]> git.proxmox.com Git - mirror_edk2.git/blob - SecurityPkg/VariableAuthenticated/RuntimeDxe/Variable.c
71cd460e0c710f238ec621f4134521bd65cb7a26
[mirror_edk2.git] / SecurityPkg / VariableAuthenticated / RuntimeDxe / Variable.c
1 /** @file
2 The common variable operation routines shared by DXE_RUNTIME variable
3 module and DXE_SMM variable module.
4
5 Caution: This module requires additional review when modified.
6 This driver will have external input - variable data. They may be input in SMM mode.
7 This external input must be validated carefully to avoid security issue like
8 buffer overflow, integer overflow.
9
10 VariableServiceGetNextVariableName () and VariableServiceQueryVariableInfo() are external API.
11 They need check input parameter.
12
13 VariableServiceGetVariable() and VariableServiceSetVariable() are external API
14 to receive datasize and data buffer. The size should be checked carefully.
15
16 VariableServiceSetVariable() should also check authenticate data to avoid buffer overflow,
17 integer overflow. It should also check attribute to avoid authentication bypass.
18
19 Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
20 This program and the accompanying materials
21 are licensed and made available under the terms and conditions of the BSD License
22 which accompanies this distribution. The full text of the license may be found at
23 http://opensource.org/licenses/bsd-license.php
24
25 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
26 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
27
28 **/
29
30 #include "Variable.h"
31 #include "AuthService.h"
32
33 VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
34
35 ///
36 /// Define a memory cache that improves the search performance for a variable.
37 ///
38 VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
39
40 ///
41 /// The memory entry used for variable statistics data.
42 ///
43 VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
44
45 ///
46 /// The list to store the variables which cannot be set after the EFI_END_OF_DXE_EVENT_GROUP_GUID
47 /// or EVT_GROUP_READY_TO_BOOT event.
48 ///
49 LIST_ENTRY mLockedVariableList = INITIALIZE_LIST_HEAD_VARIABLE (mLockedVariableList);
50
51 ///
52 /// The flag to indicate whether the platform has left the DXE phase of execution.
53 ///
54 BOOLEAN mEndOfDxe = FALSE;
55
56 ///
57 /// The flag to indicate whether the variable storage locking is enabled.
58 ///
59 BOOLEAN mEnableLocking = TRUE;
60
61 //
62 // To prevent name collisions with possible future globally defined variables,
63 // other internal firmware data variables that are not defined here must be
64 // saved with a unique VendorGuid other than EFI_GLOBAL_VARIABLE or
65 // any other GUID defined by the UEFI Specification. Implementations must
66 // only permit the creation of variables with a UEFI Specification-defined
67 // VendorGuid when these variables are documented in the UEFI Specification.
68 //
69 GLOBAL_VARIABLE_ENTRY mGlobalVariableList[] = {
70 {EFI_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
71 {EFI_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
72 {EFI_TIME_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
73 {EFI_PLATFORM_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
74 {EFI_PLATFORM_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
75 {EFI_CON_IN_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
76 {EFI_CON_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
77 {EFI_ERR_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
78 {EFI_CON_IN_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
79 {EFI_CON_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
80 {EFI_ERR_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
81 {EFI_BOOT_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
82 {EFI_BOOT_NEXT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
83 {EFI_BOOT_CURRENT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
84 {EFI_BOOT_OPTION_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
85 {EFI_DRIVER_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
86 {EFI_HW_ERR_REC_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
87 {EFI_SETUP_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
88 {EFI_KEY_EXCHANGE_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
89 {EFI_PLATFORM_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
90 {EFI_SIGNATURE_SUPPORT_NAME, VARIABLE_ATTRIBUTE_BS_RT},
91 {EFI_SECURE_BOOT_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
92 {EFI_KEK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
93 {EFI_PK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
94 {EFI_DB_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
95 {EFI_DBX_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
96 {EFI_DBT_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
97 {EFI_OS_INDICATIONS_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
98 {EFI_OS_INDICATIONS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
99 {EFI_VENDOR_KEYS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
100 };
101 GLOBAL_VARIABLE_ENTRY mGlobalVariableList2[] = {
102 {L"Boot####", VARIABLE_ATTRIBUTE_NV_BS_RT},
103 {L"Driver####", VARIABLE_ATTRIBUTE_NV_BS_RT},
104 {L"Key####", VARIABLE_ATTRIBUTE_NV_BS_RT},
105 };
106
107 /**
108
109 SecureBoot Hook for auth variable update.
110
111 @param[in] VariableName Name of Variable to be found.
112 @param[in] VendorGuid Variable vendor GUID.
113 **/
114 VOID
115 EFIAPI
116 SecureBootHook (
117 IN CHAR16 *VariableName,
118 IN EFI_GUID *VendorGuid
119 );
120
121 /**
122 Routine used to track statistical information about variable usage.
123 The data is stored in the EFI system table so it can be accessed later.
124 VariableInfo.efi can dump out the table. Only Boot Services variable
125 accesses are tracked by this code. The PcdVariableCollectStatistics
126 build flag controls if this feature is enabled.
127
128 A read that hits in the cache will have Read and Cache true for
129 the transaction. Data is allocated by this routine, but never
130 freed.
131
132 @param[in] VariableName Name of the Variable to track.
133 @param[in] VendorGuid Guid of the Variable to track.
134 @param[in] Volatile TRUE if volatile FALSE if non-volatile.
135 @param[in] Read TRUE if GetVariable() was called.
136 @param[in] Write TRUE if SetVariable() was called.
137 @param[in] Delete TRUE if deleted via SetVariable().
138 @param[in] Cache TRUE for a cache hit.
139
140 **/
141 VOID
142 UpdateVariableInfo (
143 IN CHAR16 *VariableName,
144 IN EFI_GUID *VendorGuid,
145 IN BOOLEAN Volatile,
146 IN BOOLEAN Read,
147 IN BOOLEAN Write,
148 IN BOOLEAN Delete,
149 IN BOOLEAN Cache
150 )
151 {
152 VARIABLE_INFO_ENTRY *Entry;
153
154 if (FeaturePcdGet (PcdVariableCollectStatistics)) {
155
156 if (AtRuntime ()) {
157 // Don't collect statistics at runtime.
158 return;
159 }
160
161 if (gVariableInfo == NULL) {
162 //
163 // On the first call allocate a entry and place a pointer to it in
164 // the EFI System Table.
165 //
166 gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
167 ASSERT (gVariableInfo != NULL);
168
169 CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
170 gVariableInfo->Name = AllocatePool (StrSize (VariableName));
171 ASSERT (gVariableInfo->Name != NULL);
172 StrCpy (gVariableInfo->Name, VariableName);
173 gVariableInfo->Volatile = Volatile;
174 }
175
176
177 for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
178 if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
179 if (StrCmp (VariableName, Entry->Name) == 0) {
180 if (Read) {
181 Entry->ReadCount++;
182 }
183 if (Write) {
184 Entry->WriteCount++;
185 }
186 if (Delete) {
187 Entry->DeleteCount++;
188 }
189 if (Cache) {
190 Entry->CacheCount++;
191 }
192
193 return;
194 }
195 }
196
197 if (Entry->Next == NULL) {
198 //
199 // If the entry is not in the table add it.
200 // Next iteration of the loop will fill in the data.
201 //
202 Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
203 ASSERT (Entry->Next != NULL);
204
205 CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
206 Entry->Next->Name = AllocatePool (StrSize (VariableName));
207 ASSERT (Entry->Next->Name != NULL);
208 StrCpy (Entry->Next->Name, VariableName);
209 Entry->Next->Volatile = Volatile;
210 }
211
212 }
213 }
214 }
215
216
217 /**
218
219 This code checks if variable header is valid or not.
220
221 @param Variable Pointer to the Variable Header.
222
223 @retval TRUE Variable header is valid.
224 @retval FALSE Variable header is not valid.
225
226 **/
227 BOOLEAN
228 IsValidVariableHeader (
229 IN VARIABLE_HEADER *Variable
230 )
231 {
232 if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
233 return FALSE;
234 }
235
236 return TRUE;
237 }
238
239
240 /**
241
242 This function writes data to the FWH at the correct LBA even if the LBAs
243 are fragmented.
244
245 @param Global Pointer to VARAIBLE_GLOBAL structure.
246 @param Volatile Point out the Variable is Volatile or Non-Volatile.
247 @param SetByIndex TRUE if target pointer is given as index.
248 FALSE if target pointer is absolute.
249 @param Fvb Pointer to the writable FVB protocol.
250 @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
251 structure.
252 @param DataSize Size of data to be written.
253 @param Buffer Pointer to the buffer from which data is written.
254
255 @retval EFI_INVALID_PARAMETER Parameters not valid.
256 @retval EFI_SUCCESS Variable store successfully updated.
257
258 **/
259 EFI_STATUS
260 UpdateVariableStore (
261 IN VARIABLE_GLOBAL *Global,
262 IN BOOLEAN Volatile,
263 IN BOOLEAN SetByIndex,
264 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
265 IN UINTN DataPtrIndex,
266 IN UINT32 DataSize,
267 IN UINT8 *Buffer
268 )
269 {
270 EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
271 UINTN BlockIndex2;
272 UINTN LinearOffset;
273 UINTN CurrWriteSize;
274 UINTN CurrWritePtr;
275 UINT8 *CurrBuffer;
276 EFI_LBA LbaNumber;
277 UINTN Size;
278 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
279 VARIABLE_STORE_HEADER *VolatileBase;
280 EFI_PHYSICAL_ADDRESS FvVolHdr;
281 EFI_PHYSICAL_ADDRESS DataPtr;
282 EFI_STATUS Status;
283
284 FwVolHeader = NULL;
285 DataPtr = DataPtrIndex;
286
287 //
288 // Check if the Data is Volatile.
289 //
290 if (!Volatile) {
291 if (Fvb == NULL) {
292 return EFI_INVALID_PARAMETER;
293 }
294 Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
295 ASSERT_EFI_ERROR (Status);
296
297 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
298 //
299 // Data Pointer should point to the actual Address where data is to be
300 // written.
301 //
302 if (SetByIndex) {
303 DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
304 }
305
306 if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
307 return EFI_INVALID_PARAMETER;
308 }
309 } else {
310 //
311 // Data Pointer should point to the actual Address where data is to be
312 // written.
313 //
314 VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
315 if (SetByIndex) {
316 DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
317 }
318
319 if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
320 return EFI_INVALID_PARAMETER;
321 }
322
323 //
324 // If Volatile Variable just do a simple mem copy.
325 //
326 CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
327 return EFI_SUCCESS;
328 }
329
330 //
331 // If we are here we are dealing with Non-Volatile Variables.
332 //
333 LinearOffset = (UINTN) FwVolHeader;
334 CurrWritePtr = (UINTN) DataPtr;
335 CurrWriteSize = DataSize;
336 CurrBuffer = Buffer;
337 LbaNumber = 0;
338
339 if (CurrWritePtr < LinearOffset) {
340 return EFI_INVALID_PARAMETER;
341 }
342
343 for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
344 for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
345 //
346 // Check to see if the Variable Writes are spanning through multiple
347 // blocks.
348 //
349 if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
350 if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
351 Status = Fvb->Write (
352 Fvb,
353 LbaNumber,
354 (UINTN) (CurrWritePtr - LinearOffset),
355 &CurrWriteSize,
356 CurrBuffer
357 );
358 return Status;
359 } else {
360 Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
361 Status = Fvb->Write (
362 Fvb,
363 LbaNumber,
364 (UINTN) (CurrWritePtr - LinearOffset),
365 &Size,
366 CurrBuffer
367 );
368 if (EFI_ERROR (Status)) {
369 return Status;
370 }
371
372 CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
373 CurrBuffer = CurrBuffer + Size;
374 CurrWriteSize = CurrWriteSize - Size;
375 }
376 }
377
378 LinearOffset += PtrBlockMapEntry->Length;
379 LbaNumber++;
380 }
381 }
382
383 return EFI_SUCCESS;
384 }
385
386
387 /**
388
389 This code gets the current status of Variable Store.
390
391 @param VarStoreHeader Pointer to the Variable Store Header.
392
393 @retval EfiRaw Variable store status is raw.
394 @retval EfiValid Variable store status is valid.
395 @retval EfiInvalid Variable store status is invalid.
396
397 **/
398 VARIABLE_STORE_STATUS
399 GetVariableStoreStatus (
400 IN VARIABLE_STORE_HEADER *VarStoreHeader
401 )
402 {
403 if (CompareGuid (&VarStoreHeader->Signature, &gEfiAuthenticatedVariableGuid) &&
404 VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
405 VarStoreHeader->State == VARIABLE_STORE_HEALTHY
406 ) {
407
408 return EfiValid;
409 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
410 ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
411 ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
412 ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
413 VarStoreHeader->Size == 0xffffffff &&
414 VarStoreHeader->Format == 0xff &&
415 VarStoreHeader->State == 0xff
416 ) {
417
418 return EfiRaw;
419 } else {
420 return EfiInvalid;
421 }
422 }
423
424
425 /**
426
427 This code gets the size of name of variable.
428
429 @param Variable Pointer to the Variable Header.
430
431 @return UINTN Size of variable in bytes.
432
433 **/
434 UINTN
435 NameSizeOfVariable (
436 IN VARIABLE_HEADER *Variable
437 )
438 {
439 if (Variable->State == (UINT8) (-1) ||
440 Variable->DataSize == (UINT32) (-1) ||
441 Variable->NameSize == (UINT32) (-1) ||
442 Variable->Attributes == (UINT32) (-1)) {
443 return 0;
444 }
445 return (UINTN) Variable->NameSize;
446 }
447
448 /**
449
450 This code gets the size of variable data.
451
452 @param Variable Pointer to the Variable Header.
453
454 @return Size of variable in bytes.
455
456 **/
457 UINTN
458 DataSizeOfVariable (
459 IN VARIABLE_HEADER *Variable
460 )
461 {
462 if (Variable->State == (UINT8) (-1) ||
463 Variable->DataSize == (UINT32) (-1) ||
464 Variable->NameSize == (UINT32) (-1) ||
465 Variable->Attributes == (UINT32) (-1)) {
466 return 0;
467 }
468 return (UINTN) Variable->DataSize;
469 }
470
471 /**
472
473 This code gets the pointer to the variable name.
474
475 @param Variable Pointer to the Variable Header.
476
477 @return Pointer to Variable Name which is Unicode encoding.
478
479 **/
480 CHAR16 *
481 GetVariableNamePtr (
482 IN VARIABLE_HEADER *Variable
483 )
484 {
485
486 return (CHAR16 *) (Variable + 1);
487 }
488
489 /**
490
491 This code gets the pointer to the variable data.
492
493 @param Variable Pointer to the Variable Header.
494
495 @return Pointer to Variable Data.
496
497 **/
498 UINT8 *
499 GetVariableDataPtr (
500 IN VARIABLE_HEADER *Variable
501 )
502 {
503 UINTN Value;
504
505 //
506 // Be careful about pad size for alignment.
507 //
508 Value = (UINTN) GetVariableNamePtr (Variable);
509 Value += NameSizeOfVariable (Variable);
510 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
511
512 return (UINT8 *) Value;
513 }
514
515
516 /**
517
518 This code gets the pointer to the next variable header.
519
520 @param Variable Pointer to the Variable Header.
521
522 @return Pointer to next variable header.
523
524 **/
525 VARIABLE_HEADER *
526 GetNextVariablePtr (
527 IN VARIABLE_HEADER *Variable
528 )
529 {
530 UINTN Value;
531
532 if (!IsValidVariableHeader (Variable)) {
533 return NULL;
534 }
535
536 Value = (UINTN) GetVariableDataPtr (Variable);
537 Value += DataSizeOfVariable (Variable);
538 Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
539
540 //
541 // Be careful about pad size for alignment.
542 //
543 return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
544 }
545
546 /**
547
548 Gets the pointer to the first variable header in given variable store area.
549
550 @param VarStoreHeader Pointer to the Variable Store Header.
551
552 @return Pointer to the first variable header.
553
554 **/
555 VARIABLE_HEADER *
556 GetStartPointer (
557 IN VARIABLE_STORE_HEADER *VarStoreHeader
558 )
559 {
560 //
561 // The end of variable store.
562 //
563 return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
564 }
565
566 /**
567
568 Gets the pointer to the end of the variable storage area.
569
570 This function gets pointer to the end of the variable storage
571 area, according to the input variable store header.
572
573 @param VarStoreHeader Pointer to the Variable Store Header.
574
575 @return Pointer to the end of the variable storage area.
576
577 **/
578 VARIABLE_HEADER *
579 GetEndPointer (
580 IN VARIABLE_STORE_HEADER *VarStoreHeader
581 )
582 {
583 //
584 // The end of variable store
585 //
586 return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
587 }
588
589 /**
590
591 Check the PubKeyIndex is a valid key or not.
592
593 This function will iterate the NV storage to see if this PubKeyIndex is still referenced
594 by any valid count-based auth variabe.
595
596 @param[in] PubKeyIndex Index of the public key in public key store.
597
598 @retval TRUE The PubKeyIndex is still in use.
599 @retval FALSE The PubKeyIndex is not referenced by any count-based auth variabe.
600
601 **/
602 BOOLEAN
603 IsValidPubKeyIndex (
604 IN UINT32 PubKeyIndex
605 )
606 {
607 VARIABLE_HEADER *Variable;
608
609 if (PubKeyIndex > mPubKeyNumber) {
610 return FALSE;
611 }
612
613 Variable = GetStartPointer (mNvVariableCache);
614
615 while (IsValidVariableHeader (Variable)) {
616 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
617 Variable->PubKeyIndex == PubKeyIndex) {
618 return TRUE;
619 }
620 Variable = GetNextVariablePtr (Variable);
621 }
622
623 return FALSE;
624 }
625
626 /**
627
628 Get the number of valid public key in PubKeyStore.
629
630 @param[in] PubKeyNumber Number of the public key in public key store.
631
632 @return Number of valid public key in PubKeyStore.
633
634 **/
635 UINT32
636 GetValidPubKeyNumber (
637 IN UINT32 PubKeyNumber
638 )
639 {
640 UINT32 PubKeyIndex;
641 UINT32 Counter;
642
643 Counter = 0;
644
645 for (PubKeyIndex = 1; PubKeyIndex <= PubKeyNumber; PubKeyIndex++) {
646 if (IsValidPubKeyIndex (PubKeyIndex)) {
647 Counter++;
648 }
649 }
650
651 return Counter;
652 }
653
654 /**
655
656 Filter the useless key in public key store.
657
658 This function will find out all valid public keys in public key database, save them in new allocated
659 buffer NewPubKeyStore, and give the new PubKeyIndex. The caller is responsible for freeing buffer
660 NewPubKeyIndex and NewPubKeyStore with FreePool().
661
662 @param[in] PubKeyStore Point to the public key database.
663 @param[in] PubKeyNumber Number of the public key in PubKeyStore.
664 @param[out] NewPubKeyIndex Point to an array of new PubKeyIndex corresponds to NewPubKeyStore.
665 @param[out] NewPubKeyStore Saved all valid public keys in PubKeyStore.
666 @param[out] NewPubKeySize Buffer size of the NewPubKeyStore.
667
668 @retval EFI_SUCCESS Trim operation is complete successfully.
669 @retval EFI_OUT_OF_RESOURCES No enough memory resources, or no useless key in PubKeyStore.
670
671 **/
672 EFI_STATUS
673 PubKeyStoreFilter (
674 IN UINT8 *PubKeyStore,
675 IN UINT32 PubKeyNumber,
676 OUT UINT32 **NewPubKeyIndex,
677 OUT UINT8 **NewPubKeyStore,
678 OUT UINT32 *NewPubKeySize
679 )
680 {
681 UINT32 PubKeyIndex;
682 UINT32 CopiedKey;
683 UINT32 NewPubKeyNumber;
684
685 NewPubKeyNumber = GetValidPubKeyNumber (PubKeyNumber);
686 if (NewPubKeyNumber == PubKeyNumber) {
687 return EFI_OUT_OF_RESOURCES;
688 }
689
690 if (NewPubKeyNumber != 0) {
691 *NewPubKeySize = NewPubKeyNumber * EFI_CERT_TYPE_RSA2048_SIZE;
692 } else {
693 *NewPubKeySize = sizeof (UINT8);
694 }
695
696 *NewPubKeyStore = AllocatePool (*NewPubKeySize);
697 if (*NewPubKeyStore == NULL) {
698 return EFI_OUT_OF_RESOURCES;
699 }
700
701 *NewPubKeyIndex = AllocateZeroPool ((PubKeyNumber + 1) * sizeof (UINT32));
702 if (*NewPubKeyIndex == NULL) {
703 FreePool (*NewPubKeyStore);
704 *NewPubKeyStore = NULL;
705 return EFI_OUT_OF_RESOURCES;
706 }
707
708 CopiedKey = 0;
709 for (PubKeyIndex = 1; PubKeyIndex <= PubKeyNumber; PubKeyIndex++) {
710 if (IsValidPubKeyIndex (PubKeyIndex)) {
711 CopyMem (
712 *NewPubKeyStore + CopiedKey * EFI_CERT_TYPE_RSA2048_SIZE,
713 PubKeyStore + (PubKeyIndex - 1) * EFI_CERT_TYPE_RSA2048_SIZE,
714 EFI_CERT_TYPE_RSA2048_SIZE
715 );
716 (*NewPubKeyIndex)[PubKeyIndex] = ++CopiedKey;
717 }
718 }
719 return EFI_SUCCESS;
720 }
721
722 /**
723
724 Variable store garbage collection and reclaim operation.
725
726 If ReclaimPubKeyStore is FALSE, reclaim variable space by deleting the obsoleted varaibles.
727 If ReclaimPubKeyStore is TRUE, reclaim invalid key in public key database and update the PubKeyIndex
728 for all the count-based authenticate variable in NV storage.
729
730 @param[in] VariableBase Base address of variable store.
731 @param[out] LastVariableOffset Offset of last variable.
732 @param[in] IsVolatile The variable store is volatile or not;
733 if it is non-volatile, need FTW.
734 @param[in, out] UpdatingPtrTrack Pointer to updating variable pointer track structure.
735 @param[in] NewVariable Pointer to new variable.
736 @param[in] NewVariableSize New variable size.
737 @param[in] ReclaimPubKeyStore Reclaim for public key database or not.
738
739 @return EFI_SUCCESS Reclaim operation has finished successfully.
740 @return EFI_OUT_OF_RESOURCES No enough memory resources or variable space.
741 @return EFI_DEVICE_ERROR The public key database doesn't exist.
742 @return Others Unexpect error happened during reclaim operation.
743
744 **/
745 EFI_STATUS
746 Reclaim (
747 IN EFI_PHYSICAL_ADDRESS VariableBase,
748 OUT UINTN *LastVariableOffset,
749 IN BOOLEAN IsVolatile,
750 IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
751 IN VARIABLE_HEADER *NewVariable,
752 IN UINTN NewVariableSize,
753 IN BOOLEAN ReclaimPubKeyStore
754 )
755 {
756 VARIABLE_HEADER *Variable;
757 VARIABLE_HEADER *AddedVariable;
758 VARIABLE_HEADER *NextVariable;
759 VARIABLE_HEADER *NextAddedVariable;
760 VARIABLE_STORE_HEADER *VariableStoreHeader;
761 UINT8 *ValidBuffer;
762 UINTN MaximumBufferSize;
763 UINTN VariableSize;
764 UINTN NameSize;
765 UINT8 *CurrPtr;
766 VOID *Point0;
767 VOID *Point1;
768 BOOLEAN FoundAdded;
769 EFI_STATUS Status;
770 UINTN CommonVariableTotalSize;
771 UINTN HwErrVariableTotalSize;
772 UINT32 *NewPubKeyIndex;
773 UINT8 *NewPubKeyStore;
774 UINT32 NewPubKeySize;
775 VARIABLE_HEADER *PubKeyHeader;
776 VARIABLE_HEADER *UpdatingVariable;
777 VARIABLE_HEADER *UpdatingInDeletedTransition;
778
779 UpdatingVariable = NULL;
780 UpdatingInDeletedTransition = NULL;
781 if (UpdatingPtrTrack != NULL) {
782 UpdatingVariable = UpdatingPtrTrack->CurrPtr;
783 UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr;
784 }
785
786 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
787
788 CommonVariableTotalSize = 0;
789 HwErrVariableTotalSize = 0;
790 NewPubKeyIndex = NULL;
791 NewPubKeyStore = NULL;
792 NewPubKeySize = 0;
793 PubKeyHeader = NULL;
794
795 if (IsVolatile) {
796 //
797 // Start Pointers for the variable.
798 //
799 Variable = GetStartPointer (VariableStoreHeader);
800 MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
801
802 while (IsValidVariableHeader (Variable)) {
803 NextVariable = GetNextVariablePtr (Variable);
804 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
805 Variable != UpdatingVariable &&
806 Variable != UpdatingInDeletedTransition
807 ) {
808 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
809 MaximumBufferSize += VariableSize;
810 }
811
812 Variable = NextVariable;
813 }
814
815 if (NewVariable != NULL) {
816 //
817 // Add the new variable size.
818 //
819 MaximumBufferSize += NewVariableSize;
820 }
821
822 //
823 // Reserve the 1 Bytes with Oxff to identify the
824 // end of the variable buffer.
825 //
826 MaximumBufferSize += 1;
827 ValidBuffer = AllocatePool (MaximumBufferSize);
828 if (ValidBuffer == NULL) {
829 return EFI_OUT_OF_RESOURCES;
830 }
831 } else {
832 //
833 // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache
834 // as the buffer to reduce SMRAM consumption for SMM variable driver.
835 //
836 MaximumBufferSize = mNvVariableCache->Size;
837 ValidBuffer = (UINT8 *) mNvVariableCache;
838 }
839
840 SetMem (ValidBuffer, MaximumBufferSize, 0xff);
841
842 //
843 // Copy variable store header.
844 //
845 CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
846 CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
847
848 if (ReclaimPubKeyStore) {
849 ASSERT (IsVolatile == FALSE);
850 //
851 // Trim the PubKeyStore and get new PubKeyIndex.
852 //
853 Status = PubKeyStoreFilter (
854 mPubKeyStore,
855 mPubKeyNumber,
856 &NewPubKeyIndex,
857 &NewPubKeyStore,
858 &NewPubKeySize
859 );
860 if (EFI_ERROR (Status)) {
861 goto Done;
862 }
863
864 //
865 // Refresh the PubKeyIndex for all valid variables (ADDED and IN_DELETED_TRANSITION).
866 //
867 Variable = GetStartPointer (VariableStoreHeader);
868 while (IsValidVariableHeader (Variable)) {
869 NextVariable = GetNextVariablePtr (Variable);
870 if (Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
871 if ((StrCmp (GetVariableNamePtr (Variable), AUTHVAR_KEYDB_NAME) == 0) &&
872 (CompareGuid (&Variable->VendorGuid, &gEfiAuthenticatedVariableGuid))) {
873 //
874 // Skip the public key database, it will be reinstalled later.
875 //
876 PubKeyHeader = Variable;
877 Variable = NextVariable;
878 continue;
879 }
880
881 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
882 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
883 ((VARIABLE_HEADER*) CurrPtr)->PubKeyIndex = NewPubKeyIndex[Variable->PubKeyIndex];
884 CurrPtr += VariableSize;
885 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
886 HwErrVariableTotalSize += VariableSize;
887 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
888 CommonVariableTotalSize += VariableSize;
889 }
890 }
891 Variable = NextVariable;
892 }
893
894 //
895 // Reinstall the new public key database.
896 //
897 ASSERT (PubKeyHeader != NULL);
898 if (PubKeyHeader == NULL) {
899 Status = EFI_DEVICE_ERROR;
900 goto Done;
901 }
902 CopyMem (CurrPtr, (UINT8*) PubKeyHeader, sizeof (VARIABLE_HEADER));
903 Variable = (VARIABLE_HEADER*) CurrPtr;
904 Variable->DataSize = NewPubKeySize;
905 StrCpy (GetVariableNamePtr (Variable), GetVariableNamePtr (PubKeyHeader));
906 CopyMem (GetVariableDataPtr (Variable), NewPubKeyStore, NewPubKeySize);
907 CurrPtr = (UINT8*) GetNextVariablePtr (Variable);
908 CommonVariableTotalSize += (UINTN) CurrPtr - (UINTN) Variable;
909 } else {
910 //
911 // Reinstall all ADDED variables as long as they are not identical to Updating Variable.
912 //
913 Variable = GetStartPointer (VariableStoreHeader);
914 while (IsValidVariableHeader (Variable)) {
915 NextVariable = GetNextVariablePtr (Variable);
916 if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) {
917 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
918 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
919 CurrPtr += VariableSize;
920 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
921 HwErrVariableTotalSize += VariableSize;
922 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
923 CommonVariableTotalSize += VariableSize;
924 }
925 }
926 Variable = NextVariable;
927 }
928
929 //
930 // Reinstall all in delete transition variables.
931 //
932 Variable = GetStartPointer (VariableStoreHeader);
933 while (IsValidVariableHeader (Variable)) {
934 NextVariable = GetNextVariablePtr (Variable);
935 if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
936
937 //
938 // Buffer has cached all ADDED variable.
939 // Per IN_DELETED variable, we have to guarantee that
940 // no ADDED one in previous buffer.
941 //
942
943 FoundAdded = FALSE;
944 AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
945 while (IsValidVariableHeader (AddedVariable)) {
946 NextAddedVariable = GetNextVariablePtr (AddedVariable);
947 NameSize = NameSizeOfVariable (AddedVariable);
948 if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) &&
949 NameSize == NameSizeOfVariable (Variable)
950 ) {
951 Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
952 Point1 = (VOID *) GetVariableNamePtr (Variable);
953 if (CompareMem (Point0, Point1, NameSize) == 0) {
954 FoundAdded = TRUE;
955 break;
956 }
957 }
958 AddedVariable = NextAddedVariable;
959 }
960 if (!FoundAdded) {
961 //
962 // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
963 //
964 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
965 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
966 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
967 CurrPtr += VariableSize;
968 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
969 HwErrVariableTotalSize += VariableSize;
970 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
971 CommonVariableTotalSize += VariableSize;
972 }
973 }
974 }
975
976 Variable = NextVariable;
977 }
978
979 //
980 // Install the new variable if it is not NULL.
981 //
982 if (NewVariable != NULL) {
983 if ((UINTN) (CurrPtr - ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) {
984 //
985 // No enough space to store the new variable.
986 //
987 Status = EFI_OUT_OF_RESOURCES;
988 goto Done;
989 }
990 if (!IsVolatile) {
991 if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
992 HwErrVariableTotalSize += NewVariableSize;
993 } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
994 CommonVariableTotalSize += NewVariableSize;
995 }
996 if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) ||
997 (CommonVariableTotalSize > VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize))) {
998 //
999 // No enough space to store the new variable by NV or NV+HR attribute.
1000 //
1001 Status = EFI_OUT_OF_RESOURCES;
1002 goto Done;
1003 }
1004 }
1005
1006 CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize);
1007 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1008 if (UpdatingVariable != NULL) {
1009 UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
1010 UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
1011 }
1012 CurrPtr += NewVariableSize;
1013 }
1014 }
1015
1016 if (IsVolatile) {
1017 //
1018 // If volatile variable store, just copy valid buffer.
1019 //
1020 SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
1021 CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - ValidBuffer));
1022 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
1023 Status = EFI_SUCCESS;
1024 } else {
1025 //
1026 // If non-volatile variable store, perform FTW here.
1027 //
1028 Status = FtwVariableSpace (
1029 VariableBase,
1030 (VARIABLE_STORE_HEADER *) ValidBuffer
1031 );
1032 if (!EFI_ERROR (Status)) {
1033 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
1034 mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
1035 mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
1036 } else {
1037 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
1038 while (IsValidVariableHeader (NextVariable)) {
1039 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
1040 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1041 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
1042 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1043 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
1044 }
1045
1046 NextVariable = GetNextVariablePtr (NextVariable);
1047 }
1048 *LastVariableOffset = (UINTN) NextVariable - (UINTN) VariableBase;
1049 }
1050 }
1051
1052 Done:
1053 if (IsVolatile) {
1054 FreePool (ValidBuffer);
1055 } else {
1056 //
1057 // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back.
1058 //
1059 CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
1060
1061 if (NewPubKeyStore != NULL) {
1062 FreePool (NewPubKeyStore);
1063 }
1064
1065 if (NewPubKeyIndex != NULL) {
1066 FreePool (NewPubKeyIndex);
1067 }
1068 }
1069
1070 return Status;
1071 }
1072
1073 /**
1074 Find the variable in the specified variable store.
1075
1076 @param[in] VariableName Name of the variable to be found
1077 @param[in] VendorGuid Vendor GUID to be found.
1078 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1079 check at runtime when searching variable.
1080 @param[in, out] PtrTrack Variable Track Pointer structure that contains Variable Information.
1081
1082 @retval EFI_SUCCESS Variable found successfully
1083 @retval EFI_NOT_FOUND Variable not found
1084 **/
1085 EFI_STATUS
1086 FindVariableEx (
1087 IN CHAR16 *VariableName,
1088 IN EFI_GUID *VendorGuid,
1089 IN BOOLEAN IgnoreRtCheck,
1090 IN OUT VARIABLE_POINTER_TRACK *PtrTrack
1091 )
1092 {
1093 VARIABLE_HEADER *InDeletedVariable;
1094 VOID *Point;
1095
1096 PtrTrack->InDeletedTransitionPtr = NULL;
1097
1098 //
1099 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1100 //
1101 InDeletedVariable = NULL;
1102
1103 for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
1104 ; (PtrTrack->CurrPtr < PtrTrack->EndPtr) && IsValidVariableHeader (PtrTrack->CurrPtr)
1105 ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
1106 ) {
1107 if (PtrTrack->CurrPtr->State == VAR_ADDED ||
1108 PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
1109 ) {
1110 if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
1111 if (VariableName[0] == 0) {
1112 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1113 InDeletedVariable = PtrTrack->CurrPtr;
1114 } else {
1115 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1116 return EFI_SUCCESS;
1117 }
1118 } else {
1119 if (CompareGuid (VendorGuid, &PtrTrack->CurrPtr->VendorGuid)) {
1120 Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
1121
1122 ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
1123 if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
1124 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1125 InDeletedVariable = PtrTrack->CurrPtr;
1126 } else {
1127 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1128 return EFI_SUCCESS;
1129 }
1130 }
1131 }
1132 }
1133 }
1134 }
1135 }
1136
1137 PtrTrack->CurrPtr = InDeletedVariable;
1138 return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
1139 }
1140
1141
1142 /**
1143 Finds variable in storage blocks of volatile and non-volatile storage areas.
1144
1145 This code finds variable in storage blocks of volatile and non-volatile storage areas.
1146 If VariableName is an empty string, then we just return the first
1147 qualified variable without comparing VariableName and VendorGuid.
1148 If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
1149 at runtime when searching existing variable, only VariableName and VendorGuid are compared.
1150 Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
1151
1152 @param[in] VariableName Name of the variable to be found.
1153 @param[in] VendorGuid Vendor GUID to be found.
1154 @param[out] PtrTrack VARIABLE_POINTER_TRACK structure for output,
1155 including the range searched and the target position.
1156 @param[in] Global Pointer to VARIABLE_GLOBAL structure, including
1157 base of volatile variable storage area, base of
1158 NV variable storage area, and a lock.
1159 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1160 check at runtime when searching variable.
1161
1162 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
1163 VendorGuid is NULL.
1164 @retval EFI_SUCCESS Variable successfully found.
1165 @retval EFI_NOT_FOUND Variable not found
1166
1167 **/
1168 EFI_STATUS
1169 FindVariable (
1170 IN CHAR16 *VariableName,
1171 IN EFI_GUID *VendorGuid,
1172 OUT VARIABLE_POINTER_TRACK *PtrTrack,
1173 IN VARIABLE_GLOBAL *Global,
1174 IN BOOLEAN IgnoreRtCheck
1175 )
1176 {
1177 EFI_STATUS Status;
1178 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
1179 VARIABLE_STORE_TYPE Type;
1180
1181 if (VariableName[0] != 0 && VendorGuid == NULL) {
1182 return EFI_INVALID_PARAMETER;
1183 }
1184
1185 //
1186 // 0: Volatile, 1: HOB, 2: Non-Volatile.
1187 // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
1188 // make use of this mapping to implement search algorithm.
1189 //
1190 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
1191 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
1192 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
1193
1194 //
1195 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1196 //
1197 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
1198 if (VariableStoreHeader[Type] == NULL) {
1199 continue;
1200 }
1201
1202 PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
1203 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
1204 PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
1205
1206 Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
1207 if (!EFI_ERROR (Status)) {
1208 return Status;
1209 }
1210 }
1211 return EFI_NOT_FOUND;
1212 }
1213
1214 /**
1215 Get index from supported language codes according to language string.
1216
1217 This code is used to get corresponding index in supported language codes. It can handle
1218 RFC4646 and ISO639 language tags.
1219 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
1220 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
1221
1222 For example:
1223 SupportedLang = "engfraengfra"
1224 Lang = "eng"
1225 Iso639Language = TRUE
1226 The return value is "0".
1227 Another example:
1228 SupportedLang = "en;fr;en-US;fr-FR"
1229 Lang = "fr-FR"
1230 Iso639Language = FALSE
1231 The return value is "3".
1232
1233 @param SupportedLang Platform supported language codes.
1234 @param Lang Configured language.
1235 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1236
1237 @retval The index of language in the language codes.
1238
1239 **/
1240 UINTN
1241 GetIndexFromSupportedLangCodes(
1242 IN CHAR8 *SupportedLang,
1243 IN CHAR8 *Lang,
1244 IN BOOLEAN Iso639Language
1245 )
1246 {
1247 UINTN Index;
1248 UINTN CompareLength;
1249 UINTN LanguageLength;
1250
1251 if (Iso639Language) {
1252 CompareLength = ISO_639_2_ENTRY_SIZE;
1253 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
1254 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
1255 //
1256 // Successfully find the index of Lang string in SupportedLang string.
1257 //
1258 Index = Index / CompareLength;
1259 return Index;
1260 }
1261 }
1262 ASSERT (FALSE);
1263 return 0;
1264 } else {
1265 //
1266 // Compare RFC4646 language code
1267 //
1268 Index = 0;
1269 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
1270
1271 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
1272 //
1273 // Skip ';' characters in SupportedLang
1274 //
1275 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
1276 //
1277 // Determine the length of the next language code in SupportedLang
1278 //
1279 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
1280
1281 if ((CompareLength == LanguageLength) &&
1282 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
1283 //
1284 // Successfully find the index of Lang string in SupportedLang string.
1285 //
1286 return Index;
1287 }
1288 }
1289 ASSERT (FALSE);
1290 return 0;
1291 }
1292 }
1293
1294 /**
1295 Get language string from supported language codes according to index.
1296
1297 This code is used to get corresponding language strings in supported language codes. It can handle
1298 RFC4646 and ISO639 language tags.
1299 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
1300 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
1301
1302 For example:
1303 SupportedLang = "engfraengfra"
1304 Index = "1"
1305 Iso639Language = TRUE
1306 The return value is "fra".
1307 Another example:
1308 SupportedLang = "en;fr;en-US;fr-FR"
1309 Index = "1"
1310 Iso639Language = FALSE
1311 The return value is "fr".
1312
1313 @param SupportedLang Platform supported language codes.
1314 @param Index The index in supported language codes.
1315 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1316
1317 @retval The language string in the language codes.
1318
1319 **/
1320 CHAR8 *
1321 GetLangFromSupportedLangCodes (
1322 IN CHAR8 *SupportedLang,
1323 IN UINTN Index,
1324 IN BOOLEAN Iso639Language
1325 )
1326 {
1327 UINTN SubIndex;
1328 UINTN CompareLength;
1329 CHAR8 *Supported;
1330
1331 SubIndex = 0;
1332 Supported = SupportedLang;
1333 if (Iso639Language) {
1334 //
1335 // According to the index of Lang string in SupportedLang string to get the language.
1336 // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
1337 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1338 //
1339 CompareLength = ISO_639_2_ENTRY_SIZE;
1340 mVariableModuleGlobal->Lang[CompareLength] = '\0';
1341 return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
1342
1343 } else {
1344 while (TRUE) {
1345 //
1346 // Take semicolon as delimitation, sequentially traverse supported language codes.
1347 //
1348 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
1349 Supported++;
1350 }
1351 if ((*Supported == '\0') && (SubIndex != Index)) {
1352 //
1353 // Have completed the traverse, but not find corrsponding string.
1354 // This case is not allowed to happen.
1355 //
1356 ASSERT(FALSE);
1357 return NULL;
1358 }
1359 if (SubIndex == Index) {
1360 //
1361 // According to the index of Lang string in SupportedLang string to get the language.
1362 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
1363 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1364 //
1365 mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
1366 return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
1367 }
1368 SubIndex++;
1369
1370 //
1371 // Skip ';' characters in Supported
1372 //
1373 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1374 }
1375 }
1376 }
1377
1378 /**
1379 Returns a pointer to an allocated buffer that contains the best matching language
1380 from a set of supported languages.
1381
1382 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1383 code types may not be mixed in a single call to this function. This function
1384 supports a variable argument list that allows the caller to pass in a prioritized
1385 list of language codes to test against all the language codes in SupportedLanguages.
1386
1387 If SupportedLanguages is NULL, then ASSERT().
1388
1389 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1390 contains a set of language codes in the format
1391 specified by Iso639Language.
1392 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1393 in ISO 639-2 format. If FALSE, then all language
1394 codes are assumed to be in RFC 4646 language format
1395 @param[in] ... A variable argument list that contains pointers to
1396 Null-terminated ASCII strings that contain one or more
1397 language codes in the format specified by Iso639Language.
1398 The first language code from each of these language
1399 code lists is used to determine if it is an exact or
1400 close match to any of the language codes in
1401 SupportedLanguages. Close matches only apply to RFC 4646
1402 language codes, and the matching algorithm from RFC 4647
1403 is used to determine if a close match is present. If
1404 an exact or close match is found, then the matching
1405 language code from SupportedLanguages is returned. If
1406 no matches are found, then the next variable argument
1407 parameter is evaluated. The variable argument list
1408 is terminated by a NULL.
1409
1410 @retval NULL The best matching language could not be found in SupportedLanguages.
1411 @retval NULL There are not enough resources available to return the best matching
1412 language.
1413 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1414 language in SupportedLanguages.
1415
1416 **/
1417 CHAR8 *
1418 EFIAPI
1419 VariableGetBestLanguage (
1420 IN CONST CHAR8 *SupportedLanguages,
1421 IN BOOLEAN Iso639Language,
1422 ...
1423 )
1424 {
1425 VA_LIST Args;
1426 CHAR8 *Language;
1427 UINTN CompareLength;
1428 UINTN LanguageLength;
1429 CONST CHAR8 *Supported;
1430 CHAR8 *Buffer;
1431
1432 if (SupportedLanguages == NULL) {
1433 return NULL;
1434 }
1435
1436 VA_START (Args, Iso639Language);
1437 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1438 //
1439 // Default to ISO 639-2 mode
1440 //
1441 CompareLength = 3;
1442 LanguageLength = MIN (3, AsciiStrLen (Language));
1443
1444 //
1445 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1446 //
1447 if (!Iso639Language) {
1448 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1449 }
1450
1451 //
1452 // Trim back the length of Language used until it is empty
1453 //
1454 while (LanguageLength > 0) {
1455 //
1456 // Loop through all language codes in SupportedLanguages
1457 //
1458 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1459 //
1460 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1461 //
1462 if (!Iso639Language) {
1463 //
1464 // Skip ';' characters in Supported
1465 //
1466 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1467 //
1468 // Determine the length of the next language code in Supported
1469 //
1470 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1471 //
1472 // If Language is longer than the Supported, then skip to the next language
1473 //
1474 if (LanguageLength > CompareLength) {
1475 continue;
1476 }
1477 }
1478 //
1479 // See if the first LanguageLength characters in Supported match Language
1480 //
1481 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1482 VA_END (Args);
1483
1484 Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
1485 Buffer[CompareLength] = '\0';
1486 return CopyMem (Buffer, Supported, CompareLength);
1487 }
1488 }
1489
1490 if (Iso639Language) {
1491 //
1492 // If ISO 639 mode, then each language can only be tested once
1493 //
1494 LanguageLength = 0;
1495 } else {
1496 //
1497 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1498 //
1499 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1500 }
1501 }
1502 }
1503 VA_END (Args);
1504
1505 //
1506 // No matches were found
1507 //
1508 return NULL;
1509 }
1510
1511 /**
1512 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
1513
1514 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
1515
1516 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
1517 and are read-only. Therefore, in variable driver, only store the original value for other use.
1518
1519 @param[in] VariableName Name of variable.
1520
1521 @param[in] Data Variable data.
1522
1523 @param[in] DataSize Size of data. 0 means delete.
1524
1525 @retval EFI_SUCCESS The update operation is successful or ignored.
1526 @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime.
1527 @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation.
1528 @retval Others Other errors happened during the update operation.
1529
1530 **/
1531 EFI_STATUS
1532 AutoUpdateLangVariable (
1533 IN CHAR16 *VariableName,
1534 IN VOID *Data,
1535 IN UINTN DataSize
1536 )
1537 {
1538 EFI_STATUS Status;
1539 CHAR8 *BestPlatformLang;
1540 CHAR8 *BestLang;
1541 UINTN Index;
1542 UINT32 Attributes;
1543 VARIABLE_POINTER_TRACK Variable;
1544 BOOLEAN SetLanguageCodes;
1545
1546 //
1547 // Don't do updates for delete operation
1548 //
1549 if (DataSize == 0) {
1550 return EFI_SUCCESS;
1551 }
1552
1553 SetLanguageCodes = FALSE;
1554
1555 if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) {
1556 //
1557 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
1558 //
1559 if (AtRuntime ()) {
1560 return EFI_WRITE_PROTECTED;
1561 }
1562
1563 SetLanguageCodes = TRUE;
1564
1565 //
1566 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
1567 // Therefore, in variable driver, only store the original value for other use.
1568 //
1569 if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
1570 FreePool (mVariableModuleGlobal->PlatformLangCodes);
1571 }
1572 mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1573 ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
1574
1575 //
1576 // PlatformLang holds a single language from PlatformLangCodes,
1577 // so the size of PlatformLangCodes is enough for the PlatformLang.
1578 //
1579 if (mVariableModuleGlobal->PlatformLang != NULL) {
1580 FreePool (mVariableModuleGlobal->PlatformLang);
1581 }
1582 mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
1583 ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
1584
1585 } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) {
1586 //
1587 // LangCodes is a volatile variable, so it can not be updated at runtime.
1588 //
1589 if (AtRuntime ()) {
1590 return EFI_WRITE_PROTECTED;
1591 }
1592
1593 SetLanguageCodes = TRUE;
1594
1595 //
1596 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
1597 // Therefore, in variable driver, only store the original value for other use.
1598 //
1599 if (mVariableModuleGlobal->LangCodes != NULL) {
1600 FreePool (mVariableModuleGlobal->LangCodes);
1601 }
1602 mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1603 ASSERT (mVariableModuleGlobal->LangCodes != NULL);
1604 }
1605
1606 if (SetLanguageCodes
1607 && (mVariableModuleGlobal->PlatformLangCodes != NULL)
1608 && (mVariableModuleGlobal->LangCodes != NULL)) {
1609 //
1610 // Update Lang if PlatformLang is already set
1611 // Update PlatformLang if Lang is already set
1612 //
1613 Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1614 if (!EFI_ERROR (Status)) {
1615 //
1616 // Update Lang
1617 //
1618 VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME;
1619 Data = GetVariableDataPtr (Variable.CurrPtr);
1620 DataSize = Variable.CurrPtr->DataSize;
1621 } else {
1622 Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1623 if (!EFI_ERROR (Status)) {
1624 //
1625 // Update PlatformLang
1626 //
1627 VariableName = EFI_LANG_VARIABLE_NAME;
1628 Data = GetVariableDataPtr (Variable.CurrPtr);
1629 DataSize = Variable.CurrPtr->DataSize;
1630 } else {
1631 //
1632 // Neither PlatformLang nor Lang is set, directly return
1633 //
1634 return EFI_SUCCESS;
1635 }
1636 }
1637 }
1638
1639 Status = EFI_SUCCESS;
1640
1641 //
1642 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
1643 //
1644 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
1645
1646 if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) {
1647 //
1648 // Update Lang when PlatformLangCodes/LangCodes were set.
1649 //
1650 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1651 //
1652 // When setting PlatformLang, firstly get most matched language string from supported language codes.
1653 //
1654 BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
1655 if (BestPlatformLang != NULL) {
1656 //
1657 // Get the corresponding index in language codes.
1658 //
1659 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
1660
1661 //
1662 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
1663 //
1664 BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
1665
1666 //
1667 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1668 //
1669 FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1670
1671 Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang,
1672 ISO_639_2_ENTRY_SIZE + 1, Attributes, 0, 0, &Variable, NULL);
1673
1674 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a Status: %r\n", BestPlatformLang, BestLang, Status));
1675 }
1676 }
1677
1678 } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) {
1679 //
1680 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
1681 //
1682 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1683 //
1684 // When setting Lang, firstly get most matched language string from supported language codes.
1685 //
1686 BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
1687 if (BestLang != NULL) {
1688 //
1689 // Get the corresponding index in language codes.
1690 //
1691 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
1692
1693 //
1694 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
1695 //
1696 BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
1697
1698 //
1699 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
1700 //
1701 FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1702
1703 Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang,
1704 AsciiStrSize (BestPlatformLang), Attributes, 0, 0, &Variable, NULL);
1705
1706 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status));
1707 }
1708 }
1709 }
1710
1711 return Status;
1712 }
1713
1714 /**
1715 Update the variable region with Variable information. If EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set,
1716 index of associated public key is needed.
1717
1718 @param[in] VariableName Name of variable.
1719 @param[in] VendorGuid Guid of variable.
1720 @param[in] Data Variable data.
1721 @param[in] DataSize Size of data. 0 means delete.
1722 @param[in] Attributes Attributes of the variable.
1723 @param[in] KeyIndex Index of associated public key.
1724 @param[in] MonotonicCount Value of associated monotonic count.
1725 @param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
1726 @param[in] TimeStamp Value of associated TimeStamp.
1727
1728 @retval EFI_SUCCESS The update operation is success.
1729 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
1730
1731 **/
1732 EFI_STATUS
1733 UpdateVariable (
1734 IN CHAR16 *VariableName,
1735 IN EFI_GUID *VendorGuid,
1736 IN VOID *Data,
1737 IN UINTN DataSize,
1738 IN UINT32 Attributes OPTIONAL,
1739 IN UINT32 KeyIndex OPTIONAL,
1740 IN UINT64 MonotonicCount OPTIONAL,
1741 IN OUT VARIABLE_POINTER_TRACK *CacheVariable,
1742 IN EFI_TIME *TimeStamp OPTIONAL
1743 )
1744 {
1745 EFI_STATUS Status;
1746 VARIABLE_HEADER *NextVariable;
1747 UINTN ScratchSize;
1748 UINTN MaxDataSize;
1749 UINTN NonVolatileVarableStoreSize;
1750 UINTN VarNameOffset;
1751 UINTN VarDataOffset;
1752 UINTN VarNameSize;
1753 UINTN VarSize;
1754 BOOLEAN Volatile;
1755 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
1756 UINT8 State;
1757 VARIABLE_POINTER_TRACK *Variable;
1758 VARIABLE_POINTER_TRACK NvVariable;
1759 VARIABLE_STORE_HEADER *VariableStoreHeader;
1760 UINTN CacheOffset;
1761 UINT8 *BufferForMerge;
1762 UINTN MergedBufSize;
1763 BOOLEAN DataReady;
1764 UINTN DataOffset;
1765
1766 if (mVariableModuleGlobal->FvbInstance == NULL) {
1767 //
1768 // The FVB protocol is not installed, so the EFI_VARIABLE_WRITE_ARCH_PROTOCOL is not installed.
1769 //
1770 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
1771 //
1772 // Trying to update NV variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
1773 //
1774 return EFI_NOT_AVAILABLE_YET;
1775 } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
1776 //
1777 // Trying to update volatile authenticated variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
1778 // The authenticated variable perhaps is not initialized, just return here.
1779 //
1780 return EFI_NOT_AVAILABLE_YET;
1781 }
1782 }
1783
1784 if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
1785 Variable = CacheVariable;
1786 } else {
1787 //
1788 // Update/Delete existing NV variable.
1789 // CacheVariable points to the variable in the memory copy of Flash area
1790 // Now let Variable points to the same variable in Flash area.
1791 //
1792 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
1793 Variable = &NvVariable;
1794 Variable->StartPtr = GetStartPointer (VariableStoreHeader);
1795 Variable->EndPtr = GetEndPointer (VariableStoreHeader);
1796 Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
1797 if (CacheVariable->InDeletedTransitionPtr != NULL) {
1798 Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
1799 } else {
1800 Variable->InDeletedTransitionPtr = NULL;
1801 }
1802 Variable->Volatile = FALSE;
1803 }
1804
1805 Fvb = mVariableModuleGlobal->FvbInstance;
1806
1807 //
1808 // Tricky part: Use scratch data area at the end of volatile variable store
1809 // as a temporary storage.
1810 //
1811 NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
1812 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
1813 SetMem (NextVariable, ScratchSize, 0xff);
1814 DataReady = FALSE;
1815
1816 if (Variable->CurrPtr != NULL) {
1817 //
1818 // Update/Delete existing variable.
1819 //
1820 if (AtRuntime ()) {
1821 //
1822 // If AtRuntime and the variable is Volatile and Runtime Access,
1823 // the volatile is ReadOnly, and SetVariable should be aborted and
1824 // return EFI_WRITE_PROTECTED.
1825 //
1826 if (Variable->Volatile) {
1827 Status = EFI_WRITE_PROTECTED;
1828 goto Done;
1829 }
1830 //
1831 // Only variable that have NV attributes can be updated/deleted in Runtime.
1832 //
1833 if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
1834 Status = EFI_INVALID_PARAMETER;
1835 goto Done;
1836 }
1837
1838 //
1839 // Only variable that have RT attributes can be updated/deleted in Runtime.
1840 //
1841 if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) {
1842 Status = EFI_INVALID_PARAMETER;
1843 goto Done;
1844 }
1845 }
1846
1847 //
1848 // Setting a data variable with no access, or zero DataSize attributes
1849 // causes it to be deleted.
1850 // When the EFI_VARIABLE_APPEND_WRITE attribute is set, DataSize of zero will
1851 // not delete the variable.
1852 //
1853 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0))|| ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0)) {
1854 if (Variable->InDeletedTransitionPtr != NULL) {
1855 //
1856 // Both ADDED and IN_DELETED_TRANSITION variable are present,
1857 // set IN_DELETED_TRANSITION one to DELETED state first.
1858 //
1859 State = Variable->InDeletedTransitionPtr->State;
1860 State &= VAR_DELETED;
1861 Status = UpdateVariableStore (
1862 &mVariableModuleGlobal->VariableGlobal,
1863 Variable->Volatile,
1864 FALSE,
1865 Fvb,
1866 (UINTN) &Variable->InDeletedTransitionPtr->State,
1867 sizeof (UINT8),
1868 &State
1869 );
1870 if (!EFI_ERROR (Status)) {
1871 if (!Variable->Volatile) {
1872 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
1873 CacheVariable->InDeletedTransitionPtr->State = State;
1874 }
1875 } else {
1876 goto Done;
1877 }
1878 }
1879
1880 State = Variable->CurrPtr->State;
1881 State &= VAR_DELETED;
1882
1883 Status = UpdateVariableStore (
1884 &mVariableModuleGlobal->VariableGlobal,
1885 Variable->Volatile,
1886 FALSE,
1887 Fvb,
1888 (UINTN) &Variable->CurrPtr->State,
1889 sizeof (UINT8),
1890 &State
1891 );
1892 if (!EFI_ERROR (Status)) {
1893 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
1894 if (!Variable->Volatile) {
1895 CacheVariable->CurrPtr->State = State;
1896 FlushHobVariableToFlash (VariableName, VendorGuid);
1897 }
1898 }
1899 goto Done;
1900 }
1901 //
1902 // If the variable is marked valid, and the same data has been passed in,
1903 // then return to the caller immediately.
1904 //
1905 if (DataSizeOfVariable (Variable->CurrPtr) == DataSize &&
1906 (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0) &&
1907 ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) &&
1908 (TimeStamp == NULL)) {
1909 //
1910 // Variable content unchanged and no need to update timestamp, just return.
1911 //
1912 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
1913 Status = EFI_SUCCESS;
1914 goto Done;
1915 } else if ((Variable->CurrPtr->State == VAR_ADDED) ||
1916 (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
1917
1918 //
1919 // EFI_VARIABLE_APPEND_WRITE attribute only effects for existing variable
1920 //
1921 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0) {
1922 //
1923 // NOTE: From 0 to DataOffset of NextVariable is reserved for Variable Header and Name.
1924 // From DataOffset of NextVariable is to save the existing variable data.
1925 //
1926 DataOffset = sizeof (VARIABLE_HEADER) + Variable->CurrPtr->NameSize + GET_PAD_SIZE (Variable->CurrPtr->NameSize);
1927 BufferForMerge = (UINT8 *) ((UINTN) NextVariable + DataOffset);
1928 CopyMem (BufferForMerge, (UINT8 *) ((UINTN) Variable->CurrPtr + DataOffset), Variable->CurrPtr->DataSize);
1929
1930 //
1931 // Set Max Common Variable Data Size as default MaxDataSize
1932 //
1933 MaxDataSize = PcdGet32 (PcdMaxVariableSize) - DataOffset;
1934
1935 if ((CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) &&
1936 ((StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE) == 0) || (StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE1) == 0))) ||
1937 (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0))) {
1938 //
1939 // For variables with formatted as EFI_SIGNATURE_LIST, the driver shall not perform an append of
1940 // EFI_SIGNATURE_DATA values that are already part of the existing variable value.
1941 //
1942 Status = AppendSignatureList (
1943 BufferForMerge,
1944 Variable->CurrPtr->DataSize,
1945 MaxDataSize - Variable->CurrPtr->DataSize,
1946 Data,
1947 DataSize,
1948 &MergedBufSize
1949 );
1950 if (Status == EFI_BUFFER_TOO_SMALL) {
1951 //
1952 // Signature List is too long, Failed to Append.
1953 //
1954 Status = EFI_INVALID_PARAMETER;
1955 goto Done;
1956 }
1957
1958 if (MergedBufSize == Variable->CurrPtr->DataSize) {
1959 if ((TimeStamp == NULL) || CompareTimeStamp (TimeStamp, &Variable->CurrPtr->TimeStamp)) {
1960 //
1961 // New EFI_SIGNATURE_DATA is not found and timestamp is not later
1962 // than current timestamp, return EFI_SUCCESS directly.
1963 //
1964 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
1965 Status = EFI_SUCCESS;
1966 goto Done;
1967 }
1968 }
1969 } else {
1970 //
1971 // For other Variables, append the new data to the end of existing data.
1972 // Max Harware error record variable data size is different from common variable
1973 //
1974 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1975 MaxDataSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - DataOffset;
1976 }
1977
1978 if (Variable->CurrPtr->DataSize + DataSize > MaxDataSize) {
1979 //
1980 // Existing data size + new data size exceed maximum variable size limitation.
1981 //
1982 Status = EFI_INVALID_PARAMETER;
1983 goto Done;
1984 }
1985 CopyMem ((UINT8*) ((UINTN) BufferForMerge + Variable->CurrPtr->DataSize), Data, DataSize);
1986 MergedBufSize = Variable->CurrPtr->DataSize + DataSize;
1987 }
1988
1989 //
1990 // BufferForMerge(from DataOffset of NextVariable) has included the merged existing and new data.
1991 //
1992 Data = BufferForMerge;
1993 DataSize = MergedBufSize;
1994 DataReady = TRUE;
1995 }
1996
1997 //
1998 // Mark the old variable as in delete transition.
1999 //
2000 State = Variable->CurrPtr->State;
2001 State &= VAR_IN_DELETED_TRANSITION;
2002
2003 Status = UpdateVariableStore (
2004 &mVariableModuleGlobal->VariableGlobal,
2005 Variable->Volatile,
2006 FALSE,
2007 Fvb,
2008 (UINTN) &Variable->CurrPtr->State,
2009 sizeof (UINT8),
2010 &State
2011 );
2012 if (EFI_ERROR (Status)) {
2013 goto Done;
2014 }
2015 if (!Variable->Volatile) {
2016 CacheVariable->CurrPtr->State = State;
2017 }
2018 }
2019 } else {
2020 //
2021 // Not found existing variable. Create a new variable.
2022 //
2023
2024 if ((DataSize == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0)) {
2025 Status = EFI_SUCCESS;
2026 goto Done;
2027 }
2028
2029 //
2030 // Make sure we are trying to create a new variable.
2031 // Setting a data variable with zero DataSize or no access attributes means to delete it.
2032 //
2033 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
2034 Status = EFI_NOT_FOUND;
2035 goto Done;
2036 }
2037
2038 //
2039 // Only variable have NV|RT attribute can be created in Runtime.
2040 //
2041 if (AtRuntime () &&
2042 (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
2043 Status = EFI_INVALID_PARAMETER;
2044 goto Done;
2045 }
2046 }
2047
2048 //
2049 // Function part - create a new variable and copy the data.
2050 // Both update a variable and create a variable will come here.
2051 //
2052 NextVariable->StartId = VARIABLE_DATA;
2053 //
2054 // NextVariable->State = VAR_ADDED;
2055 //
2056 NextVariable->Reserved = 0;
2057 NextVariable->PubKeyIndex = KeyIndex;
2058 NextVariable->MonotonicCount = MonotonicCount;
2059 ZeroMem (&NextVariable->TimeStamp, sizeof (EFI_TIME));
2060
2061 if (((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) &&
2062 (TimeStamp != NULL)) {
2063 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) {
2064 CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2065 } else {
2066 //
2067 // In the case when the EFI_VARIABLE_APPEND_WRITE attribute is set, only
2068 // when the new TimeStamp value is later than the current timestamp associated
2069 // with the variable, we need associate the new timestamp with the updated value.
2070 //
2071 if (Variable->CurrPtr != NULL) {
2072 if (CompareTimeStamp (&Variable->CurrPtr->TimeStamp, TimeStamp)) {
2073 CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2074 }
2075 }
2076 }
2077 }
2078
2079 //
2080 // The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned
2081 // Attributes bitmask parameter of a GetVariable() call.
2082 //
2083 NextVariable->Attributes = Attributes & (~EFI_VARIABLE_APPEND_WRITE);
2084
2085 VarNameOffset = sizeof (VARIABLE_HEADER);
2086 VarNameSize = StrSize (VariableName);
2087 CopyMem (
2088 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
2089 VariableName,
2090 VarNameSize
2091 );
2092 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
2093
2094 //
2095 // If DataReady is TRUE, it means the variable data has been saved into
2096 // NextVariable during EFI_VARIABLE_APPEND_WRITE operation preparation.
2097 //
2098 if (!DataReady) {
2099 CopyMem (
2100 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
2101 Data,
2102 DataSize
2103 );
2104 }
2105
2106 CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
2107 //
2108 // There will be pad bytes after Data, the NextVariable->NameSize and
2109 // NextVariable->DataSize should not include pad size so that variable
2110 // service can get actual size in GetVariable.
2111 //
2112 NextVariable->NameSize = (UINT32)VarNameSize;
2113 NextVariable->DataSize = (UINT32)DataSize;
2114
2115 //
2116 // The actual size of the variable that stores in storage should
2117 // include pad size.
2118 //
2119 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
2120 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2121 //
2122 // Create a nonvolatile variable.
2123 //
2124 Volatile = FALSE;
2125 NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size;
2126 if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
2127 && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
2128 || (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0)
2129 && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) {
2130 if (AtRuntime ()) {
2131 Status = EFI_OUT_OF_RESOURCES;
2132 goto Done;
2133 }
2134 //
2135 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2136 //
2137 Status = Reclaim (
2138 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2139 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2140 FALSE,
2141 Variable,
2142 NextVariable,
2143 HEADER_ALIGN (VarSize),
2144 FALSE
2145 );
2146 if (!EFI_ERROR (Status)) {
2147 //
2148 // The new variable has been integrated successfully during reclaiming.
2149 //
2150 if (Variable->CurrPtr != NULL) {
2151 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2152 CacheVariable->InDeletedTransitionPtr = NULL;
2153 }
2154 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE);
2155 FlushHobVariableToFlash (VariableName, VendorGuid);
2156 }
2157 goto Done;
2158 }
2159 //
2160 // Four steps
2161 // 1. Write variable header
2162 // 2. Set variable state to header valid
2163 // 3. Write variable data
2164 // 4. Set variable state to valid
2165 //
2166 //
2167 // Step 1:
2168 //
2169 CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
2170 Status = UpdateVariableStore (
2171 &mVariableModuleGlobal->VariableGlobal,
2172 FALSE,
2173 TRUE,
2174 Fvb,
2175 mVariableModuleGlobal->NonVolatileLastVariableOffset,
2176 sizeof (VARIABLE_HEADER),
2177 (UINT8 *) NextVariable
2178 );
2179
2180 if (EFI_ERROR (Status)) {
2181 goto Done;
2182 }
2183
2184 //
2185 // Step 2:
2186 //
2187 NextVariable->State = VAR_HEADER_VALID_ONLY;
2188 Status = UpdateVariableStore (
2189 &mVariableModuleGlobal->VariableGlobal,
2190 FALSE,
2191 TRUE,
2192 Fvb,
2193 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2194 sizeof (UINT8),
2195 &NextVariable->State
2196 );
2197
2198 if (EFI_ERROR (Status)) {
2199 goto Done;
2200 }
2201 //
2202 // Step 3:
2203 //
2204 Status = UpdateVariableStore (
2205 &mVariableModuleGlobal->VariableGlobal,
2206 FALSE,
2207 TRUE,
2208 Fvb,
2209 mVariableModuleGlobal->NonVolatileLastVariableOffset + sizeof (VARIABLE_HEADER),
2210 (UINT32) VarSize - sizeof (VARIABLE_HEADER),
2211 (UINT8 *) NextVariable + sizeof (VARIABLE_HEADER)
2212 );
2213
2214 if (EFI_ERROR (Status)) {
2215 goto Done;
2216 }
2217 //
2218 // Step 4:
2219 //
2220 NextVariable->State = VAR_ADDED;
2221 Status = UpdateVariableStore (
2222 &mVariableModuleGlobal->VariableGlobal,
2223 FALSE,
2224 TRUE,
2225 Fvb,
2226 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2227 sizeof (UINT8),
2228 &NextVariable->State
2229 );
2230
2231 if (EFI_ERROR (Status)) {
2232 goto Done;
2233 }
2234
2235 mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2236
2237 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
2238 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
2239 } else {
2240 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
2241 }
2242 //
2243 // update the memory copy of Flash region.
2244 //
2245 CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
2246 } else {
2247 //
2248 // Create a volatile variable.
2249 //
2250 Volatile = TRUE;
2251
2252 if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
2253 ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
2254 //
2255 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2256 //
2257 Status = Reclaim (
2258 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
2259 &mVariableModuleGlobal->VolatileLastVariableOffset,
2260 TRUE,
2261 Variable,
2262 NextVariable,
2263 HEADER_ALIGN (VarSize),
2264 FALSE
2265 );
2266 if (!EFI_ERROR (Status)) {
2267 //
2268 // The new variable has been integrated successfully during reclaiming.
2269 //
2270 if (Variable->CurrPtr != NULL) {
2271 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2272 CacheVariable->InDeletedTransitionPtr = NULL;
2273 }
2274 UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE);
2275 }
2276 goto Done;
2277 }
2278
2279 NextVariable->State = VAR_ADDED;
2280 Status = UpdateVariableStore (
2281 &mVariableModuleGlobal->VariableGlobal,
2282 TRUE,
2283 TRUE,
2284 Fvb,
2285 mVariableModuleGlobal->VolatileLastVariableOffset,
2286 (UINT32) VarSize,
2287 (UINT8 *) NextVariable
2288 );
2289
2290 if (EFI_ERROR (Status)) {
2291 goto Done;
2292 }
2293
2294 mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2295 }
2296
2297 //
2298 // Mark the old variable as deleted.
2299 //
2300 if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
2301 if (Variable->InDeletedTransitionPtr != NULL) {
2302 //
2303 // Both ADDED and IN_DELETED_TRANSITION old variable are present,
2304 // set IN_DELETED_TRANSITION one to DELETED state first.
2305 //
2306 State = Variable->InDeletedTransitionPtr->State;
2307 State &= VAR_DELETED;
2308 Status = UpdateVariableStore (
2309 &mVariableModuleGlobal->VariableGlobal,
2310 Variable->Volatile,
2311 FALSE,
2312 Fvb,
2313 (UINTN) &Variable->InDeletedTransitionPtr->State,
2314 sizeof (UINT8),
2315 &State
2316 );
2317 if (!EFI_ERROR (Status)) {
2318 if (!Variable->Volatile) {
2319 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2320 CacheVariable->InDeletedTransitionPtr->State = State;
2321 }
2322 } else {
2323 goto Done;
2324 }
2325 }
2326
2327 State = Variable->CurrPtr->State;
2328 State &= VAR_DELETED;
2329
2330 Status = UpdateVariableStore (
2331 &mVariableModuleGlobal->VariableGlobal,
2332 Variable->Volatile,
2333 FALSE,
2334 Fvb,
2335 (UINTN) &Variable->CurrPtr->State,
2336 sizeof (UINT8),
2337 &State
2338 );
2339 if (!EFI_ERROR (Status) && !Variable->Volatile) {
2340 CacheVariable->CurrPtr->State = State;
2341 }
2342 }
2343
2344 if (!EFI_ERROR (Status)) {
2345 UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
2346 if (!Volatile) {
2347 FlushHobVariableToFlash (VariableName, VendorGuid);
2348 }
2349 }
2350
2351 Done:
2352 return Status;
2353 }
2354
2355 /**
2356 Check if a Unicode character is a hexadecimal character.
2357
2358 This function checks if a Unicode character is a
2359 hexadecimal character. The valid hexadecimal character is
2360 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
2361
2362
2363 @param Char The character to check against.
2364
2365 @retval TRUE If the Char is a hexadecmial character.
2366 @retval FALSE If the Char is not a hexadecmial character.
2367
2368 **/
2369 BOOLEAN
2370 EFIAPI
2371 IsHexaDecimalDigitCharacter (
2372 IN CHAR16 Char
2373 )
2374 {
2375 return (BOOLEAN) ((Char >= L'0' && Char <= L'9') || (Char >= L'A' && Char <= L'F') || (Char >= L'a' && Char <= L'f'));
2376 }
2377
2378 /**
2379
2380 This code checks if variable is hardware error record variable or not.
2381
2382 According to UEFI spec, hardware error record variable should use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid
2383 and have the L"HwErrRec####" name convention, #### is a printed hex value and no 0x or h is included in the hex value.
2384
2385 @param VariableName Pointer to variable name.
2386 @param VendorGuid Variable Vendor Guid.
2387
2388 @retval TRUE Variable is hardware error record variable.
2389 @retval FALSE Variable is not hardware error record variable.
2390
2391 **/
2392 BOOLEAN
2393 EFIAPI
2394 IsHwErrRecVariable (
2395 IN CHAR16 *VariableName,
2396 IN EFI_GUID *VendorGuid
2397 )
2398 {
2399 if (!CompareGuid (VendorGuid, &gEfiHardwareErrorVariableGuid) ||
2400 (StrLen (VariableName) != StrLen (L"HwErrRec####")) ||
2401 (StrnCmp(VariableName, L"HwErrRec", StrLen (L"HwErrRec")) != 0) ||
2402 !IsHexaDecimalDigitCharacter (VariableName[0x8]) ||
2403 !IsHexaDecimalDigitCharacter (VariableName[0x9]) ||
2404 !IsHexaDecimalDigitCharacter (VariableName[0xA]) ||
2405 !IsHexaDecimalDigitCharacter (VariableName[0xB])) {
2406 return FALSE;
2407 }
2408
2409 return TRUE;
2410 }
2411
2412 /**
2413 This code checks if variable guid is global variable guid first.
2414 If yes, further check if variable name is in mGlobalVariableList or mGlobalVariableList2 and attributes matched.
2415
2416 @param[in] VariableName Pointer to variable name.
2417 @param[in] VendorGuid Variable Vendor Guid.
2418 @param[in] Attributes Attributes of the variable.
2419
2420 @retval EFI_SUCCESS Variable is not global variable, or Variable is global variable, variable name is in the lists and attributes matched.
2421 @retval EFI_INVALID_PARAMETER Variable is global variable, but variable name is not in the lists or attributes unmatched.
2422
2423 **/
2424 EFI_STATUS
2425 EFIAPI
2426 CheckEfiGlobalVariable (
2427 IN CHAR16 *VariableName,
2428 IN EFI_GUID *VendorGuid,
2429 IN UINT32 Attributes
2430 )
2431 {
2432 UINTN Index;
2433 UINTN NameLength;
2434
2435 if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)){
2436 //
2437 // Try list 1, exactly match.
2438 //
2439 for (Index = 0; Index < sizeof (mGlobalVariableList)/sizeof (mGlobalVariableList[0]); Index++) {
2440 if ((StrCmp (mGlobalVariableList[Index].Name, VariableName) == 0) &&
2441 (Attributes == 0 || (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) == mGlobalVariableList[Index].Attributes)) {
2442 return EFI_SUCCESS;
2443 }
2444 }
2445
2446 //
2447 // Try list 2.
2448 //
2449 NameLength = StrLen (VariableName) - 4;
2450 for (Index = 0; Index < sizeof (mGlobalVariableList2)/sizeof (mGlobalVariableList2[0]); Index++) {
2451 if ((StrLen (VariableName) == StrLen (mGlobalVariableList2[Index].Name)) &&
2452 (StrnCmp (mGlobalVariableList2[Index].Name, VariableName, NameLength) == 0) &&
2453 IsHexaDecimalDigitCharacter (VariableName[NameLength]) &&
2454 IsHexaDecimalDigitCharacter (VariableName[NameLength + 1]) &&
2455 IsHexaDecimalDigitCharacter (VariableName[NameLength + 2]) &&
2456 IsHexaDecimalDigitCharacter (VariableName[NameLength + 3]) &&
2457 (Attributes == 0 || (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) == mGlobalVariableList2[Index].Attributes)) {
2458 return EFI_SUCCESS;
2459 }
2460 }
2461
2462 DEBUG ((EFI_D_INFO, "[Variable]: set global variable with invalid variable name or attributes - %g:%s:%x\n", VendorGuid, VariableName, Attributes));
2463 return EFI_INVALID_PARAMETER;
2464 }
2465
2466 return EFI_SUCCESS;
2467 }
2468
2469 /**
2470 Mark a variable that will become read-only after leaving the DXE phase of execution.
2471
2472 @param[in] This The VARIABLE_LOCK_PROTOCOL instance.
2473 @param[in] VariableName A pointer to the variable name that will be made read-only subsequently.
2474 @param[in] VendorGuid A pointer to the vendor GUID that will be made read-only subsequently.
2475
2476 @retval EFI_SUCCESS The variable specified by the VariableName and the VendorGuid was marked
2477 as pending to be read-only.
2478 @retval EFI_INVALID_PARAMETER VariableName or VendorGuid is NULL.
2479 Or VariableName is an empty string.
2480 @retval EFI_ACCESS_DENIED EFI_END_OF_DXE_EVENT_GROUP_GUID or EFI_EVENT_GROUP_READY_TO_BOOT has
2481 already been signaled.
2482 @retval EFI_OUT_OF_RESOURCES There is not enough resource to hold the lock request.
2483 **/
2484 EFI_STATUS
2485 EFIAPI
2486 VariableLockRequestToLock (
2487 IN CONST EDKII_VARIABLE_LOCK_PROTOCOL *This,
2488 IN CHAR16 *VariableName,
2489 IN EFI_GUID *VendorGuid
2490 )
2491 {
2492 VARIABLE_ENTRY *Entry;
2493
2494 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
2495 return EFI_INVALID_PARAMETER;
2496 }
2497
2498 if (mEndOfDxe) {
2499 return EFI_ACCESS_DENIED;
2500 }
2501
2502 Entry = AllocateRuntimePool (sizeof (*Entry) + StrSize (VariableName));
2503 if (Entry == NULL) {
2504 return EFI_OUT_OF_RESOURCES;
2505 }
2506
2507 DEBUG ((EFI_D_INFO, "[Variable] Lock: %g:%s\n", VendorGuid, VariableName));
2508
2509 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2510
2511 Entry->Name = (CHAR16 *) (Entry + 1);
2512 StrCpy (Entry->Name, VariableName);
2513 CopyGuid (&Entry->Guid, VendorGuid);
2514 InsertTailList (&mLockedVariableList, &Entry->Link);
2515
2516 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2517
2518 return EFI_SUCCESS;
2519 }
2520
2521 /**
2522 This code checks if variable should be treated as read-only variable.
2523
2524 @param[in] VariableName Name of the Variable.
2525 @param[in] VendorGuid GUID of the Variable.
2526
2527 @retval TRUE This variable is read-only variable.
2528 @retval FALSE This variable is NOT read-only variable.
2529
2530 **/
2531 BOOLEAN
2532 IsReadOnlyVariable (
2533 IN CHAR16 *VariableName,
2534 IN EFI_GUID *VendorGuid
2535 )
2536 {
2537 if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)) {
2538 if ((StrCmp (VariableName, EFI_SETUP_MODE_NAME) == 0) ||
2539 (StrCmp (VariableName, EFI_SIGNATURE_SUPPORT_NAME) == 0) ||
2540 (StrCmp (VariableName, EFI_SECURE_BOOT_MODE_NAME) == 0) ||
2541 (StrCmp (VariableName, EFI_VENDOR_KEYS_VARIABLE_NAME) == 0) ||
2542 (StrCmp (VariableName, EFI_KEK_DEFAULT_VARIABLE_NAME) == 0) ||
2543 (StrCmp (VariableName, EFI_PK_DEFAULT_VARIABLE_NAME) == 0) ||
2544 (StrCmp (VariableName, EFI_DB_DEFAULT_VARIABLE_NAME) == 0) ||
2545 (StrCmp (VariableName, EFI_DBX_DEFAULT_VARIABLE_NAME) == 0) ||
2546 (StrCmp (VariableName, EFI_DBT_DEFAULT_VARIABLE_NAME) == 0)) {
2547 return TRUE;
2548 }
2549 }
2550
2551 return FALSE;
2552 }
2553
2554 /**
2555
2556 This code finds variable in storage blocks (Volatile or Non-Volatile).
2557
2558 Caution: This function may receive untrusted input.
2559 This function may be invoked in SMM mode, and datasize is external input.
2560 This function will do basic validation, before parse the data.
2561
2562 @param VariableName Name of Variable to be found.
2563 @param VendorGuid Variable vendor GUID.
2564 @param Attributes Attribute value of the variable found.
2565 @param DataSize Size of Data found. If size is less than the
2566 data, this value contains the required size.
2567 @param Data Data pointer.
2568
2569 @return EFI_INVALID_PARAMETER Invalid parameter.
2570 @return EFI_SUCCESS Find the specified variable.
2571 @return EFI_NOT_FOUND Not found.
2572 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2573
2574 **/
2575 EFI_STATUS
2576 EFIAPI
2577 VariableServiceGetVariable (
2578 IN CHAR16 *VariableName,
2579 IN EFI_GUID *VendorGuid,
2580 OUT UINT32 *Attributes OPTIONAL,
2581 IN OUT UINTN *DataSize,
2582 OUT VOID *Data
2583 )
2584 {
2585 EFI_STATUS Status;
2586 VARIABLE_POINTER_TRACK Variable;
2587 UINTN VarDataSize;
2588
2589 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
2590 return EFI_INVALID_PARAMETER;
2591 }
2592
2593 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2594
2595 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2596 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2597 goto Done;
2598 }
2599
2600 //
2601 // Get data size
2602 //
2603 VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
2604 ASSERT (VarDataSize != 0);
2605
2606 if (*DataSize >= VarDataSize) {
2607 if (Data == NULL) {
2608 Status = EFI_INVALID_PARAMETER;
2609 goto Done;
2610 }
2611
2612 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
2613 if (Attributes != NULL) {
2614 *Attributes = Variable.CurrPtr->Attributes;
2615 }
2616
2617 *DataSize = VarDataSize;
2618 UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
2619
2620 Status = EFI_SUCCESS;
2621 goto Done;
2622 } else {
2623 *DataSize = VarDataSize;
2624 Status = EFI_BUFFER_TOO_SMALL;
2625 goto Done;
2626 }
2627
2628 Done:
2629 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2630 return Status;
2631 }
2632
2633
2634
2635 /**
2636
2637 This code Finds the Next available variable.
2638
2639 Caution: This function may receive untrusted input.
2640 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
2641
2642 @param VariableNameSize Size of the variable name.
2643 @param VariableName Pointer to variable name.
2644 @param VendorGuid Variable Vendor Guid.
2645
2646 @return EFI_INVALID_PARAMETER Invalid parameter.
2647 @return EFI_SUCCESS Find the specified variable.
2648 @return EFI_NOT_FOUND Not found.
2649 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2650
2651 **/
2652 EFI_STATUS
2653 EFIAPI
2654 VariableServiceGetNextVariableName (
2655 IN OUT UINTN *VariableNameSize,
2656 IN OUT CHAR16 *VariableName,
2657 IN OUT EFI_GUID *VendorGuid
2658 )
2659 {
2660 VARIABLE_STORE_TYPE Type;
2661 VARIABLE_POINTER_TRACK Variable;
2662 VARIABLE_POINTER_TRACK VariableInHob;
2663 VARIABLE_POINTER_TRACK VariablePtrTrack;
2664 UINTN VarNameSize;
2665 EFI_STATUS Status;
2666 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
2667
2668 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
2669 return EFI_INVALID_PARAMETER;
2670 }
2671
2672 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2673
2674 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2675 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2676 goto Done;
2677 }
2678
2679 if (VariableName[0] != 0) {
2680 //
2681 // If variable name is not NULL, get next variable.
2682 //
2683 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2684 }
2685
2686 //
2687 // 0: Volatile, 1: HOB, 2: Non-Volatile.
2688 // The index and attributes mapping must be kept in this order as FindVariable
2689 // makes use of this mapping to implement search algorithm.
2690 //
2691 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
2692 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2693 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
2694
2695 while (TRUE) {
2696 //
2697 // Switch from Volatile to HOB, to Non-Volatile.
2698 //
2699 while ((Variable.CurrPtr >= Variable.EndPtr) ||
2700 (Variable.CurrPtr == NULL) ||
2701 !IsValidVariableHeader (Variable.CurrPtr)
2702 ) {
2703 //
2704 // Find current storage index
2705 //
2706 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
2707 if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
2708 break;
2709 }
2710 }
2711 ASSERT (Type < VariableStoreTypeMax);
2712 //
2713 // Switch to next storage
2714 //
2715 for (Type++; Type < VariableStoreTypeMax; Type++) {
2716 if (VariableStoreHeader[Type] != NULL) {
2717 break;
2718 }
2719 }
2720 //
2721 // Capture the case that
2722 // 1. current storage is the last one, or
2723 // 2. no further storage
2724 //
2725 if (Type == VariableStoreTypeMax) {
2726 Status = EFI_NOT_FOUND;
2727 goto Done;
2728 }
2729 Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
2730 Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
2731 Variable.CurrPtr = Variable.StartPtr;
2732 }
2733
2734 //
2735 // Variable is found
2736 //
2737 if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2738 if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
2739 if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2740 //
2741 // If it is a IN_DELETED_TRANSITION variable,
2742 // and there is also a same ADDED one at the same time,
2743 // don't return it.
2744 //
2745 VariablePtrTrack.StartPtr = Variable.StartPtr;
2746 VariablePtrTrack.EndPtr = Variable.EndPtr;
2747 Status = FindVariableEx (
2748 GetVariableNamePtr (Variable.CurrPtr),
2749 &Variable.CurrPtr->VendorGuid,
2750 FALSE,
2751 &VariablePtrTrack
2752 );
2753 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
2754 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2755 continue;
2756 }
2757 }
2758
2759 //
2760 // Don't return NV variable when HOB overrides it
2761 //
2762 if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
2763 (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
2764 ) {
2765 VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
2766 VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
2767 Status = FindVariableEx (
2768 GetVariableNamePtr (Variable.CurrPtr),
2769 &Variable.CurrPtr->VendorGuid,
2770 FALSE,
2771 &VariableInHob
2772 );
2773 if (!EFI_ERROR (Status)) {
2774 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2775 continue;
2776 }
2777 }
2778
2779 VarNameSize = NameSizeOfVariable (Variable.CurrPtr);
2780 ASSERT (VarNameSize != 0);
2781
2782 if (VarNameSize <= *VariableNameSize) {
2783 CopyMem (VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize);
2784 CopyMem (VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID));
2785 Status = EFI_SUCCESS;
2786 } else {
2787 Status = EFI_BUFFER_TOO_SMALL;
2788 }
2789
2790 *VariableNameSize = VarNameSize;
2791 goto Done;
2792 }
2793 }
2794
2795 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2796 }
2797
2798 Done:
2799 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2800 return Status;
2801 }
2802
2803 /**
2804
2805 This code sets variable in storage blocks (Volatile or Non-Volatile).
2806
2807 Caution: This function may receive untrusted input.
2808 This function may be invoked in SMM mode, and datasize and data are external input.
2809 This function will do basic validation, before parse the data.
2810 This function will parse the authentication carefully to avoid security issues, like
2811 buffer overflow, integer overflow.
2812 This function will check attribute carefully to avoid authentication bypass.
2813
2814 @param VariableName Name of Variable to be found.
2815 @param VendorGuid Variable vendor GUID.
2816 @param Attributes Attribute value of the variable found
2817 @param DataSize Size of Data found. If size is less than the
2818 data, this value contains the required size.
2819 @param Data Data pointer.
2820
2821 @return EFI_INVALID_PARAMETER Invalid parameter.
2822 @return EFI_SUCCESS Set successfully.
2823 @return EFI_OUT_OF_RESOURCES Resource not enough to set variable.
2824 @return EFI_NOT_FOUND Not found.
2825 @return EFI_WRITE_PROTECTED Variable is read-only.
2826
2827 **/
2828 EFI_STATUS
2829 EFIAPI
2830 VariableServiceSetVariable (
2831 IN CHAR16 *VariableName,
2832 IN EFI_GUID *VendorGuid,
2833 IN UINT32 Attributes,
2834 IN UINTN DataSize,
2835 IN VOID *Data
2836 )
2837 {
2838 VARIABLE_POINTER_TRACK Variable;
2839 EFI_STATUS Status;
2840 VARIABLE_HEADER *NextVariable;
2841 EFI_PHYSICAL_ADDRESS Point;
2842 UINTN PayloadSize;
2843 LIST_ENTRY *Link;
2844 VARIABLE_ENTRY *Entry;
2845
2846 //
2847 // Check input parameters.
2848 //
2849 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
2850 return EFI_INVALID_PARAMETER;
2851 }
2852
2853 if (IsReadOnlyVariable (VariableName, VendorGuid)) {
2854 return EFI_WRITE_PROTECTED;
2855 }
2856
2857 if (DataSize != 0 && Data == NULL) {
2858 return EFI_INVALID_PARAMETER;
2859 }
2860
2861 //
2862 // Check for reserverd bit in variable attribute.
2863 //
2864 if ((Attributes & (~EFI_VARIABLE_ATTRIBUTES_MASK)) != 0) {
2865 return EFI_INVALID_PARAMETER;
2866 }
2867
2868 //
2869 // Make sure if runtime bit is set, boot service bit is set also.
2870 //
2871 if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
2872 return EFI_INVALID_PARAMETER;
2873 }
2874
2875 //
2876 // EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS and EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute
2877 // cannot be set both.
2878 //
2879 if (((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS)
2880 && ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)) {
2881 return EFI_INVALID_PARAMETER;
2882 }
2883
2884 if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) {
2885 if (DataSize < AUTHINFO_SIZE) {
2886 //
2887 // Try to write Authenticated Variable without AuthInfo.
2888 //
2889 return EFI_SECURITY_VIOLATION;
2890 }
2891 PayloadSize = DataSize - AUTHINFO_SIZE;
2892 } else if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) {
2893 //
2894 // Sanity check for EFI_VARIABLE_AUTHENTICATION_2 descriptor.
2895 //
2896 if (DataSize < OFFSET_OF_AUTHINFO2_CERT_DATA ||
2897 ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength > DataSize - (OFFSET_OF (EFI_VARIABLE_AUTHENTICATION_2, AuthInfo)) ||
2898 ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength < OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData)) {
2899 return EFI_SECURITY_VIOLATION;
2900 }
2901 PayloadSize = DataSize - AUTHINFO2_SIZE (Data);
2902 } else {
2903 PayloadSize = DataSize;
2904 }
2905
2906 if ((UINTN)(~0) - PayloadSize < StrSize(VariableName)){
2907 //
2908 // Prevent whole variable size overflow
2909 //
2910 return EFI_INVALID_PARAMETER;
2911 }
2912
2913 //
2914 // The size of the VariableName, including the Unicode Null in bytes plus
2915 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
2916 // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
2917 //
2918 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2919 if (StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER)) {
2920 return EFI_INVALID_PARAMETER;
2921 }
2922 if (!IsHwErrRecVariable(VariableName, VendorGuid)) {
2923 return EFI_INVALID_PARAMETER;
2924 }
2925 } else {
2926 //
2927 // The size of the VariableName, including the Unicode Null in bytes plus
2928 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxVariableSize) bytes.
2929 //
2930 if (StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER)) {
2931 return EFI_INVALID_PARAMETER;
2932 }
2933 }
2934
2935 Status = CheckEfiGlobalVariable (VariableName, VendorGuid, Attributes);
2936 if (EFI_ERROR (Status)) {
2937 return Status;
2938 }
2939
2940 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2941
2942 //
2943 // Consider reentrant in MCA/INIT/NMI. It needs be reupdated.
2944 //
2945 if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) {
2946 Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
2947 //
2948 // Parse non-volatile variable data and get last variable offset.
2949 //
2950 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point);
2951 while ((NextVariable < GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point))
2952 && IsValidVariableHeader (NextVariable)) {
2953 NextVariable = GetNextVariablePtr (NextVariable);
2954 }
2955 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point;
2956 }
2957
2958 if (mEndOfDxe && mEnableLocking) {
2959 //
2960 // Treat the variables listed in the forbidden variable list as read-only after leaving DXE phase.
2961 //
2962 for ( Link = GetFirstNode (&mLockedVariableList)
2963 ; !IsNull (&mLockedVariableList, Link)
2964 ; Link = GetNextNode (&mLockedVariableList, Link)
2965 ) {
2966 Entry = BASE_CR (Link, VARIABLE_ENTRY, Link);
2967 if (CompareGuid (&Entry->Guid, VendorGuid) && (StrCmp (Entry->Name, VariableName) == 0)) {
2968 Status = EFI_WRITE_PROTECTED;
2969 DEBUG ((EFI_D_INFO, "[Variable]: Changing readonly variable after leaving DXE phase - %g:%s\n", VendorGuid, VariableName));
2970 goto Done;
2971 }
2972 }
2973 }
2974
2975 //
2976 // Check whether the input variable is already existed.
2977 //
2978 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE);
2979 if (!EFI_ERROR (Status)) {
2980 if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) {
2981 Status = EFI_WRITE_PROTECTED;
2982 goto Done;
2983 }
2984 if (Attributes != 0 && (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) != Variable.CurrPtr->Attributes) {
2985 //
2986 // If a preexisting variable is rewritten with different attributes, SetVariable() shall not
2987 // modify the variable and shall return EFI_INVALID_PARAMETER. Two exceptions to this rule:
2988 // 1. No access attributes specified
2989 // 2. The only attribute differing is EFI_VARIABLE_APPEND_WRITE
2990 //
2991 Status = EFI_INVALID_PARAMETER;
2992 goto Done;
2993 }
2994 }
2995
2996 //
2997 // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang.
2998 //
2999 Status = AutoUpdateLangVariable (VariableName, Data, DataSize);
3000 if (EFI_ERROR (Status)) {
3001 //
3002 // The auto update operation failed, directly return to avoid inconsistency between PlatformLang and Lang.
3003 //
3004 goto Done;
3005 }
3006
3007 //
3008 // Process PK, KEK, Sigdb seperately.
3009 //
3010 if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_PLATFORM_KEY_NAME) == 0)){
3011 Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, TRUE);
3012 } else if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0)) {
3013 Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE);
3014 } else if (CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) &&
3015 ((StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE) == 0) || (StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE1) == 0))) {
3016 Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE);
3017 if (EFI_ERROR (Status)) {
3018 Status = ProcessVarWithKek (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes);
3019 }
3020 } else {
3021 Status = ProcessVariable (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes);
3022 }
3023
3024 Done:
3025 InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState);
3026 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3027
3028 if (!AtRuntime ()) {
3029 if (!EFI_ERROR (Status)) {
3030 SecureBootHook (
3031 VariableName,
3032 VendorGuid
3033 );
3034 }
3035 }
3036
3037 return Status;
3038 }
3039
3040 /**
3041
3042 This code returns information about the EFI variables.
3043
3044 Caution: This function may receive untrusted input.
3045 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3046
3047 @param Attributes Attributes bitmask to specify the type of variables
3048 on which to return information.
3049 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
3050 for the EFI variables associated with the attributes specified.
3051 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
3052 for EFI variables associated with the attributes specified.
3053 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
3054 associated with the attributes specified.
3055
3056 @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
3057 @return EFI_SUCCESS Query successfully.
3058 @return EFI_UNSUPPORTED The attribute is not supported on this platform.
3059
3060 **/
3061 EFI_STATUS
3062 EFIAPI
3063 VariableServiceQueryVariableInfo (
3064 IN UINT32 Attributes,
3065 OUT UINT64 *MaximumVariableStorageSize,
3066 OUT UINT64 *RemainingVariableStorageSize,
3067 OUT UINT64 *MaximumVariableSize
3068 )
3069 {
3070 VARIABLE_HEADER *Variable;
3071 VARIABLE_HEADER *NextVariable;
3072 UINT64 VariableSize;
3073 VARIABLE_STORE_HEADER *VariableStoreHeader;
3074 UINT64 CommonVariableTotalSize;
3075 UINT64 HwErrVariableTotalSize;
3076
3077 CommonVariableTotalSize = 0;
3078 HwErrVariableTotalSize = 0;
3079
3080 if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
3081 return EFI_INVALID_PARAMETER;
3082 }
3083
3084 if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
3085 //
3086 // Make sure the Attributes combination is supported by the platform.
3087 //
3088 return EFI_UNSUPPORTED;
3089 } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
3090 //
3091 // Make sure if runtime bit is set, boot service bit is set also.
3092 //
3093 return EFI_INVALID_PARAMETER;
3094 } else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
3095 //
3096 // Make sure RT Attribute is set if we are in Runtime phase.
3097 //
3098 return EFI_INVALID_PARAMETER;
3099 } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3100 //
3101 // Make sure Hw Attribute is set with NV.
3102 //
3103 return EFI_INVALID_PARAMETER;
3104 }
3105
3106 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3107
3108 if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
3109 //
3110 // Query is Volatile related.
3111 //
3112 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
3113 } else {
3114 //
3115 // Query is Non-Volatile related.
3116 //
3117 VariableStoreHeader = mNvVariableCache;
3118 }
3119
3120 //
3121 // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
3122 // with the storage size (excluding the storage header size).
3123 //
3124 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
3125
3126 //
3127 // Harware error record variable needs larger size.
3128 //
3129 if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
3130 *MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize);
3131 *MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
3132 } else {
3133 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
3134 ASSERT (PcdGet32 (PcdHwErrStorageSize) < VariableStoreHeader->Size);
3135 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize);
3136 }
3137
3138 //
3139 // Let *MaximumVariableSize be PcdGet32 (PcdMaxVariableSize) with the exception of the variable header size.
3140 //
3141 *MaximumVariableSize = PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
3142 }
3143
3144 //
3145 // Point to the starting address of the variables.
3146 //
3147 Variable = GetStartPointer (VariableStoreHeader);
3148
3149 //
3150 // Now walk through the related variable store.
3151 //
3152 while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
3153 NextVariable = GetNextVariablePtr (Variable);
3154 VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
3155
3156 if (AtRuntime ()) {
3157 //
3158 // We don't take the state of the variables in mind
3159 // when calculating RemainingVariableStorageSize,
3160 // since the space occupied by variables not marked with
3161 // VAR_ADDED is not allowed to be reclaimed in Runtime.
3162 //
3163 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3164 HwErrVariableTotalSize += VariableSize;
3165 } else {
3166 CommonVariableTotalSize += VariableSize;
3167 }
3168 } else {
3169 //
3170 // Only care about Variables with State VAR_ADDED, because
3171 // the space not marked as VAR_ADDED is reclaimable now.
3172 //
3173 if (Variable->State == VAR_ADDED) {
3174 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3175 HwErrVariableTotalSize += VariableSize;
3176 } else {
3177 CommonVariableTotalSize += VariableSize;
3178 }
3179 }
3180 }
3181
3182 //
3183 // Go to the next one.
3184 //
3185 Variable = NextVariable;
3186 }
3187
3188 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
3189 *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
3190 }else {
3191 *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
3192 }
3193
3194 if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) {
3195 *MaximumVariableSize = 0;
3196 } else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) {
3197 *MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER);
3198 }
3199
3200 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3201 return EFI_SUCCESS;
3202 }
3203
3204
3205 /**
3206 This function reclaims variable storage if free size is below the threshold.
3207
3208 Caution: This function may be invoked at SMM mode.
3209 Care must be taken to make sure not security issue.
3210
3211 **/
3212 VOID
3213 ReclaimForOS(
3214 VOID
3215 )
3216 {
3217 EFI_STATUS Status;
3218 UINTN CommonVariableSpace;
3219 UINTN RemainingCommonVariableSpace;
3220 UINTN RemainingHwErrVariableSpace;
3221
3222 Status = EFI_SUCCESS;
3223
3224 CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space
3225
3226 RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize;
3227
3228 RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize;
3229 //
3230 // Check if the free area is blow a threshold.
3231 //
3232 if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize))
3233 || ((PcdGet32 (PcdHwErrStorageSize) != 0) &&
3234 (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){
3235 Status = Reclaim (
3236 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
3237 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
3238 FALSE,
3239 NULL,
3240 NULL,
3241 0,
3242 FALSE
3243 );
3244 ASSERT_EFI_ERROR (Status);
3245 }
3246 }
3247
3248 /**
3249 Init non-volatile variable store.
3250
3251 @retval EFI_SUCCESS Function successfully executed.
3252 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
3253 @retval EFI_VOLUME_CORRUPTED Variable Store or Firmware Volume for Variable Store is corrupted.
3254
3255 **/
3256 EFI_STATUS
3257 InitNonVolatileVariableStore (
3258 VOID
3259 )
3260 {
3261 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
3262 VARIABLE_HEADER *NextVariable;
3263 EFI_PHYSICAL_ADDRESS VariableStoreBase;
3264 UINT64 VariableStoreLength;
3265 UINTN VariableSize;
3266 EFI_HOB_GUID_TYPE *GuidHob;
3267 EFI_PHYSICAL_ADDRESS NvStorageBase;
3268 UINT8 *NvStorageData;
3269 UINT32 NvStorageSize;
3270 FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *FtwLastWriteData;
3271 UINT32 BackUpOffset;
3272 UINT32 BackUpSize;
3273
3274 mVariableModuleGlobal->FvbInstance = NULL;
3275
3276 //
3277 // Note that in EdkII variable driver implementation, Hardware Error Record type variable
3278 // is stored with common variable in the same NV region. So the platform integrator should
3279 // ensure that the value of PcdHwErrStorageSize is less than or equal to the value of
3280 // PcdFlashNvStorageVariableSize.
3281 //
3282 ASSERT (PcdGet32 (PcdHwErrStorageSize) <= PcdGet32 (PcdFlashNvStorageVariableSize));
3283
3284 //
3285 // Allocate runtime memory used for a memory copy of the FLASH region.
3286 // Keep the memory and the FLASH in sync as updates occur.
3287 //
3288 NvStorageSize = PcdGet32 (PcdFlashNvStorageVariableSize);
3289 NvStorageData = AllocateRuntimeZeroPool (NvStorageSize);
3290 if (NvStorageData == NULL) {
3291 return EFI_OUT_OF_RESOURCES;
3292 }
3293
3294 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
3295 if (NvStorageBase == 0) {
3296 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3297 }
3298 //
3299 // Copy NV storage data to the memory buffer.
3300 //
3301 CopyMem (NvStorageData, (UINT8 *) (UINTN) NvStorageBase, NvStorageSize);
3302
3303 //
3304 // Check the FTW last write data hob.
3305 //
3306 GuidHob = GetFirstGuidHob (&gEdkiiFaultTolerantWriteGuid);
3307 if (GuidHob != NULL) {
3308 FtwLastWriteData = (FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *) GET_GUID_HOB_DATA (GuidHob);
3309 if (FtwLastWriteData->TargetAddress == NvStorageBase) {
3310 DEBUG ((EFI_D_INFO, "Variable: NV storage is backed up in spare block: 0x%x\n", (UINTN) FtwLastWriteData->SpareAddress));
3311 //
3312 // Copy the backed up NV storage data to the memory buffer from spare block.
3313 //
3314 CopyMem (NvStorageData, (UINT8 *) (UINTN) (FtwLastWriteData->SpareAddress), NvStorageSize);
3315 } else if ((FtwLastWriteData->TargetAddress > NvStorageBase) &&
3316 (FtwLastWriteData->TargetAddress < (NvStorageBase + NvStorageSize))) {
3317 //
3318 // Flash NV storage from the Offset is backed up in spare block.
3319 //
3320 BackUpOffset = (UINT32) (FtwLastWriteData->TargetAddress - NvStorageBase);
3321 BackUpSize = NvStorageSize - BackUpOffset;
3322 DEBUG ((EFI_D_INFO, "Variable: High partial NV storage from offset: %x is backed up in spare block: 0x%x\n", BackUpOffset, (UINTN) FtwLastWriteData->SpareAddress));
3323 //
3324 // Copy the partial backed up NV storage data to the memory buffer from spare block.
3325 //
3326 CopyMem (NvStorageData + BackUpOffset, (UINT8 *) (UINTN) FtwLastWriteData->SpareAddress, BackUpSize);
3327 }
3328 }
3329
3330 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) NvStorageData;
3331
3332 //
3333 // Check if the Firmware Volume is not corrupted
3334 //
3335 if ((FvHeader->Signature != EFI_FVH_SIGNATURE) || (!CompareGuid (&gEfiSystemNvDataFvGuid, &FvHeader->FileSystemGuid))) {
3336 FreePool (NvStorageData);
3337 DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n"));
3338 return EFI_VOLUME_CORRUPTED;
3339 }
3340
3341 VariableStoreBase = (EFI_PHYSICAL_ADDRESS) ((UINTN) FvHeader + FvHeader->HeaderLength);
3342 VariableStoreLength = (UINT64) (NvStorageSize - FvHeader->HeaderLength);
3343
3344 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3345 mNvVariableCache = (VARIABLE_STORE_HEADER *) (UINTN) VariableStoreBase;
3346 if (GetVariableStoreStatus (mNvVariableCache) != EfiValid) {
3347 FreePool (NvStorageData);
3348 DEBUG((EFI_D_ERROR, "Variable Store header is corrupted\n"));
3349 return EFI_VOLUME_CORRUPTED;
3350 }
3351 ASSERT(mNvVariableCache->Size == VariableStoreLength);
3352
3353 //
3354 // The max variable or hardware error variable size should be < variable store size.
3355 //
3356 ASSERT(MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)) < VariableStoreLength);
3357
3358 //
3359 // Parse non-volatile variable data and get last variable offset.
3360 //
3361 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase);
3362 while (IsValidVariableHeader (NextVariable)) {
3363 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
3364 if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
3365 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
3366 } else {
3367 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
3368 }
3369
3370 NextVariable = GetNextVariablePtr (NextVariable);
3371 }
3372 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase;
3373
3374 return EFI_SUCCESS;
3375 }
3376
3377 /**
3378 Flush the HOB variable to flash.
3379
3380 @param[in] VariableName Name of variable has been updated or deleted.
3381 @param[in] VendorGuid Guid of variable has been updated or deleted.
3382
3383 **/
3384 VOID
3385 FlushHobVariableToFlash (
3386 IN CHAR16 *VariableName,
3387 IN EFI_GUID *VendorGuid
3388 )
3389 {
3390 EFI_STATUS Status;
3391 VARIABLE_STORE_HEADER *VariableStoreHeader;
3392 VARIABLE_HEADER *Variable;
3393 VOID *VariableData;
3394 BOOLEAN ErrorFlag;
3395
3396 ErrorFlag = FALSE;
3397
3398 //
3399 // Flush the HOB variable to flash.
3400 //
3401 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3402 VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
3403 //
3404 // Set HobVariableBase to 0, it can avoid SetVariable to call back.
3405 //
3406 mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0;
3407 for ( Variable = GetStartPointer (VariableStoreHeader)
3408 ; (Variable < GetEndPointer (VariableStoreHeader) && IsValidVariableHeader (Variable))
3409 ; Variable = GetNextVariablePtr (Variable)
3410 ) {
3411 if (Variable->State != VAR_ADDED) {
3412 //
3413 // The HOB variable has been set to DELETED state in local.
3414 //
3415 continue;
3416 }
3417 ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0);
3418 if (VendorGuid == NULL || VariableName == NULL ||
3419 !CompareGuid (VendorGuid, &Variable->VendorGuid) ||
3420 StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) {
3421 VariableData = GetVariableDataPtr (Variable);
3422 Status = VariableServiceSetVariable (
3423 GetVariableNamePtr (Variable),
3424 &Variable->VendorGuid,
3425 Variable->Attributes,
3426 Variable->DataSize,
3427 VariableData
3428 );
3429 DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", &Variable->VendorGuid, GetVariableNamePtr (Variable), Status));
3430 } else {
3431 //
3432 // The updated or deleted variable is matched with the HOB variable.
3433 // Don't break here because we will try to set other HOB variables
3434 // since this variable could be set successfully.
3435 //
3436 Status = EFI_SUCCESS;
3437 }
3438 if (!EFI_ERROR (Status)) {
3439 //
3440 // If set variable successful, or the updated or deleted variable is matched with the HOB variable,
3441 // set the HOB variable to DELETED state in local.
3442 //
3443 DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", &Variable->VendorGuid, GetVariableNamePtr (Variable)));
3444 Variable->State &= VAR_DELETED;
3445 } else {
3446 ErrorFlag = TRUE;
3447 }
3448 }
3449 if (ErrorFlag) {
3450 //
3451 // We still have HOB variable(s) not flushed in flash.
3452 //
3453 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader;
3454 } else {
3455 //
3456 // All HOB variables have been flushed in flash.
3457 //
3458 DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n"));
3459 if (!AtRuntime ()) {
3460 FreePool ((VOID *) VariableStoreHeader);
3461 }
3462 }
3463 }
3464
3465 }
3466
3467 /**
3468 Initializes variable write service after FTW was ready.
3469
3470 @retval EFI_SUCCESS Function successfully executed.
3471 @retval Others Fail to initialize the variable service.
3472
3473 **/
3474 EFI_STATUS
3475 VariableWriteServiceInitialize (
3476 VOID
3477 )
3478 {
3479 EFI_STATUS Status;
3480 VARIABLE_STORE_HEADER *VariableStoreHeader;
3481 UINTN Index;
3482 UINT8 Data;
3483 EFI_PHYSICAL_ADDRESS VariableStoreBase;
3484 EFI_PHYSICAL_ADDRESS NvStorageBase;
3485
3486 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
3487 if (NvStorageBase == 0) {
3488 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3489 }
3490 VariableStoreBase = NvStorageBase + (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(NvStorageBase))->HeaderLength);
3491
3492 //
3493 // Let NonVolatileVariableBase point to flash variable store base directly after FTW ready.
3494 //
3495 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3496 VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase;
3497
3498 //
3499 // Check if the free area is really free.
3500 //
3501 for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) {
3502 Data = ((UINT8 *) mNvVariableCache)[Index];
3503 if (Data != 0xff) {
3504 //
3505 // There must be something wrong in variable store, do reclaim operation.
3506 //
3507 Status = Reclaim (
3508 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
3509 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
3510 FALSE,
3511 NULL,
3512 NULL,
3513 0,
3514 FALSE
3515 );
3516 if (EFI_ERROR (Status)) {
3517 return Status;
3518 }
3519 break;
3520 }
3521 }
3522
3523 FlushHobVariableToFlash (NULL, NULL);
3524
3525 //
3526 // Authenticated variable initialize.
3527 //
3528 Status = AutenticatedVariableServiceInitialize ();
3529
3530 return Status;
3531 }
3532
3533
3534 /**
3535 Initializes variable store area for non-volatile and volatile variable.
3536
3537 @retval EFI_SUCCESS Function successfully executed.
3538 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
3539
3540 **/
3541 EFI_STATUS
3542 VariableCommonInitialize (
3543 VOID
3544 )
3545 {
3546 EFI_STATUS Status;
3547 VARIABLE_STORE_HEADER *VolatileVariableStore;
3548 VARIABLE_STORE_HEADER *VariableStoreHeader;
3549 UINT64 VariableStoreLength;
3550 UINTN ScratchSize;
3551 EFI_HOB_GUID_TYPE *GuidHob;
3552
3553 //
3554 // Allocate runtime memory for variable driver global structure.
3555 //
3556 mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL));
3557 if (mVariableModuleGlobal == NULL) {
3558 return EFI_OUT_OF_RESOURCES;
3559 }
3560
3561 InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY);
3562
3563 //
3564 // Get HOB variable store.
3565 //
3566 GuidHob = GetFirstGuidHob (&gEfiAuthenticatedVariableGuid);
3567 if (GuidHob != NULL) {
3568 VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob);
3569 VariableStoreLength = (UINT64) (GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE));
3570 if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
3571 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader);
3572 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) {
3573 FreePool (mVariableModuleGlobal);
3574 return EFI_OUT_OF_RESOURCES;
3575 }
3576 } else {
3577 DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n"));
3578 }
3579 }
3580
3581 //
3582 // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data.
3583 //
3584 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
3585 VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize);
3586 if (VolatileVariableStore == NULL) {
3587 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3588 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3589 }
3590 FreePool (mVariableModuleGlobal);
3591 return EFI_OUT_OF_RESOURCES;
3592 }
3593
3594 SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff);
3595
3596 //
3597 // Initialize Variable Specific Data.
3598 //
3599 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore;
3600 mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore;
3601
3602 CopyGuid (&VolatileVariableStore->Signature, &gEfiAuthenticatedVariableGuid);
3603 VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize);
3604 VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED;
3605 VolatileVariableStore->State = VARIABLE_STORE_HEALTHY;
3606 VolatileVariableStore->Reserved = 0;
3607 VolatileVariableStore->Reserved1 = 0;
3608
3609 //
3610 // Init non-volatile variable store.
3611 //
3612 Status = InitNonVolatileVariableStore ();
3613 if (EFI_ERROR (Status)) {
3614 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3615 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3616 }
3617 FreePool (mVariableModuleGlobal);
3618 FreePool (VolatileVariableStore);
3619 }
3620
3621 return Status;
3622 }
3623
3624
3625 /**
3626 Get the proper fvb handle and/or fvb protocol by the given Flash address.
3627
3628 @param[in] Address The Flash address.
3629 @param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle.
3630 @param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol.
3631
3632 **/
3633 EFI_STATUS
3634 GetFvbInfoByAddress (
3635 IN EFI_PHYSICAL_ADDRESS Address,
3636 OUT EFI_HANDLE *FvbHandle OPTIONAL,
3637 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL
3638 )
3639 {
3640 EFI_STATUS Status;
3641 EFI_HANDLE *HandleBuffer;
3642 UINTN HandleCount;
3643 UINTN Index;
3644 EFI_PHYSICAL_ADDRESS FvbBaseAddress;
3645 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
3646 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
3647 EFI_FVB_ATTRIBUTES_2 Attributes;
3648
3649 //
3650 // Get all FVB handles.
3651 //
3652 Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
3653 if (EFI_ERROR (Status)) {
3654 return EFI_NOT_FOUND;
3655 }
3656
3657 //
3658 // Get the FVB to access variable store.
3659 //
3660 Fvb = NULL;
3661 for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) {
3662 Status = GetFvbByHandle (HandleBuffer[Index], &Fvb);
3663 if (EFI_ERROR (Status)) {
3664 Status = EFI_NOT_FOUND;
3665 break;
3666 }
3667
3668 //
3669 // Ensure this FVB protocol supported Write operation.
3670 //
3671 Status = Fvb->GetAttributes (Fvb, &Attributes);
3672 if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
3673 continue;
3674 }
3675
3676 //
3677 // Compare the address and select the right one.
3678 //
3679 Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
3680 if (EFI_ERROR (Status)) {
3681 continue;
3682 }
3683
3684 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress);
3685 if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + FwVolHeader->FvLength))) {
3686 if (FvbHandle != NULL) {
3687 *FvbHandle = HandleBuffer[Index];
3688 }
3689 if (FvbProtocol != NULL) {
3690 *FvbProtocol = Fvb;
3691 }
3692 Status = EFI_SUCCESS;
3693 break;
3694 }
3695 }
3696 FreePool (HandleBuffer);
3697
3698 if (Fvb == NULL) {
3699 Status = EFI_NOT_FOUND;
3700 }
3701
3702 return Status;
3703 }
3704