]> git.proxmox.com Git - mirror_edk2.git/blob - StdLib/LibC/gdtoa/gdtoaimp.h
Standard Libraries for EDK II.
[mirror_edk2.git] / StdLib / LibC / gdtoa / gdtoaimp.h
1 /** @file
2 This is a variation on dtoa.c that converts arbitary binary
3 floating-point formats to and from decimal notation. It uses
4 double-precision arithmetic internally, so there are still
5 various #ifdefs that adapt the calculations to the native
6 double-precision arithmetic (any of IEEE, VAX D_floating,
7 or IBM mainframe arithmetic).
8
9 Please send bug reports to David M. Gay (dmg at acm dot org,
10 with " at " changed at "@" and " dot " changed to ".").
11
12 Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>
13 This program and the accompanying materials are licensed and made available under
14 the terms and conditions of the BSD License that accompanies this distribution.
15 The full text of the license may be found at
16 http://opensource.org/licenses/bsd-license.
17
18 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
19 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
20
21 The author of this software is David M. Gay.
22
23 Copyright (C) 1998-2000 by Lucent Technologies
24 All Rights Reserved
25
26 Permission to use, copy, modify, and distribute this software and
27 its documentation for any purpose and without fee is hereby
28 granted, provided that the above copyright notice appear in all
29 copies and that both that the copyright notice and this
30 permission notice and warranty disclaimer appear in supporting
31 documentation, and that the name of Lucent or any of its entities
32 not be used in advertising or publicity pertaining to
33 distribution of the software without specific, written prior
34 permission.
35
36 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
37 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
38 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
39 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
40 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
41 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
42 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
43 THIS SOFTWARE.
44
45 $NetBSD: gdtoaimp.h,v 1.5.4.1 2007/05/07 19:49:06 pavel Exp
46 **/
47
48 /* On a machine with IEEE extended-precision registers, it is
49 * necessary to specify double-precision (53-bit) rounding precision
50 * before invoking strtod or dtoa. If the machine uses (the equivalent
51 * of) Intel 80x87 arithmetic, the call
52 * _control87(PC_53, MCW_PC);
53 * does this with many compilers. Whether this or another call is
54 * appropriate depends on the compiler; for this to work, it may be
55 * necessary to #include "float.h" or another system-dependent header
56 * file.
57 */
58
59 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
60 *
61 * This strtod returns a nearest machine number to the input decimal
62 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
63 * broken by the IEEE round-even rule. Otherwise ties are broken by
64 * biased rounding (add half and chop).
65 *
66 * Inspired loosely by William D. Clinger's paper "How to Read Floating
67 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
68 *
69 * Modifications:
70 *
71 * 1. We only require IEEE, IBM, or VAX double-precision
72 * arithmetic (not IEEE double-extended).
73 * 2. We get by with floating-point arithmetic in a case that
74 * Clinger missed -- when we're computing d * 10^n
75 * for a small integer d and the integer n is not too
76 * much larger than 22 (the maximum integer k for which
77 * we can represent 10^k exactly), we may be able to
78 * compute (d*10^k) * 10^(e-k) with just one roundoff.
79 * 3. Rather than a bit-at-a-time adjustment of the binary
80 * result in the hard case, we use floating-point
81 * arithmetic to determine the adjustment to within
82 * one bit; only in really hard cases do we need to
83 * compute a second residual.
84 * 4. Because of 3., we don't need a large table of powers of 10
85 * for ten-to-e (just some small tables, e.g. of 10^k
86 * for 0 <= k <= 22).
87 */
88
89 /*
90 * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
91 * significant byte has the lowest address.
92 * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
93 * significant byte has the lowest address.
94 * #define Long int on machines with 32-bit ints and 64-bit longs.
95 * #define Sudden_Underflow for IEEE-format machines without gradual
96 * underflow (i.e., that flush to zero on underflow).
97 * #define IBM for IBM mainframe-style floating-point arithmetic.
98 * #define VAX for VAX-style floating-point arithmetic (D_floating).
99 * #define No_leftright to omit left-right logic in fast floating-point
100 * computation of dtoa.
101 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
102 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
103 * that use extended-precision instructions to compute rounded
104 * products and quotients) with IBM.
105 * #define ROUND_BIASED for IEEE-format with biased rounding.
106 * #define Inaccurate_Divide for IEEE-format with correctly rounded
107 * products but inaccurate quotients, e.g., for Intel i860.
108 * #define NO_LONG_LONG on machines that do not have a "long long"
109 * integer type (of >= 64 bits). On such machines, you can
110 * #define Just_16 to store 16 bits per 32-bit Long when doing
111 * high-precision integer arithmetic. Whether this speeds things
112 * up or slows things down depends on the machine and the number
113 * being converted. If long long is available and the name is
114 * something other than "long long", #define Llong to be the name,
115 * and if "unsigned Llong" does not work as an unsigned version of
116 * Llong, #define #ULLong to be the corresponding unsigned type.
117 * #define KR_headers for old-style C function headers.
118 * #define Bad_float_h if your system lacks a float.h or if it does not
119 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
120 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
121 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
122 * if memory is available and otherwise does something you deem
123 * appropriate. If MALLOC is undefined, malloc will be invoked
124 * directly -- and assumed always to succeed.
125 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
126 * memory allocations from a private pool of memory when possible.
127 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
128 * unless #defined to be a different length. This default length
129 * suffices to get rid of MALLOC calls except for unusual cases,
130 * such as decimal-to-binary conversion of a very long string of
131 * digits. When converting IEEE double precision values, the
132 * longest string gdtoa can return is about 751 bytes long. For
133 * conversions by strtod of strings of 800 digits and all gdtoa
134 * conversions of IEEE doubles in single-threaded executions with
135 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
136 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
137 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
138 * Infinity and NaN (case insensitively).
139 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
140 * strtodg also accepts (case insensitively) strings of the form
141 * NaN(x), where x is a string of hexadecimal digits and spaces;
142 * if there is only one string of hexadecimal digits, it is taken
143 * for the fraction bits of the resulting NaN; if there are two or
144 * more strings of hexadecimal digits, each string is assigned
145 * to the next available sequence of 32-bit words of fractions
146 * bits (starting with the most significant), right-aligned in
147 * each sequence.
148 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
149 * multiple threads. In this case, you must provide (or suitably
150 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
151 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
152 * in pow5mult, ensures lazy evaluation of only one copy of high
153 * powers of 5; omitting this lock would introduce a small
154 * probability of wasting memory, but would otherwise be harmless.)
155 * You must also invoke freedtoa(s) to free the value s returned by
156 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
157 * #define IMPRECISE_INEXACT if you do not care about the setting of
158 * the STRTOG_Inexact bits in the special case of doing IEEE double
159 * precision conversions (which could also be done by the strtog in
160 * dtoa.c).
161 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
162 * floating-point constants.
163 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
164 * strtodg.c).
165 * #define NO_STRING_H to use private versions of memcpy.
166 * On some K&R systems, it may also be necessary to
167 * #define DECLARE_SIZE_T in this case.
168 * #define YES_ALIAS to permit aliasing certain double values with
169 * arrays of ULongs. This leads to slightly better code with
170 * some compilers and was always used prior to 19990916, but it
171 * is not strictly legal and can cause trouble with aggressively
172 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
173 * #define USE_LOCALE to use the current locale's decimal_point value.
174 */
175
176 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
177 #include <LibConfig.h>
178
179 #include <stdint.h>
180 #define Short int16_t
181 #define UShort uint16_t
182 #define Long EFI_LONG_T
183 #define ULong EFI_ULONG_T
184 #define LLong int64_t
185 #define ULLong uint64_t
186
187 #define INFNAN_CHECK
188 #ifdef _REENTRANT
189 #define MULTIPLE_THREADS
190 #endif
191 #define USE_LOCALE
192
193 #ifndef GDTOAIMP_H_INCLUDED
194 #define GDTOAIMP_H_INCLUDED
195 #include "gdtoa.h"
196 #include "gd_qnan.h"
197
198 #ifdef DEBUG
199 #include "stdio.h"
200 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
201 #endif
202
203 #include "stdlib.h"
204 #include "string.h"
205
206 #ifdef KR_headers
207 #define Char char
208 #else
209 #define Char void
210 #endif
211
212 #ifdef MALLOC
213 extern Char *MALLOC ANSI((size_t));
214 #else
215 #define MALLOC malloc
216 #endif
217
218 #undef IEEE_Arith
219 #undef Avoid_Underflow
220 #ifdef IEEE_BIG_ENDIAN
221 #define IEEE_Arith
222 #endif
223 #ifdef IEEE_LITTLE_ENDIAN
224 #define IEEE_Arith
225 #endif
226
227 #include "errno.h"
228 #ifdef Bad_float_h
229
230 #ifdef IEEE_Arith
231 #define DBL_DIG 15
232 #define DBL_MAX_10_EXP 308
233 #define DBL_MAX_EXP 1024
234 #define FLT_RADIX 2
235 #define DBL_MAX 1.7976931348623157e+308
236 #endif
237
238 #ifdef IBM
239 #define DBL_DIG 16
240 #define DBL_MAX_10_EXP 75
241 #define DBL_MAX_EXP 63
242 #define FLT_RADIX 16
243 #define DBL_MAX 7.2370055773322621e+75
244 #endif
245
246 #ifdef VAX
247 #define DBL_DIG 16
248 #define DBL_MAX_10_EXP 38
249 #define DBL_MAX_EXP 127
250 #define FLT_RADIX 2
251 #define DBL_MAX 1.7014118346046923e+38
252 #define n_bigtens 2
253 #endif
254
255 #ifndef LONG_MAX
256 #define LONG_MAX 2147483647
257 #endif
258
259 #else /* ifndef Bad_float_h */
260 #include "float.h"
261 #endif /* Bad_float_h */
262
263 #ifdef IEEE_Arith
264 #define Scale_Bit 0x10
265 #define n_bigtens 5
266 #endif
267
268 #ifdef IBM
269 #define n_bigtens 3
270 #endif
271
272 #ifdef VAX
273 #define n_bigtens 2
274 #endif
275
276 #include "math.h"
277
278 #ifdef __cplusplus
279 extern "C" {
280 #endif
281
282 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
283 Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
284 #endif
285
286 typedef union { double d; ULong L[2]; } U;
287 //typedef union { double d; UINT32 L[2]; } U;
288
289 #ifdef YES_ALIAS
290 #define dval(x) x
291 #ifdef IEEE_LITTLE_ENDIAN
292 #define word0(x) ((ULong *)&x)[1]
293 #define word1(x) ((ULong *)&x)[0]
294 #else
295 #define word0(x) ((ULong *)&x)[0]
296 #define word1(x) ((ULong *)&x)[1]
297 #endif
298 #else /* !YES_ALIAS */
299 #ifdef IEEE_LITTLE_ENDIAN
300 #define word0(x) ( /* LINTED */ (U*)&x)->L[1]
301 #define word1(x) ( /* LINTED */ (U*)&x)->L[0]
302 #else
303 #define word0(x) ( /* LINTED */ (U*)&x)->L[0]
304 #define word1(x) ( /* LINTED */ (U*)&x)->L[1]
305 #endif
306 #define dval(x) ( /* LINTED */ (U*)&x)->d
307 #endif /* YES_ALIAS */
308
309 /* The following definition of Storeinc is appropriate for MIPS processors.
310 * An alternative that might be better on some machines is
311 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
312 */
313 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
314 #define Storeinc(a,b,c) \
315 (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
316 ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
317 a++)
318 #else
319 #define Storeinc(a,b,c) \
320 (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
321 ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
322 a++)
323 #endif
324
325 /* #define P DBL_MANT_DIG */
326 /* Ten_pmax = floor(P*log(2)/log(5)) */
327 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
328 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
329 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
330
331 #ifdef IEEE_Arith
332 #define Exp_shift 20
333 #define Exp_shift1 20
334 #define Exp_msk1 0x100000
335 #define Exp_msk11 0x100000
336 #define Exp_mask 0x7ff00000
337 #define P 53
338 #define Bias 1023
339 #define Emin (-1022)
340 #define Exp_1 0x3ff00000
341 #define Exp_11 0x3ff00000
342 #define Ebits 11
343 #define Frac_mask 0xfffffU
344 #define Frac_mask1 0xfffffU
345 #define Ten_pmax 22
346 #define Bletch 0x10
347 #define Bndry_mask 0xfffffU
348 #define Bndry_mask1 0xfffffU
349 #define LSB 1
350 #define Sign_bit 0x80000000
351 #define Log2P 1
352 #define Tiny0 0
353 #define Tiny1 1
354 #define Quick_max 14
355 #define Int_max 14
356
357 #ifndef Flt_Rounds
358 #ifdef FLT_ROUNDS
359 #define Flt_Rounds FLT_ROUNDS
360 #else
361 #define Flt_Rounds 1
362 #endif
363 #endif /*Flt_Rounds*/
364
365 #else /* ifndef IEEE_Arith */
366 #undef Sudden_Underflow
367 #define Sudden_Underflow
368 #ifdef IBM
369 #undef Flt_Rounds
370 #define Flt_Rounds 0
371 #define Exp_shift 24
372 #define Exp_shift1 24
373 #define Exp_msk1 0x1000000
374 #define Exp_msk11 0x1000000
375 #define Exp_mask 0x7f000000
376 #define P 14
377 #define Bias 65
378 #define Exp_1 0x41000000
379 #define Exp_11 0x41000000
380 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
381 #define Frac_mask 0xffffff
382 #define Frac_mask1 0xffffff
383 #define Bletch 4
384 #define Ten_pmax 22
385 #define Bndry_mask 0xefffff
386 #define Bndry_mask1 0xffffff
387 #define LSB 1
388 #define Sign_bit 0x80000000
389 #define Log2P 4
390 #define Tiny0 0x100000
391 #define Tiny1 0
392 #define Quick_max 14
393 #define Int_max 15
394 #else /* VAX */
395 #undef Flt_Rounds
396 #define Flt_Rounds 1
397 #define Exp_shift 23
398 #define Exp_shift1 7
399 #define Exp_msk1 0x80
400 #define Exp_msk11 0x800000
401 #define Exp_mask 0x7f80
402 #define P 56
403 #define Bias 129
404 #define Exp_1 0x40800000
405 #define Exp_11 0x4080
406 #define Ebits 8
407 #define Frac_mask 0x7fffff
408 #define Frac_mask1 0xffff007f
409 #define Ten_pmax 24
410 #define Bletch 2
411 #define Bndry_mask 0xffff007f
412 #define Bndry_mask1 0xffff007f
413 #define LSB 0x10000
414 #define Sign_bit 0x8000
415 #define Log2P 1
416 #define Tiny0 0x80
417 #define Tiny1 0
418 #define Quick_max 15
419 #define Int_max 15
420 #endif /* IBM, VAX */
421 #endif /* IEEE_Arith */
422
423 #ifndef IEEE_Arith
424 #define ROUND_BIASED
425 #endif
426
427 #ifdef RND_PRODQUOT
428 #define rounded_product(a,b) a = rnd_prod(a, b)
429 #define rounded_quotient(a,b) a = rnd_quot(a, b)
430 #ifdef KR_headers
431 extern double rnd_prod(), rnd_quot();
432 #else
433 extern double rnd_prod(double, double), rnd_quot(double, double);
434 #endif
435 #else
436 #define rounded_product(a,b) a *= b
437 #define rounded_quotient(a,b) a /= b
438 #endif
439
440 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
441 #define Big1 0xffffffffU
442
443 #undef Pack_16
444 #ifndef Pack_32
445 #define Pack_32
446 #endif
447
448 #ifdef NO_LONG_LONG
449 #undef ULLong
450 #ifdef Just_16
451 #undef Pack_32
452 #define Pack_16
453 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
454 * This makes some inner loops simpler and sometimes saves work
455 * during multiplications, but it often seems to make things slightly
456 * slower. Hence the default is now to store 32 bits per Long.
457 */
458 #endif
459 #else /* long long available */
460 #ifndef Llong
461 #define Llong long long
462 #endif
463 #ifndef ULLong
464 #define ULLong unsigned Llong
465 #endif
466 #endif /* NO_LONG_LONG */
467
468 #ifdef Pack_32
469 #define ULbits 32
470 #define kshift 5
471 #define kmask 31
472 #define ALL_ON 0xffffffff
473 #else
474 #define ULbits 16
475 #define kshift 4
476 #define kmask 15
477 #define ALL_ON 0xffff
478 #endif
479
480 #ifndef MULTIPLE_THREADS
481 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
482 #define FREE_DTOA_LOCK(n) /*nothing*/
483 #else
484 #include "reentrant.h"
485
486 extern mutex_t __gdtoa_locks[2];
487
488 #define ACQUIRE_DTOA_LOCK(n) \
489 do { \
490 if (__isthreaded) \
491 mutex_lock(&__gdtoa_locks[n]); \
492 } while (/* CONSTCOND */ 0)
493 #define FREE_DTOA_LOCK(n) \
494 do { \
495 if (__isthreaded) \
496 mutex_unlock(&__gdtoa_locks[n]); \
497 } while (/* CONSTCOND */ 0)
498 #endif
499
500 #define Kmax 15
501
502 struct
503 Bigint {
504 struct Bigint *next;
505 int k, maxwds, sign, wds;
506 ULong x[1];
507 };
508
509 typedef struct Bigint Bigint;
510
511 #ifdef NO_STRING_H
512 #ifdef DECLARE_SIZE_T
513 typedef unsigned int size_t;
514 #endif
515 extern void memcpy_D2A ANSI((void*, const void*, size_t));
516 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
517 #else /* !NO_STRING_H */
518 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
519 #endif /* NO_STRING_H */
520
521 #define Balloc __Balloc_D2A
522 #define Bfree __Bfree_D2A
523 #define ULtoQ __ULtoQ_D2A
524 #define ULtof __ULtof_D2A
525 #define ULtod __ULtod_D2A
526 #define ULtodd __ULtodd_D2A
527 #define ULtox __ULtox_D2A
528 #define ULtoxL __ULtoxL_D2A
529 #define any_on __any_on_D2A
530 #define b2d __b2d_D2A
531 #define bigtens __bigtens_D2A
532 #define cmp __cmp_D2A
533 #define copybits __copybits_D2A
534 #define d2b __d2b_D2A
535 #define decrement __decrement_D2A
536 #define diff __diff_D2A
537 #define dtoa_result __dtoa_result_D2A
538 #define g__fmt __g__fmt_D2A
539 #define gethex __gethex_D2A
540 #define hexdig __hexdig_D2A
541 #define hexdig_init_D2A __hexdig_init_D2A
542 #define hexnan __hexnan_D2A
543 #define hi0bits __hi0bits_D2A
544 #define hi0bits_D2A __hi0bits_D2A
545 #define i2b __i2b_D2A
546 #define increment __increment_D2A
547 #define lo0bits __lo0bits_D2A
548 #define lshift __lshift_D2A
549 #define match __match_D2A
550 #define mult __mult_D2A
551 #define multadd __multadd_D2A
552 #define nrv_alloc __nrv_alloc_D2A
553 #define pow5mult __pow5mult_D2A
554 #define quorem __quorem_D2A
555 #define ratio __ratio_D2A
556 #define rshift __rshift_D2A
557 #define rv_alloc __rv_alloc_D2A
558 #define s2b __s2b_D2A
559 #define set_ones __set_ones_D2A
560 #define strcp __strcp_D2A
561 #define strcp_D2A __strcp_D2A
562 #define strtoIg __strtoIg_D2A
563 #define sum __sum_D2A
564 #define tens __tens_D2A
565 #define tinytens __tinytens_D2A
566 #define tinytens __tinytens_D2A
567 #define trailz __trailz_D2A
568 #define ulp __ulp_D2A
569
570 extern char *dtoa_result;
571 extern CONST double bigtens[], tens[], tinytens[];
572 extern unsigned char hexdig[];
573
574 extern Bigint *Balloc (int);
575 extern void Bfree (Bigint*);
576 extern void ULtof (ULong*, ULong*, Long, int);
577 extern void ULtod (ULong*, ULong*, Long, int);
578 extern void ULtodd (ULong*, ULong*, Long, int);
579 extern void ULtoQ (ULong*, ULong*, Long, int);
580 extern void ULtox (UShort*, ULong*, Long, int);
581 extern void ULtoxL (ULong*, ULong*, Long, int);
582 extern ULong any_on (Bigint*, int);
583 extern double b2d (Bigint*, int*);
584 extern int cmp (Bigint*, Bigint*);
585 extern void copybits (ULong*, int, Bigint*);
586 extern Bigint *d2b (double, int*, int*);
587 extern int decrement (Bigint*);
588 extern Bigint *diff (Bigint*, Bigint*);
589 extern char *dtoa (double d, int mode, int ndigits,
590 int *decpt, int *sign, char **rve);
591 extern char *g__fmt (char*, char*, char*, int, ULong);
592 extern int gethex (CONST char**, CONST FPI*, Long*, Bigint**, int);
593 extern void hexdig_init_D2A(Void);
594 extern int hexnan (CONST char**, CONST FPI*, ULong*);
595 extern int hi0bits_D2A (ULong);
596 extern Bigint *i2b (int);
597 extern Bigint *increment (Bigint*);
598 extern int lo0bits (ULong*);
599 extern Bigint *lshift (Bigint*, int);
600 extern int match (CONST char**, CONST char*);
601 extern Bigint *mult (Bigint*, Bigint*);
602 extern Bigint *multadd (Bigint*, int, int);
603 extern char *nrv_alloc (CONST char*, char **, size_t);
604 extern Bigint *pow5mult (Bigint*, int);
605 extern int quorem (Bigint*, Bigint*);
606 extern double ratio (Bigint*, Bigint*);
607 extern void rshift (Bigint*, int);
608 extern char *rv_alloc (size_t);
609 extern Bigint *s2b (CONST char*, int, int, ULong);
610 extern Bigint *set_ones (Bigint*, int);
611 extern char *strcp (char*, const char*);
612 extern int strtoIg (CONST char*, char**, FPI*, Long*, Bigint**, int*);
613 extern double strtod (const char *s00, char **se);
614 extern Bigint *sum (Bigint*, Bigint*);
615 extern int trailz (CONST Bigint*);
616 extern double ulp (double);
617
618 #ifdef __cplusplus
619 }
620 #endif
621 /*
622 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
623 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
624 * respectively), but now are determined by compiling and running
625 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
626 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
627 * and -DNAN_WORD1=... values if necessary. This should still work.
628 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
629 */
630 #ifdef IEEE_Arith
631 #ifdef IEEE_BIG_ENDIAN
632 #define _0 0
633 #define _1 1
634 #ifndef NAN_WORD0
635 #define NAN_WORD0 d_QNAN0
636 #endif
637 #ifndef NAN_WORD1
638 #define NAN_WORD1 d_QNAN1
639 #endif
640 #else
641 #define _0 1
642 #define _1 0
643 #ifndef NAN_WORD0
644 #define NAN_WORD0 d_QNAN1
645 #endif
646 #ifndef NAN_WORD1
647 #define NAN_WORD1 d_QNAN0
648 #endif
649 #endif
650 #else
651 #undef INFNAN_CHECK
652 #endif
653
654 #undef SI
655 #ifdef Sudden_Underflow
656 #define SI 1
657 #else
658 #define SI 0
659 #endif
660
661 #endif /* GDTOAIMP_H_INCLUDED */