
Standard C Library - README Page 1

EDK II Standard C Library
ReadMe

Alpha 2 Release

This document describes the EDK II specific aspects of installing, building, and using the
Standard C Library component of the EDK II Application Development Kit, EADK.

This release of the EADK has some restrictions, as described below.

1. Only the Microsoft VS2005 and VS2008, Intel C Compiler 10.1 (or later), GCC 4.3
(mingw32), GCC 4.4, and GCC 4.5 C compilers are supported for Ia32 or X64 CPU
architectures.

2. The target machine must be running EDK II based firmware with the EDK II HII present
and enabled.

3. The EADK has not been through Intel’s Quality Assurance process. This means that
specified standards compliance has not been validated, nor has it undergone formal
functionality testing.

4. Applications must be launched from within the EFI Shell unless the Shell Protocol has
been instantiated from within the base firmware.

5. All file paths must use the forward slash, ‘/’, as the separator character.
6. Absolute file paths may optionally be prefixed by a volume specifier such as “FS0:”. The

volume specifier is separated from the remainder of the path by a single colon ‘:’. The
volume specifier must be one of the Shells mapped volume names as shown by the
“map” command.

7. Absolute file paths that don’t begin with a volume specifier; e.g. paths that begin with
“/”, are relative to the currently selected volume.

8. The tmpfile(), and related, functions require that the current volume have a temporary
directory as specified in <paths.h>. Currently, this is “/Efi/Temp”.

The Standard C Library provided by this package is a “hosted” implementation conforming to
the ISO/IEC 9899-1990 C Language Standard with Addendum 1. This is commonly referred to
as the “C 95” specification.

The following instructions assume that you have an existing EDK II or UDK 2010 source tree
that has been configured to build with your tool chain.

The EADK is comprised of three packages: AppPkg, StdLib, and StdLibPrivateInternalFiles.

AppPkg This package contains applications which demonstrate use of the Standard
C Library. These applications reside in AppPkg/Applications.

Enquire This is a program that determines many properties of the C compiler
and the target machine that Enquire is run on. The only changes
required to port this 1990s era Unix program to EDK II were the

Standard C Library - README Page 2

addition of 8 pragmas to enquire.c in order to disable some Microsoft
VC++ specific warnings.

Hello This is a very simple EDK II native application that doesn’t use any
features of the Standard C Library.

Main This application is functionally identical to Hello, except that it uses
the Standard C Library to provide a main() entry point.

StdLib The StdLib package contains the standard header files as well as
implementations of the standard libraries. Currently, the only standard
library provided is the Standard C Library, the implementation of which is
in the StdLib/LibC directory.

StdLibPrivateInternalFiles The contents of this package are for the exclusive use of the
library implementations in StdLib. Please do not use anything from this
package in your application or unexpected behavior may occur. This
package may be removed from a future release.

INSTALLATION

Install the EADK packages by extracting, downloading or copying them to the root of your EDK
II source tree. The three package directories should be peers to the Conf, MdePkg, Nt32Pkg, etc.
directories.

BUILDING

It is not necessary to build the libraries separately from the target application(s). If the
application references the libraries, as described in USAGE; below; the required libraries will be
built as needed.

To build the applications included in AppPkg, one would execute the following commands
within the “Visual Studio Command Prompt” window:

> cd C:\Source\Edk2
> .\edksetup.bat
> build –a X64 –p AppPkg\AppPkg.dsc

This will produce the application executables: Enquire.efi, Hello.efi, and Main.efi in the
C:\Source\Edk2\Build\AppPkg\DEBUG_VS2008\X64 directory; with the
DEBUG_VS2008 component being replaced with the actual tool chain and build type you have
selected in Conf\Tools_def.txt. These executables can now be loaded onto the target platform
and executed.

If you examine the AppPkg.dsc file, you will notice that the StdLib package is referenced in
order to resolve the library classes comprising the Standard C Library. This, plus referencing
the StdLib package in your application’s .inf file is all that is needed to link your application to
the standard libraries.

Standard C Library - README Page 3

USAGE

This implementation of the Standard C Library is comprised of 12 separate libraries in addition
to the standard header files. Each library is associated with use of one of the standard headers;
thus, if the header is used in an application, it must be linked with the associated library. The
associations are described in the following table.

Library
Class Header File(s) Notes

LibC -- Use Always -- This library is always required.
LibUefi sys/EfiSysCall.h Provides the UEFI system interface and “System Calls”
LibStdLib stdlib.h
LibString string.h
LibSignal signal.h
LibStdio stdio.h
LibWchar wchar.h
LibCtype ctype.h, wctype.h
LibTime time.h
LibLocale locale.h
LibMath math.h

LibGdtoa -- Do Not Use --

This library is used internally and should not need to be
explicitly specified by an application. It must be defined as
one of the available library classes in the application’s DSC
file.

These libraries must be fully described in the [LibraryClasses] section of the application
package’s DSC file. Then, each individual application needs to specify which libraries to link to
by specifying the Library Class, from the above table, in the [LibraryClasses] section of the
application’s INF file. The AppPkg.dsc, AppDemoPkg.dsc, and Enquire.inf files provide good
examples of this.

Within the source files of the application, use of the Standard headers and library functions
follow standard C programming practices as formalized by the ISO 9899:1990, with Addendum
1, (C 95) C language specification.

IMPLEMENTATION Specific Features

It is very strongly recommended that applications not use the long or unsigned long types. The
size of this type varies between compilers and is one of the less portable aspects of C. Instead,
one should use the UEFI defined types whenever possible. Use of these types, listed below for
reference, ensures that the declared objects have unambiguous, explicitly declared, sizes and
characteristics.

UINT64 INT64 UINT32 INT32 UINT16 CHAR16
INT16 BOOLEAN UINT8 CHAR8 INT8

Standard C Library - README Page 4

UINTN INTN PHYSICALADDRESS

There are similar types declared in sys/types.h and related files.

The types UINTN and INTN have the native width of the target processor architecture. This
width will not change between compilers. Thus, INTN on IA32 has a native width of 32 bits
while INTN on X64 and IPF have native widths of 64 bits.

For maximum portability, data objects intended to hold addresses should be declared with type
intptr_t or uintptr_t. These types, declared in sys/stdint.h, can be used to create objects capable of
holding pointers. Note that these types will generate different sized objects on different processor
architectures. If a constant size across all processors and compilers is needed, use type
PHYSICAL_ADDRESS.

Each application’s INF file must include a [BuildOptions] section specifying flags necessary to
allow the EADK headers and libraries to be used instead of the libraries and header files
provided by the compiler tool chain vendor. Normally this section will be specified as:

[BuildOptions]
 INTEL:*_*_*_CC_FLAGS = /Qdiag-disable:181,186
 MSFT:*_*_*_CC_FLAGS = /Od
 GCC:*_*_*_CC_FLAGS = -O0 -Wno-unused-variable

Descriptions of the Library Classes comprising the C Standard Library must be included in your
application package’s DSC file. The application package’s DSC file also must include some
specialized directives. Two libraries from EDK II must be built specially in order to allow the C
library to link with them. These libraries are specified in the [Components] portion of the DSC
file as shown below

 [LibraryClasses]
 #
 # Common Libraries
 #
 BaseLib|MdePkg/Library/BaseLib/BaseLib.inf
 BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf
 #
 # C Standard Libraries
 #
 LibC|AppPkg/Library/LibC.inf
 LibStdLib|AppPkg/Library/StdLib/StdLib.inf
 LibString|AppPkg/Library/String/String.inf
 LibWchar|AppPkg/Library/Wchar/Wchar.inf
 LibCType|AppPkg/Library/Ctype/Ctype.inf
 LibTime|AppPkg/Library/Time/Time.inf
 LibStdio|AppPkg/Library/Stdio/Stdio.inf
 LibGdtoa|AppPkg/Library/gdtoa/gdtoa.inf
 LibLocale|AppPkg/Library/Locale/Locale.inf
 LibUefi|AppPkg/Library/Uefi/Uefi.inf
 LibMath|AppPkg/Library/Math/Math.inf
 LibSignal|AppPkg/Library/Signal/Signal.inf
 LibGcc|AppPkg/Library/LibGcc/LibGcc.inf

Standard C Library - README Page 5

 [Components]
 MdePkg/Library/BaseLib/BaseLib.inf {
 <BuildOptions>
 MSFT:*_*_*_CC_FLAGS = /X /Zc:wchar_t /GL-
 }
 MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf {
 <BuildOptions>
 MSFT:*_*_*_CC_FLAGS = /X /Zc:wchar_t /GL-
 }

These directives will create instances of the BaseLib and BaseMemoryLib library classes that are
built with Link-time-Code-Generation disabled. This is necessary when using the Microsoft tool
chains in order to allow the library’s functions to be resolved during the second pass of the linker
during Link-Time-Code-Generation of the application.

Though not specifically required by the ISO/IEC 9899 standard, this implementation of the
Standard C Library provides the following system calls which are declared in
sys/EfiSysCall.h.

close read write unlink
dup2 rmdir isatty open
creat fcntl mkdir fstat
lstat stat lseek truncate
ftruncate

The open function will accept file names of “stdin:”, “stdout:”, and “stderr:” which cause the
respective streams specified in the UEFI System Table to be opened. Normally, these are
associated with the console device. When the application is first started, these streams are
automatically opened on File Descriptors 0, 1, and 2 respectively.

