]> git.proxmox.com Git - mirror_edk2.git/blob - StdLib/LibC/Math/e_log.c
Standard Libraries for EDK II.
[mirror_edk2.git] / StdLib / LibC / Math / e_log.c
1 /** @file
2 Compute the logrithm of x.
3
4 Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials are licensed and made available under
6 the terms and conditions of the BSD License that accompanies this distribution.
7 The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 * ====================================================
14 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
15 *
16 * Developed at SunPro, a Sun Microsystems, Inc. business.
17 * Permission to use, copy, modify, and distribute this
18 * software is freely granted, provided that this notice
19 * is preserved.
20 * ====================================================
21
22 e_log.c 5.1 93/09/24
23 NetBSD: e_log.c,v 1.12 2002/05/26 22:01:51 wiz Exp
24 **/
25 #include <LibConfig.h>
26 #include <sys/EfiCdefs.h>
27
28 #if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */
29 // potential divide by 0 -- near line 118, (x-x)/zero is on purpose
30 #pragma warning ( disable : 4723 )
31 #endif
32
33 /* __ieee754_log(x)
34 * Return the logrithm of x
35 *
36 * Method :
37 * 1. Argument Reduction: find k and f such that
38 * x = 2^k * (1+f),
39 * where sqrt(2)/2 < 1+f < sqrt(2) .
40 *
41 * 2. Approximation of log(1+f).
42 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
43 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
44 * = 2s + s*R
45 * We use a special Reme algorithm on [0,0.1716] to generate
46 * a polynomial of degree 14 to approximate R The maximum error
47 * of this polynomial approximation is bounded by 2**-58.45. In
48 * other words,
49 * 2 4 6 8 10 12 14
50 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
51 * (the values of Lg1 to Lg7 are listed in the program)
52 * and
53 * | 2 14 | -58.45
54 * | Lg1*s +...+Lg7*s - R(z) | <= 2
55 * | |
56 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
57 * In order to guarantee error in log below 1ulp, we compute log
58 * by
59 * log(1+f) = f - s*(f - R) (if f is not too large)
60 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
61 *
62 * 3. Finally, log(x) = k*ln2 + log(1+f).
63 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
64 * Here ln2 is split into two floating point number:
65 * ln2_hi + ln2_lo,
66 * where n*ln2_hi is always exact for |n| < 2000.
67 *
68 * Special cases:
69 * log(x) is NaN with signal if x < 0 (including -INF) ;
70 * log(+INF) is +INF; log(0) is -INF with signal;
71 * log(NaN) is that NaN with no signal.
72 *
73 * Accuracy:
74 * according to an error analysis, the error is always less than
75 * 1 ulp (unit in the last place).
76 *
77 * Constants:
78 * The hexadecimal values are the intended ones for the following
79 * constants. The decimal values may be used, provided that the
80 * compiler will convert from decimal to binary accurately enough
81 * to produce the hexadecimal values shown.
82 */
83
84 #include "math.h"
85 #include "math_private.h"
86 #include <errno.h>
87
88 static const double
89 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
90 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
91 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
92 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
93 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
94 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
95 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
96 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
97 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
98 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
99
100 static const double zero = 0.0;
101
102 double
103 __ieee754_log(double x)
104 {
105 double hfsq,f,s,z,R,w,t1,t2,dk;
106 int32_t k,hx,i,j;
107 u_int32_t lx;
108
109 EXTRACT_WORDS(hx,lx,x);
110
111 k=0;
112 if (hx < 0x00100000) { /* x < 2**-1022 */
113 if (((hx&0x7fffffff)|lx)==0)
114 return -two54/zero; /* log(+-0)=-inf */
115 if (hx<0) {
116 errno = EDOM;
117 return (x-x)/zero; /* log(-#) = NaN */
118 }
119 k -= 54; x *= two54; /* subnormal number, scale up x */
120 GET_HIGH_WORD(hx,x);
121 }
122 if (hx >= 0x7ff00000) return x+x;
123 k += (hx>>20)-1023;
124 hx &= 0x000fffff;
125 i = (hx+0x95f64)&0x100000;
126 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
127 k += (i>>20);
128 f = x-1.0;
129 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
130 if(f==zero) { if(k==0) return zero; else {dk=(double)k;
131 return dk*ln2_hi+dk*ln2_lo;}
132 }
133 R = f*f*(0.5-0.33333333333333333*f);
134 if(k==0) return f-R; else {dk=(double)k;
135 return dk*ln2_hi-((R-dk*ln2_lo)-f);}
136 }
137 s = f/(2.0+f);
138 dk = (double)k;
139 z = s*s;
140 i = hx-0x6147a;
141 w = z*z;
142 j = 0x6b851-hx;
143 t1= w*(Lg2+w*(Lg4+w*Lg6));
144 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
145 i |= j;
146 R = t2+t1;
147 if(i>0) {
148 hfsq=0.5*f*f;
149 if(k==0) return f-(hfsq-s*(hfsq+R)); else
150 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
151 } else {
152 if(k==0) return f-s*(f-R); else
153 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
154 }
155 }