here.
105 //
106 FirstNonAddress = BASE_4GB + GetSystemMemorySizeAbove4gb ();
107 mPhysMemAddressWidth = (UINT8)HighBitSet64 (FirstNonAddress);
108
109 //
110 // If FirstNonAddress is not an integral power of two, then we need an
111 // additional bit.
112 //
113 if ((FirstNonAddress & (FirstNonAddress - 1)) != 0) {
114 ++mPhysMemAddressWidth;
115 }
116
117 //
118 // The minimum address width is 36 (covers up to and excluding 64 GB, which
119 // is the maximum for Ia32 + PAE). The theoretical architecture maximum for
120 // X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We
121 // can simply assert that here, since 48 bits are good enough for 256 TB.
122 //
123 if (mPhysMemAddressWidth <= 36) {
124 mPhysMemAddressWidth = 36;
125 }
126 ASSERT (mPhysMemAddressWidth <= 48);
127 }
128
129
130 /**
131 Calculate the cap for the permanent PEI memory.
132 **/
133 STATIC
134 UINT32
135 GetPeiMemoryCap (
136 VOID
137 )
138 {
139 BOOLEAN Page1GSupport;
140 UINT32 RegEax;
141 UINT32 RegEdx;
142 UINT32 Pml4Entries;
143 UINT32 PdpEntries;
144 UINTN TotalPages;
145
146 //
147 // If DXE is 32-bit, then just return the traditional 64 MB cap.
148 //
149 #ifdef MDE_CPU_IA32
150 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
151 return SIZE_64MB;
152 }
153 #endif
154
155 //
156 // Dependent on physical address width, PEI memory allocations can be
157 // dominated by the page tables built for 64-bit DXE. So we key the cap off
158 // of those. The code below is based on CreateIdentityMappingPageTables() in
159 // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c".
160 //
161 Page1GSupport = FALSE;
162 if (PcdGetBool (PcdUse1GPageTable)) {
163 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
164 if (RegEax >= 0x80000001) {
165 AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
166 if ((RegEdx & BIT26) != 0) {
167 Page1GSupport = TRUE;
168 }
169 }
170 }
171
172 if (mPhysMemAddressWidth <= 39) {
173 Pml4Entries = 1;
174 PdpEntries = 1 << (mPhysMemAddressWidth - 30);
175 ASSERT (PdpEntries <= 0x200);
176 } else {
177 Pml4Entries = 1 << (mPhysMemAddressWidth - 39);
178 ASSERT (Pml4Entries <= 0x200);
179 PdpEntries = 512;
180 }
181
182 TotalPages = Page1GSupport ? Pml4Entries + 1 :
183 (PdpEntries + 1) * Pml4Entries + 1;
184 ASSERT (TotalPages <= 0x40201);
185
186 //
187 // Add 64 MB for miscellaneous allocations. Note that for
188 // mPhysMemAddressWidth values close to 36, the cap will actually be
189 // dominated by this increment.
190 //
191 return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB);
192 }
193
194
195 /**
196 Publish PEI core memory
197
198 @return EFI_SUCCESS The PEIM initialized successfully.
199
200 **/
201 EFI_STATUS
202 PublishPeiMemory (
203 VOID
204 )
205 {
206 EFI_STATUS Status;
207 EFI_PHYSICAL_ADDRESS MemoryBase;
208 UINT64 MemorySize;
209 UINT64 LowerMemorySize;
210 UINT32 PeiMemoryCap;
211
212 if (mBootMode == BOOT_ON_S3_RESUME) {
213 MemoryBase = PcdGet32 (PcdS3AcpiReservedMemoryBase);
214 MemorySize = PcdGet32 (PcdS3AcpiReservedMemorySize);
215 } else {
216 LowerMemorySize = GetSystemMemorySizeBelow4gb ();
217
218 PeiMemoryCap = GetPeiMemoryCap ();
219 DEBUG ((EFI_D_INFO, "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",
220 __FUNCTION__, mPhysMemAddressWidth, PeiMemoryCap >> 10));
221
222 //
223 // Determine the range of memory to use during PEI
224 //
225 // Technically we could lay the permanent PEI RAM over SEC's temporary
226 // decompression and scratch buffer even if "secure S3" is needed, since
227 // their lifetimes don't overlap. However, PeiFvInitialization() will cover
228 // RAM up to PcdOvmfDecompressionScratchEnd with an EfiACPIMemoryNVS memory
229 // allocation HOB, and other allocations served from the permanent PEI RAM
230 // shouldn't overlap with that HOB.
231 //
232 MemoryBase = mS3Supported && FeaturePcdGet (PcdSmmSmramRequire) ?
233 PcdGet32 (PcdOvmfDecompressionScratchEnd) :
234 PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);
235 MemorySize = LowerMemorySize - MemoryBase;
236 if (MemorySize > PeiMemoryCap) {
237 MemoryBase = LowerMemorySize - PeiMemoryCap;
238 MemorySize = PeiMemoryCap;
239 }
240 }
241
242 //
243 // Publish this memory to the PEI Core
244 //
245 Status = PublishSystemMemory(MemoryBase, MemorySize);
246 ASSERT_EFI_ERROR (Status);
247
248 return Status;
249 }
250
251
252 /**
253 Peform Memory Detection for QEMU / KVM
254
255 **/
256 STATIC
257 VOID
258 QemuInitializeRam (
259 VOID
260 )
261 {
262 UINT64 LowerMemorySize;
263 UINT64 UpperMemorySize;
264 MTRR_SETTINGS MtrrSettings;
265 EFI_STATUS Status;
266
267 DEBUG ((EFI_D_INFO, "%a called\n", __FUNCTION__));
268
269 //
270 // Determine total memory size available
271 //
272 LowerMemorySize = GetSystemMemorySizeBelow4gb ();
273 UpperMemorySize = GetSystemMemorySizeAbove4gb ();
274
275 if (mBootMode != BOOT_ON_S3_RESUME) {
276 //
277 // Create memory HOBs
278 //
279 AddMemoryRangeHob (0, BASE_512KB + BASE_128KB);
280 AddMemoryRangeHob (BASE_1MB, LowerMemorySize);
281 if (UpperMemorySize != 0) {
282 AddUntestedMemoryBaseSizeHob (BASE_4GB, UpperMemorySize);
283 }
284 }
285
286 //
287 // We'd like to keep the following ranges uncached:
288 // - [640 KB, 1 MB)
289 // - [LowerMemorySize, 4 GB)
290 //
291 // Everything else should be WB. Unfortunately, programming the inverse (ie.
292 // keeping the default UC, and configuring the complement set of the above as
293 // WB) is not reliable in general, because the end of the upper RAM can have
294 // practically any alignment, and we may not have enough variable MTRRs to
295 // cover it exactly.
296 //
297 if (IsMtrrSupported ()) {
298 MtrrGetAllMtrrs (&MtrrSettings);
299
300 //
301 // MTRRs disabled, fixed MTRRs disabled, default type is uncached
302 //
303 ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0);
304 ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0);
305 ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0);
306
307 //
308 // flip default type to writeback
309 //
310 SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06);
311 ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables);
312 MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6;
313 MtrrSetAllMtrrs (&MtrrSettings);
314
315 //
316 // Set memory range from 640KB to 1MB to uncacheable
317 //
318 Status = MtrrSetMemoryAttribute (BASE_512KB + BASE_128KB,
319 BASE_1MB - (BASE_512KB + BASE_128KB), CacheUncacheable);
320 ASSERT_EFI_ERROR (Status);
321
322 //
323 // Set memory range from the "top of lower RAM" (RAM below 4GB) to 4GB as
324 // uncacheable
325 //
326 Status = MtrrSetMemoryAttribute (LowerMemorySize,
327 SIZE_4GB - LowerMemorySize, CacheUncacheable);
328 ASSERT_EFI_ERROR (Status);
329 }
330 }
331
332 /**
333 Publish system RAM and reserve memory regions
334
335 **/
336 VOID
337 InitializeRamRegions (
338 VOID
339 )
340 {
341 if (!mXen) {
342 QemuInitializeRam ();
343 } else {
344 XenPublishRamRegions ();
345 }
346
347 if (mS3Supported && mBootMode != BOOT_ON_S3_RESUME) {
348 //
349 // This is the memory range that will be used for PEI on S3 resume
350 //
351 BuildMemoryAllocationHob (
352 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdS3AcpiReservedMemoryBase),
353 (UINT64)(UINTN) PcdGet32 (PcdS3AcpiReservedMemorySize),
354 EfiACPIMemoryNVS
355 );
356
357 //
358 // Cover the initial RAM area used as stack and temporary PEI heap.
359 //
360 // This is reserved as ACPI NVS so it can be used on S3 resume.
361 //
362 BuildMemoryAllocationHob (
363 PcdGet32 (PcdOvmfSecPeiTempRamBase),
364 PcdGet32 (PcdOvmfSecPeiTempRamSize),
365 EfiACPIMemoryNVS
366 );
367
368 //
369 // SEC stores its table of GUIDed section handlers here.
370 //
371 BuildMemoryAllocationHob (
372 PcdGet64 (PcdGuidedExtractHandlerTableAddress),
373 PcdGet32 (PcdGuidedExtractHandlerTableSize),
374 EfiACPIMemoryNVS
375 );
376
377 #ifdef MDE_CPU_X64
378 //
379 // Reserve the initial page tables built by the reset vector code.
380 //
381 // Since this memory range will be used by the Reset Vector on S3
382 // resume, it must be reserved as ACPI NVS.
383 //
384 BuildMemoryAllocationHob (
385 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfSecPageTablesBase),
386 (UINT64)(UINTN) PcdGet32 (PcdOvmfSecPageTablesSize),
387 EfiACPIMemoryNVS
388 );
389 #endif
390 }
391
392 if (mBootMode != BOOT_ON_S3_RESUME) {
393 //
394 // Reserve the lock box storage area
395 //
396 // Since this memory range will be used on S3 resume, it must be
397 // reserved as ACPI NVS.
398 //
399 // If S3 is unsupported, then various drivers might still write to the
400 // LockBox area. We ought to prevent DXE from serving allocation requests
401 // such that they would overlap the LockBox storage.
402 //
403 ZeroMem (
404 (VOID*)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),
405 (UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize)
406 );
407 BuildMemoryAllocationHob (
408 (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase),
409 (UINT64)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize),
410 mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData
411 );
412 }
413 }