]> git.proxmox.com Git - mirror_edk2.git/blob - Tools/CCode/Source/PeiRebase/PeiRebaseExe.c
5f7dfc25c71cd47a3e78d2c8baedd4e5fa87bc84
[mirror_edk2.git] / Tools / CCode / Source / PeiRebase / PeiRebaseExe.c
1 /*++
2
3 Copyright (c) 1999-2006 Intel Corporation. All rights reserved
4 This program and the accompanying materials are licensed and made available
5 under the terms and conditions of the BSD License which accompanies this
6 distribution. The full text of the license may be found at
7 http://opensource.org/licenses/bsd-license.php
8
9 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
10 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
11
12
13 Module Name:
14
15 PeiRebaseExe.c
16
17 Abstract:
18
19 This contains all code necessary to build the PeiRebase.exe utility.
20 This utility relies heavily on the PeiRebase DLL. Definitions for both
21 can be found in the PEI Rebase Utility Specification, review draft.
22
23 --*/
24
25 #include <stdlib.h>
26 #include <stdio.h>
27 #include <string.h>
28
29 #include <Common/UefiBaseTypes.h>
30 #include <Common/FirmwareVolumeImageFormat.h>
31 #include <Common/FirmwareFileSystem.h>
32 #include <Library/PeCoffLib.h>
33
34 #include "CommonLib.h"
35 #include "ParseInf.h"
36 #include "FvLib.h"
37 #include "EfiUtilityMsgs.h"
38 #include "PeiRebaseExe.h"
39
40 EFI_STATUS
41 ReadHeader (
42 IN FILE *InputFile,
43 OUT UINT32 *FvSize,
44 OUT BOOLEAN *ErasePolarity
45 );
46
47 int
48 main (
49 int argc,
50 char **argv
51 )
52 /*++
53
54 Routine Description:
55
56 This utility relocates PEI XIP PE32s in a FV.
57
58 Arguments:
59
60 argc - Number of command line arguments
61 argv[]:
62 BaseAddress The base address to use for rebasing the FV. The correct
63 format is a hex number preceded by 0x.
64 InputFileName The name of the input FV file.
65 OutputFileName The name of the output FV file.
66
67 Arguments come in pair in any order.
68 -I InputFileName
69 -O OutputFileName
70 -B BaseAddress
71
72 Returns:
73
74 0 No error conditions detected.
75 1 One or more of the input parameters is invalid.
76 2 A resource required by the utility was unavailable.
77 Most commonly this will be memory allocation or file creation.
78 3 PeiRebase.dll could not be loaded.
79 4 Error executing the PEI rebase.
80
81 --*/
82 {
83 UINT8 Index;
84 CHAR8 InputFileName[_MAX_PATH];
85 CHAR8 *OutputFileName;
86 EFI_PHYSICAL_ADDRESS XipBase, BsBase, RtBase;
87 UINT32 BaseTypes;
88 EFI_STATUS Status;
89 FILE *InputFile;
90 FILE *OutputFile;
91 FILE *LogFile;
92 UINT64 FvOffset;
93 UINT32 FileCount;
94 int BytesRead;
95 EFI_FIRMWARE_VOLUME_HEADER *FvImage;
96 UINT32 FvSize;
97 EFI_FFS_FILE_HEADER *CurrentFile;
98 BOOLEAN ErasePolarity;
99 MEMORY_FILE InfMemoryFile;
100 CHAR8 StringBuffer[0x100];
101
102 ErasePolarity = FALSE;
103 //
104 // Set utility name for error/warning reporting purposes.
105 //
106 SetUtilityName (UTILITY_NAME);
107 //
108 // Verify the correct number of arguments
109 //
110 if (argc != MAX_ARGS) {
111 PrintUsage ();
112 return STATUS_ERROR;
113 }
114
115 //
116 // Initialize variables
117 //
118 InputFileName[0] = '\0';
119 OutputFileName = NULL;
120 XipBase = BsBase = RtBase = 0;
121 BaseTypes = 0;
122 FvOffset = 0;
123 FileCount = 0;
124 ErasePolarity = FALSE;
125 InputFile = NULL;
126 OutputFile = NULL;
127 LogFile = NULL;
128 FvImage = NULL;
129
130 //
131 // Parse the command line arguments
132 //
133 for (Index = 1; Index < MAX_ARGS; Index += 2) {
134 //
135 // Make sure argument pair begin with - or /
136 //
137 if (argv[Index][0] != '-' && argv[Index][0] != '/') {
138 PrintUsage ();
139 Error (NULL, 0, 0, argv[Index], "unrecognized option");
140 return STATUS_ERROR;
141 }
142 //
143 // Make sure argument specifier is only one letter
144 //
145 if (argv[Index][2] != 0) {
146 PrintUsage ();
147 Error (NULL, 0, 0, argv[Index], "unrecognized option");
148 return STATUS_ERROR;
149 }
150 //
151 // Determine argument to read
152 //
153 switch (argv[Index][1]) {
154 case 'I':
155 case 'i':
156 if (strlen (InputFileName) == 0) {
157 strcpy (InputFileName, argv[Index + 1]);
158 } else {
159 PrintUsage ();
160 Error (NULL, 0, 0, argv[Index + 1], "only one -i InputFileName may be specified");
161 return STATUS_ERROR;
162 }
163 break;
164
165 case 'O':
166 case 'o':
167 if (OutputFileName == NULL) {
168 OutputFileName = argv[Index + 1];
169 } else {
170 PrintUsage ();
171 Error (NULL, 0, 0, argv[Index + 1], "only one -o OutputFileName may be specified");
172 return STATUS_ERROR;
173 }
174 break;
175
176 case 'F':
177 case 'f':
178 //
179 // Load INF file into memory & initialize MEMORY_FILE structure
180 //
181 Status = GetFileImage (argv[Index + 1], &InfMemoryFile.FileImage, (UINT32*)&InfMemoryFile.Eof);
182 InfMemoryFile.Eof = InfMemoryFile.FileImage + (UINT32)(UINTN)InfMemoryFile.Eof;
183 InfMemoryFile.CurrentFilePointer = InfMemoryFile.FileImage;
184 if (EFI_ERROR (Status)) {
185 Error (NULL, 0, 0, argv[Index + 1], "Error opening FvInfFile");
186 return STATUS_ERROR;
187 }
188
189 //
190 // Read BaseAddress from fv.inf file
191 //
192 FindToken (&InfMemoryFile, "[options]", "EFI_BASE_ADDRESS", 0, StringBuffer);
193
194 //
195 // Free INF file image
196 //
197 free (InfMemoryFile.FileImage);
198
199 //
200 // Point argv[Index + 1] to StringBuffer so that it could be processed as "-b"
201 //
202 argv[Index + 1] = StringBuffer;
203
204 case 'B':
205 case 'b':
206 if (BaseTypes & 1) {
207 PrintUsage ();
208 Error (NULL, 0, 0, argv[Index + 1], "XipBaseAddress may be specified only once by either -b or -f");
209 return STATUS_ERROR;
210 }
211
212 Status = AsciiStringToUint64 (argv[Index + 1], FALSE, &XipBase);
213 if (EFI_ERROR (Status)) {
214 PrintUsage ();
215 Error (NULL, 0, 0, argv[Index + 1], "invalid hex digit given for XIP base address");
216 return STATUS_ERROR;
217 }
218
219 BaseTypes |= 1;
220 break;
221
222 case 'D':
223 case 'd':
224 if (BaseTypes & 2) {
225 PrintUsage ();
226 Error (NULL, 0, 0, argv[Index + 1], "-d BsBaseAddress may be specified only once");
227 return STATUS_ERROR;
228 }
229
230 Status = AsciiStringToUint64 (argv[Index + 1], FALSE, &BsBase);
231 if (EFI_ERROR (Status)) {
232 PrintUsage ();
233 Error (NULL, 0, 0, argv[Index + 1], "invalid hex digit given for BS_DRIVER base address");
234 return STATUS_ERROR;
235 }
236
237 BaseTypes |= 2;
238 break;
239
240 case 'R':
241 case 'r':
242 if (BaseTypes & 4) {
243 PrintUsage ();
244 Error (NULL, 0, 0, argv[Index + 1], "-r RtBaseAddress may be specified only once");
245 return STATUS_ERROR;
246 }
247
248 Status = AsciiStringToUint64 (argv[Index + 1], FALSE, &RtBase);
249 if (EFI_ERROR (Status)) {
250 PrintUsage ();
251 Error (NULL, 0, 0, argv[Index + 1], "invalid hex digit given for RT_DRIVER base address");
252 return STATUS_ERROR;
253 }
254
255 BaseTypes |= 4;
256 break;
257
258 default:
259 PrintUsage ();
260 Error (NULL, 0, 0, argv[Index], "unrecognized argument");
261 return STATUS_ERROR;
262 break;
263 }
264 }
265 //
266 // Open the file containing the FV
267 //
268 InputFile = fopen (InputFileName, "rb");
269 if (InputFile == NULL) {
270 Error (NULL, 0, 0, InputFileName, "could not open input file for reading");
271 return STATUS_ERROR;
272 }
273
274 //
275 // Open the log file
276 //
277 strcat (InputFileName, ".log");
278 LogFile = fopen (InputFileName, "a");
279 if (LogFile == NULL) {
280 Error (NULL, 0, 0, InputFileName, "could not append to log file");
281 }
282
283 //
284 // Determine size of FV
285 //
286 Status = ReadHeader (InputFile, &FvSize, &ErasePolarity);
287 if (EFI_ERROR (Status)) {
288 Error (NULL, 0, 0, "could not parse the FV header", NULL);
289 goto Finish;
290 }
291 //
292 // Allocate a buffer for the FV image
293 //
294 FvImage = malloc (FvSize);
295 if (FvImage == NULL) {
296 Error (NULL, 0, 0, "application error", "memory allocation failed");
297 goto Finish;
298 }
299 //
300 // Read the entire FV to the buffer
301 //
302 BytesRead = fread (FvImage, 1, FvSize, InputFile);
303 fclose (InputFile);
304 InputFile = NULL;
305 if ((unsigned int) BytesRead != FvSize) {
306 Error (NULL, 0, 0, InputFileName, "failed to read from file");
307 goto Finish;
308 }
309 //
310 // Prepare to walk the FV image
311 //
312 InitializeFvLib (FvImage, FvSize);
313 //
314 // Get the first file
315 //
316 Status = GetNextFile (NULL, &CurrentFile);
317 if (EFI_ERROR (Status)) {
318 Error (NULL, 0, 0, "cannot find the first file in the FV image", NULL);
319 goto Finish;
320 }
321 //
322 // Check if each file should be rebased
323 //
324 while (CurrentFile != NULL) {
325 //
326 // Rebase this file
327 //
328 FfsRebase (
329 CurrentFile,
330 BaseTypes,
331 XipBase + (UINTN)CurrentFile - (UINTN)FvImage,
332 &BsBase,
333 &RtBase,
334 LogFile
335 );
336
337 if (EFI_ERROR (Status)) {
338 switch (Status) {
339
340 case EFI_INVALID_PARAMETER:
341 Error (NULL, 0, 0, "invalid parameter passed to FfsRebase", NULL);
342 break;
343
344 case EFI_ABORTED:
345 Error (NULL, 0, 0, "error detected while rebasing -- aborted", NULL);
346 break;
347
348 case EFI_OUT_OF_RESOURCES:
349 Error (NULL, 0, 0, "FfsRebase could not allocate required resources", NULL);
350 break;
351
352 case EFI_NOT_FOUND:
353 Error (NULL, 0, 0, "FfsRebase could not locate a PE32 section", NULL);
354 break;
355
356 default:
357 Error (NULL, 0, 0, "FfsRebase returned unknown status", "status=0x%08X", Status);
358 break;
359 }
360
361 goto Finish;
362 }
363 //
364 // Get the next file
365 //
366 Status = GetNextFile (CurrentFile, &CurrentFile);
367 if (EFI_ERROR (Status)) {
368 Error (NULL, 0, 0, "cannot find the next file in the FV image", NULL);
369 goto Finish;
370 }
371 }
372 //
373 // Open the output file
374 //
375 OutputFile = fopen (OutputFileName, "wb");
376 if (OutputFile == NULL) {
377 Error (NULL, 0, 0, OutputFileName, "failed to open output file");
378 goto Finish;
379 }
380
381 if (fwrite (FvImage, 1, FvSize, OutputFile) != FvSize) {
382 Error (NULL, 0, 0, "failed to write to output file", 0);
383 goto Finish;
384 }
385
386 Finish:
387 if (InputFile != NULL) {
388 fclose (InputFile);
389 }
390 //
391 // If we created an output file, and there was an error, remove it so
392 // subsequent builds will rebuild it.
393 //
394 if (OutputFile != NULL) {
395 if (GetUtilityStatus () == STATUS_ERROR) {
396 remove (OutputFileName);
397 }
398
399 fclose (OutputFile);
400 }
401
402 if (LogFile != NULL) {
403 fclose (LogFile);
404 }
405
406 if (FvImage != NULL) {
407 free (FvImage);
408 }
409
410 return GetUtilityStatus ();
411 }
412
413 EFI_STATUS
414 ReadHeader (
415 IN FILE *InputFile,
416 OUT UINT32 *FvSize,
417 OUT BOOLEAN *ErasePolarity
418 )
419 /*++
420
421 Routine Description:
422
423 This function determines the size of the FV and the erase polarity. The
424 erase polarity is the FALSE value for file state.
425
426 Arguments:
427
428 InputFile The file that contains the FV image.
429 FvSize The size of the FV.
430 ErasePolarity The FV erase polarity.
431
432 Returns:
433
434 EFI_SUCCESS Function completed successfully.
435 EFI_INVALID_PARAMETER A required parameter was NULL or is out of range.
436 EFI_ABORTED The function encountered an error.
437
438 --*/
439 {
440 EFI_FIRMWARE_VOLUME_HEADER VolumeHeader;
441 EFI_FV_BLOCK_MAP_ENTRY BlockMap;
442 UINTN Signature[2];
443 UINTN BytesRead;
444 UINT32 Size;
445
446 BytesRead = 0;
447 Size = 0;
448 //
449 // Check input parameters
450 //
451 if ((InputFile == NULL) || (FvSize == NULL) || (ErasePolarity == NULL)) {
452 Error (NULL, 0, 0, "ReadHeader()", "invalid input parameter");
453 return EFI_INVALID_PARAMETER;
454 }
455 //
456 // Read the header
457 //
458 fread (&VolumeHeader, sizeof (EFI_FIRMWARE_VOLUME_HEADER) - sizeof (EFI_FV_BLOCK_MAP_ENTRY), 1, InputFile);
459 BytesRead = sizeof (EFI_FIRMWARE_VOLUME_HEADER) - sizeof (EFI_FV_BLOCK_MAP_ENTRY);
460 Signature[0] = VolumeHeader.Signature;
461 Signature[1] = 0;
462
463 //
464 // Get erase polarity
465 //
466 if (VolumeHeader.Attributes & EFI_FVB_ERASE_POLARITY) {
467 *ErasePolarity = TRUE;
468 }
469
470 do {
471 fread (&BlockMap, sizeof (EFI_FV_BLOCK_MAP_ENTRY), 1, InputFile);
472 BytesRead += sizeof (EFI_FV_BLOCK_MAP_ENTRY);
473
474 if (BlockMap.NumBlocks != 0) {
475 Size += BlockMap.NumBlocks * BlockMap.BlockLength;
476 }
477
478 } while (!(BlockMap.NumBlocks == 0 && BlockMap.BlockLength == 0));
479
480 if (VolumeHeader.FvLength != Size) {
481 Error (NULL, 0, 0, "volume size not consistant with block maps", NULL);
482 return EFI_ABORTED;
483 }
484
485 *FvSize = Size;
486
487 rewind (InputFile);
488
489 return EFI_SUCCESS;
490 }
491
492 VOID
493 PrintUtilityInfo (
494 VOID
495 )
496 /*++
497
498 Routine Description:
499
500 Displays the standard utility information to SDTOUT
501
502 Arguments:
503
504 None
505
506 Returns:
507
508 None
509
510 --*/
511 {
512 printf (
513 "%s, PEI Rebase Utility. Version %i.%i, %s.\n\n",
514 UTILITY_NAME,
515 UTILITY_MAJOR_VERSION,
516 UTILITY_MINOR_VERSION,
517 UTILITY_DATE
518 );
519 }
520
521 VOID
522 PrintUsage (
523 VOID
524 )
525 /*++
526
527 Routine Description:
528
529 Displays the utility usage syntax to STDOUT
530
531 Arguments:
532
533 None
534
535 Returns:
536
537 None
538
539 --*/
540 {
541 printf (
542 "Usage: %s -I InputFileName -O OutputFileName -B BaseAddress\n",
543 UTILITY_NAME
544 );
545 printf (" Where:\n");
546 printf (" InputFileName is the name of the EFI FV file to rebase.\n");
547 printf (" OutputFileName is the desired output file name.\n");
548 printf (" BaseAddress is the FV base address to rebase against.\n");
549 printf (" Argument pair may be in any order.\n\n");
550 }
551
552 EFI_STATUS
553 FfsRebase (
554 IN OUT EFI_FFS_FILE_HEADER *FfsFile,
555 IN UINT32 Flags,
556 IN OUT EFI_PHYSICAL_ADDRESS XipBase,
557 IN OUT EFI_PHYSICAL_ADDRESS *BsBase,
558 IN OUT EFI_PHYSICAL_ADDRESS *RtBase,
559 OUT FILE *LogFile
560 )
561 /*++
562
563 Routine Description:
564
565 This function determines if a file is XIP and should be rebased. It will
566 rebase any PE32 sections found in the file using the base address.
567
568 Arguments:
569
570 FfsFile A pointer to Ffs file image.
571 BaseAddress The base address to use for rebasing the file image.
572
573 Returns:
574
575 EFI_SUCCESS The image was properly rebased.
576 EFI_INVALID_PARAMETER An input parameter is invalid.
577 EFI_ABORTED An error occurred while rebasing the input file image.
578 EFI_OUT_OF_RESOURCES Could not allocate a required resource.
579 EFI_NOT_FOUND No compressed sections could be found.
580
581 --*/
582 {
583 EFI_STATUS Status;
584 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
585 UINTN MemoryImagePointer;
586 UINTN MemoryImagePointerAligned;
587 EFI_PHYSICAL_ADDRESS ImageAddress;
588 UINT64 ImageSize;
589 EFI_PHYSICAL_ADDRESS EntryPoint;
590 UINT32 Pe32ImageSize;
591 EFI_PHYSICAL_ADDRESS NewPe32BaseAddress;
592 UINTN Index;
593 EFI_FILE_SECTION_POINTER CurrentPe32Section;
594 EFI_FFS_FILE_STATE SavedState;
595 EFI_IMAGE_NT_HEADERS32 *PeHdr;
596 EFI_IMAGE_NT_HEADERS64 *PePlusHdr;
597 UINT32 *PeHdrSizeOfImage;
598 UINT32 *PeHdrChecksum;
599 EFI_TE_IMAGE_HEADER *TEImageHeader;
600 UINT8 *TEBuffer;
601 EFI_IMAGE_DOS_HEADER *DosHeader;
602 UINT8 FileGuidString[80];
603 UINT32 TailSize;
604 EFI_FFS_FILE_TAIL TailValue;
605 EFI_PHYSICAL_ADDRESS *BaseToUpdate;
606
607 //
608 // Verify input parameters
609 //
610 if (FfsFile == NULL) {
611 return EFI_INVALID_PARAMETER;
612 }
613 //
614 // Convert the GUID to a string so we can at least report which file
615 // if we find an error.
616 //
617 PrintGuidToBuffer (&FfsFile->Name, FileGuidString, sizeof (FileGuidString), TRUE);
618 if (FfsFile->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
619 TailSize = sizeof (EFI_FFS_FILE_TAIL);
620 } else {
621 TailSize = 0;
622 }
623 //
624 // Do some cursory checks on the FFS file contents
625 //
626 Status = VerifyFfsFile (FfsFile);
627 if (EFI_ERROR (Status)) {
628 Error (NULL, 0, 0, "file does not appear to be a valid FFS file, cannot be rebased", FileGuidString);
629 return EFI_INVALID_PARAMETER;
630 }
631
632 //
633 // We only process files potentially containing PE32 sections.
634 //
635 switch (FfsFile->Type) {
636 case EFI_FV_FILETYPE_SECURITY_CORE:
637 case EFI_FV_FILETYPE_PEI_CORE:
638 case EFI_FV_FILETYPE_PEIM:
639 case EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER:
640 case EFI_FV_FILETYPE_DRIVER:
641 case EFI_FV_FILETYPE_DXE_CORE:
642 break;
643 default:
644 return EFI_SUCCESS;
645 }
646
647 //
648 // Rebase each PE32 section
649 //
650 Status = EFI_SUCCESS;
651 for (Index = 1;; Index++) {
652 Status = GetSectionByType (FfsFile, EFI_SECTION_PE32, Index, &CurrentPe32Section);
653 if (EFI_ERROR (Status)) {
654 break;
655 }
656
657
658 //
659 // Initialize context
660 //
661 memset (&ImageContext, 0, sizeof (ImageContext));
662 ImageContext.Handle = (VOID *) ((UINTN) CurrentPe32Section.Pe32Section + sizeof (EFI_PE32_SECTION));
663 ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) FfsRebaseImageRead;
664 Status = PeCoffLoaderGetImageInfo (&ImageContext);
665 if (EFI_ERROR (Status)) {
666 Error (NULL, 0, 0, "GetImageInfo() call failed on rebase", FileGuidString);
667 return Status;
668 }
669
670 //
671 // Calculate the PE32 base address, based on file type
672 //
673 switch (FfsFile->Type) {
674 case EFI_FV_FILETYPE_SECURITY_CORE:
675 case EFI_FV_FILETYPE_PEI_CORE:
676 case EFI_FV_FILETYPE_PEIM:
677 case EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER:
678 if ((Flags & 1) == 0) {
679 //
680 // We aren't relocating XIP code, so skip it.
681 //
682 return EFI_SUCCESS;
683 }
684
685 NewPe32BaseAddress =
686 XipBase +
687 (UINTN)CurrentPe32Section.Pe32Section +
688 sizeof (EFI_COMMON_SECTION_HEADER) -
689 (UINTN)FfsFile;
690 BaseToUpdate = &XipBase;
691 break;
692
693 case EFI_FV_FILETYPE_DRIVER:
694 PeHdr = (EFI_IMAGE_NT_HEADERS32*)(
695 (UINTN)CurrentPe32Section.Pe32Section +
696 sizeof (EFI_COMMON_SECTION_HEADER) +
697 ImageContext.PeCoffHeaderOffset
698 );
699 switch (PeHdr->OptionalHeader.Subsystem) {
700 case EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER:
701 if ((Flags & 4) == 0) {
702 //
703 // RT drivers aren't supposed to be relocated
704 //
705 continue;
706 }
707
708 NewPe32BaseAddress = *RtBase;
709 BaseToUpdate = RtBase;
710 break;
711
712 default:
713 //
714 // We treat all other subsystems the same as BS_DRIVER
715 //
716 if ((Flags & 2) == 0) {
717 //
718 // Skip all BS_DRIVER's
719 //
720 continue;
721 }
722
723 NewPe32BaseAddress = *BsBase;
724 BaseToUpdate = BsBase;
725 break;
726 }
727 break;
728
729 case EFI_FV_FILETYPE_DXE_CORE:
730 if ((Flags & 2) == 0) {
731 //
732 // Skip DXE core
733 //
734 return EFI_SUCCESS;
735 }
736
737 NewPe32BaseAddress = *BsBase;
738 BaseToUpdate = BsBase;
739 break;
740
741 default:
742 //
743 // Not supported file type
744 //
745 return EFI_SUCCESS;
746 }
747
748 //
749 // Allocate a buffer for the image to be loaded into.
750 //
751 Pe32ImageSize = GetLength (CurrentPe32Section.Pe32Section->CommonHeader.Size) - sizeof (EFI_PE32_SECTION);
752 MemoryImagePointer = (UINTN) (malloc (Pe32ImageSize + 0x10000));
753 if (MemoryImagePointer == 0) {
754 Error (NULL, 0, 0, "memory allocation failure", NULL);
755 return EFI_OUT_OF_RESOURCES;
756 }
757 memset ((void *) MemoryImagePointer, 0, Pe32ImageSize + 0x10000);
758 MemoryImagePointerAligned = (MemoryImagePointer + 0x0FFFF) & (-1 << 16);
759
760
761 ImageContext.ImageAddress = MemoryImagePointerAligned;
762
763 Status = PeCoffLoaderLoadImage (&ImageContext);
764 if (EFI_ERROR (Status)) {
765 Error (NULL, 0, 0, "LoadImage() call failed on rebase", FileGuidString);
766 free ((VOID *) MemoryImagePointer);
767 return Status;
768 }
769
770 //
771 // Check if section-alignment and file-alignment match or not
772 //
773 if (!(ImageContext.IsTeImage)) {
774 PeHdr = (EFI_IMAGE_NT_HEADERS *)((UINTN)ImageContext.ImageAddress +
775 ImageContext.PeCoffHeaderOffset);
776 if (PeHdr->OptionalHeader.SectionAlignment != PeHdr->OptionalHeader.FileAlignment) {
777 Error (NULL, 0, 0, "Section-Alignment and File-Alignment does not match", FileGuidString);
778 free ((VOID *) MemoryImagePointer);
779 return EFI_ABORTED;
780 }
781 }
782 else {
783 //
784 // BUGBUG: TE Image Header lack section-alignment and file-alignment info
785 //
786 }
787
788 ImageContext.DestinationAddress = NewPe32BaseAddress;
789 Status = PeCoffLoaderRelocateImage (&ImageContext);
790 if (EFI_ERROR (Status)) {
791 Error (NULL, 0, 0, "RelocateImage() call failed on rebase", FileGuidString);
792 free ((VOID *) MemoryImagePointer);
793 return Status;
794 }
795
796 ImageAddress = ImageContext.ImageAddress;
797 ImageSize = ImageContext.ImageSize;
798 EntryPoint = ImageContext.EntryPoint;
799
800 if (ImageSize > Pe32ImageSize) {
801 Error (
802 NULL,
803 0,
804 0,
805 "rebased image is larger than original PE32 image",
806 "0x%X > 0x%X, file %s",
807 ImageSize,
808 Pe32ImageSize,
809 FileGuidString
810 );
811 free ((VOID *) MemoryImagePointer);
812 return EFI_ABORTED;
813 }
814
815 //
816 // Update BASE address
817 //
818 fprintf (
819 LogFile,
820 "%s %016I64X %s\n",
821 FileGuidString,
822 ImageContext.DestinationAddress,
823 ImageContext.PdbPointer == NULL ? "*" : ImageContext.PdbPointer
824 );
825 *BaseToUpdate += EFI_SIZE_TO_PAGES (ImageContext.ImageSize) * EFI_PAGE_SIZE;
826
827 //
828 // Since we may have updated the Codeview RVA, we need to insure the PE
829 // header indicates the image is large enough to contain the Codeview data
830 // so it will be loaded properly later if the PEIM is reloaded into memory...
831 //
832 PeHdr = (VOID *) ((UINTN) ImageAddress + ImageContext.PeCoffHeaderOffset);
833 PePlusHdr = (EFI_IMAGE_NT_HEADERS64*)PeHdr;
834 if (PeHdr->FileHeader.Machine == EFI_IMAGE_MACHINE_IA32) {
835 PeHdrSizeOfImage = (UINT32 *) (&(PeHdr->OptionalHeader).SizeOfImage);
836 PeHdrChecksum = (UINT32 *) (&(PeHdr->OptionalHeader).CheckSum);
837 } else if (PeHdr->FileHeader.Machine == EFI_IMAGE_MACHINE_IA64) {
838 PeHdrSizeOfImage = (UINT32 *) (&(PePlusHdr->OptionalHeader).SizeOfImage);
839 PeHdrChecksum = (UINT32 *) (&(PePlusHdr->OptionalHeader).CheckSum);
840 } else if (PeHdr->FileHeader.Machine == EFI_IMAGE_MACHINE_X64) {
841 PeHdrSizeOfImage = (UINT32 *) (&(PePlusHdr->OptionalHeader).SizeOfImage);
842 PeHdrChecksum = (UINT32 *) (&(PePlusHdr->OptionalHeader).CheckSum);
843 } else {
844 Error (
845 NULL,
846 0,
847 0,
848 "unknown machine type in PE32 image",
849 "machine type=0x%X, file=%s",
850 (UINT32) PeHdr->FileHeader.Machine,
851 FileGuidString
852 );
853 free ((VOID *) MemoryImagePointer);
854 return EFI_ABORTED;
855 }
856
857 if (*PeHdrSizeOfImage != ImageContext.ImageSize) {
858 *PeHdrSizeOfImage = (UINT32) ImageContext.ImageSize;
859 if (*PeHdrChecksum) {
860 *PeHdrChecksum = 0;
861 }
862 }
863
864 memcpy (CurrentPe32Section.Pe32Section + 1, (VOID *) MemoryImagePointerAligned, (UINT32) ImageSize);
865
866 free ((VOID *) MemoryImagePointer);
867
868 //
869 // Now update file checksum
870 //
871 if (FfsFile->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
872 TailSize = sizeof (EFI_FFS_FILE_TAIL);
873 } else {
874 TailSize = 0;
875 }
876
877 if (FfsFile->Attributes & FFS_ATTRIB_CHECKSUM) {
878 SavedState = FfsFile->State;
879 FfsFile->IntegrityCheck.Checksum.File = 0;
880 FfsFile->State = 0;
881 if (FfsFile->Attributes & FFS_ATTRIB_CHECKSUM) {
882 FfsFile->IntegrityCheck.Checksum.File = CalculateChecksum8 (
883 (UINT8 *) FfsFile,
884 GetLength (FfsFile->Size) - TailSize
885 );
886 } else {
887 FfsFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
888 }
889
890 FfsFile->State = SavedState;
891 }
892 //
893 // Update tail if present
894 //
895 if (FfsFile->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
896 TailValue = (EFI_FFS_FILE_TAIL) (~(FfsFile->IntegrityCheck.TailReference));
897 *(EFI_FFS_FILE_TAIL *) (((UINTN) FfsFile + GetLength (FfsFile->Size) - sizeof (EFI_FFS_FILE_TAIL))) = TailValue;
898 }
899 }
900
901 if ((Flags & 1) == 0 || (
902 FfsFile->Type != EFI_FV_FILETYPE_SECURITY_CORE &&
903 FfsFile->Type != EFI_FV_FILETYPE_PEI_CORE &&
904
905 FfsFile->Type != EFI_FV_FILETYPE_PEIM &&
906 FfsFile->Type != EFI_FV_FILETYPE_COMBINED_PEIM_DRIVER
907 )) {
908 //
909 // Only XIP code may have a TE section
910 //
911 return EFI_SUCCESS;
912 }
913
914 //
915 // Now process TE sections
916 //
917 for (Index = 1;; Index++) {
918 Status = GetSectionByType (FfsFile, EFI_SECTION_TE, Index, &CurrentPe32Section);
919 if (EFI_ERROR (Status)) {
920 break;
921 }
922
923 //
924 // Calculate the TE base address, the FFS file base plus the offset of the TE section less the size stripped off
925 // by GenTEImage
926 //
927 TEImageHeader = (EFI_TE_IMAGE_HEADER *) ((UINT8 *) CurrentPe32Section.Pe32Section + sizeof (EFI_COMMON_SECTION_HEADER));
928
929 NewPe32BaseAddress = ((UINT32) XipBase) +
930 (
931 (UINTN) CurrentPe32Section.Pe32Section +
932 sizeof (EFI_COMMON_SECTION_HEADER) +
933 sizeof (EFI_TE_IMAGE_HEADER) -
934 TEImageHeader->StrippedSize -
935 (UINTN) FfsFile
936 );
937
938 //
939 // Allocate a buffer to unshrink the image into.
940 //
941 Pe32ImageSize = GetLength (CurrentPe32Section.Pe32Section->CommonHeader.Size) - sizeof (EFI_PE32_SECTION) -
942 sizeof (EFI_TE_IMAGE_HEADER);
943 Pe32ImageSize += TEImageHeader->StrippedSize;
944 TEBuffer = (UINT8 *) malloc (Pe32ImageSize);
945 if (TEBuffer == NULL) {
946 Error (NULL, 0, 0, "failed to allocate memory", NULL);
947 return EFI_OUT_OF_RESOURCES;
948 }
949 //
950 // Expand the image into our buffer and fill in critical fields in the DOS header
951 // Fill in fields required by the loader.
952 // At offset 0x3C is the offset to the PE signature. We'll put it immediately following the offset value
953 // itself.
954 //
955 memset (TEBuffer, 0, Pe32ImageSize);
956 DosHeader = (EFI_IMAGE_DOS_HEADER *) TEBuffer;
957 DosHeader->e_magic = EFI_IMAGE_DOS_SIGNATURE;
958 *(UINT32 *) (TEBuffer + 0x3C) = 0x40;
959 PeHdr = (EFI_IMAGE_NT_HEADERS *) (TEBuffer + 0x40);
960 PePlusHdr = (EFI_IMAGE_NT_HEADERS64*)PeHdr;
961 PeHdr->Signature = EFI_IMAGE_NT_SIGNATURE;
962 PeHdr->FileHeader.Machine = TEImageHeader->Machine;
963 PeHdr->FileHeader.NumberOfSections = TEImageHeader->NumberOfSections;
964
965 //
966 // Say the size of the optional header is the total we stripped off less the size of a PE file header and PE signature and
967 // the 0x40 bytes for our DOS header.
968 //
969 PeHdr->FileHeader.SizeOfOptionalHeader = (UINT16) (TEImageHeader->StrippedSize - 0x40 - sizeof (UINT32) - sizeof (EFI_IMAGE_FILE_HEADER));
970 if (TEImageHeader->Machine == EFI_IMAGE_MACHINE_IA32) {
971 PeHdr->OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
972 } else if (TEImageHeader->Machine == EFI_IMAGE_MACHINE_IA64) {
973 PePlusHdr->OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
974 } else if (TEImageHeader->Machine == EFI_IMAGE_MACHINE_X64) {
975 PePlusHdr->OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
976 } else {
977 Error (
978 NULL,
979 0,
980 0,
981 "unknown machine type in TE image",
982 "machine type=0x%X, file=%s",
983 (UINT32) TEImageHeader->Machine,
984 FileGuidString
985 );
986 free (TEBuffer);
987 return EFI_ABORTED;
988 }
989
990 if (PeHdr->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
991 PeHdr->OptionalHeader.ImageBase = (UINTN) (TEImageHeader->ImageBase - TEImageHeader->StrippedSize + sizeof (EFI_TE_IMAGE_HEADER));
992 PeHdr->OptionalHeader.SizeOfImage = Pe32ImageSize;
993 PeHdr->OptionalHeader.Subsystem = TEImageHeader->Subsystem;
994 PeHdr->OptionalHeader.SizeOfHeaders = TEImageHeader->StrippedSize + TEImageHeader->NumberOfSections *
995 sizeof (EFI_IMAGE_SECTION_HEADER) - 12;
996
997 //
998 // Set NumberOfRvaAndSizes in the optional header to what we had available in the original image
999 //
1000 if ((TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress != 0) ||
1001 (TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size != 0)
1002 ) {
1003 PeHdr->OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC + 1;
1004 PeHdr->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress = TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
1005 PeHdr->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size = TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
1006 }
1007
1008 if ((TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress != 0) ||
1009 (TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].Size != 0)
1010 ) {
1011 PeHdr->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress = TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;
1012 PeHdr->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size = TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].Size;
1013 if (PeHdr->OptionalHeader.NumberOfRvaAndSizes < EFI_IMAGE_DIRECTORY_ENTRY_DEBUG + 1) {
1014 PeHdr->OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_DIRECTORY_ENTRY_DEBUG + 1;
1015 }
1016 }
1017 //
1018 // NOTE: These values are defaults, and should be verified to be correct in the GenTE utility
1019 //
1020 PeHdr->OptionalHeader.SectionAlignment = 0x10;
1021 } else {
1022 PePlusHdr->OptionalHeader.ImageBase = (UINTN) (TEImageHeader->ImageBase - TEImageHeader->StrippedSize + sizeof (EFI_TE_IMAGE_HEADER));
1023 PePlusHdr->OptionalHeader.SizeOfImage = Pe32ImageSize;
1024 PePlusHdr->OptionalHeader.Subsystem = TEImageHeader->Subsystem;
1025 PePlusHdr->OptionalHeader.SizeOfHeaders = TEImageHeader->StrippedSize + TEImageHeader->NumberOfSections *
1026 sizeof (EFI_IMAGE_SECTION_HEADER) - 12;
1027
1028 //
1029 // Set NumberOfRvaAndSizes in the optional header to what we had available in the original image
1030 //
1031 if ((TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress != 0) ||
1032 (TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size != 0)
1033 ) {
1034 PePlusHdr->OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC + 1;
1035 PePlusHdr->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress = TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;
1036 PePlusHdr->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size = TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC].Size;
1037 }
1038
1039 if ((TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress != 0) ||
1040 (TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].Size != 0)
1041 ) {
1042 PePlusHdr->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress = TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;
1043 PePlusHdr->OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG].Size = TEImageHeader->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_DEBUG].Size;
1044 if (PePlusHdr->OptionalHeader.NumberOfRvaAndSizes < EFI_IMAGE_DIRECTORY_ENTRY_DEBUG + 1) {
1045 PePlusHdr->OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_DIRECTORY_ENTRY_DEBUG + 1;
1046 }
1047 }
1048 //
1049 // NOTE: These values are defaults, and should be verified to be correct in the GenTE utility
1050 //
1051 PePlusHdr->OptionalHeader.SectionAlignment = 0x10;
1052 }
1053
1054 //
1055 // Copy the rest of the image to its original offset
1056 //
1057 memcpy (
1058 TEBuffer + TEImageHeader->StrippedSize,
1059 (UINT8 *) CurrentPe32Section.Pe32Section + sizeof (EFI_PE32_SECTION) + sizeof (EFI_TE_IMAGE_HEADER),
1060 GetLength (CurrentPe32Section.Pe32Section->CommonHeader.Size) - sizeof (EFI_PE32_SECTION) -
1061 sizeof (EFI_TE_IMAGE_HEADER)
1062 );
1063
1064 //
1065 // Initialize context
1066 //
1067 memset (&ImageContext, 0, sizeof (ImageContext));
1068 ImageContext.Handle = (VOID *) TEBuffer;
1069 ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) FfsRebaseImageRead;
1070
1071 Status = PeCoffLoaderGetImageInfo (&ImageContext);
1072
1073 if (EFI_ERROR (Status)) {
1074 Error (NULL, 0, 0, "GetImageInfo() call failed on rebase of TE image", FileGuidString);
1075 free (TEBuffer);
1076 return Status;
1077 }
1078 //
1079 // Allocate a buffer for the image to be loaded into.
1080 //
1081 MemoryImagePointer = (UINTN) (malloc (Pe32ImageSize + 0x10000));
1082 if (MemoryImagePointer == 0) {
1083 Error (NULL, 0, 0, "memory allocation error on rebase of TE image", FileGuidString);
1084 free (TEBuffer);
1085 return EFI_OUT_OF_RESOURCES;
1086 }
1087 memset ((void *) MemoryImagePointer, 0, Pe32ImageSize + 0x10000);
1088 MemoryImagePointerAligned = (MemoryImagePointer + 0x0FFFF) & (-1 << 16);
1089
1090
1091 ImageContext.ImageAddress = MemoryImagePointerAligned;
1092 Status = PeCoffLoaderLoadImage (&ImageContext);
1093 if (EFI_ERROR (Status)) {
1094 Error (NULL, 0, 0, "LoadImage() call failed on rebase of TE image", FileGuidString);
1095 free (TEBuffer);
1096 free ((VOID *) MemoryImagePointer);
1097 return Status;
1098 }
1099
1100 ImageContext.DestinationAddress = NewPe32BaseAddress;
1101 Status = PeCoffLoaderRelocateImage (&ImageContext);
1102 if (EFI_ERROR (Status)) {
1103 Error (NULL, 0, 0, "RelocateImage() call failed on rebase of TE image", FileGuidString);
1104 free ((VOID *) MemoryImagePointer);
1105 free (TEBuffer);
1106 return Status;
1107 }
1108
1109 ImageAddress = ImageContext.ImageAddress;
1110 ImageSize = ImageContext.ImageSize;
1111 EntryPoint = ImageContext.EntryPoint;
1112
1113 //
1114 // Since we may have updated the Codeview RVA, we need to insure the PE
1115 // header indicates the image is large enough to contain the Codeview data
1116 // so it will be loaded properly later if the PEIM is reloaded into memory...
1117 //
1118 PeHdr = (VOID *) ((UINTN) ImageAddress + ImageContext.PeCoffHeaderOffset);
1119 PePlusHdr = (EFI_IMAGE_NT_HEADERS64*)PeHdr;
1120 if (PeHdr->FileHeader.Machine == EFI_IMAGE_MACHINE_IA32) {
1121 PeHdrSizeOfImage = (UINT32 *) (&(PeHdr->OptionalHeader).SizeOfImage);
1122 PeHdrChecksum = (UINT32 *) (&(PeHdr->OptionalHeader).CheckSum);
1123 } else if (PeHdr->FileHeader.Machine == EFI_IMAGE_MACHINE_IA64) {
1124 PeHdrSizeOfImage = (UINT32 *) (&(PePlusHdr->OptionalHeader).SizeOfImage);
1125 PeHdrChecksum = (UINT32 *) (&(PePlusHdr->OptionalHeader).CheckSum);
1126 } else if (PeHdr->FileHeader.Machine == EFI_IMAGE_MACHINE_X64) {
1127 PeHdrSizeOfImage = (UINT32 *) (&(PePlusHdr->OptionalHeader).SizeOfImage);
1128 PeHdrChecksum = (UINT32 *) (&(PePlusHdr->OptionalHeader).CheckSum);
1129 } else {
1130 Error (
1131 NULL,
1132 0,
1133 0,
1134 "unknown machine type in TE image",
1135 "machine type=0x%X, file=%s",
1136 (UINT32) PeHdr->FileHeader.Machine,
1137 FileGuidString
1138 );
1139 free ((VOID *) MemoryImagePointer);
1140 free (TEBuffer);
1141 return EFI_ABORTED;
1142 }
1143
1144 if (*PeHdrSizeOfImage != ImageContext.ImageSize) {
1145 *PeHdrSizeOfImage = (UINT32) ImageContext.ImageSize;
1146 if (*PeHdrChecksum) {
1147 *PeHdrChecksum = 0;
1148 }
1149 }
1150
1151 TEImageHeader->ImageBase = (UINT64) (NewPe32BaseAddress + TEImageHeader->StrippedSize - sizeof (EFI_TE_IMAGE_HEADER));
1152 memcpy (
1153 (UINT8 *) (CurrentPe32Section.Pe32Section + 1) + sizeof (EFI_TE_IMAGE_HEADER),
1154 (VOID *) ((UINT8 *) MemoryImagePointerAligned + TEImageHeader->StrippedSize),
1155 GetLength (CurrentPe32Section.Pe32Section->CommonHeader.Size) - sizeof (EFI_PE32_SECTION) -
1156 sizeof (EFI_TE_IMAGE_HEADER)
1157 );
1158 if (FfsFile->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
1159 TailSize = sizeof (EFI_FFS_FILE_TAIL);
1160 } else {
1161 TailSize = 0;
1162 }
1163 //
1164 // Now update file checksum
1165 //
1166 if (FfsFile->Attributes & FFS_ATTRIB_CHECKSUM) {
1167 SavedState = FfsFile->State;
1168 FfsFile->IntegrityCheck.Checksum.File = 0;
1169 FfsFile->State = 0;
1170 if (FfsFile->Attributes & FFS_ATTRIB_CHECKSUM) {
1171 FfsFile->IntegrityCheck.Checksum.File = CalculateChecksum8 (
1172 (UINT8 *) FfsFile,
1173 GetLength (FfsFile->Size) - TailSize
1174 );
1175 } else {
1176 FfsFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
1177 }
1178
1179 FfsFile->State = SavedState;
1180 }
1181 //
1182 // Update tail if present
1183 //
1184 if (FfsFile->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
1185 TailValue = (EFI_FFS_FILE_TAIL) (~(FfsFile->IntegrityCheck.TailReference));
1186 *(EFI_FFS_FILE_TAIL *) (((UINTN) FfsFile + GetLength (FfsFile->Size) - sizeof (EFI_FFS_FILE_TAIL))) = TailValue;
1187 }
1188
1189 fprintf (
1190 LogFile,
1191 "%s %016I64X %s\n",
1192 FileGuidString,
1193 ImageContext.DestinationAddress,
1194 ImageContext.PdbPointer == NULL ? "*" : ImageContext.PdbPointer
1195 );
1196
1197 //
1198 // Free buffers
1199 //
1200 free ((VOID *) MemoryImagePointer);
1201 free (TEBuffer);
1202 }
1203
1204 return EFI_SUCCESS;
1205 }
1206
1207 EFI_STATUS
1208 FfsRebaseImageRead (
1209 IN VOID *FileHandle,
1210 IN UINTN FileOffset,
1211 IN OUT UINT32 *ReadSize,
1212 OUT VOID *Buffer
1213 )
1214 /*++
1215
1216 Routine Description:
1217
1218 Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
1219
1220 Arguments:
1221
1222 FileHandle - The handle to the PE/COFF file
1223
1224 FileOffset - The offset, in bytes, into the file to read
1225
1226 ReadSize - The number of bytes to read from the file starting at FileOffset
1227
1228 Buffer - A pointer to the buffer to read the data into.
1229
1230 Returns:
1231
1232 EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
1233
1234 --*/
1235 {
1236 CHAR8 *Destination8;
1237 CHAR8 *Source8;
1238 UINT32 Length;
1239
1240 Destination8 = Buffer;
1241 Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
1242 Length = *ReadSize;
1243 while (Length--) {
1244 *(Destination8++) = *(Source8++);
1245 }
1246
1247 return EFI_SUCCESS;
1248 }