]> git.proxmox.com Git - mirror_edk2.git/blob - SecurityPkg/VariableAuthenticated/RuntimeDxe/Variable.c
7d7bc9e0e121314aae642066500eb431ab6df2e1
[mirror_edk2.git] / SecurityPkg / VariableAuthenticated / RuntimeDxe / Variable.c
1 /** @file
2 The common variable operation routines shared by DXE_RUNTIME variable
3 module and DXE_SMM variable module.
4
5 Caution: This module requires additional review when modified.
6 This driver will have external input - variable data. They may be input in SMM mode.
7 This external input must be validated carefully to avoid security issue like
8 buffer overflow, integer overflow.
9
10 VariableServiceGetNextVariableName () and VariableServiceQueryVariableInfo() are external API.
11 They need check input parameter.
12
13 VariableServiceGetVariable() and VariableServiceSetVariable() are external API
14 to receive datasize and data buffer. The size should be checked carefully.
15
16 VariableServiceSetVariable() should also check authenticate data to avoid buffer overflow,
17 integer overflow. It should also check attribute to avoid authentication bypass.
18
19 Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
20 This program and the accompanying materials
21 are licensed and made available under the terms and conditions of the BSD License
22 which accompanies this distribution. The full text of the license may be found at
23 http://opensource.org/licenses/bsd-license.php
24
25 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
26 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
27
28 **/
29
30 #include "Variable.h"
31 #include "AuthService.h"
32
33 VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal;
34
35 ///
36 /// Define a memory cache that improves the search performance for a variable.
37 ///
38 VARIABLE_STORE_HEADER *mNvVariableCache = NULL;
39
40 ///
41 /// The memory entry used for variable statistics data.
42 ///
43 VARIABLE_INFO_ENTRY *gVariableInfo = NULL;
44
45 ///
46 /// The list to store the variables which cannot be set after the EFI_END_OF_DXE_EVENT_GROUP_GUID
47 /// or EVT_GROUP_READY_TO_BOOT event.
48 ///
49 LIST_ENTRY mLockedVariableList = INITIALIZE_LIST_HEAD_VARIABLE (mLockedVariableList);
50
51 ///
52 /// The flag to indicate whether the platform has left the DXE phase of execution.
53 ///
54 BOOLEAN mEndOfDxe = FALSE;
55
56 ///
57 /// The flag to indicate whether the variable storage locking is enabled.
58 ///
59 BOOLEAN mEnableLocking = TRUE;
60
61 //
62 // To prevent name collisions with possible future globally defined variables,
63 // other internal firmware data variables that are not defined here must be
64 // saved with a unique VendorGuid other than EFI_GLOBAL_VARIABLE or
65 // any other GUID defined by the UEFI Specification. Implementations must
66 // only permit the creation of variables with a UEFI Specification-defined
67 // VendorGuid when these variables are documented in the UEFI Specification.
68 //
69 GLOBAL_VARIABLE_ENTRY mGlobalVariableList[] = {
70 {EFI_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
71 {EFI_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
72 {EFI_TIME_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
73 {EFI_PLATFORM_LANG_CODES_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
74 {EFI_PLATFORM_LANG_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
75 {EFI_CON_IN_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
76 {EFI_CON_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
77 {EFI_ERR_OUT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
78 {EFI_CON_IN_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
79 {EFI_CON_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
80 {EFI_ERR_OUT_DEV_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
81 {EFI_BOOT_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
82 {EFI_BOOT_NEXT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
83 {EFI_BOOT_CURRENT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
84 {EFI_BOOT_OPTION_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
85 {EFI_DRIVER_ORDER_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
86 {EFI_HW_ERR_REC_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
87 {EFI_SETUP_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
88 {EFI_KEY_EXCHANGE_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
89 {EFI_PLATFORM_KEY_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT_AT},
90 {EFI_SIGNATURE_SUPPORT_NAME, VARIABLE_ATTRIBUTE_BS_RT},
91 {EFI_SECURE_BOOT_MODE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
92 {EFI_KEK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
93 {EFI_PK_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
94 {EFI_DB_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
95 {EFI_DBX_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
96 {EFI_DBT_DEFAULT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
97 {EFI_OS_INDICATIONS_SUPPORT_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
98 {EFI_OS_INDICATIONS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_NV_BS_RT},
99 {EFI_VENDOR_KEYS_VARIABLE_NAME, VARIABLE_ATTRIBUTE_BS_RT},
100 };
101 GLOBAL_VARIABLE_ENTRY mGlobalVariableList2[] = {
102 {L"Boot####", VARIABLE_ATTRIBUTE_NV_BS_RT},
103 {L"Driver####", VARIABLE_ATTRIBUTE_NV_BS_RT},
104 {L"Key####", VARIABLE_ATTRIBUTE_NV_BS_RT},
105 };
106
107 /**
108
109 SecureBoot Hook for auth variable update.
110
111 @param[in] VariableName Name of Variable to be found.
112 @param[in] VendorGuid Variable vendor GUID.
113 **/
114 VOID
115 EFIAPI
116 SecureBootHook (
117 IN CHAR16 *VariableName,
118 IN EFI_GUID *VendorGuid
119 );
120
121 /**
122 Routine used to track statistical information about variable usage.
123 The data is stored in the EFI system table so it can be accessed later.
124 VariableInfo.efi can dump out the table. Only Boot Services variable
125 accesses are tracked by this code. The PcdVariableCollectStatistics
126 build flag controls if this feature is enabled.
127
128 A read that hits in the cache will have Read and Cache true for
129 the transaction. Data is allocated by this routine, but never
130 freed.
131
132 @param[in] VariableName Name of the Variable to track.
133 @param[in] VendorGuid Guid of the Variable to track.
134 @param[in] Volatile TRUE if volatile FALSE if non-volatile.
135 @param[in] Read TRUE if GetVariable() was called.
136 @param[in] Write TRUE if SetVariable() was called.
137 @param[in] Delete TRUE if deleted via SetVariable().
138 @param[in] Cache TRUE for a cache hit.
139
140 **/
141 VOID
142 UpdateVariableInfo (
143 IN CHAR16 *VariableName,
144 IN EFI_GUID *VendorGuid,
145 IN BOOLEAN Volatile,
146 IN BOOLEAN Read,
147 IN BOOLEAN Write,
148 IN BOOLEAN Delete,
149 IN BOOLEAN Cache
150 )
151 {
152 VARIABLE_INFO_ENTRY *Entry;
153
154 if (FeaturePcdGet (PcdVariableCollectStatistics)) {
155
156 if (AtRuntime ()) {
157 // Don't collect statistics at runtime.
158 return;
159 }
160
161 if (gVariableInfo == NULL) {
162 //
163 // On the first call allocate a entry and place a pointer to it in
164 // the EFI System Table.
165 //
166 gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
167 ASSERT (gVariableInfo != NULL);
168
169 CopyGuid (&gVariableInfo->VendorGuid, VendorGuid);
170 gVariableInfo->Name = AllocatePool (StrSize (VariableName));
171 ASSERT (gVariableInfo->Name != NULL);
172 StrCpy (gVariableInfo->Name, VariableName);
173 gVariableInfo->Volatile = Volatile;
174 }
175
176
177 for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) {
178 if (CompareGuid (VendorGuid, &Entry->VendorGuid)) {
179 if (StrCmp (VariableName, Entry->Name) == 0) {
180 if (Read) {
181 Entry->ReadCount++;
182 }
183 if (Write) {
184 Entry->WriteCount++;
185 }
186 if (Delete) {
187 Entry->DeleteCount++;
188 }
189 if (Cache) {
190 Entry->CacheCount++;
191 }
192
193 return;
194 }
195 }
196
197 if (Entry->Next == NULL) {
198 //
199 // If the entry is not in the table add it.
200 // Next iteration of the loop will fill in the data.
201 //
202 Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY));
203 ASSERT (Entry->Next != NULL);
204
205 CopyGuid (&Entry->Next->VendorGuid, VendorGuid);
206 Entry->Next->Name = AllocatePool (StrSize (VariableName));
207 ASSERT (Entry->Next->Name != NULL);
208 StrCpy (Entry->Next->Name, VariableName);
209 Entry->Next->Volatile = Volatile;
210 }
211
212 }
213 }
214 }
215
216
217 /**
218
219 This code checks if variable header is valid or not.
220
221 @param Variable Pointer to the Variable Header.
222
223 @retval TRUE Variable header is valid.
224 @retval FALSE Variable header is not valid.
225
226 **/
227 BOOLEAN
228 IsValidVariableHeader (
229 IN VARIABLE_HEADER *Variable
230 )
231 {
232 if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
233 return FALSE;
234 }
235
236 return TRUE;
237 }
238
239
240 /**
241
242 This function writes data to the FWH at the correct LBA even if the LBAs
243 are fragmented.
244
245 @param Global Pointer to VARAIBLE_GLOBAL structure.
246 @param Volatile Point out the Variable is Volatile or Non-Volatile.
247 @param SetByIndex TRUE if target pointer is given as index.
248 FALSE if target pointer is absolute.
249 @param Fvb Pointer to the writable FVB protocol.
250 @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER
251 structure.
252 @param DataSize Size of data to be written.
253 @param Buffer Pointer to the buffer from which data is written.
254
255 @retval EFI_INVALID_PARAMETER Parameters not valid.
256 @retval EFI_SUCCESS Variable store successfully updated.
257
258 **/
259 EFI_STATUS
260 UpdateVariableStore (
261 IN VARIABLE_GLOBAL *Global,
262 IN BOOLEAN Volatile,
263 IN BOOLEAN SetByIndex,
264 IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb,
265 IN UINTN DataPtrIndex,
266 IN UINT32 DataSize,
267 IN UINT8 *Buffer
268 )
269 {
270 EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry;
271 UINTN BlockIndex2;
272 UINTN LinearOffset;
273 UINTN CurrWriteSize;
274 UINTN CurrWritePtr;
275 UINT8 *CurrBuffer;
276 EFI_LBA LbaNumber;
277 UINTN Size;
278 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
279 VARIABLE_STORE_HEADER *VolatileBase;
280 EFI_PHYSICAL_ADDRESS FvVolHdr;
281 EFI_PHYSICAL_ADDRESS DataPtr;
282 EFI_STATUS Status;
283
284 FwVolHeader = NULL;
285 DataPtr = DataPtrIndex;
286
287 //
288 // Check if the Data is Volatile.
289 //
290 if (!Volatile) {
291 if (Fvb == NULL) {
292 return EFI_INVALID_PARAMETER;
293 }
294 Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr);
295 ASSERT_EFI_ERROR (Status);
296
297 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr);
298 //
299 // Data Pointer should point to the actual Address where data is to be
300 // written.
301 //
302 if (SetByIndex) {
303 DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
304 }
305
306 if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) {
307 return EFI_INVALID_PARAMETER;
308 }
309 } else {
310 //
311 // Data Pointer should point to the actual Address where data is to be
312 // written.
313 //
314 VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
315 if (SetByIndex) {
316 DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
317 }
318
319 if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) {
320 return EFI_INVALID_PARAMETER;
321 }
322
323 //
324 // If Volatile Variable just do a simple mem copy.
325 //
326 CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize);
327 return EFI_SUCCESS;
328 }
329
330 //
331 // If we are here we are dealing with Non-Volatile Variables.
332 //
333 LinearOffset = (UINTN) FwVolHeader;
334 CurrWritePtr = (UINTN) DataPtr;
335 CurrWriteSize = DataSize;
336 CurrBuffer = Buffer;
337 LbaNumber = 0;
338
339 if (CurrWritePtr < LinearOffset) {
340 return EFI_INVALID_PARAMETER;
341 }
342
343 for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) {
344 for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) {
345 //
346 // Check to see if the Variable Writes are spanning through multiple
347 // blocks.
348 //
349 if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) {
350 if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) {
351 Status = Fvb->Write (
352 Fvb,
353 LbaNumber,
354 (UINTN) (CurrWritePtr - LinearOffset),
355 &CurrWriteSize,
356 CurrBuffer
357 );
358 return Status;
359 } else {
360 Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr);
361 Status = Fvb->Write (
362 Fvb,
363 LbaNumber,
364 (UINTN) (CurrWritePtr - LinearOffset),
365 &Size,
366 CurrBuffer
367 );
368 if (EFI_ERROR (Status)) {
369 return Status;
370 }
371
372 CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length;
373 CurrBuffer = CurrBuffer + Size;
374 CurrWriteSize = CurrWriteSize - Size;
375 }
376 }
377
378 LinearOffset += PtrBlockMapEntry->Length;
379 LbaNumber++;
380 }
381 }
382
383 return EFI_SUCCESS;
384 }
385
386
387 /**
388
389 This code gets the current status of Variable Store.
390
391 @param VarStoreHeader Pointer to the Variable Store Header.
392
393 @retval EfiRaw Variable store status is raw.
394 @retval EfiValid Variable store status is valid.
395 @retval EfiInvalid Variable store status is invalid.
396
397 **/
398 VARIABLE_STORE_STATUS
399 GetVariableStoreStatus (
400 IN VARIABLE_STORE_HEADER *VarStoreHeader
401 )
402 {
403 if (CompareGuid (&VarStoreHeader->Signature, &gEfiAuthenticatedVariableGuid) &&
404 VarStoreHeader->Format == VARIABLE_STORE_FORMATTED &&
405 VarStoreHeader->State == VARIABLE_STORE_HEALTHY
406 ) {
407
408 return EfiValid;
409 } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff &&
410 ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff &&
411 ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff &&
412 ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff &&
413 VarStoreHeader->Size == 0xffffffff &&
414 VarStoreHeader->Format == 0xff &&
415 VarStoreHeader->State == 0xff
416 ) {
417
418 return EfiRaw;
419 } else {
420 return EfiInvalid;
421 }
422 }
423
424
425 /**
426
427 This code gets the size of name of variable.
428
429 @param Variable Pointer to the Variable Header.
430
431 @return UINTN Size of variable in bytes.
432
433 **/
434 UINTN
435 NameSizeOfVariable (
436 IN VARIABLE_HEADER *Variable
437 )
438 {
439 if (Variable->State == (UINT8) (-1) ||
440 Variable->DataSize == (UINT32) (-1) ||
441 Variable->NameSize == (UINT32) (-1) ||
442 Variable->Attributes == (UINT32) (-1)) {
443 return 0;
444 }
445 return (UINTN) Variable->NameSize;
446 }
447
448 /**
449
450 This code gets the size of variable data.
451
452 @param Variable Pointer to the Variable Header.
453
454 @return Size of variable in bytes.
455
456 **/
457 UINTN
458 DataSizeOfVariable (
459 IN VARIABLE_HEADER *Variable
460 )
461 {
462 if (Variable->State == (UINT8) (-1) ||
463 Variable->DataSize == (UINT32) (-1) ||
464 Variable->NameSize == (UINT32) (-1) ||
465 Variable->Attributes == (UINT32) (-1)) {
466 return 0;
467 }
468 return (UINTN) Variable->DataSize;
469 }
470
471 /**
472
473 This code gets the pointer to the variable name.
474
475 @param Variable Pointer to the Variable Header.
476
477 @return Pointer to Variable Name which is Unicode encoding.
478
479 **/
480 CHAR16 *
481 GetVariableNamePtr (
482 IN VARIABLE_HEADER *Variable
483 )
484 {
485
486 return (CHAR16 *) (Variable + 1);
487 }
488
489 /**
490
491 This code gets the pointer to the variable data.
492
493 @param Variable Pointer to the Variable Header.
494
495 @return Pointer to Variable Data.
496
497 **/
498 UINT8 *
499 GetVariableDataPtr (
500 IN VARIABLE_HEADER *Variable
501 )
502 {
503 UINTN Value;
504
505 //
506 // Be careful about pad size for alignment.
507 //
508 Value = (UINTN) GetVariableNamePtr (Variable);
509 Value += NameSizeOfVariable (Variable);
510 Value += GET_PAD_SIZE (NameSizeOfVariable (Variable));
511
512 return (UINT8 *) Value;
513 }
514
515
516 /**
517
518 This code gets the pointer to the next variable header.
519
520 @param Variable Pointer to the Variable Header.
521
522 @return Pointer to next variable header.
523
524 **/
525 VARIABLE_HEADER *
526 GetNextVariablePtr (
527 IN VARIABLE_HEADER *Variable
528 )
529 {
530 UINTN Value;
531
532 if (!IsValidVariableHeader (Variable)) {
533 return NULL;
534 }
535
536 Value = (UINTN) GetVariableDataPtr (Variable);
537 Value += DataSizeOfVariable (Variable);
538 Value += GET_PAD_SIZE (DataSizeOfVariable (Variable));
539
540 //
541 // Be careful about pad size for alignment.
542 //
543 return (VARIABLE_HEADER *) HEADER_ALIGN (Value);
544 }
545
546 /**
547
548 Gets the pointer to the first variable header in given variable store area.
549
550 @param VarStoreHeader Pointer to the Variable Store Header.
551
552 @return Pointer to the first variable header.
553
554 **/
555 VARIABLE_HEADER *
556 GetStartPointer (
557 IN VARIABLE_STORE_HEADER *VarStoreHeader
558 )
559 {
560 //
561 // The end of variable store.
562 //
563 return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1);
564 }
565
566 /**
567
568 Gets the pointer to the end of the variable storage area.
569
570 This function gets pointer to the end of the variable storage
571 area, according to the input variable store header.
572
573 @param VarStoreHeader Pointer to the Variable Store Header.
574
575 @return Pointer to the end of the variable storage area.
576
577 **/
578 VARIABLE_HEADER *
579 GetEndPointer (
580 IN VARIABLE_STORE_HEADER *VarStoreHeader
581 )
582 {
583 //
584 // The end of variable store
585 //
586 return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size);
587 }
588
589 /**
590
591 Check the PubKeyIndex is a valid key or not.
592
593 This function will iterate the NV storage to see if this PubKeyIndex is still referenced
594 by any valid count-based auth variabe.
595
596 @param[in] PubKeyIndex Index of the public key in public key store.
597
598 @retval TRUE The PubKeyIndex is still in use.
599 @retval FALSE The PubKeyIndex is not referenced by any count-based auth variabe.
600
601 **/
602 BOOLEAN
603 IsValidPubKeyIndex (
604 IN UINT32 PubKeyIndex
605 )
606 {
607 VARIABLE_HEADER *Variable;
608
609 if (PubKeyIndex > mPubKeyNumber) {
610 return FALSE;
611 }
612
613 Variable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
614
615 while (IsValidVariableHeader (Variable)) {
616 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
617 Variable->PubKeyIndex == PubKeyIndex) {
618 return TRUE;
619 }
620 Variable = GetNextVariablePtr (Variable);
621 }
622
623 return FALSE;
624 }
625
626 /**
627
628 Get the number of valid public key in PubKeyStore.
629
630 @param[in] PubKeyNumber Number of the public key in public key store.
631
632 @return Number of valid public key in PubKeyStore.
633
634 **/
635 UINT32
636 GetValidPubKeyNumber (
637 IN UINT32 PubKeyNumber
638 )
639 {
640 UINT32 PubKeyIndex;
641 UINT32 Counter;
642
643 Counter = 0;
644
645 for (PubKeyIndex = 1; PubKeyIndex <= PubKeyNumber; PubKeyIndex++) {
646 if (IsValidPubKeyIndex (PubKeyIndex)) {
647 Counter++;
648 }
649 }
650
651 return Counter;
652 }
653
654 /**
655
656 Filter the useless key in public key store.
657
658 This function will find out all valid public keys in public key database, save them in new allocated
659 buffer NewPubKeyStore, and give the new PubKeyIndex. The caller is responsible for freeing buffer
660 NewPubKeyIndex and NewPubKeyStore with FreePool().
661
662 @param[in] PubKeyStore Point to the public key database.
663 @param[in] PubKeyNumber Number of the public key in PubKeyStore.
664 @param[out] NewPubKeyIndex Point to an array of new PubKeyIndex corresponds to NewPubKeyStore.
665 @param[out] NewPubKeyStore Saved all valid public keys in PubKeyStore.
666 @param[out] NewPubKeySize Buffer size of the NewPubKeyStore.
667
668 @retval EFI_SUCCESS Trim operation is complete successfully.
669 @retval EFI_OUT_OF_RESOURCES No enough memory resources, or no useless key in PubKeyStore.
670
671 **/
672 EFI_STATUS
673 PubKeyStoreFilter (
674 IN UINT8 *PubKeyStore,
675 IN UINT32 PubKeyNumber,
676 OUT UINT32 **NewPubKeyIndex,
677 OUT UINT8 **NewPubKeyStore,
678 OUT UINT32 *NewPubKeySize
679 )
680 {
681 UINT32 PubKeyIndex;
682 UINT32 CopiedKey;
683 UINT32 NewPubKeyNumber;
684
685 NewPubKeyNumber = GetValidPubKeyNumber (PubKeyNumber);
686 if (NewPubKeyNumber == PubKeyNumber) {
687 return EFI_OUT_OF_RESOURCES;
688 }
689
690 if (NewPubKeyNumber != 0) {
691 *NewPubKeySize = NewPubKeyNumber * EFI_CERT_TYPE_RSA2048_SIZE;
692 } else {
693 *NewPubKeySize = sizeof (UINT8);
694 }
695
696 *NewPubKeyStore = AllocatePool (*NewPubKeySize);
697 if (*NewPubKeyStore == NULL) {
698 return EFI_OUT_OF_RESOURCES;
699 }
700
701 *NewPubKeyIndex = AllocateZeroPool ((PubKeyNumber + 1) * sizeof (UINT32));
702 if (*NewPubKeyIndex == NULL) {
703 FreePool (*NewPubKeyStore);
704 *NewPubKeyStore = NULL;
705 return EFI_OUT_OF_RESOURCES;
706 }
707
708 CopiedKey = 0;
709 for (PubKeyIndex = 1; PubKeyIndex <= PubKeyNumber; PubKeyIndex++) {
710 if (IsValidPubKeyIndex (PubKeyIndex)) {
711 CopyMem (
712 *NewPubKeyStore + CopiedKey * EFI_CERT_TYPE_RSA2048_SIZE,
713 PubKeyStore + (PubKeyIndex - 1) * EFI_CERT_TYPE_RSA2048_SIZE,
714 EFI_CERT_TYPE_RSA2048_SIZE
715 );
716 (*NewPubKeyIndex)[PubKeyIndex] = ++CopiedKey;
717 }
718 }
719 return EFI_SUCCESS;
720 }
721
722 /**
723
724 Variable store garbage collection and reclaim operation.
725
726 If ReclaimPubKeyStore is FALSE, reclaim variable space by deleting the obsoleted varaibles.
727 If ReclaimPubKeyStore is TRUE, reclaim invalid key in public key database and update the PubKeyIndex
728 for all the count-based authenticate variable in NV storage.
729
730 @param[in] VariableBase Base address of variable store.
731 @param[out] LastVariableOffset Offset of last variable.
732 @param[in] IsVolatile The variable store is volatile or not;
733 if it is non-volatile, need FTW.
734 @param[in, out] UpdatingPtrTrack Pointer to updating variable pointer track structure.
735 @param[in] NewVariable Pointer to new variable.
736 @param[in] NewVariableSize New variable size.
737 @param[in] ReclaimPubKeyStore Reclaim for public key database or not.
738
739 @return EFI_SUCCESS Reclaim operation has finished successfully.
740 @return EFI_OUT_OF_RESOURCES No enough memory resources or variable space.
741 @return EFI_DEVICE_ERROR The public key database doesn't exist.
742 @return Others Unexpect error happened during reclaim operation.
743
744 **/
745 EFI_STATUS
746 Reclaim (
747 IN EFI_PHYSICAL_ADDRESS VariableBase,
748 OUT UINTN *LastVariableOffset,
749 IN BOOLEAN IsVolatile,
750 IN OUT VARIABLE_POINTER_TRACK *UpdatingPtrTrack,
751 IN VARIABLE_HEADER *NewVariable,
752 IN UINTN NewVariableSize,
753 IN BOOLEAN ReclaimPubKeyStore
754 )
755 {
756 VARIABLE_HEADER *Variable;
757 VARIABLE_HEADER *AddedVariable;
758 VARIABLE_HEADER *NextVariable;
759 VARIABLE_HEADER *NextAddedVariable;
760 VARIABLE_STORE_HEADER *VariableStoreHeader;
761 UINT8 *ValidBuffer;
762 UINTN MaximumBufferSize;
763 UINTN VariableSize;
764 UINTN NameSize;
765 UINT8 *CurrPtr;
766 VOID *Point0;
767 VOID *Point1;
768 BOOLEAN FoundAdded;
769 EFI_STATUS Status;
770 UINTN CommonVariableTotalSize;
771 UINTN HwErrVariableTotalSize;
772 UINT32 *NewPubKeyIndex;
773 UINT8 *NewPubKeyStore;
774 UINT32 NewPubKeySize;
775 VARIABLE_HEADER *PubKeyHeader;
776 VARIABLE_HEADER *UpdatingVariable;
777 VARIABLE_HEADER *UpdatingInDeletedTransition;
778
779 UpdatingVariable = NULL;
780 UpdatingInDeletedTransition = NULL;
781 if (UpdatingPtrTrack != NULL) {
782 UpdatingVariable = UpdatingPtrTrack->CurrPtr;
783 UpdatingInDeletedTransition = UpdatingPtrTrack->InDeletedTransitionPtr;
784 }
785
786 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase);
787
788 CommonVariableTotalSize = 0;
789 HwErrVariableTotalSize = 0;
790 NewPubKeyIndex = NULL;
791 NewPubKeyStore = NULL;
792 NewPubKeySize = 0;
793 PubKeyHeader = NULL;
794
795 if (IsVolatile) {
796 //
797 // Start Pointers for the variable.
798 //
799 Variable = GetStartPointer (VariableStoreHeader);
800 MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER);
801
802 while (IsValidVariableHeader (Variable)) {
803 NextVariable = GetNextVariablePtr (Variable);
804 if ((Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) &&
805 Variable != UpdatingVariable &&
806 Variable != UpdatingInDeletedTransition
807 ) {
808 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
809 MaximumBufferSize += VariableSize;
810 }
811
812 Variable = NextVariable;
813 }
814
815 if (NewVariable != NULL) {
816 //
817 // Add the new variable size.
818 //
819 MaximumBufferSize += NewVariableSize;
820 }
821
822 //
823 // Reserve the 1 Bytes with Oxff to identify the
824 // end of the variable buffer.
825 //
826 MaximumBufferSize += 1;
827 ValidBuffer = AllocatePool (MaximumBufferSize);
828 if (ValidBuffer == NULL) {
829 return EFI_OUT_OF_RESOURCES;
830 }
831 } else {
832 //
833 // For NV variable reclaim, don't allocate pool here and just use mNvVariableCache
834 // as the buffer to reduce SMRAM consumption for SMM variable driver.
835 //
836 MaximumBufferSize = mNvVariableCache->Size;
837 ValidBuffer = (UINT8 *) mNvVariableCache;
838 }
839
840 SetMem (ValidBuffer, MaximumBufferSize, 0xff);
841
842 //
843 // Copy variable store header.
844 //
845 CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
846 CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
847
848 if (ReclaimPubKeyStore) {
849 ASSERT (IsVolatile == FALSE);
850 //
851 // Trim the PubKeyStore and get new PubKeyIndex.
852 //
853 Status = PubKeyStoreFilter (
854 mPubKeyStore,
855 mPubKeyNumber,
856 &NewPubKeyIndex,
857 &NewPubKeyStore,
858 &NewPubKeySize
859 );
860 if (EFI_ERROR (Status)) {
861 goto Done;
862 }
863
864 //
865 // Refresh the PubKeyIndex for all valid variables (ADDED and IN_DELETED_TRANSITION).
866 //
867 Variable = GetStartPointer (VariableStoreHeader);
868 while (IsValidVariableHeader (Variable)) {
869 NextVariable = GetNextVariablePtr (Variable);
870 if (Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
871 if ((StrCmp (GetVariableNamePtr (Variable), AUTHVAR_KEYDB_NAME) == 0) &&
872 (CompareGuid (&Variable->VendorGuid, &gEfiAuthenticatedVariableGuid))) {
873 //
874 // Skip the public key database, it will be reinstalled later.
875 //
876 PubKeyHeader = Variable;
877 Variable = NextVariable;
878 continue;
879 }
880
881 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
882 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
883 ((VARIABLE_HEADER*) CurrPtr)->PubKeyIndex = NewPubKeyIndex[Variable->PubKeyIndex];
884 CurrPtr += VariableSize;
885 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
886 HwErrVariableTotalSize += VariableSize;
887 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
888 CommonVariableTotalSize += VariableSize;
889 }
890 }
891 Variable = NextVariable;
892 }
893
894 //
895 // Reinstall the new public key database.
896 //
897 ASSERT (PubKeyHeader != NULL);
898 if (PubKeyHeader == NULL) {
899 Status = EFI_DEVICE_ERROR;
900 goto Done;
901 }
902 CopyMem (CurrPtr, (UINT8*) PubKeyHeader, sizeof (VARIABLE_HEADER));
903 Variable = (VARIABLE_HEADER*) CurrPtr;
904 Variable->DataSize = NewPubKeySize;
905 StrCpy (GetVariableNamePtr (Variable), GetVariableNamePtr (PubKeyHeader));
906 CopyMem (GetVariableDataPtr (Variable), NewPubKeyStore, NewPubKeySize);
907 CurrPtr = (UINT8*) GetNextVariablePtr (Variable);
908 CommonVariableTotalSize += (UINTN) CurrPtr - (UINTN) Variable;
909 } else {
910 //
911 // Reinstall all ADDED variables as long as they are not identical to Updating Variable.
912 //
913 Variable = GetStartPointer (VariableStoreHeader);
914 while (IsValidVariableHeader (Variable)) {
915 NextVariable = GetNextVariablePtr (Variable);
916 if (Variable != UpdatingVariable && Variable->State == VAR_ADDED) {
917 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
918 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
919 CurrPtr += VariableSize;
920 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
921 HwErrVariableTotalSize += VariableSize;
922 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
923 CommonVariableTotalSize += VariableSize;
924 }
925 }
926 Variable = NextVariable;
927 }
928
929 //
930 // Reinstall all in delete transition variables.
931 //
932 Variable = GetStartPointer (VariableStoreHeader);
933 while (IsValidVariableHeader (Variable)) {
934 NextVariable = GetNextVariablePtr (Variable);
935 if (Variable != UpdatingVariable && Variable != UpdatingInDeletedTransition && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
936
937 //
938 // Buffer has cached all ADDED variable.
939 // Per IN_DELETED variable, we have to guarantee that
940 // no ADDED one in previous buffer.
941 //
942
943 FoundAdded = FALSE;
944 AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer);
945 while (IsValidVariableHeader (AddedVariable)) {
946 NextAddedVariable = GetNextVariablePtr (AddedVariable);
947 NameSize = NameSizeOfVariable (AddedVariable);
948 if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) &&
949 NameSize == NameSizeOfVariable (Variable)
950 ) {
951 Point0 = (VOID *) GetVariableNamePtr (AddedVariable);
952 Point1 = (VOID *) GetVariableNamePtr (Variable);
953 if (CompareMem (Point0, Point1, NameSize) == 0) {
954 FoundAdded = TRUE;
955 break;
956 }
957 }
958 AddedVariable = NextAddedVariable;
959 }
960 if (!FoundAdded) {
961 //
962 // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED.
963 //
964 VariableSize = (UINTN) NextVariable - (UINTN) Variable;
965 CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
966 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
967 CurrPtr += VariableSize;
968 if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
969 HwErrVariableTotalSize += VariableSize;
970 } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
971 CommonVariableTotalSize += VariableSize;
972 }
973 }
974 }
975
976 Variable = NextVariable;
977 }
978
979 //
980 // Install the new variable if it is not NULL.
981 //
982 if (NewVariable != NULL) {
983 if ((UINTN) (CurrPtr - ValidBuffer) + NewVariableSize > VariableStoreHeader->Size) {
984 //
985 // No enough space to store the new variable.
986 //
987 Status = EFI_OUT_OF_RESOURCES;
988 goto Done;
989 }
990 if (!IsVolatile) {
991 if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
992 HwErrVariableTotalSize += NewVariableSize;
993 } else if ((NewVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
994 CommonVariableTotalSize += NewVariableSize;
995 }
996 if ((HwErrVariableTotalSize > PcdGet32 (PcdHwErrStorageSize)) ||
997 (CommonVariableTotalSize > VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize))) {
998 //
999 // No enough space to store the new variable by NV or NV+HR attribute.
1000 //
1001 Status = EFI_OUT_OF_RESOURCES;
1002 goto Done;
1003 }
1004 }
1005
1006 CopyMem (CurrPtr, (UINT8 *) NewVariable, NewVariableSize);
1007 ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED;
1008 if (UpdatingVariable != NULL) {
1009 UpdatingPtrTrack->CurrPtr = (VARIABLE_HEADER *)((UINTN)UpdatingPtrTrack->StartPtr + ((UINTN)CurrPtr - (UINTN)GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer)));
1010 UpdatingPtrTrack->InDeletedTransitionPtr = NULL;
1011 }
1012 CurrPtr += NewVariableSize;
1013 }
1014 }
1015
1016 if (IsVolatile) {
1017 //
1018 // If volatile variable store, just copy valid buffer.
1019 //
1020 SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff);
1021 CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - ValidBuffer));
1022 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
1023 Status = EFI_SUCCESS;
1024 } else {
1025 //
1026 // If non-volatile variable store, perform FTW here.
1027 //
1028 Status = FtwVariableSpace (
1029 VariableBase,
1030 (VARIABLE_STORE_HEADER *) ValidBuffer
1031 );
1032 if (!EFI_ERROR (Status)) {
1033 *LastVariableOffset = (UINTN) (CurrPtr - ValidBuffer);
1034 mVariableModuleGlobal->HwErrVariableTotalSize = HwErrVariableTotalSize;
1035 mVariableModuleGlobal->CommonVariableTotalSize = CommonVariableTotalSize;
1036 } else {
1037 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableBase);
1038 while (IsValidVariableHeader (NextVariable)) {
1039 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
1040 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1041 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
1042 } else if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
1043 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
1044 }
1045
1046 NextVariable = GetNextVariablePtr (NextVariable);
1047 }
1048 *LastVariableOffset = (UINTN) NextVariable - (UINTN) VariableBase;
1049 }
1050 }
1051
1052 Done:
1053 if (IsVolatile) {
1054 FreePool (ValidBuffer);
1055 } else {
1056 //
1057 // For NV variable reclaim, we use mNvVariableCache as the buffer, so copy the data back.
1058 //
1059 CopyMem (mNvVariableCache, (UINT8 *)(UINTN)VariableBase, VariableStoreHeader->Size);
1060
1061 if (NewPubKeyStore != NULL) {
1062 FreePool (NewPubKeyStore);
1063 }
1064
1065 if (NewPubKeyIndex != NULL) {
1066 FreePool (NewPubKeyIndex);
1067 }
1068 }
1069
1070 return Status;
1071 }
1072
1073 /**
1074 Find the variable in the specified variable store.
1075
1076 @param[in] VariableName Name of the variable to be found
1077 @param[in] VendorGuid Vendor GUID to be found.
1078 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1079 check at runtime when searching variable.
1080 @param[in, out] PtrTrack Variable Track Pointer structure that contains Variable Information.
1081
1082 @retval EFI_SUCCESS Variable found successfully
1083 @retval EFI_NOT_FOUND Variable not found
1084 **/
1085 EFI_STATUS
1086 FindVariableEx (
1087 IN CHAR16 *VariableName,
1088 IN EFI_GUID *VendorGuid,
1089 IN BOOLEAN IgnoreRtCheck,
1090 IN OUT VARIABLE_POINTER_TRACK *PtrTrack
1091 )
1092 {
1093 VARIABLE_HEADER *InDeletedVariable;
1094 VOID *Point;
1095
1096 PtrTrack->InDeletedTransitionPtr = NULL;
1097
1098 //
1099 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1100 //
1101 InDeletedVariable = NULL;
1102
1103 for ( PtrTrack->CurrPtr = PtrTrack->StartPtr
1104 ; (PtrTrack->CurrPtr < PtrTrack->EndPtr) && IsValidVariableHeader (PtrTrack->CurrPtr)
1105 ; PtrTrack->CurrPtr = GetNextVariablePtr (PtrTrack->CurrPtr)
1106 ) {
1107 if (PtrTrack->CurrPtr->State == VAR_ADDED ||
1108 PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)
1109 ) {
1110 if (IgnoreRtCheck || !AtRuntime () || ((PtrTrack->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
1111 if (VariableName[0] == 0) {
1112 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1113 InDeletedVariable = PtrTrack->CurrPtr;
1114 } else {
1115 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1116 return EFI_SUCCESS;
1117 }
1118 } else {
1119 if (CompareGuid (VendorGuid, &PtrTrack->CurrPtr->VendorGuid)) {
1120 Point = (VOID *) GetVariableNamePtr (PtrTrack->CurrPtr);
1121
1122 ASSERT (NameSizeOfVariable (PtrTrack->CurrPtr) != 0);
1123 if (CompareMem (VariableName, Point, NameSizeOfVariable (PtrTrack->CurrPtr)) == 0) {
1124 if (PtrTrack->CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
1125 InDeletedVariable = PtrTrack->CurrPtr;
1126 } else {
1127 PtrTrack->InDeletedTransitionPtr = InDeletedVariable;
1128 return EFI_SUCCESS;
1129 }
1130 }
1131 }
1132 }
1133 }
1134 }
1135 }
1136
1137 PtrTrack->CurrPtr = InDeletedVariable;
1138 return (PtrTrack->CurrPtr == NULL) ? EFI_NOT_FOUND : EFI_SUCCESS;
1139 }
1140
1141
1142 /**
1143 Finds variable in storage blocks of volatile and non-volatile storage areas.
1144
1145 This code finds variable in storage blocks of volatile and non-volatile storage areas.
1146 If VariableName is an empty string, then we just return the first
1147 qualified variable without comparing VariableName and VendorGuid.
1148 If IgnoreRtCheck is TRUE, then we ignore the EFI_VARIABLE_RUNTIME_ACCESS attribute check
1149 at runtime when searching existing variable, only VariableName and VendorGuid are compared.
1150 Otherwise, variables without EFI_VARIABLE_RUNTIME_ACCESS are not visible at runtime.
1151
1152 @param[in] VariableName Name of the variable to be found.
1153 @param[in] VendorGuid Vendor GUID to be found.
1154 @param[out] PtrTrack VARIABLE_POINTER_TRACK structure for output,
1155 including the range searched and the target position.
1156 @param[in] Global Pointer to VARIABLE_GLOBAL structure, including
1157 base of volatile variable storage area, base of
1158 NV variable storage area, and a lock.
1159 @param[in] IgnoreRtCheck Ignore EFI_VARIABLE_RUNTIME_ACCESS attribute
1160 check at runtime when searching variable.
1161
1162 @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while
1163 VendorGuid is NULL.
1164 @retval EFI_SUCCESS Variable successfully found.
1165 @retval EFI_NOT_FOUND Variable not found
1166
1167 **/
1168 EFI_STATUS
1169 FindVariable (
1170 IN CHAR16 *VariableName,
1171 IN EFI_GUID *VendorGuid,
1172 OUT VARIABLE_POINTER_TRACK *PtrTrack,
1173 IN VARIABLE_GLOBAL *Global,
1174 IN BOOLEAN IgnoreRtCheck
1175 )
1176 {
1177 EFI_STATUS Status;
1178 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
1179 VARIABLE_STORE_TYPE Type;
1180
1181 if (VariableName[0] != 0 && VendorGuid == NULL) {
1182 return EFI_INVALID_PARAMETER;
1183 }
1184
1185 //
1186 // 0: Volatile, 1: HOB, 2: Non-Volatile.
1187 // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName
1188 // make use of this mapping to implement search algorithm.
1189 //
1190 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) Global->VolatileVariableBase;
1191 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) Global->HobVariableBase;
1192 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
1193
1194 //
1195 // Find the variable by walk through HOB, volatile and non-volatile variable store.
1196 //
1197 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
1198 if (VariableStoreHeader[Type] == NULL) {
1199 continue;
1200 }
1201
1202 PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Type]);
1203 PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Type]);
1204 PtrTrack->Volatile = (BOOLEAN) (Type == VariableStoreTypeVolatile);
1205
1206 Status = FindVariableEx (VariableName, VendorGuid, IgnoreRtCheck, PtrTrack);
1207 if (!EFI_ERROR (Status)) {
1208 return Status;
1209 }
1210 }
1211 return EFI_NOT_FOUND;
1212 }
1213
1214 /**
1215 Get index from supported language codes according to language string.
1216
1217 This code is used to get corresponding index in supported language codes. It can handle
1218 RFC4646 and ISO639 language tags.
1219 In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
1220 In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
1221
1222 For example:
1223 SupportedLang = "engfraengfra"
1224 Lang = "eng"
1225 Iso639Language = TRUE
1226 The return value is "0".
1227 Another example:
1228 SupportedLang = "en;fr;en-US;fr-FR"
1229 Lang = "fr-FR"
1230 Iso639Language = FALSE
1231 The return value is "3".
1232
1233 @param SupportedLang Platform supported language codes.
1234 @param Lang Configured language.
1235 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1236
1237 @retval The index of language in the language codes.
1238
1239 **/
1240 UINTN
1241 GetIndexFromSupportedLangCodes(
1242 IN CHAR8 *SupportedLang,
1243 IN CHAR8 *Lang,
1244 IN BOOLEAN Iso639Language
1245 )
1246 {
1247 UINTN Index;
1248 UINTN CompareLength;
1249 UINTN LanguageLength;
1250
1251 if (Iso639Language) {
1252 CompareLength = ISO_639_2_ENTRY_SIZE;
1253 for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
1254 if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
1255 //
1256 // Successfully find the index of Lang string in SupportedLang string.
1257 //
1258 Index = Index / CompareLength;
1259 return Index;
1260 }
1261 }
1262 ASSERT (FALSE);
1263 return 0;
1264 } else {
1265 //
1266 // Compare RFC4646 language code
1267 //
1268 Index = 0;
1269 for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
1270
1271 for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
1272 //
1273 // Skip ';' characters in SupportedLang
1274 //
1275 for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
1276 //
1277 // Determine the length of the next language code in SupportedLang
1278 //
1279 for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
1280
1281 if ((CompareLength == LanguageLength) &&
1282 (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
1283 //
1284 // Successfully find the index of Lang string in SupportedLang string.
1285 //
1286 return Index;
1287 }
1288 }
1289 ASSERT (FALSE);
1290 return 0;
1291 }
1292 }
1293
1294 /**
1295 Get language string from supported language codes according to index.
1296
1297 This code is used to get corresponding language strings in supported language codes. It can handle
1298 RFC4646 and ISO639 language tags.
1299 In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
1300 In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
1301
1302 For example:
1303 SupportedLang = "engfraengfra"
1304 Index = "1"
1305 Iso639Language = TRUE
1306 The return value is "fra".
1307 Another example:
1308 SupportedLang = "en;fr;en-US;fr-FR"
1309 Index = "1"
1310 Iso639Language = FALSE
1311 The return value is "fr".
1312
1313 @param SupportedLang Platform supported language codes.
1314 @param Index The index in supported language codes.
1315 @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
1316
1317 @retval The language string in the language codes.
1318
1319 **/
1320 CHAR8 *
1321 GetLangFromSupportedLangCodes (
1322 IN CHAR8 *SupportedLang,
1323 IN UINTN Index,
1324 IN BOOLEAN Iso639Language
1325 )
1326 {
1327 UINTN SubIndex;
1328 UINTN CompareLength;
1329 CHAR8 *Supported;
1330
1331 SubIndex = 0;
1332 Supported = SupportedLang;
1333 if (Iso639Language) {
1334 //
1335 // According to the index of Lang string in SupportedLang string to get the language.
1336 // This code will be invoked in RUNTIME, therefore there is not a memory allocate/free operation.
1337 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1338 //
1339 CompareLength = ISO_639_2_ENTRY_SIZE;
1340 mVariableModuleGlobal->Lang[CompareLength] = '\0';
1341 return CopyMem (mVariableModuleGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
1342
1343 } else {
1344 while (TRUE) {
1345 //
1346 // Take semicolon as delimitation, sequentially traverse supported language codes.
1347 //
1348 for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
1349 Supported++;
1350 }
1351 if ((*Supported == '\0') && (SubIndex != Index)) {
1352 //
1353 // Have completed the traverse, but not find corrsponding string.
1354 // This case is not allowed to happen.
1355 //
1356 ASSERT(FALSE);
1357 return NULL;
1358 }
1359 if (SubIndex == Index) {
1360 //
1361 // According to the index of Lang string in SupportedLang string to get the language.
1362 // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
1363 // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
1364 //
1365 mVariableModuleGlobal->PlatformLang[CompareLength] = '\0';
1366 return CopyMem (mVariableModuleGlobal->PlatformLang, Supported - CompareLength, CompareLength);
1367 }
1368 SubIndex++;
1369
1370 //
1371 // Skip ';' characters in Supported
1372 //
1373 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1374 }
1375 }
1376 }
1377
1378 /**
1379 Returns a pointer to an allocated buffer that contains the best matching language
1380 from a set of supported languages.
1381
1382 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1383 code types may not be mixed in a single call to this function. This function
1384 supports a variable argument list that allows the caller to pass in a prioritized
1385 list of language codes to test against all the language codes in SupportedLanguages.
1386
1387 If SupportedLanguages is NULL, then ASSERT().
1388
1389 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1390 contains a set of language codes in the format
1391 specified by Iso639Language.
1392 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1393 in ISO 639-2 format. If FALSE, then all language
1394 codes are assumed to be in RFC 4646 language format
1395 @param[in] ... A variable argument list that contains pointers to
1396 Null-terminated ASCII strings that contain one or more
1397 language codes in the format specified by Iso639Language.
1398 The first language code from each of these language
1399 code lists is used to determine if it is an exact or
1400 close match to any of the language codes in
1401 SupportedLanguages. Close matches only apply to RFC 4646
1402 language codes, and the matching algorithm from RFC 4647
1403 is used to determine if a close match is present. If
1404 an exact or close match is found, then the matching
1405 language code from SupportedLanguages is returned. If
1406 no matches are found, then the next variable argument
1407 parameter is evaluated. The variable argument list
1408 is terminated by a NULL.
1409
1410 @retval NULL The best matching language could not be found in SupportedLanguages.
1411 @retval NULL There are not enough resources available to return the best matching
1412 language.
1413 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1414 language in SupportedLanguages.
1415
1416 **/
1417 CHAR8 *
1418 EFIAPI
1419 VariableGetBestLanguage (
1420 IN CONST CHAR8 *SupportedLanguages,
1421 IN BOOLEAN Iso639Language,
1422 ...
1423 )
1424 {
1425 VA_LIST Args;
1426 CHAR8 *Language;
1427 UINTN CompareLength;
1428 UINTN LanguageLength;
1429 CONST CHAR8 *Supported;
1430 CHAR8 *Buffer;
1431
1432 if (SupportedLanguages == NULL) {
1433 return NULL;
1434 }
1435
1436 VA_START (Args, Iso639Language);
1437 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1438 //
1439 // Default to ISO 639-2 mode
1440 //
1441 CompareLength = 3;
1442 LanguageLength = MIN (3, AsciiStrLen (Language));
1443
1444 //
1445 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1446 //
1447 if (!Iso639Language) {
1448 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1449 }
1450
1451 //
1452 // Trim back the length of Language used until it is empty
1453 //
1454 while (LanguageLength > 0) {
1455 //
1456 // Loop through all language codes in SupportedLanguages
1457 //
1458 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1459 //
1460 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1461 //
1462 if (!Iso639Language) {
1463 //
1464 // Skip ';' characters in Supported
1465 //
1466 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1467 //
1468 // Determine the length of the next language code in Supported
1469 //
1470 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1471 //
1472 // If Language is longer than the Supported, then skip to the next language
1473 //
1474 if (LanguageLength > CompareLength) {
1475 continue;
1476 }
1477 }
1478 //
1479 // See if the first LanguageLength characters in Supported match Language
1480 //
1481 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1482 VA_END (Args);
1483
1484 Buffer = Iso639Language ? mVariableModuleGlobal->Lang : mVariableModuleGlobal->PlatformLang;
1485 Buffer[CompareLength] = '\0';
1486 return CopyMem (Buffer, Supported, CompareLength);
1487 }
1488 }
1489
1490 if (Iso639Language) {
1491 //
1492 // If ISO 639 mode, then each language can only be tested once
1493 //
1494 LanguageLength = 0;
1495 } else {
1496 //
1497 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1498 //
1499 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1500 }
1501 }
1502 }
1503 VA_END (Args);
1504
1505 //
1506 // No matches were found
1507 //
1508 return NULL;
1509 }
1510
1511 /**
1512 This function is to check if the remaining variable space is enough to set
1513 all Variables from argument list successfully. The purpose of the check
1514 is to keep the consistency of the Variables to be in variable storage.
1515
1516 Note: Variables are assumed to be in same storage.
1517 The set sequence of Variables will be same with the sequence of VariableEntry from argument list,
1518 so follow the argument sequence to check the Variables.
1519
1520 @param[in] Attributes Variable attributes for Variable entries.
1521 @param ... The variable argument list with type VARIABLE_ENTRY_CONSISTENCY *.
1522 A NULL terminates the list. The VariableSize of
1523 VARIABLE_ENTRY_CONSISTENCY is the variable data size as input.
1524 It will be changed to variable total size as output.
1525
1526 @retval TRUE Have enough variable space to set the Variables successfully.
1527 @retval FALSE No enough variable space to set the Variables successfully.
1528
1529 **/
1530 BOOLEAN
1531 EFIAPI
1532 CheckRemainingSpaceForConsistency (
1533 IN UINT32 Attributes,
1534 ...
1535 )
1536 {
1537 EFI_STATUS Status;
1538 VA_LIST Args;
1539 VARIABLE_ENTRY_CONSISTENCY *VariableEntry;
1540 UINT64 MaximumVariableStorageSize;
1541 UINT64 RemainingVariableStorageSize;
1542 UINT64 MaximumVariableSize;
1543 UINTN TotalNeededSize;
1544 UINTN OriginalVarSize;
1545 VARIABLE_STORE_HEADER *VariableStoreHeader;
1546 VARIABLE_POINTER_TRACK VariablePtrTrack;
1547 VARIABLE_HEADER *NextVariable;
1548 UINTN VarNameSize;
1549 UINTN VarDataSize;
1550
1551 //
1552 // Non-Volatile related.
1553 //
1554 VariableStoreHeader = mNvVariableCache;
1555
1556 Status = VariableServiceQueryVariableInfoInternal (
1557 Attributes,
1558 &MaximumVariableStorageSize,
1559 &RemainingVariableStorageSize,
1560 &MaximumVariableSize
1561 );
1562 ASSERT_EFI_ERROR (Status);
1563
1564 TotalNeededSize = 0;
1565 VA_START (Args, Attributes);
1566 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1567 while (VariableEntry != NULL) {
1568 //
1569 // Calculate variable total size.
1570 //
1571 VarNameSize = StrSize (VariableEntry->Name);
1572 VarNameSize += GET_PAD_SIZE (VarNameSize);
1573 VarDataSize = VariableEntry->VariableSize;
1574 VarDataSize += GET_PAD_SIZE (VarDataSize);
1575 VariableEntry->VariableSize = HEADER_ALIGN (sizeof (VARIABLE_HEADER) + VarNameSize + VarDataSize);
1576
1577 TotalNeededSize += VariableEntry->VariableSize;
1578 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1579 }
1580 VA_END (Args);
1581
1582 if (RemainingVariableStorageSize >= TotalNeededSize) {
1583 //
1584 // Already have enough space.
1585 //
1586 return TRUE;
1587 } else if (AtRuntime ()) {
1588 //
1589 // At runtime, no reclaim.
1590 // The original variable space of Variables can't be reused.
1591 //
1592 return FALSE;
1593 }
1594
1595 VA_START (Args, Attributes);
1596 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1597 while (VariableEntry != NULL) {
1598 //
1599 // Check if Variable[Index] has been present and get its size.
1600 //
1601 OriginalVarSize = 0;
1602 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
1603 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
1604 Status = FindVariableEx (
1605 VariableEntry->Name,
1606 VariableEntry->Guid,
1607 FALSE,
1608 &VariablePtrTrack
1609 );
1610 if (!EFI_ERROR (Status)) {
1611 //
1612 // Get size of Variable[Index].
1613 //
1614 NextVariable = GetNextVariablePtr (VariablePtrTrack.CurrPtr);
1615 OriginalVarSize = (UINTN) NextVariable - (UINTN) VariablePtrTrack.CurrPtr;
1616 //
1617 // Add the original size of Variable[Index] to remaining variable storage size.
1618 //
1619 RemainingVariableStorageSize += OriginalVarSize;
1620 }
1621 if (VariableEntry->VariableSize > RemainingVariableStorageSize) {
1622 //
1623 // No enough space for Variable[Index].
1624 //
1625 VA_END (Args);
1626 return FALSE;
1627 }
1628 //
1629 // Sub the (new) size of Variable[Index] from remaining variable storage size.
1630 //
1631 RemainingVariableStorageSize -= VariableEntry->VariableSize;
1632 VariableEntry = VA_ARG (Args, VARIABLE_ENTRY_CONSISTENCY *);
1633 }
1634 VA_END (Args);
1635
1636 return TRUE;
1637 }
1638
1639 /**
1640 Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
1641
1642 When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
1643
1644 According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
1645 and are read-only. Therefore, in variable driver, only store the original value for other use.
1646
1647 @param[in] VariableName Name of variable.
1648
1649 @param[in] Data Variable data.
1650
1651 @param[in] DataSize Size of data. 0 means delete.
1652
1653 @retval EFI_SUCCESS The update operation is successful or ignored.
1654 @retval EFI_WRITE_PROTECTED Update PlatformLangCodes/LangCodes at runtime.
1655 @retval EFI_OUT_OF_RESOURCES No enough variable space to do the update operation.
1656 @retval Others Other errors happened during the update operation.
1657
1658 **/
1659 EFI_STATUS
1660 AutoUpdateLangVariable (
1661 IN CHAR16 *VariableName,
1662 IN VOID *Data,
1663 IN UINTN DataSize
1664 )
1665 {
1666 EFI_STATUS Status;
1667 CHAR8 *BestPlatformLang;
1668 CHAR8 *BestLang;
1669 UINTN Index;
1670 UINT32 Attributes;
1671 VARIABLE_POINTER_TRACK Variable;
1672 BOOLEAN SetLanguageCodes;
1673 VARIABLE_ENTRY_CONSISTENCY VariableEntry[2];
1674
1675 //
1676 // Don't do updates for delete operation
1677 //
1678 if (DataSize == 0) {
1679 return EFI_SUCCESS;
1680 }
1681
1682 SetLanguageCodes = FALSE;
1683
1684 if (StrCmp (VariableName, EFI_PLATFORM_LANG_CODES_VARIABLE_NAME) == 0) {
1685 //
1686 // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
1687 //
1688 if (AtRuntime ()) {
1689 return EFI_WRITE_PROTECTED;
1690 }
1691
1692 SetLanguageCodes = TRUE;
1693
1694 //
1695 // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
1696 // Therefore, in variable driver, only store the original value for other use.
1697 //
1698 if (mVariableModuleGlobal->PlatformLangCodes != NULL) {
1699 FreePool (mVariableModuleGlobal->PlatformLangCodes);
1700 }
1701 mVariableModuleGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1702 ASSERT (mVariableModuleGlobal->PlatformLangCodes != NULL);
1703
1704 //
1705 // PlatformLang holds a single language from PlatformLangCodes,
1706 // so the size of PlatformLangCodes is enough for the PlatformLang.
1707 //
1708 if (mVariableModuleGlobal->PlatformLang != NULL) {
1709 FreePool (mVariableModuleGlobal->PlatformLang);
1710 }
1711 mVariableModuleGlobal->PlatformLang = AllocateRuntimePool (DataSize);
1712 ASSERT (mVariableModuleGlobal->PlatformLang != NULL);
1713
1714 } else if (StrCmp (VariableName, EFI_LANG_CODES_VARIABLE_NAME) == 0) {
1715 //
1716 // LangCodes is a volatile variable, so it can not be updated at runtime.
1717 //
1718 if (AtRuntime ()) {
1719 return EFI_WRITE_PROTECTED;
1720 }
1721
1722 SetLanguageCodes = TRUE;
1723
1724 //
1725 // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
1726 // Therefore, in variable driver, only store the original value for other use.
1727 //
1728 if (mVariableModuleGlobal->LangCodes != NULL) {
1729 FreePool (mVariableModuleGlobal->LangCodes);
1730 }
1731 mVariableModuleGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
1732 ASSERT (mVariableModuleGlobal->LangCodes != NULL);
1733 }
1734
1735 if (SetLanguageCodes
1736 && (mVariableModuleGlobal->PlatformLangCodes != NULL)
1737 && (mVariableModuleGlobal->LangCodes != NULL)) {
1738 //
1739 // Update Lang if PlatformLang is already set
1740 // Update PlatformLang if Lang is already set
1741 //
1742 Status = FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1743 if (!EFI_ERROR (Status)) {
1744 //
1745 // Update Lang
1746 //
1747 VariableName = EFI_PLATFORM_LANG_VARIABLE_NAME;
1748 Data = GetVariableDataPtr (Variable.CurrPtr);
1749 DataSize = Variable.CurrPtr->DataSize;
1750 } else {
1751 Status = FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1752 if (!EFI_ERROR (Status)) {
1753 //
1754 // Update PlatformLang
1755 //
1756 VariableName = EFI_LANG_VARIABLE_NAME;
1757 Data = GetVariableDataPtr (Variable.CurrPtr);
1758 DataSize = Variable.CurrPtr->DataSize;
1759 } else {
1760 //
1761 // Neither PlatformLang nor Lang is set, directly return
1762 //
1763 return EFI_SUCCESS;
1764 }
1765 }
1766 }
1767
1768 Status = EFI_SUCCESS;
1769
1770 //
1771 // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
1772 //
1773 Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
1774
1775 if (StrCmp (VariableName, EFI_PLATFORM_LANG_VARIABLE_NAME) == 0) {
1776 //
1777 // Update Lang when PlatformLangCodes/LangCodes were set.
1778 //
1779 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1780 //
1781 // When setting PlatformLang, firstly get most matched language string from supported language codes.
1782 //
1783 BestPlatformLang = VariableGetBestLanguage (mVariableModuleGlobal->PlatformLangCodes, FALSE, Data, NULL);
1784 if (BestPlatformLang != NULL) {
1785 //
1786 // Get the corresponding index in language codes.
1787 //
1788 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
1789
1790 //
1791 // Get the corresponding ISO639 language tag according to RFC4646 language tag.
1792 //
1793 BestLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, Index, TRUE);
1794
1795 //
1796 // Check the variable space for both Lang and PlatformLang variable.
1797 //
1798 VariableEntry[0].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
1799 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
1800 VariableEntry[0].Name = EFI_LANG_VARIABLE_NAME;
1801
1802 VariableEntry[1].VariableSize = AsciiStrSize (BestPlatformLang);
1803 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
1804 VariableEntry[1].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
1805 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
1806 //
1807 // No enough variable space to set both Lang and PlatformLang successfully.
1808 //
1809 Status = EFI_OUT_OF_RESOURCES;
1810 } else {
1811 //
1812 // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
1813 //
1814 FindVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1815
1816 Status = UpdateVariable (EFI_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestLang,
1817 ISO_639_2_ENTRY_SIZE + 1, Attributes, 0, 0, &Variable, NULL);
1818 }
1819
1820 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a Status: %r\n", BestPlatformLang, BestLang, Status));
1821 }
1822 }
1823
1824 } else if (StrCmp (VariableName, EFI_LANG_VARIABLE_NAME) == 0) {
1825 //
1826 // Update PlatformLang when PlatformLangCodes/LangCodes were set.
1827 //
1828 if ((mVariableModuleGlobal->PlatformLangCodes != NULL) && (mVariableModuleGlobal->LangCodes != NULL)) {
1829 //
1830 // When setting Lang, firstly get most matched language string from supported language codes.
1831 //
1832 BestLang = VariableGetBestLanguage (mVariableModuleGlobal->LangCodes, TRUE, Data, NULL);
1833 if (BestLang != NULL) {
1834 //
1835 // Get the corresponding index in language codes.
1836 //
1837 Index = GetIndexFromSupportedLangCodes (mVariableModuleGlobal->LangCodes, BestLang, TRUE);
1838
1839 //
1840 // Get the corresponding RFC4646 language tag according to ISO639 language tag.
1841 //
1842 BestPlatformLang = GetLangFromSupportedLangCodes (mVariableModuleGlobal->PlatformLangCodes, Index, FALSE);
1843
1844 //
1845 // Check the variable space for both PlatformLang and Lang variable.
1846 //
1847 VariableEntry[0].VariableSize = AsciiStrSize (BestPlatformLang);
1848 VariableEntry[0].Guid = &gEfiGlobalVariableGuid;
1849 VariableEntry[0].Name = EFI_PLATFORM_LANG_VARIABLE_NAME;
1850
1851 VariableEntry[1].VariableSize = ISO_639_2_ENTRY_SIZE + 1;
1852 VariableEntry[1].Guid = &gEfiGlobalVariableGuid;
1853 VariableEntry[1].Name = EFI_LANG_VARIABLE_NAME;
1854 if (!CheckRemainingSpaceForConsistency (VARIABLE_ATTRIBUTE_NV_BS_RT, &VariableEntry[0], &VariableEntry[1], NULL)) {
1855 //
1856 // No enough variable space to set both PlatformLang and Lang successfully.
1857 //
1858 Status = EFI_OUT_OF_RESOURCES;
1859 } else {
1860 //
1861 // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
1862 //
1863 FindVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
1864
1865 Status = UpdateVariable (EFI_PLATFORM_LANG_VARIABLE_NAME, &gEfiGlobalVariableGuid, BestPlatformLang,
1866 AsciiStrSize (BestPlatformLang), Attributes, 0, 0, &Variable, NULL);
1867 }
1868
1869 DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a Status: %r\n", BestLang, BestPlatformLang, Status));
1870 }
1871 }
1872 }
1873
1874 if (SetLanguageCodes) {
1875 //
1876 // Continue to set PlatformLangCodes or LangCodes.
1877 //
1878 return EFI_SUCCESS;
1879 } else {
1880 return Status;
1881 }
1882 }
1883
1884 /**
1885 Update the variable region with Variable information. If EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS is set,
1886 index of associated public key is needed.
1887
1888 @param[in] VariableName Name of variable.
1889 @param[in] VendorGuid Guid of variable.
1890 @param[in] Data Variable data.
1891 @param[in] DataSize Size of data. 0 means delete.
1892 @param[in] Attributes Attributes of the variable.
1893 @param[in] KeyIndex Index of associated public key.
1894 @param[in] MonotonicCount Value of associated monotonic count.
1895 @param[in, out] CacheVariable The variable information which is used to keep track of variable usage.
1896 @param[in] TimeStamp Value of associated TimeStamp.
1897
1898 @retval EFI_SUCCESS The update operation is success.
1899 @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
1900
1901 **/
1902 EFI_STATUS
1903 UpdateVariable (
1904 IN CHAR16 *VariableName,
1905 IN EFI_GUID *VendorGuid,
1906 IN VOID *Data,
1907 IN UINTN DataSize,
1908 IN UINT32 Attributes OPTIONAL,
1909 IN UINT32 KeyIndex OPTIONAL,
1910 IN UINT64 MonotonicCount OPTIONAL,
1911 IN OUT VARIABLE_POINTER_TRACK *CacheVariable,
1912 IN EFI_TIME *TimeStamp OPTIONAL
1913 )
1914 {
1915 EFI_STATUS Status;
1916 VARIABLE_HEADER *NextVariable;
1917 UINTN ScratchSize;
1918 UINTN MaxDataSize;
1919 UINTN NonVolatileVarableStoreSize;
1920 UINTN VarNameOffset;
1921 UINTN VarDataOffset;
1922 UINTN VarNameSize;
1923 UINTN VarSize;
1924 BOOLEAN Volatile;
1925 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
1926 UINT8 State;
1927 VARIABLE_POINTER_TRACK *Variable;
1928 VARIABLE_POINTER_TRACK NvVariable;
1929 VARIABLE_STORE_HEADER *VariableStoreHeader;
1930 UINTN CacheOffset;
1931 UINT8 *BufferForMerge;
1932 UINTN MergedBufSize;
1933 BOOLEAN DataReady;
1934 UINTN DataOffset;
1935
1936 if (mVariableModuleGlobal->FvbInstance == NULL) {
1937 //
1938 // The FVB protocol is not installed, so the EFI_VARIABLE_WRITE_ARCH_PROTOCOL is not installed.
1939 //
1940 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
1941 //
1942 // Trying to update NV variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
1943 //
1944 return EFI_NOT_AVAILABLE_YET;
1945 } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
1946 //
1947 // Trying to update volatile authenticated variable prior to the installation of EFI_VARIABLE_WRITE_ARCH_PROTOCOL
1948 // The authenticated variable perhaps is not initialized, just return here.
1949 //
1950 return EFI_NOT_AVAILABLE_YET;
1951 }
1952 }
1953
1954 if ((CacheVariable->CurrPtr == NULL) || CacheVariable->Volatile) {
1955 Variable = CacheVariable;
1956 } else {
1957 //
1958 // Update/Delete existing NV variable.
1959 // CacheVariable points to the variable in the memory copy of Flash area
1960 // Now let Variable points to the same variable in Flash area.
1961 //
1962 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase);
1963 Variable = &NvVariable;
1964 Variable->StartPtr = GetStartPointer (VariableStoreHeader);
1965 Variable->EndPtr = GetEndPointer (VariableStoreHeader);
1966 Variable->CurrPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->CurrPtr - (UINTN)CacheVariable->StartPtr));
1967 if (CacheVariable->InDeletedTransitionPtr != NULL) {
1968 Variable->InDeletedTransitionPtr = (VARIABLE_HEADER *)((UINTN)Variable->StartPtr + ((UINTN)CacheVariable->InDeletedTransitionPtr - (UINTN)CacheVariable->StartPtr));
1969 } else {
1970 Variable->InDeletedTransitionPtr = NULL;
1971 }
1972 Variable->Volatile = FALSE;
1973 }
1974
1975 Fvb = mVariableModuleGlobal->FvbInstance;
1976
1977 //
1978 // Tricky part: Use scratch data area at the end of volatile variable store
1979 // as a temporary storage.
1980 //
1981 NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase));
1982 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
1983 SetMem (NextVariable, ScratchSize, 0xff);
1984 DataReady = FALSE;
1985
1986 if (Variable->CurrPtr != NULL) {
1987 //
1988 // Update/Delete existing variable.
1989 //
1990 if (AtRuntime ()) {
1991 //
1992 // If AtRuntime and the variable is Volatile and Runtime Access,
1993 // the volatile is ReadOnly, and SetVariable should be aborted and
1994 // return EFI_WRITE_PROTECTED.
1995 //
1996 if (Variable->Volatile) {
1997 Status = EFI_WRITE_PROTECTED;
1998 goto Done;
1999 }
2000 //
2001 // Only variable that have NV attributes can be updated/deleted in Runtime.
2002 //
2003 if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
2004 Status = EFI_INVALID_PARAMETER;
2005 goto Done;
2006 }
2007
2008 //
2009 // Only variable that have RT attributes can be updated/deleted in Runtime.
2010 //
2011 if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) {
2012 Status = EFI_INVALID_PARAMETER;
2013 goto Done;
2014 }
2015 }
2016
2017 //
2018 // Setting a data variable with no access, or zero DataSize attributes
2019 // causes it to be deleted.
2020 // When the EFI_VARIABLE_APPEND_WRITE attribute is set, DataSize of zero will
2021 // not delete the variable.
2022 //
2023 if ((((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) && (DataSize == 0))|| ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0)) {
2024 if (Variable->InDeletedTransitionPtr != NULL) {
2025 //
2026 // Both ADDED and IN_DELETED_TRANSITION variable are present,
2027 // set IN_DELETED_TRANSITION one to DELETED state first.
2028 //
2029 State = Variable->InDeletedTransitionPtr->State;
2030 State &= VAR_DELETED;
2031 Status = UpdateVariableStore (
2032 &mVariableModuleGlobal->VariableGlobal,
2033 Variable->Volatile,
2034 FALSE,
2035 Fvb,
2036 (UINTN) &Variable->InDeletedTransitionPtr->State,
2037 sizeof (UINT8),
2038 &State
2039 );
2040 if (!EFI_ERROR (Status)) {
2041 if (!Variable->Volatile) {
2042 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2043 CacheVariable->InDeletedTransitionPtr->State = State;
2044 }
2045 } else {
2046 goto Done;
2047 }
2048 }
2049
2050 State = Variable->CurrPtr->State;
2051 State &= VAR_DELETED;
2052
2053 Status = UpdateVariableStore (
2054 &mVariableModuleGlobal->VariableGlobal,
2055 Variable->Volatile,
2056 FALSE,
2057 Fvb,
2058 (UINTN) &Variable->CurrPtr->State,
2059 sizeof (UINT8),
2060 &State
2061 );
2062 if (!EFI_ERROR (Status)) {
2063 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, FALSE, TRUE, FALSE);
2064 if (!Variable->Volatile) {
2065 CacheVariable->CurrPtr->State = State;
2066 FlushHobVariableToFlash (VariableName, VendorGuid);
2067 }
2068 }
2069 goto Done;
2070 }
2071 //
2072 // If the variable is marked valid, and the same data has been passed in,
2073 // then return to the caller immediately.
2074 //
2075 if (DataSizeOfVariable (Variable->CurrPtr) == DataSize &&
2076 (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0) &&
2077 ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) &&
2078 (TimeStamp == NULL)) {
2079 //
2080 // Variable content unchanged and no need to update timestamp, just return.
2081 //
2082 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
2083 Status = EFI_SUCCESS;
2084 goto Done;
2085 } else if ((Variable->CurrPtr->State == VAR_ADDED) ||
2086 (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
2087
2088 //
2089 // EFI_VARIABLE_APPEND_WRITE attribute only effects for existing variable
2090 //
2091 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0) {
2092 //
2093 // NOTE: From 0 to DataOffset of NextVariable is reserved for Variable Header and Name.
2094 // From DataOffset of NextVariable is to save the existing variable data.
2095 //
2096 DataOffset = sizeof (VARIABLE_HEADER) + Variable->CurrPtr->NameSize + GET_PAD_SIZE (Variable->CurrPtr->NameSize);
2097 BufferForMerge = (UINT8 *) ((UINTN) NextVariable + DataOffset);
2098 CopyMem (BufferForMerge, (UINT8 *) ((UINTN) Variable->CurrPtr + DataOffset), Variable->CurrPtr->DataSize);
2099
2100 //
2101 // Set Max Common Variable Data Size as default MaxDataSize
2102 //
2103 MaxDataSize = PcdGet32 (PcdMaxVariableSize) - DataOffset;
2104
2105 if ((CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) &&
2106 ((StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE) == 0) || (StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE1) == 0))) ||
2107 (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0))) {
2108 //
2109 // For variables with formatted as EFI_SIGNATURE_LIST, the driver shall not perform an append of
2110 // EFI_SIGNATURE_DATA values that are already part of the existing variable value.
2111 //
2112 Status = AppendSignatureList (
2113 BufferForMerge,
2114 Variable->CurrPtr->DataSize,
2115 MaxDataSize - Variable->CurrPtr->DataSize,
2116 Data,
2117 DataSize,
2118 &MergedBufSize
2119 );
2120 if (Status == EFI_BUFFER_TOO_SMALL) {
2121 //
2122 // Signature List is too long, Failed to Append.
2123 //
2124 Status = EFI_INVALID_PARAMETER;
2125 goto Done;
2126 }
2127
2128 if (MergedBufSize == Variable->CurrPtr->DataSize) {
2129 if ((TimeStamp == NULL) || CompareTimeStamp (TimeStamp, &Variable->CurrPtr->TimeStamp)) {
2130 //
2131 // New EFI_SIGNATURE_DATA is not found and timestamp is not later
2132 // than current timestamp, return EFI_SUCCESS directly.
2133 //
2134 UpdateVariableInfo (VariableName, VendorGuid, Variable->Volatile, FALSE, TRUE, FALSE, FALSE);
2135 Status = EFI_SUCCESS;
2136 goto Done;
2137 }
2138 }
2139 } else {
2140 //
2141 // For other Variables, append the new data to the end of existing data.
2142 // Max Harware error record variable data size is different from common variable
2143 //
2144 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
2145 MaxDataSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - DataOffset;
2146 }
2147
2148 if (Variable->CurrPtr->DataSize + DataSize > MaxDataSize) {
2149 //
2150 // Existing data size + new data size exceed maximum variable size limitation.
2151 //
2152 Status = EFI_INVALID_PARAMETER;
2153 goto Done;
2154 }
2155 CopyMem ((UINT8*) ((UINTN) BufferForMerge + Variable->CurrPtr->DataSize), Data, DataSize);
2156 MergedBufSize = Variable->CurrPtr->DataSize + DataSize;
2157 }
2158
2159 //
2160 // BufferForMerge(from DataOffset of NextVariable) has included the merged existing and new data.
2161 //
2162 Data = BufferForMerge;
2163 DataSize = MergedBufSize;
2164 DataReady = TRUE;
2165 }
2166
2167 //
2168 // Mark the old variable as in delete transition.
2169 //
2170 State = Variable->CurrPtr->State;
2171 State &= VAR_IN_DELETED_TRANSITION;
2172
2173 Status = UpdateVariableStore (
2174 &mVariableModuleGlobal->VariableGlobal,
2175 Variable->Volatile,
2176 FALSE,
2177 Fvb,
2178 (UINTN) &Variable->CurrPtr->State,
2179 sizeof (UINT8),
2180 &State
2181 );
2182 if (EFI_ERROR (Status)) {
2183 goto Done;
2184 }
2185 if (!Variable->Volatile) {
2186 CacheVariable->CurrPtr->State = State;
2187 }
2188 }
2189 } else {
2190 //
2191 // Not found existing variable. Create a new variable.
2192 //
2193
2194 if ((DataSize == 0) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) != 0)) {
2195 Status = EFI_SUCCESS;
2196 goto Done;
2197 }
2198
2199 //
2200 // Make sure we are trying to create a new variable.
2201 // Setting a data variable with zero DataSize or no access attributes means to delete it.
2202 //
2203 if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
2204 Status = EFI_NOT_FOUND;
2205 goto Done;
2206 }
2207
2208 //
2209 // Only variable have NV|RT attribute can be created in Runtime.
2210 //
2211 if (AtRuntime () &&
2212 (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) {
2213 Status = EFI_INVALID_PARAMETER;
2214 goto Done;
2215 }
2216 }
2217
2218 //
2219 // Function part - create a new variable and copy the data.
2220 // Both update a variable and create a variable will come here.
2221 //
2222 NextVariable->StartId = VARIABLE_DATA;
2223 //
2224 // NextVariable->State = VAR_ADDED;
2225 //
2226 NextVariable->Reserved = 0;
2227 NextVariable->PubKeyIndex = KeyIndex;
2228 NextVariable->MonotonicCount = MonotonicCount;
2229 ZeroMem (&NextVariable->TimeStamp, sizeof (EFI_TIME));
2230
2231 if (((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) &&
2232 (TimeStamp != NULL)) {
2233 if ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0) {
2234 CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2235 } else {
2236 //
2237 // In the case when the EFI_VARIABLE_APPEND_WRITE attribute is set, only
2238 // when the new TimeStamp value is later than the current timestamp associated
2239 // with the variable, we need associate the new timestamp with the updated value.
2240 //
2241 if (Variable->CurrPtr != NULL) {
2242 if (CompareTimeStamp (&Variable->CurrPtr->TimeStamp, TimeStamp)) {
2243 CopyMem (&NextVariable->TimeStamp, TimeStamp, sizeof (EFI_TIME));
2244 }
2245 }
2246 }
2247 }
2248
2249 //
2250 // The EFI_VARIABLE_APPEND_WRITE attribute will never be set in the returned
2251 // Attributes bitmask parameter of a GetVariable() call.
2252 //
2253 NextVariable->Attributes = Attributes & (~EFI_VARIABLE_APPEND_WRITE);
2254
2255 VarNameOffset = sizeof (VARIABLE_HEADER);
2256 VarNameSize = StrSize (VariableName);
2257 CopyMem (
2258 (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
2259 VariableName,
2260 VarNameSize
2261 );
2262 VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
2263
2264 //
2265 // If DataReady is TRUE, it means the variable data has been saved into
2266 // NextVariable during EFI_VARIABLE_APPEND_WRITE operation preparation.
2267 //
2268 if (!DataReady) {
2269 CopyMem (
2270 (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
2271 Data,
2272 DataSize
2273 );
2274 }
2275
2276 CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
2277 //
2278 // There will be pad bytes after Data, the NextVariable->NameSize and
2279 // NextVariable->DataSize should not include pad size so that variable
2280 // service can get actual size in GetVariable.
2281 //
2282 NextVariable->NameSize = (UINT32)VarNameSize;
2283 NextVariable->DataSize = (UINT32)DataSize;
2284
2285 //
2286 // The actual size of the variable that stores in storage should
2287 // include pad size.
2288 //
2289 VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
2290 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
2291 //
2292 // Create a nonvolatile variable.
2293 //
2294 Volatile = FALSE;
2295 NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size;
2296 if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0)
2297 && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > PcdGet32 (PcdHwErrStorageSize)))
2298 || (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0)
2299 && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize)))) {
2300 if (AtRuntime ()) {
2301 Status = EFI_OUT_OF_RESOURCES;
2302 goto Done;
2303 }
2304 //
2305 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2306 //
2307 Status = Reclaim (
2308 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
2309 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
2310 FALSE,
2311 Variable,
2312 NextVariable,
2313 HEADER_ALIGN (VarSize),
2314 FALSE
2315 );
2316 if (!EFI_ERROR (Status)) {
2317 //
2318 // The new variable has been integrated successfully during reclaiming.
2319 //
2320 if (Variable->CurrPtr != NULL) {
2321 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2322 CacheVariable->InDeletedTransitionPtr = NULL;
2323 }
2324 UpdateVariableInfo (VariableName, VendorGuid, FALSE, FALSE, TRUE, FALSE, FALSE);
2325 FlushHobVariableToFlash (VariableName, VendorGuid);
2326 }
2327 goto Done;
2328 }
2329 //
2330 // Four steps
2331 // 1. Write variable header
2332 // 2. Set variable state to header valid
2333 // 3. Write variable data
2334 // 4. Set variable state to valid
2335 //
2336 //
2337 // Step 1:
2338 //
2339 CacheOffset = mVariableModuleGlobal->NonVolatileLastVariableOffset;
2340 Status = UpdateVariableStore (
2341 &mVariableModuleGlobal->VariableGlobal,
2342 FALSE,
2343 TRUE,
2344 Fvb,
2345 mVariableModuleGlobal->NonVolatileLastVariableOffset,
2346 sizeof (VARIABLE_HEADER),
2347 (UINT8 *) NextVariable
2348 );
2349
2350 if (EFI_ERROR (Status)) {
2351 goto Done;
2352 }
2353
2354 //
2355 // Step 2:
2356 //
2357 NextVariable->State = VAR_HEADER_VALID_ONLY;
2358 Status = UpdateVariableStore (
2359 &mVariableModuleGlobal->VariableGlobal,
2360 FALSE,
2361 TRUE,
2362 Fvb,
2363 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2364 sizeof (UINT8),
2365 &NextVariable->State
2366 );
2367
2368 if (EFI_ERROR (Status)) {
2369 goto Done;
2370 }
2371 //
2372 // Step 3:
2373 //
2374 Status = UpdateVariableStore (
2375 &mVariableModuleGlobal->VariableGlobal,
2376 FALSE,
2377 TRUE,
2378 Fvb,
2379 mVariableModuleGlobal->NonVolatileLastVariableOffset + sizeof (VARIABLE_HEADER),
2380 (UINT32) VarSize - sizeof (VARIABLE_HEADER),
2381 (UINT8 *) NextVariable + sizeof (VARIABLE_HEADER)
2382 );
2383
2384 if (EFI_ERROR (Status)) {
2385 goto Done;
2386 }
2387 //
2388 // Step 4:
2389 //
2390 NextVariable->State = VAR_ADDED;
2391 Status = UpdateVariableStore (
2392 &mVariableModuleGlobal->VariableGlobal,
2393 FALSE,
2394 TRUE,
2395 Fvb,
2396 mVariableModuleGlobal->NonVolatileLastVariableOffset + OFFSET_OF (VARIABLE_HEADER, State),
2397 sizeof (UINT8),
2398 &NextVariable->State
2399 );
2400
2401 if (EFI_ERROR (Status)) {
2402 goto Done;
2403 }
2404
2405 mVariableModuleGlobal->NonVolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2406
2407 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
2408 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize);
2409 } else {
2410 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize);
2411 }
2412 //
2413 // update the memory copy of Flash region.
2414 //
2415 CopyMem ((UINT8 *)mNvVariableCache + CacheOffset, (UINT8 *)NextVariable, VarSize);
2416 } else {
2417 //
2418 // Create a volatile variable.
2419 //
2420 Volatile = TRUE;
2421
2422 if ((UINT32) (VarSize + mVariableModuleGlobal->VolatileLastVariableOffset) >
2423 ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) {
2424 //
2425 // Perform garbage collection & reclaim operation, and integrate the new variable at the same time.
2426 //
2427 Status = Reclaim (
2428 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase,
2429 &mVariableModuleGlobal->VolatileLastVariableOffset,
2430 TRUE,
2431 Variable,
2432 NextVariable,
2433 HEADER_ALIGN (VarSize),
2434 FALSE
2435 );
2436 if (!EFI_ERROR (Status)) {
2437 //
2438 // The new variable has been integrated successfully during reclaiming.
2439 //
2440 if (Variable->CurrPtr != NULL) {
2441 CacheVariable->CurrPtr = (VARIABLE_HEADER *)((UINTN) CacheVariable->StartPtr + ((UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr));
2442 CacheVariable->InDeletedTransitionPtr = NULL;
2443 }
2444 UpdateVariableInfo (VariableName, VendorGuid, TRUE, FALSE, TRUE, FALSE, FALSE);
2445 }
2446 goto Done;
2447 }
2448
2449 NextVariable->State = VAR_ADDED;
2450 Status = UpdateVariableStore (
2451 &mVariableModuleGlobal->VariableGlobal,
2452 TRUE,
2453 TRUE,
2454 Fvb,
2455 mVariableModuleGlobal->VolatileLastVariableOffset,
2456 (UINT32) VarSize,
2457 (UINT8 *) NextVariable
2458 );
2459
2460 if (EFI_ERROR (Status)) {
2461 goto Done;
2462 }
2463
2464 mVariableModuleGlobal->VolatileLastVariableOffset += HEADER_ALIGN (VarSize);
2465 }
2466
2467 //
2468 // Mark the old variable as deleted.
2469 //
2470 if (!EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
2471 if (Variable->InDeletedTransitionPtr != NULL) {
2472 //
2473 // Both ADDED and IN_DELETED_TRANSITION old variable are present,
2474 // set IN_DELETED_TRANSITION one to DELETED state first.
2475 //
2476 State = Variable->InDeletedTransitionPtr->State;
2477 State &= VAR_DELETED;
2478 Status = UpdateVariableStore (
2479 &mVariableModuleGlobal->VariableGlobal,
2480 Variable->Volatile,
2481 FALSE,
2482 Fvb,
2483 (UINTN) &Variable->InDeletedTransitionPtr->State,
2484 sizeof (UINT8),
2485 &State
2486 );
2487 if (!EFI_ERROR (Status)) {
2488 if (!Variable->Volatile) {
2489 ASSERT (CacheVariable->InDeletedTransitionPtr != NULL);
2490 CacheVariable->InDeletedTransitionPtr->State = State;
2491 }
2492 } else {
2493 goto Done;
2494 }
2495 }
2496
2497 State = Variable->CurrPtr->State;
2498 State &= VAR_DELETED;
2499
2500 Status = UpdateVariableStore (
2501 &mVariableModuleGlobal->VariableGlobal,
2502 Variable->Volatile,
2503 FALSE,
2504 Fvb,
2505 (UINTN) &Variable->CurrPtr->State,
2506 sizeof (UINT8),
2507 &State
2508 );
2509 if (!EFI_ERROR (Status) && !Variable->Volatile) {
2510 CacheVariable->CurrPtr->State = State;
2511 }
2512 }
2513
2514 if (!EFI_ERROR (Status)) {
2515 UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE);
2516 if (!Volatile) {
2517 FlushHobVariableToFlash (VariableName, VendorGuid);
2518 }
2519 }
2520
2521 Done:
2522 return Status;
2523 }
2524
2525 /**
2526 Check if a Unicode character is a hexadecimal character.
2527
2528 This function checks if a Unicode character is a
2529 hexadecimal character. The valid hexadecimal character is
2530 L'0' to L'9', L'a' to L'f', or L'A' to L'F'.
2531
2532
2533 @param Char The character to check against.
2534
2535 @retval TRUE If the Char is a hexadecmial character.
2536 @retval FALSE If the Char is not a hexadecmial character.
2537
2538 **/
2539 BOOLEAN
2540 EFIAPI
2541 IsHexaDecimalDigitCharacter (
2542 IN CHAR16 Char
2543 )
2544 {
2545 return (BOOLEAN) ((Char >= L'0' && Char <= L'9') || (Char >= L'A' && Char <= L'F') || (Char >= L'a' && Char <= L'f'));
2546 }
2547
2548 /**
2549
2550 This code checks if variable is hardware error record variable or not.
2551
2552 According to UEFI spec, hardware error record variable should use the EFI_HARDWARE_ERROR_VARIABLE VendorGuid
2553 and have the L"HwErrRec####" name convention, #### is a printed hex value and no 0x or h is included in the hex value.
2554
2555 @param VariableName Pointer to variable name.
2556 @param VendorGuid Variable Vendor Guid.
2557
2558 @retval TRUE Variable is hardware error record variable.
2559 @retval FALSE Variable is not hardware error record variable.
2560
2561 **/
2562 BOOLEAN
2563 EFIAPI
2564 IsHwErrRecVariable (
2565 IN CHAR16 *VariableName,
2566 IN EFI_GUID *VendorGuid
2567 )
2568 {
2569 if (!CompareGuid (VendorGuid, &gEfiHardwareErrorVariableGuid) ||
2570 (StrLen (VariableName) != StrLen (L"HwErrRec####")) ||
2571 (StrnCmp(VariableName, L"HwErrRec", StrLen (L"HwErrRec")) != 0) ||
2572 !IsHexaDecimalDigitCharacter (VariableName[0x8]) ||
2573 !IsHexaDecimalDigitCharacter (VariableName[0x9]) ||
2574 !IsHexaDecimalDigitCharacter (VariableName[0xA]) ||
2575 !IsHexaDecimalDigitCharacter (VariableName[0xB])) {
2576 return FALSE;
2577 }
2578
2579 return TRUE;
2580 }
2581
2582 /**
2583 This code checks if variable guid is global variable guid first.
2584 If yes, further check if variable name is in mGlobalVariableList or mGlobalVariableList2 and attributes matched.
2585
2586 @param[in] VariableName Pointer to variable name.
2587 @param[in] VendorGuid Variable Vendor Guid.
2588 @param[in] Attributes Attributes of the variable.
2589
2590 @retval EFI_SUCCESS Variable is not global variable, or Variable is global variable, variable name is in the lists and attributes matched.
2591 @retval EFI_INVALID_PARAMETER Variable is global variable, but variable name is not in the lists or attributes unmatched.
2592
2593 **/
2594 EFI_STATUS
2595 EFIAPI
2596 CheckEfiGlobalVariable (
2597 IN CHAR16 *VariableName,
2598 IN EFI_GUID *VendorGuid,
2599 IN UINT32 Attributes
2600 )
2601 {
2602 UINTN Index;
2603 UINTN NameLength;
2604
2605 if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)){
2606 //
2607 // Try list 1, exactly match.
2608 //
2609 for (Index = 0; Index < sizeof (mGlobalVariableList)/sizeof (mGlobalVariableList[0]); Index++) {
2610 if ((StrCmp (mGlobalVariableList[Index].Name, VariableName) == 0) &&
2611 (Attributes == 0 || (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) == mGlobalVariableList[Index].Attributes)) {
2612 return EFI_SUCCESS;
2613 }
2614 }
2615
2616 //
2617 // Try list 2.
2618 //
2619 NameLength = StrLen (VariableName) - 4;
2620 for (Index = 0; Index < sizeof (mGlobalVariableList2)/sizeof (mGlobalVariableList2[0]); Index++) {
2621 if ((StrLen (VariableName) == StrLen (mGlobalVariableList2[Index].Name)) &&
2622 (StrnCmp (mGlobalVariableList2[Index].Name, VariableName, NameLength) == 0) &&
2623 IsHexaDecimalDigitCharacter (VariableName[NameLength]) &&
2624 IsHexaDecimalDigitCharacter (VariableName[NameLength + 1]) &&
2625 IsHexaDecimalDigitCharacter (VariableName[NameLength + 2]) &&
2626 IsHexaDecimalDigitCharacter (VariableName[NameLength + 3]) &&
2627 (Attributes == 0 || (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) == mGlobalVariableList2[Index].Attributes)) {
2628 return EFI_SUCCESS;
2629 }
2630 }
2631
2632 DEBUG ((EFI_D_INFO, "[Variable]: set global variable with invalid variable name or attributes - %g:%s:%x\n", VendorGuid, VariableName, Attributes));
2633 return EFI_INVALID_PARAMETER;
2634 }
2635
2636 return EFI_SUCCESS;
2637 }
2638
2639 /**
2640 Mark a variable that will become read-only after leaving the DXE phase of execution.
2641
2642 @param[in] This The VARIABLE_LOCK_PROTOCOL instance.
2643 @param[in] VariableName A pointer to the variable name that will be made read-only subsequently.
2644 @param[in] VendorGuid A pointer to the vendor GUID that will be made read-only subsequently.
2645
2646 @retval EFI_SUCCESS The variable specified by the VariableName and the VendorGuid was marked
2647 as pending to be read-only.
2648 @retval EFI_INVALID_PARAMETER VariableName or VendorGuid is NULL.
2649 Or VariableName is an empty string.
2650 @retval EFI_ACCESS_DENIED EFI_END_OF_DXE_EVENT_GROUP_GUID or EFI_EVENT_GROUP_READY_TO_BOOT has
2651 already been signaled.
2652 @retval EFI_OUT_OF_RESOURCES There is not enough resource to hold the lock request.
2653 **/
2654 EFI_STATUS
2655 EFIAPI
2656 VariableLockRequestToLock (
2657 IN CONST EDKII_VARIABLE_LOCK_PROTOCOL *This,
2658 IN CHAR16 *VariableName,
2659 IN EFI_GUID *VendorGuid
2660 )
2661 {
2662 VARIABLE_ENTRY *Entry;
2663
2664 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
2665 return EFI_INVALID_PARAMETER;
2666 }
2667
2668 if (mEndOfDxe) {
2669 return EFI_ACCESS_DENIED;
2670 }
2671
2672 Entry = AllocateRuntimePool (sizeof (*Entry) + StrSize (VariableName));
2673 if (Entry == NULL) {
2674 return EFI_OUT_OF_RESOURCES;
2675 }
2676
2677 DEBUG ((EFI_D_INFO, "[Variable] Lock: %g:%s\n", VendorGuid, VariableName));
2678
2679 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2680
2681 Entry->Name = (CHAR16 *) (Entry + 1);
2682 StrCpy (Entry->Name, VariableName);
2683 CopyGuid (&Entry->Guid, VendorGuid);
2684 InsertTailList (&mLockedVariableList, &Entry->Link);
2685
2686 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2687
2688 return EFI_SUCCESS;
2689 }
2690
2691 /**
2692 This code checks if variable should be treated as read-only variable.
2693
2694 @param[in] VariableName Name of the Variable.
2695 @param[in] VendorGuid GUID of the Variable.
2696
2697 @retval TRUE This variable is read-only variable.
2698 @retval FALSE This variable is NOT read-only variable.
2699
2700 **/
2701 BOOLEAN
2702 IsReadOnlyVariable (
2703 IN CHAR16 *VariableName,
2704 IN EFI_GUID *VendorGuid
2705 )
2706 {
2707 if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid)) {
2708 if ((StrCmp (VariableName, EFI_SETUP_MODE_NAME) == 0) ||
2709 (StrCmp (VariableName, EFI_SIGNATURE_SUPPORT_NAME) == 0) ||
2710 (StrCmp (VariableName, EFI_SECURE_BOOT_MODE_NAME) == 0) ||
2711 (StrCmp (VariableName, EFI_VENDOR_KEYS_VARIABLE_NAME) == 0) ||
2712 (StrCmp (VariableName, EFI_KEK_DEFAULT_VARIABLE_NAME) == 0) ||
2713 (StrCmp (VariableName, EFI_PK_DEFAULT_VARIABLE_NAME) == 0) ||
2714 (StrCmp (VariableName, EFI_DB_DEFAULT_VARIABLE_NAME) == 0) ||
2715 (StrCmp (VariableName, EFI_DBX_DEFAULT_VARIABLE_NAME) == 0) ||
2716 (StrCmp (VariableName, EFI_DBT_DEFAULT_VARIABLE_NAME) == 0)) {
2717 return TRUE;
2718 }
2719 }
2720
2721 return FALSE;
2722 }
2723
2724 /**
2725
2726 This code finds variable in storage blocks (Volatile or Non-Volatile).
2727
2728 Caution: This function may receive untrusted input.
2729 This function may be invoked in SMM mode, and datasize is external input.
2730 This function will do basic validation, before parse the data.
2731
2732 @param VariableName Name of Variable to be found.
2733 @param VendorGuid Variable vendor GUID.
2734 @param Attributes Attribute value of the variable found.
2735 @param DataSize Size of Data found. If size is less than the
2736 data, this value contains the required size.
2737 @param Data Data pointer.
2738
2739 @return EFI_INVALID_PARAMETER Invalid parameter.
2740 @return EFI_SUCCESS Find the specified variable.
2741 @return EFI_NOT_FOUND Not found.
2742 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2743
2744 **/
2745 EFI_STATUS
2746 EFIAPI
2747 VariableServiceGetVariable (
2748 IN CHAR16 *VariableName,
2749 IN EFI_GUID *VendorGuid,
2750 OUT UINT32 *Attributes OPTIONAL,
2751 IN OUT UINTN *DataSize,
2752 OUT VOID *Data
2753 )
2754 {
2755 EFI_STATUS Status;
2756 VARIABLE_POINTER_TRACK Variable;
2757 UINTN VarDataSize;
2758
2759 if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
2760 return EFI_INVALID_PARAMETER;
2761 }
2762
2763 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2764
2765 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2766 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2767 goto Done;
2768 }
2769
2770 //
2771 // Get data size
2772 //
2773 VarDataSize = DataSizeOfVariable (Variable.CurrPtr);
2774 ASSERT (VarDataSize != 0);
2775
2776 if (*DataSize >= VarDataSize) {
2777 if (Data == NULL) {
2778 Status = EFI_INVALID_PARAMETER;
2779 goto Done;
2780 }
2781
2782 CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
2783 if (Attributes != NULL) {
2784 *Attributes = Variable.CurrPtr->Attributes;
2785 }
2786
2787 *DataSize = VarDataSize;
2788 UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE);
2789
2790 Status = EFI_SUCCESS;
2791 goto Done;
2792 } else {
2793 *DataSize = VarDataSize;
2794 Status = EFI_BUFFER_TOO_SMALL;
2795 goto Done;
2796 }
2797
2798 Done:
2799 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2800 return Status;
2801 }
2802
2803
2804
2805 /**
2806
2807 This code Finds the Next available variable.
2808
2809 Caution: This function may receive untrusted input.
2810 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
2811
2812 @param VariableNameSize Size of the variable name.
2813 @param VariableName Pointer to variable name.
2814 @param VendorGuid Variable Vendor Guid.
2815
2816 @return EFI_INVALID_PARAMETER Invalid parameter.
2817 @return EFI_SUCCESS Find the specified variable.
2818 @return EFI_NOT_FOUND Not found.
2819 @return EFI_BUFFER_TO_SMALL DataSize is too small for the result.
2820
2821 **/
2822 EFI_STATUS
2823 EFIAPI
2824 VariableServiceGetNextVariableName (
2825 IN OUT UINTN *VariableNameSize,
2826 IN OUT CHAR16 *VariableName,
2827 IN OUT EFI_GUID *VendorGuid
2828 )
2829 {
2830 VARIABLE_STORE_TYPE Type;
2831 VARIABLE_POINTER_TRACK Variable;
2832 VARIABLE_POINTER_TRACK VariableInHob;
2833 VARIABLE_POINTER_TRACK VariablePtrTrack;
2834 UINTN VarNameSize;
2835 EFI_STATUS Status;
2836 VARIABLE_STORE_HEADER *VariableStoreHeader[VariableStoreTypeMax];
2837
2838 if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
2839 return EFI_INVALID_PARAMETER;
2840 }
2841
2842 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2843
2844 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE);
2845 if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
2846 goto Done;
2847 }
2848
2849 if (VariableName[0] != 0) {
2850 //
2851 // If variable name is not NULL, get next variable.
2852 //
2853 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2854 }
2855
2856 //
2857 // 0: Volatile, 1: HOB, 2: Non-Volatile.
2858 // The index and attributes mapping must be kept in this order as FindVariable
2859 // makes use of this mapping to implement search algorithm.
2860 //
2861 VariableStoreHeader[VariableStoreTypeVolatile] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase;
2862 VariableStoreHeader[VariableStoreTypeHob] = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
2863 VariableStoreHeader[VariableStoreTypeNv] = mNvVariableCache;
2864
2865 while (TRUE) {
2866 //
2867 // Switch from Volatile to HOB, to Non-Volatile.
2868 //
2869 while ((Variable.CurrPtr >= Variable.EndPtr) ||
2870 (Variable.CurrPtr == NULL) ||
2871 !IsValidVariableHeader (Variable.CurrPtr)
2872 ) {
2873 //
2874 // Find current storage index
2875 //
2876 for (Type = (VARIABLE_STORE_TYPE) 0; Type < VariableStoreTypeMax; Type++) {
2877 if ((VariableStoreHeader[Type] != NULL) && (Variable.StartPtr == GetStartPointer (VariableStoreHeader[Type]))) {
2878 break;
2879 }
2880 }
2881 ASSERT (Type < VariableStoreTypeMax);
2882 //
2883 // Switch to next storage
2884 //
2885 for (Type++; Type < VariableStoreTypeMax; Type++) {
2886 if (VariableStoreHeader[Type] != NULL) {
2887 break;
2888 }
2889 }
2890 //
2891 // Capture the case that
2892 // 1. current storage is the last one, or
2893 // 2. no further storage
2894 //
2895 if (Type == VariableStoreTypeMax) {
2896 Status = EFI_NOT_FOUND;
2897 goto Done;
2898 }
2899 Variable.StartPtr = GetStartPointer (VariableStoreHeader[Type]);
2900 Variable.EndPtr = GetEndPointer (VariableStoreHeader[Type]);
2901 Variable.CurrPtr = Variable.StartPtr;
2902 }
2903
2904 //
2905 // Variable is found
2906 //
2907 if (Variable.CurrPtr->State == VAR_ADDED || Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2908 if (!AtRuntime () || ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) {
2909 if (Variable.CurrPtr->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
2910 //
2911 // If it is a IN_DELETED_TRANSITION variable,
2912 // and there is also a same ADDED one at the same time,
2913 // don't return it.
2914 //
2915 VariablePtrTrack.StartPtr = Variable.StartPtr;
2916 VariablePtrTrack.EndPtr = Variable.EndPtr;
2917 Status = FindVariableEx (
2918 GetVariableNamePtr (Variable.CurrPtr),
2919 &Variable.CurrPtr->VendorGuid,
2920 FALSE,
2921 &VariablePtrTrack
2922 );
2923 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State == VAR_ADDED) {
2924 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2925 continue;
2926 }
2927 }
2928
2929 //
2930 // Don't return NV variable when HOB overrides it
2931 //
2932 if ((VariableStoreHeader[VariableStoreTypeHob] != NULL) && (VariableStoreHeader[VariableStoreTypeNv] != NULL) &&
2933 (Variable.StartPtr == GetStartPointer (VariableStoreHeader[VariableStoreTypeNv]))
2934 ) {
2935 VariableInHob.StartPtr = GetStartPointer (VariableStoreHeader[VariableStoreTypeHob]);
2936 VariableInHob.EndPtr = GetEndPointer (VariableStoreHeader[VariableStoreTypeHob]);
2937 Status = FindVariableEx (
2938 GetVariableNamePtr (Variable.CurrPtr),
2939 &Variable.CurrPtr->VendorGuid,
2940 FALSE,
2941 &VariableInHob
2942 );
2943 if (!EFI_ERROR (Status)) {
2944 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2945 continue;
2946 }
2947 }
2948
2949 VarNameSize = NameSizeOfVariable (Variable.CurrPtr);
2950 ASSERT (VarNameSize != 0);
2951
2952 if (VarNameSize <= *VariableNameSize) {
2953 CopyMem (VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize);
2954 CopyMem (VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID));
2955 Status = EFI_SUCCESS;
2956 } else {
2957 Status = EFI_BUFFER_TOO_SMALL;
2958 }
2959
2960 *VariableNameSize = VarNameSize;
2961 goto Done;
2962 }
2963 }
2964
2965 Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
2966 }
2967
2968 Done:
2969 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
2970 return Status;
2971 }
2972
2973 /**
2974
2975 This code sets variable in storage blocks (Volatile or Non-Volatile).
2976
2977 Caution: This function may receive untrusted input.
2978 This function may be invoked in SMM mode, and datasize and data are external input.
2979 This function will do basic validation, before parse the data.
2980 This function will parse the authentication carefully to avoid security issues, like
2981 buffer overflow, integer overflow.
2982 This function will check attribute carefully to avoid authentication bypass.
2983
2984 @param VariableName Name of Variable to be found.
2985 @param VendorGuid Variable vendor GUID.
2986 @param Attributes Attribute value of the variable found
2987 @param DataSize Size of Data found. If size is less than the
2988 data, this value contains the required size.
2989 @param Data Data pointer.
2990
2991 @return EFI_INVALID_PARAMETER Invalid parameter.
2992 @return EFI_SUCCESS Set successfully.
2993 @return EFI_OUT_OF_RESOURCES Resource not enough to set variable.
2994 @return EFI_NOT_FOUND Not found.
2995 @return EFI_WRITE_PROTECTED Variable is read-only.
2996
2997 **/
2998 EFI_STATUS
2999 EFIAPI
3000 VariableServiceSetVariable (
3001 IN CHAR16 *VariableName,
3002 IN EFI_GUID *VendorGuid,
3003 IN UINT32 Attributes,
3004 IN UINTN DataSize,
3005 IN VOID *Data
3006 )
3007 {
3008 VARIABLE_POINTER_TRACK Variable;
3009 EFI_STATUS Status;
3010 VARIABLE_HEADER *NextVariable;
3011 EFI_PHYSICAL_ADDRESS Point;
3012 UINTN PayloadSize;
3013 LIST_ENTRY *Link;
3014 VARIABLE_ENTRY *Entry;
3015
3016 //
3017 // Check input parameters.
3018 //
3019 if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
3020 return EFI_INVALID_PARAMETER;
3021 }
3022
3023 if (IsReadOnlyVariable (VariableName, VendorGuid)) {
3024 return EFI_WRITE_PROTECTED;
3025 }
3026
3027 if (DataSize != 0 && Data == NULL) {
3028 return EFI_INVALID_PARAMETER;
3029 }
3030
3031 //
3032 // Check for reserverd bit in variable attribute.
3033 //
3034 if ((Attributes & (~EFI_VARIABLE_ATTRIBUTES_MASK)) != 0) {
3035 return EFI_INVALID_PARAMETER;
3036 }
3037
3038 //
3039 // Make sure if runtime bit is set, boot service bit is set also.
3040 //
3041 if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
3042 return EFI_INVALID_PARAMETER;
3043 }
3044
3045 //
3046 // EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS and EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute
3047 // cannot be set both.
3048 //
3049 if (((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS)
3050 && ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS)) {
3051 return EFI_INVALID_PARAMETER;
3052 }
3053
3054 if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) {
3055 if (DataSize < AUTHINFO_SIZE) {
3056 //
3057 // Try to write Authenticated Variable without AuthInfo.
3058 //
3059 return EFI_SECURITY_VIOLATION;
3060 }
3061 PayloadSize = DataSize - AUTHINFO_SIZE;
3062 } else if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) {
3063 //
3064 // Sanity check for EFI_VARIABLE_AUTHENTICATION_2 descriptor.
3065 //
3066 if (DataSize < OFFSET_OF_AUTHINFO2_CERT_DATA ||
3067 ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength > DataSize - (OFFSET_OF (EFI_VARIABLE_AUTHENTICATION_2, AuthInfo)) ||
3068 ((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->AuthInfo.Hdr.dwLength < OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData)) {
3069 return EFI_SECURITY_VIOLATION;
3070 }
3071 PayloadSize = DataSize - AUTHINFO2_SIZE (Data);
3072 } else {
3073 PayloadSize = DataSize;
3074 }
3075
3076 if ((UINTN)(~0) - PayloadSize < StrSize(VariableName)){
3077 //
3078 // Prevent whole variable size overflow
3079 //
3080 return EFI_INVALID_PARAMETER;
3081 }
3082
3083 //
3084 // The size of the VariableName, including the Unicode Null in bytes plus
3085 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
3086 // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
3087 //
3088 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3089 if (StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER)) {
3090 return EFI_INVALID_PARAMETER;
3091 }
3092 if (!IsHwErrRecVariable(VariableName, VendorGuid)) {
3093 return EFI_INVALID_PARAMETER;
3094 }
3095 } else {
3096 //
3097 // The size of the VariableName, including the Unicode Null in bytes plus
3098 // the DataSize is limited to maximum size of PcdGet32 (PcdMaxVariableSize) bytes.
3099 //
3100 if (StrSize (VariableName) + PayloadSize > PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER)) {
3101 return EFI_INVALID_PARAMETER;
3102 }
3103 }
3104
3105 Status = CheckEfiGlobalVariable (VariableName, VendorGuid, Attributes);
3106 if (EFI_ERROR (Status)) {
3107 return Status;
3108 }
3109
3110 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3111
3112 //
3113 // Consider reentrant in MCA/INIT/NMI. It needs be reupdated.
3114 //
3115 if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) {
3116 Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;
3117 //
3118 // Parse non-volatile variable data and get last variable offset.
3119 //
3120 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point);
3121 while ((NextVariable < GetEndPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point))
3122 && IsValidVariableHeader (NextVariable)) {
3123 NextVariable = GetNextVariablePtr (NextVariable);
3124 }
3125 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point;
3126 }
3127
3128 if (mEndOfDxe && mEnableLocking) {
3129 //
3130 // Treat the variables listed in the forbidden variable list as read-only after leaving DXE phase.
3131 //
3132 for ( Link = GetFirstNode (&mLockedVariableList)
3133 ; !IsNull (&mLockedVariableList, Link)
3134 ; Link = GetNextNode (&mLockedVariableList, Link)
3135 ) {
3136 Entry = BASE_CR (Link, VARIABLE_ENTRY, Link);
3137 if (CompareGuid (&Entry->Guid, VendorGuid) && (StrCmp (Entry->Name, VariableName) == 0)) {
3138 Status = EFI_WRITE_PROTECTED;
3139 DEBUG ((EFI_D_INFO, "[Variable]: Changing readonly variable after leaving DXE phase - %g:%s\n", VendorGuid, VariableName));
3140 goto Done;
3141 }
3142 }
3143 }
3144
3145 //
3146 // Check whether the input variable is already existed.
3147 //
3148 Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, TRUE);
3149 if (!EFI_ERROR (Status)) {
3150 if (((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) && AtRuntime ()) {
3151 Status = EFI_WRITE_PROTECTED;
3152 goto Done;
3153 }
3154 if (Attributes != 0 && (Attributes & (~EFI_VARIABLE_APPEND_WRITE)) != Variable.CurrPtr->Attributes) {
3155 //
3156 // If a preexisting variable is rewritten with different attributes, SetVariable() shall not
3157 // modify the variable and shall return EFI_INVALID_PARAMETER. Two exceptions to this rule:
3158 // 1. No access attributes specified
3159 // 2. The only attribute differing is EFI_VARIABLE_APPEND_WRITE
3160 //
3161 Status = EFI_INVALID_PARAMETER;
3162 goto Done;
3163 }
3164 }
3165
3166 if (!FeaturePcdGet (PcdUefiVariableDefaultLangDeprecate)) {
3167 //
3168 // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang.
3169 //
3170 Status = AutoUpdateLangVariable (VariableName, Data, DataSize);
3171 if (EFI_ERROR (Status)) {
3172 //
3173 // The auto update operation failed, directly return to avoid inconsistency between PlatformLang and Lang.
3174 //
3175 goto Done;
3176 }
3177 }
3178
3179 //
3180 // Process PK, KEK, Sigdb seperately.
3181 //
3182 if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_PLATFORM_KEY_NAME) == 0)){
3183 Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, TRUE);
3184 } else if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0)) {
3185 Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE);
3186 } else if (CompareGuid (VendorGuid, &gEfiImageSecurityDatabaseGuid) &&
3187 ((StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE) == 0) || (StrCmp (VariableName, EFI_IMAGE_SECURITY_DATABASE1) == 0))) {
3188 Status = ProcessVarWithPk (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes, FALSE);
3189 if (EFI_ERROR (Status)) {
3190 Status = ProcessVarWithKek (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes);
3191 }
3192 } else {
3193 Status = ProcessVariable (VariableName, VendorGuid, Data, DataSize, &Variable, Attributes);
3194 }
3195
3196 Done:
3197 InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState);
3198 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3199
3200 if (!AtRuntime ()) {
3201 if (!EFI_ERROR (Status)) {
3202 SecureBootHook (
3203 VariableName,
3204 VendorGuid
3205 );
3206 }
3207 }
3208
3209 return Status;
3210 }
3211
3212 /**
3213
3214 This code returns information about the EFI variables.
3215
3216 Caution: This function may receive untrusted input.
3217 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3218
3219 @param Attributes Attributes bitmask to specify the type of variables
3220 on which to return information.
3221 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
3222 for the EFI variables associated with the attributes specified.
3223 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
3224 for EFI variables associated with the attributes specified.
3225 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
3226 associated with the attributes specified.
3227
3228 @return EFI_SUCCESS Query successfully.
3229
3230 **/
3231 EFI_STATUS
3232 EFIAPI
3233 VariableServiceQueryVariableInfoInternal (
3234 IN UINT32 Attributes,
3235 OUT UINT64 *MaximumVariableStorageSize,
3236 OUT UINT64 *RemainingVariableStorageSize,
3237 OUT UINT64 *MaximumVariableSize
3238 )
3239 {
3240 VARIABLE_HEADER *Variable;
3241 VARIABLE_HEADER *NextVariable;
3242 UINT64 VariableSize;
3243 VARIABLE_STORE_HEADER *VariableStoreHeader;
3244 UINT64 CommonVariableTotalSize;
3245 UINT64 HwErrVariableTotalSize;
3246 EFI_STATUS Status;
3247 VARIABLE_POINTER_TRACK VariablePtrTrack;
3248
3249 CommonVariableTotalSize = 0;
3250 HwErrVariableTotalSize = 0;
3251
3252 if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) {
3253 //
3254 // Query is Volatile related.
3255 //
3256 VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase);
3257 } else {
3258 //
3259 // Query is Non-Volatile related.
3260 //
3261 VariableStoreHeader = mNvVariableCache;
3262 }
3263
3264 //
3265 // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
3266 // with the storage size (excluding the storage header size).
3267 //
3268 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
3269
3270 //
3271 // Harware error record variable needs larger size.
3272 //
3273 if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
3274 *MaximumVariableStorageSize = PcdGet32 (PcdHwErrStorageSize);
3275 *MaximumVariableSize = PcdGet32 (PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
3276 } else {
3277 if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
3278 ASSERT (PcdGet32 (PcdHwErrStorageSize) < VariableStoreHeader->Size);
3279 *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32 (PcdHwErrStorageSize);
3280 }
3281
3282 //
3283 // Let *MaximumVariableSize be PcdGet32 (PcdMaxVariableSize) with the exception of the variable header size.
3284 //
3285 *MaximumVariableSize = PcdGet32 (PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
3286 }
3287
3288 //
3289 // Point to the starting address of the variables.
3290 //
3291 Variable = GetStartPointer (VariableStoreHeader);
3292
3293 //
3294 // Now walk through the related variable store.
3295 //
3296 while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
3297 NextVariable = GetNextVariablePtr (Variable);
3298 VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
3299
3300 if (AtRuntime ()) {
3301 //
3302 // We don't take the state of the variables in mind
3303 // when calculating RemainingVariableStorageSize,
3304 // since the space occupied by variables not marked with
3305 // VAR_ADDED is not allowed to be reclaimed in Runtime.
3306 //
3307 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3308 HwErrVariableTotalSize += VariableSize;
3309 } else {
3310 CommonVariableTotalSize += VariableSize;
3311 }
3312 } else {
3313 //
3314 // Only care about Variables with State VAR_ADDED, because
3315 // the space not marked as VAR_ADDED is reclaimable now.
3316 //
3317 if (Variable->State == VAR_ADDED) {
3318 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3319 HwErrVariableTotalSize += VariableSize;
3320 } else {
3321 CommonVariableTotalSize += VariableSize;
3322 }
3323 } else if (Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) {
3324 //
3325 // If it is a IN_DELETED_TRANSITION variable,
3326 // and there is not also a same ADDED one at the same time,
3327 // this IN_DELETED_TRANSITION variable is valid.
3328 //
3329 VariablePtrTrack.StartPtr = GetStartPointer (VariableStoreHeader);
3330 VariablePtrTrack.EndPtr = GetEndPointer (VariableStoreHeader);
3331 Status = FindVariableEx (
3332 GetVariableNamePtr (Variable),
3333 &Variable->VendorGuid,
3334 FALSE,
3335 &VariablePtrTrack
3336 );
3337 if (!EFI_ERROR (Status) && VariablePtrTrack.CurrPtr->State != VAR_ADDED) {
3338 if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3339 HwErrVariableTotalSize += VariableSize;
3340 } else {
3341 CommonVariableTotalSize += VariableSize;
3342 }
3343 }
3344 }
3345 }
3346
3347 //
3348 // Go to the next one.
3349 //
3350 Variable = NextVariable;
3351 }
3352
3353 if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
3354 *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
3355 }else {
3356 *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
3357 }
3358
3359 if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) {
3360 *MaximumVariableSize = 0;
3361 } else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) {
3362 *MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER);
3363 }
3364
3365 return EFI_SUCCESS;
3366 }
3367
3368 /**
3369
3370 This code returns information about the EFI variables.
3371
3372 Caution: This function may receive untrusted input.
3373 This function may be invoked in SMM mode. This function will do basic validation, before parse the data.
3374
3375 @param Attributes Attributes bitmask to specify the type of variables
3376 on which to return information.
3377 @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available
3378 for the EFI variables associated with the attributes specified.
3379 @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available
3380 for EFI variables associated with the attributes specified.
3381 @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables
3382 associated with the attributes specified.
3383
3384 @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied.
3385 @return EFI_SUCCESS Query successfully.
3386 @return EFI_UNSUPPORTED The attribute is not supported on this platform.
3387
3388 **/
3389 EFI_STATUS
3390 EFIAPI
3391 VariableServiceQueryVariableInfo (
3392 IN UINT32 Attributes,
3393 OUT UINT64 *MaximumVariableStorageSize,
3394 OUT UINT64 *RemainingVariableStorageSize,
3395 OUT UINT64 *MaximumVariableSize
3396 )
3397 {
3398 EFI_STATUS Status;
3399
3400 if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
3401 return EFI_INVALID_PARAMETER;
3402 }
3403
3404 if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
3405 //
3406 // Make sure the Attributes combination is supported by the platform.
3407 //
3408 return EFI_UNSUPPORTED;
3409 } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
3410 //
3411 // Make sure if runtime bit is set, boot service bit is set also.
3412 //
3413 return EFI_INVALID_PARAMETER;
3414 } else if (AtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) {
3415 //
3416 // Make sure RT Attribute is set if we are in Runtime phase.
3417 //
3418 return EFI_INVALID_PARAMETER;
3419 } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
3420 //
3421 // Make sure Hw Attribute is set with NV.
3422 //
3423 return EFI_INVALID_PARAMETER;
3424 }
3425
3426 AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3427
3428 Status = VariableServiceQueryVariableInfoInternal (
3429 Attributes,
3430 MaximumVariableStorageSize,
3431 RemainingVariableStorageSize,
3432 MaximumVariableSize
3433 );
3434
3435 ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock);
3436 return Status;
3437 }
3438
3439 /**
3440 This function reclaims variable storage if free size is below the threshold.
3441
3442 Caution: This function may be invoked at SMM mode.
3443 Care must be taken to make sure not security issue.
3444
3445 **/
3446 VOID
3447 ReclaimForOS(
3448 VOID
3449 )
3450 {
3451 EFI_STATUS Status;
3452 UINTN CommonVariableSpace;
3453 UINTN RemainingCommonVariableSpace;
3454 UINTN RemainingHwErrVariableSpace;
3455
3456 Status = EFI_SUCCESS;
3457
3458 CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space
3459
3460 RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize;
3461
3462 RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize;
3463 //
3464 // Check if the free area is blow a threshold.
3465 //
3466 if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize))
3467 || ((PcdGet32 (PcdHwErrStorageSize) != 0) &&
3468 (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize)))){
3469 Status = Reclaim (
3470 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
3471 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
3472 FALSE,
3473 NULL,
3474 NULL,
3475 0,
3476 FALSE
3477 );
3478 ASSERT_EFI_ERROR (Status);
3479 }
3480 }
3481
3482 /**
3483 Init non-volatile variable store.
3484
3485 @retval EFI_SUCCESS Function successfully executed.
3486 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
3487 @retval EFI_VOLUME_CORRUPTED Variable Store or Firmware Volume for Variable Store is corrupted.
3488
3489 **/
3490 EFI_STATUS
3491 InitNonVolatileVariableStore (
3492 VOID
3493 )
3494 {
3495 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
3496 VARIABLE_HEADER *NextVariable;
3497 EFI_PHYSICAL_ADDRESS VariableStoreBase;
3498 UINT64 VariableStoreLength;
3499 UINTN VariableSize;
3500 EFI_HOB_GUID_TYPE *GuidHob;
3501 EFI_PHYSICAL_ADDRESS NvStorageBase;
3502 UINT8 *NvStorageData;
3503 UINT32 NvStorageSize;
3504 FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *FtwLastWriteData;
3505 UINT32 BackUpOffset;
3506 UINT32 BackUpSize;
3507
3508 mVariableModuleGlobal->FvbInstance = NULL;
3509
3510 //
3511 // Note that in EdkII variable driver implementation, Hardware Error Record type variable
3512 // is stored with common variable in the same NV region. So the platform integrator should
3513 // ensure that the value of PcdHwErrStorageSize is less than or equal to the value of
3514 // PcdFlashNvStorageVariableSize.
3515 //
3516 ASSERT (PcdGet32 (PcdHwErrStorageSize) <= PcdGet32 (PcdFlashNvStorageVariableSize));
3517
3518 //
3519 // Allocate runtime memory used for a memory copy of the FLASH region.
3520 // Keep the memory and the FLASH in sync as updates occur.
3521 //
3522 NvStorageSize = PcdGet32 (PcdFlashNvStorageVariableSize);
3523 NvStorageData = AllocateRuntimeZeroPool (NvStorageSize);
3524 if (NvStorageData == NULL) {
3525 return EFI_OUT_OF_RESOURCES;
3526 }
3527
3528 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
3529 if (NvStorageBase == 0) {
3530 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3531 }
3532 //
3533 // Copy NV storage data to the memory buffer.
3534 //
3535 CopyMem (NvStorageData, (UINT8 *) (UINTN) NvStorageBase, NvStorageSize);
3536
3537 //
3538 // Check the FTW last write data hob.
3539 //
3540 GuidHob = GetFirstGuidHob (&gEdkiiFaultTolerantWriteGuid);
3541 if (GuidHob != NULL) {
3542 FtwLastWriteData = (FAULT_TOLERANT_WRITE_LAST_WRITE_DATA *) GET_GUID_HOB_DATA (GuidHob);
3543 if (FtwLastWriteData->TargetAddress == NvStorageBase) {
3544 DEBUG ((EFI_D_INFO, "Variable: NV storage is backed up in spare block: 0x%x\n", (UINTN) FtwLastWriteData->SpareAddress));
3545 //
3546 // Copy the backed up NV storage data to the memory buffer from spare block.
3547 //
3548 CopyMem (NvStorageData, (UINT8 *) (UINTN) (FtwLastWriteData->SpareAddress), NvStorageSize);
3549 } else if ((FtwLastWriteData->TargetAddress > NvStorageBase) &&
3550 (FtwLastWriteData->TargetAddress < (NvStorageBase + NvStorageSize))) {
3551 //
3552 // Flash NV storage from the Offset is backed up in spare block.
3553 //
3554 BackUpOffset = (UINT32) (FtwLastWriteData->TargetAddress - NvStorageBase);
3555 BackUpSize = NvStorageSize - BackUpOffset;
3556 DEBUG ((EFI_D_INFO, "Variable: High partial NV storage from offset: %x is backed up in spare block: 0x%x\n", BackUpOffset, (UINTN) FtwLastWriteData->SpareAddress));
3557 //
3558 // Copy the partial backed up NV storage data to the memory buffer from spare block.
3559 //
3560 CopyMem (NvStorageData + BackUpOffset, (UINT8 *) (UINTN) FtwLastWriteData->SpareAddress, BackUpSize);
3561 }
3562 }
3563
3564 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) NvStorageData;
3565
3566 //
3567 // Check if the Firmware Volume is not corrupted
3568 //
3569 if ((FvHeader->Signature != EFI_FVH_SIGNATURE) || (!CompareGuid (&gEfiSystemNvDataFvGuid, &FvHeader->FileSystemGuid))) {
3570 FreePool (NvStorageData);
3571 DEBUG ((EFI_D_ERROR, "Firmware Volume for Variable Store is corrupted\n"));
3572 return EFI_VOLUME_CORRUPTED;
3573 }
3574
3575 VariableStoreBase = (EFI_PHYSICAL_ADDRESS) ((UINTN) FvHeader + FvHeader->HeaderLength);
3576 VariableStoreLength = (UINT64) (NvStorageSize - FvHeader->HeaderLength);
3577
3578 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3579 mNvVariableCache = (VARIABLE_STORE_HEADER *) (UINTN) VariableStoreBase;
3580 if (GetVariableStoreStatus (mNvVariableCache) != EfiValid) {
3581 FreePool (NvStorageData);
3582 DEBUG((EFI_D_ERROR, "Variable Store header is corrupted\n"));
3583 return EFI_VOLUME_CORRUPTED;
3584 }
3585 ASSERT(mNvVariableCache->Size == VariableStoreLength);
3586
3587 //
3588 // The max variable or hardware error variable size should be < variable store size.
3589 //
3590 ASSERT(MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize)) < VariableStoreLength);
3591
3592 //
3593 // Parse non-volatile variable data and get last variable offset.
3594 //
3595 NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase);
3596 while (IsValidVariableHeader (NextVariable)) {
3597 VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER);
3598 if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
3599 mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
3600 } else {
3601 mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
3602 }
3603
3604 NextVariable = GetNextVariablePtr (NextVariable);
3605 }
3606 mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase;
3607
3608 return EFI_SUCCESS;
3609 }
3610
3611 /**
3612 Flush the HOB variable to flash.
3613
3614 @param[in] VariableName Name of variable has been updated or deleted.
3615 @param[in] VendorGuid Guid of variable has been updated or deleted.
3616
3617 **/
3618 VOID
3619 FlushHobVariableToFlash (
3620 IN CHAR16 *VariableName,
3621 IN EFI_GUID *VendorGuid
3622 )
3623 {
3624 EFI_STATUS Status;
3625 VARIABLE_STORE_HEADER *VariableStoreHeader;
3626 VARIABLE_HEADER *Variable;
3627 VOID *VariableData;
3628 BOOLEAN ErrorFlag;
3629
3630 ErrorFlag = FALSE;
3631
3632 //
3633 // Flush the HOB variable to flash.
3634 //
3635 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3636 VariableStoreHeader = (VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase;
3637 //
3638 // Set HobVariableBase to 0, it can avoid SetVariable to call back.
3639 //
3640 mVariableModuleGlobal->VariableGlobal.HobVariableBase = 0;
3641 for ( Variable = GetStartPointer (VariableStoreHeader)
3642 ; (Variable < GetEndPointer (VariableStoreHeader) && IsValidVariableHeader (Variable))
3643 ; Variable = GetNextVariablePtr (Variable)
3644 ) {
3645 if (Variable->State != VAR_ADDED) {
3646 //
3647 // The HOB variable has been set to DELETED state in local.
3648 //
3649 continue;
3650 }
3651 ASSERT ((Variable->Attributes & EFI_VARIABLE_NON_VOLATILE) != 0);
3652 if (VendorGuid == NULL || VariableName == NULL ||
3653 !CompareGuid (VendorGuid, &Variable->VendorGuid) ||
3654 StrCmp (VariableName, GetVariableNamePtr (Variable)) != 0) {
3655 VariableData = GetVariableDataPtr (Variable);
3656 Status = VariableServiceSetVariable (
3657 GetVariableNamePtr (Variable),
3658 &Variable->VendorGuid,
3659 Variable->Attributes,
3660 Variable->DataSize,
3661 VariableData
3662 );
3663 DEBUG ((EFI_D_INFO, "Variable driver flush the HOB variable to flash: %g %s %r\n", &Variable->VendorGuid, GetVariableNamePtr (Variable), Status));
3664 } else {
3665 //
3666 // The updated or deleted variable is matched with the HOB variable.
3667 // Don't break here because we will try to set other HOB variables
3668 // since this variable could be set successfully.
3669 //
3670 Status = EFI_SUCCESS;
3671 }
3672 if (!EFI_ERROR (Status)) {
3673 //
3674 // If set variable successful, or the updated or deleted variable is matched with the HOB variable,
3675 // set the HOB variable to DELETED state in local.
3676 //
3677 DEBUG ((EFI_D_INFO, "Variable driver set the HOB variable to DELETED state in local: %g %s\n", &Variable->VendorGuid, GetVariableNamePtr (Variable)));
3678 Variable->State &= VAR_DELETED;
3679 } else {
3680 ErrorFlag = TRUE;
3681 }
3682 }
3683 if (ErrorFlag) {
3684 //
3685 // We still have HOB variable(s) not flushed in flash.
3686 //
3687 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VariableStoreHeader;
3688 } else {
3689 //
3690 // All HOB variables have been flushed in flash.
3691 //
3692 DEBUG ((EFI_D_INFO, "Variable driver: all HOB variables have been flushed in flash.\n"));
3693 if (!AtRuntime ()) {
3694 FreePool ((VOID *) VariableStoreHeader);
3695 }
3696 }
3697 }
3698
3699 }
3700
3701 /**
3702 Initializes variable write service after FTW was ready.
3703
3704 @retval EFI_SUCCESS Function successfully executed.
3705 @retval Others Fail to initialize the variable service.
3706
3707 **/
3708 EFI_STATUS
3709 VariableWriteServiceInitialize (
3710 VOID
3711 )
3712 {
3713 EFI_STATUS Status;
3714 VARIABLE_STORE_HEADER *VariableStoreHeader;
3715 UINTN Index;
3716 UINT8 Data;
3717 EFI_PHYSICAL_ADDRESS VariableStoreBase;
3718 EFI_PHYSICAL_ADDRESS NvStorageBase;
3719
3720 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64);
3721 if (NvStorageBase == 0) {
3722 NvStorageBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase);
3723 }
3724 VariableStoreBase = NvStorageBase + (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(NvStorageBase))->HeaderLength);
3725
3726 //
3727 // Let NonVolatileVariableBase point to flash variable store base directly after FTW ready.
3728 //
3729 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase;
3730 VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase;
3731
3732 //
3733 // Check if the free area is really free.
3734 //
3735 for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) {
3736 Data = ((UINT8 *) mNvVariableCache)[Index];
3737 if (Data != 0xff) {
3738 //
3739 // There must be something wrong in variable store, do reclaim operation.
3740 //
3741 Status = Reclaim (
3742 mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase,
3743 &mVariableModuleGlobal->NonVolatileLastVariableOffset,
3744 FALSE,
3745 NULL,
3746 NULL,
3747 0,
3748 FALSE
3749 );
3750 if (EFI_ERROR (Status)) {
3751 return Status;
3752 }
3753 break;
3754 }
3755 }
3756
3757 FlushHobVariableToFlash (NULL, NULL);
3758
3759 //
3760 // Authenticated variable initialize.
3761 //
3762 Status = AutenticatedVariableServiceInitialize ();
3763
3764 return Status;
3765 }
3766
3767
3768 /**
3769 Initializes variable store area for non-volatile and volatile variable.
3770
3771 @retval EFI_SUCCESS Function successfully executed.
3772 @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource.
3773
3774 **/
3775 EFI_STATUS
3776 VariableCommonInitialize (
3777 VOID
3778 )
3779 {
3780 EFI_STATUS Status;
3781 VARIABLE_STORE_HEADER *VolatileVariableStore;
3782 VARIABLE_STORE_HEADER *VariableStoreHeader;
3783 UINT64 VariableStoreLength;
3784 UINTN ScratchSize;
3785 EFI_HOB_GUID_TYPE *GuidHob;
3786
3787 //
3788 // Allocate runtime memory for variable driver global structure.
3789 //
3790 mVariableModuleGlobal = AllocateRuntimeZeroPool (sizeof (VARIABLE_MODULE_GLOBAL));
3791 if (mVariableModuleGlobal == NULL) {
3792 return EFI_OUT_OF_RESOURCES;
3793 }
3794
3795 InitializeLock (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY);
3796
3797 //
3798 // Get HOB variable store.
3799 //
3800 GuidHob = GetFirstGuidHob (&gEfiAuthenticatedVariableGuid);
3801 if (GuidHob != NULL) {
3802 VariableStoreHeader = GET_GUID_HOB_DATA (GuidHob);
3803 VariableStoreLength = (UINT64) (GuidHob->Header.HobLength - sizeof (EFI_HOB_GUID_TYPE));
3804 if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
3805 mVariableModuleGlobal->VariableGlobal.HobVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocateRuntimeCopyPool ((UINTN) VariableStoreLength, (VOID *) VariableStoreHeader);
3806 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase == 0) {
3807 FreePool (mVariableModuleGlobal);
3808 return EFI_OUT_OF_RESOURCES;
3809 }
3810 } else {
3811 DEBUG ((EFI_D_ERROR, "HOB Variable Store header is corrupted!\n"));
3812 }
3813 }
3814
3815 //
3816 // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data.
3817 //
3818 ScratchSize = MAX (PcdGet32 (PcdMaxVariableSize), PcdGet32 (PcdMaxHardwareErrorVariableSize));
3819 VolatileVariableStore = AllocateRuntimePool (PcdGet32 (PcdVariableStoreSize) + ScratchSize);
3820 if (VolatileVariableStore == NULL) {
3821 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3822 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3823 }
3824 FreePool (mVariableModuleGlobal);
3825 return EFI_OUT_OF_RESOURCES;
3826 }
3827
3828 SetMem (VolatileVariableStore, PcdGet32 (PcdVariableStoreSize) + ScratchSize, 0xff);
3829
3830 //
3831 // Initialize Variable Specific Data.
3832 //
3833 mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore;
3834 mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore;
3835
3836 CopyGuid (&VolatileVariableStore->Signature, &gEfiAuthenticatedVariableGuid);
3837 VolatileVariableStore->Size = PcdGet32 (PcdVariableStoreSize);
3838 VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED;
3839 VolatileVariableStore->State = VARIABLE_STORE_HEALTHY;
3840 VolatileVariableStore->Reserved = 0;
3841 VolatileVariableStore->Reserved1 = 0;
3842
3843 //
3844 // Init non-volatile variable store.
3845 //
3846 Status = InitNonVolatileVariableStore ();
3847 if (EFI_ERROR (Status)) {
3848 if (mVariableModuleGlobal->VariableGlobal.HobVariableBase != 0) {
3849 FreePool ((VOID *) (UINTN) mVariableModuleGlobal->VariableGlobal.HobVariableBase);
3850 }
3851 FreePool (mVariableModuleGlobal);
3852 FreePool (VolatileVariableStore);
3853 }
3854
3855 return Status;
3856 }
3857
3858
3859 /**
3860 Get the proper fvb handle and/or fvb protocol by the given Flash address.
3861
3862 @param[in] Address The Flash address.
3863 @param[out] FvbHandle In output, if it is not NULL, it points to the proper FVB handle.
3864 @param[out] FvbProtocol In output, if it is not NULL, it points to the proper FVB protocol.
3865
3866 **/
3867 EFI_STATUS
3868 GetFvbInfoByAddress (
3869 IN EFI_PHYSICAL_ADDRESS Address,
3870 OUT EFI_HANDLE *FvbHandle OPTIONAL,
3871 OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvbProtocol OPTIONAL
3872 )
3873 {
3874 EFI_STATUS Status;
3875 EFI_HANDLE *HandleBuffer;
3876 UINTN HandleCount;
3877 UINTN Index;
3878 EFI_PHYSICAL_ADDRESS FvbBaseAddress;
3879 EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
3880 EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
3881 EFI_FVB_ATTRIBUTES_2 Attributes;
3882
3883 //
3884 // Get all FVB handles.
3885 //
3886 Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer);
3887 if (EFI_ERROR (Status)) {
3888 return EFI_NOT_FOUND;
3889 }
3890
3891 //
3892 // Get the FVB to access variable store.
3893 //
3894 Fvb = NULL;
3895 for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) {
3896 Status = GetFvbByHandle (HandleBuffer[Index], &Fvb);
3897 if (EFI_ERROR (Status)) {
3898 Status = EFI_NOT_FOUND;
3899 break;
3900 }
3901
3902 //
3903 // Ensure this FVB protocol supported Write operation.
3904 //
3905 Status = Fvb->GetAttributes (Fvb, &Attributes);
3906 if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
3907 continue;
3908 }
3909
3910 //
3911 // Compare the address and select the right one.
3912 //
3913 Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
3914 if (EFI_ERROR (Status)) {
3915 continue;
3916 }
3917
3918 FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress);
3919 if ((Address >= FvbBaseAddress) && (Address < (FvbBaseAddress + FwVolHeader->FvLength))) {
3920 if (FvbHandle != NULL) {
3921 *FvbHandle = HandleBuffer[Index];
3922 }
3923 if (FvbProtocol != NULL) {
3924 *FvbProtocol = Fvb;
3925 }
3926 Status = EFI_SUCCESS;
3927 break;
3928 }
3929 }
3930 FreePool (HandleBuffer);
3931
3932 if (Fvb == NULL) {
3933 Status = EFI_NOT_FOUND;
3934 }
3935
3936 return Status;
3937 }
3938