]> git.proxmox.com Git - mirror_edk2.git/blob - Tools/Source/TianoTools/GenFvImage/GenFvImageLib.c
6cc5a0d56fd6357d9ec5291cd69a9420cdfddc5d
[mirror_edk2.git] / Tools / Source / TianoTools / GenFvImage / GenFvImageLib.c
1 /*++
2 i
3
4 Copyright (c) 2004, Intel Corporation
5 All rights reserved. This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 Module Name:
14
15 GenFvImageLib.c
16
17 Abstract:
18
19 This file contains functions required to generate a Firmware Volume.
20
21 --*/
22
23 //
24 // Include files
25 //
26 #define EFI_SPECIFICATION_VERSION 0x00020000
27 #define EDK_RELEASE_VERSION 0x00020000
28 #ifdef __GNUC__
29 #include <uuid/uuid.h>
30 #include <sys/stat.h>
31 #endif
32 #include <string.h>
33 #ifndef __GNUC__
34 #include <io.h>
35 #endif
36 #include <assert.h>
37 #include <Dxe.h>
38 #include <Library/PeCoffLib.h>
39 #include "GenFvImageLib.h"
40 #include "GenFvImageLibInternal.h"
41 #include <CommonLib.h>
42 #include <FirmwareVolumeImageFormat.h>
43 #include <Crc32.h>
44 #include <EfiUtilityMsgs.h>
45 #include <FvLib.h>
46 #include <EfiCompress.h>
47 #include <Variable.h>
48 #include <WinNtInclude.h>
49 #include <WorkingBlockHeader.h>
50
51
52 //
53 // Local function prototypes
54 //
55 EFI_STATUS
56 GetPe32Info (
57 IN UINT8 *Pe32,
58 OUT UINT32 *EntryPoint,
59 OUT UINT32 *BaseOfCode,
60 OUT UINT16 *MachineType
61 );
62
63 //
64 // Local function implementations.
65 //
66 EFI_GUID FfsGuid = EFI_FIRMWARE_FILE_SYSTEM_GUID;
67 EFI_GUID DefaultFvPadFileNameGuid = { 0x78f54d4, 0xcc22, 0x4048, 0x9e, 0x94, 0x87, 0x9c, 0x21, 0x4d, 0x56, 0x2f };
68
69 //
70 // This data array will be located at the base of the Firmware Volume Header (FVH)
71 // in the boot block. It must not exceed 14 bytes of code. The last 2 bytes
72 // will be used to keep the FVH checksum consistent.
73 // This code will be run in response to a starutp IPI for HT-enabled systems.
74 //
75 #define SIZEOF_STARTUP_DATA_ARRAY 0x10
76
77 UINT8 m128kRecoveryStartupApDataArray[SIZEOF_STARTUP_DATA_ARRAY] = {
78 //
79 // EA D0 FF 00 F0 ; far jmp F000:FFD0
80 // 0, 0, 0, 0, 0, 0, 0, 0, 0, ; Reserved bytes
81 // 0, 0 ; Checksum Padding
82 //
83 0xEA,
84 0xD0,
85 0xFF,
86 0x0,
87 0xF0,
88 0x00,
89 0x00,
90 0x00,
91 0x00,
92 0x00,
93 0x00,
94 0x00,
95 0x00,
96 0x00,
97 0x00,
98 0x00
99 };
100
101 UINT8 m64kRecoveryStartupApDataArray[SIZEOF_STARTUP_DATA_ARRAY] = {
102 //
103 // EB CE ; jmp short ($-0x30)
104 // ; (from offset 0x0 to offset 0xFFD0)
105 // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ; Reserved bytes
106 // 0, 0 ; Checksum Padding
107 //
108 0xEB,
109 0xCE,
110 0x00,
111 0x00,
112 0x00,
113 0x00,
114 0x00,
115 0x00,
116 0x00,
117 0x00,
118 0x00,
119 0x00,
120 0x00,
121 0x00,
122 0x00,
123 0x00
124 };
125
126 EFI_STATUS
127 ParseFvInf (
128 IN MEMORY_FILE *InfFile,
129 IN FV_INFO *FvInfo
130 )
131 /*++
132
133 Routine Description:
134
135 This function parses a FV.INF file and copies info into a FV_INFO structure.
136
137 Arguments:
138
139 InfFile Memory file image.
140 FvInfo Information read from INF file.
141
142 Returns:
143
144 EFI_SUCCESS INF file information successfully retrieved.
145 EFI_ABORTED INF file has an invalid format.
146 EFI_NOT_FOUND A required string was not found in the INF file.
147 --*/
148 {
149 CHAR8 Value[_MAX_PATH];
150 UINT64 Value64;
151 UINTN Index;
152 EFI_STATUS Status;
153
154 //
155 // Initialize FV info
156 //
157 memset (FvInfo, 0, sizeof (FV_INFO));
158
159 //
160 // Read the FV base address
161 //
162 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FV_BASE_ADDRESS_STRING, 0, Value);
163
164 if (Status == EFI_SUCCESS) {
165 //
166 // Get the base address
167 //
168 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
169 if (EFI_ERROR (Status)) {
170 Error (NULL, 0, 0, EFI_FV_BASE_ADDRESS_STRING, "invalid value");
171 return EFI_ABORTED;
172 }
173
174 FvInfo->BaseAddress = Value64;
175 } else {
176 Error (NULL, 0, 0, EFI_FV_BASE_ADDRESS_STRING, "could not find value");
177 return EFI_ABORTED;
178 }
179 //
180 // Read the FV Guid
181 //
182 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FV_GUID_STRING, 0, Value);
183
184 if (Status == EFI_SUCCESS) {
185 //
186 // Get the guid value
187 //
188 Status = StringToGuid (Value, &FvInfo->FvGuid);
189 if (EFI_ERROR (Status)) {
190 memcpy (&FvInfo->FvGuid, &FfsGuid, sizeof (EFI_GUID));
191 }
192 } else {
193 memcpy (&FvInfo->FvGuid, &FfsGuid, sizeof (EFI_GUID));
194 }
195 //
196 // Read the FV file name
197 //
198 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FV_FILE_NAME_STRING, 0, Value);
199
200 if (Status == EFI_SUCCESS) {
201 //
202 // copy the file name
203 //
204 strcpy (FvInfo->FvName, Value);
205 } else {
206 Error (NULL, 0, 0, EFI_FV_FILE_NAME_STRING, "value not specified");
207 return EFI_ABORTED;
208 }
209 //
210 // Read the Sym file name
211 //
212 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_SYM_FILE_NAME_STRING, 0, Value);
213
214 if (Status == EFI_SUCCESS) {
215 //
216 // copy the file name
217 //
218 strcpy (FvInfo->SymName, Value);
219 } else {
220 //
221 // Symbols not required, so init to NULL.
222 //
223 strcpy (FvInfo->SymName, "");
224 }
225 //
226 // Read the read disabled capability attribute
227 //
228 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_READ_DISABLED_CAP_STRING, 0, Value);
229
230 if (Status == EFI_SUCCESS) {
231 //
232 // Update the read disabled flag
233 //
234 if (strcmp (Value, TRUE_STRING) == 0) {
235 FvInfo->FvAttributes |= EFI_FVB_READ_DISABLED_CAP;
236 } else if (strcmp (Value, FALSE_STRING) != 0) {
237 Error (NULL, 0, 0, EFI_FVB_READ_DISABLED_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
238 return EFI_ABORTED;
239 }
240 } else {
241 Error (NULL, 0, 0, EFI_FVB_READ_DISABLED_CAP_STRING, "value not specified");
242 return Status;
243 }
244 //
245 // Read the read enabled capability attribute
246 //
247 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_READ_ENABLED_CAP_STRING, 0, Value);
248
249 if (Status == EFI_SUCCESS) {
250 //
251 // Update the read disabled flag
252 //
253 if (strcmp (Value, TRUE_STRING) == 0) {
254 FvInfo->FvAttributes |= EFI_FVB_READ_ENABLED_CAP;
255 } else if (strcmp (Value, FALSE_STRING) != 0) {
256 Error (NULL, 0, 0, EFI_FVB_READ_ENABLED_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
257 return EFI_ABORTED;
258 }
259 } else {
260 Error (NULL, 0, 0, EFI_FVB_READ_ENABLED_CAP_STRING, "value not specified");
261 return Status;
262 }
263 //
264 // Read the read status attribute
265 //
266 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_READ_STATUS_STRING, 0, Value);
267
268 if (Status == EFI_SUCCESS) {
269 //
270 // Update the read disabled flag
271 //
272 if (strcmp (Value, TRUE_STRING) == 0) {
273 FvInfo->FvAttributes |= EFI_FVB_READ_STATUS;
274 } else if (strcmp (Value, FALSE_STRING) != 0) {
275 Error (NULL, 0, 0, EFI_FVB_READ_STATUS_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
276 return EFI_ABORTED;
277 }
278 } else {
279 Error (NULL, 0, 0, EFI_FVB_READ_STATUS_STRING, "value not specified");
280 return Status;
281 }
282 //
283 // Read the write disabled capability attribute
284 //
285 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_WRITE_DISABLED_CAP_STRING, 0, Value);
286
287 if (Status == EFI_SUCCESS) {
288 //
289 // Update the write disabled flag
290 //
291 if (strcmp (Value, TRUE_STRING) == 0) {
292 FvInfo->FvAttributes |= EFI_FVB_WRITE_DISABLED_CAP;
293 } else if (strcmp (Value, FALSE_STRING) != 0) {
294 Error (NULL, 0, 0, EFI_FVB_WRITE_DISABLED_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
295 return EFI_ABORTED;
296 }
297 } else {
298 Error (NULL, 0, 0, EFI_FVB_WRITE_DISABLED_CAP_STRING, "value not specified");
299 return Status;
300 }
301 //
302 // Read the write enabled capability attribute
303 //
304 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_WRITE_ENABLED_CAP_STRING, 0, Value);
305
306 if (Status == EFI_SUCCESS) {
307 //
308 // Update the write disabled flag
309 //
310 if (strcmp (Value, TRUE_STRING) == 0) {
311 FvInfo->FvAttributes |= EFI_FVB_WRITE_ENABLED_CAP;
312 } else if (strcmp (Value, FALSE_STRING) != 0) {
313 Error (NULL, 0, 0, EFI_FVB_WRITE_ENABLED_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
314 return EFI_ABORTED;
315 }
316 } else {
317 Error (NULL, 0, 0, EFI_FVB_WRITE_ENABLED_CAP_STRING, "value not specified");
318 return Status;
319 }
320 //
321 // Read the write status attribute
322 //
323 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_WRITE_STATUS_STRING, 0, Value);
324
325 if (Status == EFI_SUCCESS) {
326 //
327 // Update the write disabled flag
328 //
329 if (strcmp (Value, TRUE_STRING) == 0) {
330 FvInfo->FvAttributes |= EFI_FVB_WRITE_STATUS;
331 } else if (strcmp (Value, FALSE_STRING) != 0) {
332 Error (NULL, 0, 0, EFI_FVB_WRITE_STATUS_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
333 return EFI_ABORTED;
334 }
335 } else {
336 Error (NULL, 0, 0, EFI_FVB_WRITE_STATUS_STRING, "value not specified");
337 return Status;
338 }
339 //
340 // Read the lock capability attribute
341 //
342 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_LOCK_CAP_STRING, 0, Value);
343
344 if (Status == EFI_SUCCESS) {
345 //
346 // Update the attribute flag
347 //
348 if (strcmp (Value, TRUE_STRING) == 0) {
349 FvInfo->FvAttributes |= EFI_FVB_LOCK_CAP;
350 } else if (strcmp (Value, FALSE_STRING) != 0) {
351 Error (NULL, 0, 0, EFI_FVB_LOCK_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
352 return EFI_ABORTED;
353 }
354 } else {
355 Error (NULL, 0, 0, EFI_FVB_LOCK_CAP_STRING, "value not specified");
356 return Status;
357 }
358 //
359 // Read the lock status attribute
360 //
361 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_LOCK_STATUS_STRING, 0, Value);
362
363 if (Status == EFI_SUCCESS) {
364 //
365 // Update the attribute flag
366 //
367 if (strcmp (Value, TRUE_STRING) == 0) {
368 FvInfo->FvAttributes |= EFI_FVB_LOCK_STATUS;
369 } else if (strcmp (Value, FALSE_STRING) != 0) {
370 Error (NULL, 0, 0, EFI_FVB_LOCK_STATUS_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
371 return EFI_ABORTED;
372 }
373 } else {
374 Error (NULL, 0, 0, EFI_FVB_LOCK_STATUS_STRING, "value not specified");
375 return Status;
376 }
377 //
378 // Read the sticky write attribute
379 //
380 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_STICKY_WRITE_STRING, 0, Value);
381
382 if (Status == EFI_SUCCESS) {
383 //
384 // Update the attribute flag
385 //
386 if (strcmp (Value, TRUE_STRING) == 0) {
387 FvInfo->FvAttributes |= EFI_FVB_STICKY_WRITE;
388 } else if (strcmp (Value, FALSE_STRING) != 0) {
389 Error (NULL, 0, 0, EFI_FVB_STICKY_WRITE_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
390 return EFI_ABORTED;
391 }
392 } else {
393 Error (NULL, 0, 0, EFI_FVB_STICKY_WRITE_STRING, "value not specified");
394 return Status;
395 }
396 //
397 // Read the memory mapped attribute
398 //
399 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_MEMORY_MAPPED_STRING, 0, Value);
400
401 if (Status == EFI_SUCCESS) {
402 //
403 // Update the attribute flag
404 //
405 if (strcmp (Value, TRUE_STRING) == 0) {
406 FvInfo->FvAttributes |= EFI_FVB_MEMORY_MAPPED;
407 } else if (strcmp (Value, FALSE_STRING) != 0) {
408 Error (NULL, 0, 0, EFI_FVB_MEMORY_MAPPED_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
409 return EFI_ABORTED;
410 }
411 } else {
412 Error (NULL, 0, 0, EFI_FVB_MEMORY_MAPPED_STRING, "value not specified");
413 return Status;
414 }
415 //
416 // Read the erase polarity attribute
417 //
418 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ERASE_POLARITY_STRING, 0, Value);
419
420 if (Status == EFI_SUCCESS) {
421 //
422 // Update the attribute flag
423 //
424 if (strcmp (Value, ONE_STRING) == 0) {
425 FvInfo->FvAttributes |= EFI_FVB_ERASE_POLARITY;
426 } else if (strcmp (Value, ZERO_STRING) != 0) {
427 Error (NULL, 0, 0, EFI_FVB_ERASE_POLARITY_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
428 return EFI_ABORTED;
429 }
430 } else {
431 Error (NULL, 0, 0, EFI_FVB_ERASE_POLARITY_STRING, "value not specified");
432 return Status;
433 }
434 //
435 // Read the alignment capabilities attribute
436 //
437 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_CAP_STRING, 0, Value);
438
439 if (Status == EFI_SUCCESS) {
440 //
441 // Update attribute
442 //
443 if (strcmp (Value, TRUE_STRING) == 0) {
444 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_CAP;
445 } else if (strcmp (Value, FALSE_STRING) != 0) {
446 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
447 return EFI_ABORTED;
448 }
449 } else {
450 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_CAP_STRING, "value not specified");
451 return Status;
452 }
453 //
454 // Read the word alignment capability attribute
455 //
456 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_2_STRING, 0, Value);
457
458 if (Status == EFI_SUCCESS) {
459 //
460 // Update attribute
461 //
462 if (strcmp (Value, TRUE_STRING) == 0) {
463 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_2;
464 } else if (strcmp (Value, FALSE_STRING) != 0) {
465 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_2_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
466 return EFI_ABORTED;
467 }
468 } else {
469 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_2_STRING, "value not specified");
470 return Status;
471 }
472 //
473 // Read the dword alignment capability attribute
474 //
475 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_4_STRING, 0, Value);
476
477 if (Status == EFI_SUCCESS) {
478 //
479 // Update attribute
480 //
481 if (strcmp (Value, TRUE_STRING) == 0) {
482 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_4;
483 } else if (strcmp (Value, FALSE_STRING) != 0) {
484 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_4_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
485 return EFI_ABORTED;
486 }
487 } else {
488 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_4_STRING, "value not specified");
489 return Status;
490 }
491 //
492 // Read the word alignment capability attribute
493 //
494 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_8_STRING, 0, Value);
495
496 if (Status == EFI_SUCCESS) {
497 //
498 // Update attribute
499 //
500 if (strcmp (Value, TRUE_STRING) == 0) {
501 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_8;
502 } else if (strcmp (Value, FALSE_STRING) != 0) {
503 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_8_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
504 return EFI_ABORTED;
505 }
506 } else {
507 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_8_STRING, "value not specified");
508 return Status;
509 }
510 //
511 // Read the qword alignment capability attribute
512 //
513 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_16_STRING, 0, Value);
514
515 if (Status == EFI_SUCCESS) {
516 //
517 // Update attribute
518 //
519 if (strcmp (Value, TRUE_STRING) == 0) {
520 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_16;
521 } else if (strcmp (Value, FALSE_STRING) != 0) {
522 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_16_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
523 return EFI_ABORTED;
524 }
525 } else {
526 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_16_STRING, "value not specified");
527 return Status;
528 }
529 //
530 // Read the 32 byte alignment capability attribute
531 //
532 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_32_STRING, 0, Value);
533
534 if (Status == EFI_SUCCESS) {
535 //
536 // Update attribute
537 //
538 if (strcmp (Value, TRUE_STRING) == 0) {
539 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_32;
540 } else if (strcmp (Value, FALSE_STRING) != 0) {
541 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_32_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
542 return EFI_ABORTED;
543 }
544 } else {
545 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_32_STRING, "value not specified");
546 return Status;
547 }
548 //
549 // Read the 64 byte alignment capability attribute
550 //
551 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_64_STRING, 0, Value);
552
553 if (Status == EFI_SUCCESS) {
554 //
555 // Update attribute
556 //
557 if (strcmp (Value, TRUE_STRING) == 0) {
558 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_64;
559 } else if (strcmp (Value, FALSE_STRING) != 0) {
560 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_64_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
561 return EFI_ABORTED;
562 }
563 } else {
564 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_64_STRING, "value not specified");
565 return Status;
566 }
567 //
568 // Read the 128 byte alignment capability attribute
569 //
570 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_128_STRING, 0, Value);
571
572 if (Status == EFI_SUCCESS) {
573 //
574 // Update attribute
575 //
576 if (strcmp (Value, TRUE_STRING) == 0) {
577 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_128;
578 } else if (strcmp (Value, FALSE_STRING) != 0) {
579 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_128_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
580 return EFI_ABORTED;
581 }
582 } else {
583 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_128_STRING, "value not specified");
584 return Status;
585 }
586 //
587 // Read the 256 byte alignment capability attribute
588 //
589 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_256_STRING, 0, Value);
590
591 if (Status == EFI_SUCCESS) {
592 //
593 // Update attribute
594 //
595 if (strcmp (Value, TRUE_STRING) == 0) {
596 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_256;
597 } else if (strcmp (Value, FALSE_STRING) != 0) {
598 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_256_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
599 return EFI_ABORTED;
600 }
601 } else {
602 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_256_STRING, "value not specified");
603 return Status;
604 }
605 //
606 // Read the 512 byte alignment capability attribute
607 //
608 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_512_STRING, 0, Value);
609
610 if (Status == EFI_SUCCESS) {
611 //
612 // Update attribute
613 //
614 if (strcmp (Value, TRUE_STRING) == 0) {
615 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_512;
616 } else if (strcmp (Value, FALSE_STRING) != 0) {
617 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_512_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
618 return EFI_ABORTED;
619 }
620 } else {
621 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_512_STRING, "value not specified");
622 return Status;
623 }
624 //
625 // Read the 1K byte alignment capability attribute
626 //
627 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_1K_STRING, 0, Value);
628
629 if (Status == EFI_SUCCESS) {
630 //
631 // Update attribute
632 //
633 if (strcmp (Value, TRUE_STRING) == 0) {
634 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_1K;
635 } else if (strcmp (Value, FALSE_STRING) != 0) {
636 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_1K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
637 return EFI_ABORTED;
638 }
639 } else {
640 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_1K_STRING, "value not specified");
641 return Status;
642 }
643 //
644 // Read the 2K byte alignment capability attribute
645 //
646 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_2K_STRING, 0, Value);
647
648 if (Status == EFI_SUCCESS) {
649 //
650 // Update attribute
651 //
652 if (strcmp (Value, TRUE_STRING) == 0) {
653 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_2K;
654 } else if (strcmp (Value, FALSE_STRING) != 0) {
655 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_2K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
656 return EFI_ABORTED;
657 }
658 } else {
659 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_2K_STRING, "value not specified");
660 return Status;
661 }
662 //
663 // Read the 4K byte alignment capability attribute
664 //
665 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_4K_STRING, 0, Value);
666
667 if (Status == EFI_SUCCESS) {
668 //
669 // Update attribute
670 //
671 if (strcmp (Value, TRUE_STRING) == 0) {
672 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_4K;
673 } else if (strcmp (Value, FALSE_STRING) != 0) {
674 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_4K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
675 return EFI_ABORTED;
676 }
677 } else {
678 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_4K_STRING, "value not specified");
679 return Status;
680 }
681 //
682 // Read the 8K byte alignment capability attribute
683 //
684 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_8K_STRING, 0, Value);
685
686 if (Status == EFI_SUCCESS) {
687 //
688 // Update attribute
689 //
690 if (strcmp (Value, TRUE_STRING) == 0) {
691 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_8K;
692 } else if (strcmp (Value, FALSE_STRING) != 0) {
693 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_8K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
694 return EFI_ABORTED;
695 }
696 } else {
697 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_8K_STRING, "value not specified");
698 return Status;
699 }
700 //
701 // Read the 16K byte alignment capability attribute
702 //
703 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_16K_STRING, 0, Value);
704
705 if (Status == EFI_SUCCESS) {
706 //
707 // Update attribute
708 //
709 if (strcmp (Value, TRUE_STRING) == 0) {
710 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_16K;
711 } else if (strcmp (Value, FALSE_STRING) != 0) {
712 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_16K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
713 return EFI_ABORTED;
714 }
715 } else {
716 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_16K_STRING, "value not specified");
717 return Status;
718 }
719 //
720 // Read the 32K byte alignment capability attribute
721 //
722 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_32K_STRING, 0, Value);
723
724 if (Status == EFI_SUCCESS) {
725 //
726 // Update attribute
727 //
728 if (strcmp (Value, TRUE_STRING) == 0) {
729 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_32K;
730 } else if (strcmp (Value, FALSE_STRING) != 0) {
731 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_32K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
732 return EFI_ABORTED;
733 }
734 } else {
735 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_32K_STRING, "value not specified");
736 return Status;
737 }
738 //
739 // Read the 64K byte alignment capability attribute
740 //
741 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_64K_STRING, 0, Value);
742
743 if (Status == EFI_SUCCESS) {
744 //
745 // Update attribute
746 //
747 if (strcmp (Value, TRUE_STRING) == 0) {
748 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_64K;
749 } else if (strcmp (Value, FALSE_STRING) != 0) {
750 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_64K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
751 return EFI_ABORTED;
752 }
753 } else {
754 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_64K_STRING, "value not specified");
755 return Status;
756 }
757
758 if (!(FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_CAP) &&
759 (
760 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_2) ||
761 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_4) ||
762 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_8) ||
763 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_16) ||
764 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_32) ||
765 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_64) ||
766 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_128) ||
767 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_256) ||
768 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_512) ||
769 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_1K) ||
770 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_2K) ||
771 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_4K) ||
772 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_8K) ||
773 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_16K) ||
774 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_32K) ||
775 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_64K)
776 )
777 ) {
778 Error (
779 NULL,
780 0,
781 0,
782 "illegal combination of alignment attributes",
783 "if %s is not %s, no individual alignments can be %s",
784 EFI_FVB_ALIGNMENT_CAP_STRING,
785 TRUE_STRING,
786 TRUE_STRING
787 );
788 return EFI_ABORTED;
789 }
790 //
791 // Read block maps
792 //
793 for (Index = 0; Index < MAX_NUMBER_OF_FV_BLOCKS; Index++) {
794 //
795 // Read the number of blocks
796 //
797 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_NUM_BLOCKS_STRING, Index, Value);
798
799 if (Status == EFI_SUCCESS) {
800 //
801 // Update the number of blocks
802 //
803 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
804 if (EFI_ERROR (Status)) {
805 Error (NULL, 0, 0, Value, "invalid value for %s", EFI_NUM_BLOCKS_STRING);
806 return EFI_ABORTED;
807 }
808
809 FvInfo->FvBlocks[Index].NumBlocks = (UINT32) Value64;
810 } else {
811 //
812 // If there is no number of blocks, but there is a size, then we have a mismatched pair
813 // and should return an error.
814 //
815 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_BLOCK_SIZE_STRING, Index, Value);
816 if (!EFI_ERROR (Status)) {
817 Error (NULL, 0, 0, "must specify both", "%s and %s", EFI_NUM_BLOCKS_STRING, EFI_BLOCK_SIZE_STRING);
818 return EFI_ABORTED;
819 } else {
820 //
821 // We are done
822 //
823 break;
824 }
825 }
826 //
827 // Read the size of blocks
828 //
829 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_BLOCK_SIZE_STRING, Index, Value);
830
831 if (Status == EFI_SUCCESS) {
832 //
833 // Update the number of blocks
834 //
835 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
836 if (EFI_ERROR (Status)) {
837 Error (NULL, 0, 0, Value, "invalid value specified for %s", EFI_BLOCK_SIZE_STRING);
838 return EFI_ABORTED;
839 }
840
841 FvInfo->FvBlocks[Index].BlockLength = (UINT32) Value64;
842 } else {
843 //
844 // There is a number of blocks, but there is no size, so we have a mismatched pair
845 // and should return an error.
846 //
847 Error (NULL, 0, 0, "must specify both", "%s and %s", EFI_NUM_BLOCKS_STRING, EFI_BLOCK_SIZE_STRING);
848 return EFI_ABORTED;
849 }
850 }
851 //
852 // Read files
853 //
854 for (Index = 0; Index < MAX_NUMBER_OF_FILES_IN_FV; Index++) {
855 //
856 // Read the number of blocks
857 //
858 Status = FindToken (InfFile, FILES_SECTION_STRING, EFI_FILE_NAME_STRING, Index, Value);
859
860 if (Status == EFI_SUCCESS) {
861 //
862 // Add the file
863 //
864 strcpy (FvInfo->FvFiles[Index], Value);
865 } else {
866 break;
867 }
868 }
869
870 if (FindSection (InfFile, COMPONENT_SECTION_STRING)) {
871 Index = 0;
872 //
873 // Read component FV_VARIABLE
874 //
875 Status = FindToken (InfFile, COMPONENT_SECTION_STRING, EFI_NV_VARIABLE_STRING, 0, Value);
876
877 if (Status == EFI_SUCCESS) {
878 //
879 // Add the component
880 //
881 strcpy (FvInfo->FvComponents[Index].ComponentName, EFI_NV_VARIABLE_STRING);
882 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
883 if (EFI_ERROR (Status)) {
884 printf ("ERROR: %s is not a valid integer.\n", EFI_NV_VARIABLE_STRING);
885 return EFI_ABORTED;
886 }
887
888 FvInfo->FvComponents[Index].Size = (UINTN) Value64;
889 } else {
890 printf ("WARNING: Could not read %s.\n", EFI_NV_VARIABLE_STRING);
891 }
892
893 Index++;
894 //
895 // Read component FV_EVENT_LOG
896 //
897 Status = FindToken (InfFile, COMPONENT_SECTION_STRING, EFI_NV_EVENT_LOG_STRING, 0, Value);
898
899 if (Status == EFI_SUCCESS) {
900 //
901 // Add the component
902 //
903 strcpy (FvInfo->FvComponents[Index].ComponentName, EFI_NV_EVENT_LOG_STRING);
904 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
905 if (EFI_ERROR (Status)) {
906 printf ("ERROR: %s is not a valid integer.\n", EFI_NV_EVENT_LOG_STRING);
907 return EFI_ABORTED;
908 }
909
910 FvInfo->FvComponents[Index].Size = (UINTN) Value64;
911 } else {
912 printf ("WARNING: Could not read %s.\n", EFI_NV_EVENT_LOG_STRING);
913 }
914
915 Index++;
916 //
917 // Read component FV_FTW_WORKING
918 //
919 Status = FindToken (InfFile, COMPONENT_SECTION_STRING, EFI_NV_FTW_WORKING_STRING, 0, Value);
920
921 if (Status == EFI_SUCCESS) {
922 //
923 // Add the component
924 //
925 strcpy (FvInfo->FvComponents[Index].ComponentName, EFI_NV_FTW_WORKING_STRING);
926 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
927 if (EFI_ERROR (Status)) {
928 printf ("ERROR: %s is not a valid integer.\n", EFI_NV_FTW_WORKING_STRING);
929 return EFI_ABORTED;
930 }
931
932 FvInfo->FvComponents[Index].Size = (UINTN) Value64;
933 } else {
934 printf ("WARNING: Could not read %s.\n", EFI_NV_FTW_WORKING_STRING);
935 }
936
937 Index++;
938 //
939 // Read component FV_FTW_SPARE
940 //
941 Status = FindToken (InfFile, COMPONENT_SECTION_STRING, EFI_NV_FTW_SPARE_STRING, 0, Value);
942
943 if (Status == EFI_SUCCESS) {
944 //
945 // Add the component
946 //
947 strcpy (FvInfo->FvComponents[Index].ComponentName, EFI_NV_FTW_SPARE_STRING);
948 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
949 if (EFI_ERROR (Status)) {
950 printf ("ERROR: %s is not a valid integer.\n", EFI_NV_FTW_SPARE_STRING);
951 return EFI_ABORTED;
952 }
953
954 FvInfo->FvComponents[Index].Size = (UINTN) Value64;
955 } else {
956 printf ("WARNING: Could not read %s.\n", EFI_NV_FTW_SPARE_STRING);
957 }
958 }
959 //
960 // Compute size for easy access later
961 //
962 FvInfo->Size = 0;
963 for (Index = 0; FvInfo->FvBlocks[Index].NumBlocks; Index++) {
964 FvInfo->Size += FvInfo->FvBlocks[Index].NumBlocks * FvInfo->FvBlocks[Index].BlockLength;
965 }
966
967 return EFI_SUCCESS;
968 }
969
970 VOID
971 UpdateFfsFileState (
972 IN EFI_FFS_FILE_HEADER *FfsFile,
973 IN EFI_FIRMWARE_VOLUME_HEADER *FvHeader
974 )
975 /*++
976
977 Routine Description:
978
979 This function changes the FFS file attributes based on the erase polarity
980 of the FV.
981
982 Arguments:
983
984 FfsFile File header.
985 FvHeader FV header.
986
987 Returns:
988
989 None
990
991 --*/
992 {
993 if (FvHeader->Attributes & EFI_FVB_ERASE_POLARITY) {
994 FfsFile->State = (UINT8)~(FfsFile->State);
995 }
996 }
997
998 EFI_STATUS
999 ReadFfsAlignment (
1000 IN EFI_FFS_FILE_HEADER *FfsFile,
1001 IN OUT UINT32 *Alignment
1002 )
1003 /*++
1004
1005 Routine Description:
1006
1007 This function determines the alignment of the FFS input file from the file
1008 attributes.
1009
1010 Arguments:
1011
1012 FfsFile FFS file to parse
1013 Alignment The minimum required alignment of the FFS file, in bytes
1014
1015 Returns:
1016
1017 EFI_SUCCESS The function completed successfully.
1018 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1019 EFI_ABORTED An error occurred.
1020
1021 --*/
1022 {
1023 //
1024 // Verify input parameters.
1025 //
1026 if (FfsFile == NULL || Alignment == NULL) {
1027 return EFI_INVALID_PARAMETER;
1028 }
1029
1030 switch ((FfsFile->Attributes >> 3) & 0x07) {
1031
1032 case 0:
1033 //
1034 // 1 byte alignment
1035 //
1036 *Alignment = (1 << 0);
1037 break;
1038
1039 case 1:
1040 //
1041 // 16 byte alignment
1042 //
1043 *Alignment = (1 << 4);
1044 break;
1045
1046 case 2:
1047 //
1048 // 128 byte alignment
1049 //
1050 *Alignment = (1 << 7);
1051 break;
1052
1053 case 3:
1054 //
1055 // 512 byte alignment
1056 //
1057 *Alignment = (1 << 9);
1058 break;
1059
1060 case 4:
1061 //
1062 // 1K byte alignment
1063 //
1064 *Alignment = (1 << 10);
1065 break;
1066
1067 case 5:
1068 //
1069 // 4K byte alignment
1070 //
1071 *Alignment = (1 << 12);
1072 break;
1073
1074 case 6:
1075 //
1076 // 32K byte alignment
1077 //
1078 *Alignment = (1 << 15);
1079 break;
1080
1081 case 7:
1082 //
1083 // 64K byte alignment
1084 //
1085 *Alignment = (1 << 16);
1086 break;
1087
1088 default:
1089 Error (NULL, 0, 0, "nvalid file attribute calculated, this is most likely a utility error", NULL);
1090 return EFI_ABORTED;
1091 }
1092
1093 return EFI_SUCCESS;
1094 }
1095
1096 EFI_STATUS
1097 AddPadFile (
1098 IN OUT MEMORY_FILE *FvImage,
1099 IN UINT32 DataAlignment
1100 )
1101 /*++
1102
1103 Routine Description:
1104
1105 This function adds a pad file to the FV image if it required to align the
1106 data of the next file.
1107
1108 Arguments:
1109
1110 FvImage The memory image of the FV to add it to. The current offset
1111 must be valid.
1112 DataAlignment The data alignment of the next FFS file.
1113
1114 Returns:
1115
1116 EFI_SUCCESS The function completed successfully.
1117 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1118 EFI_OUT_OF_RESOURCES Insufficient resources exist in the FV to complete
1119 the pad file add.
1120
1121 --*/
1122 {
1123 EFI_FFS_FILE_HEADER *PadFile;
1124 EFI_GUID PadFileGuid;
1125 UINTN PadFileSize;
1126
1127 //
1128 // Verify input parameters.
1129 //
1130 if (FvImage == NULL) {
1131 return EFI_INVALID_PARAMETER;
1132 }
1133 //
1134 // Basic assumption is we start from an 8 byte aligned address
1135 // and our file header is a multiple of 8 bytes
1136 //
1137 assert ((UINTN) FvImage->CurrentFilePointer % 8 == 0);
1138 assert (sizeof (EFI_FFS_FILE_HEADER) % 8 == 0);
1139
1140 //
1141 // Check if a pad file is necessary
1142 //
1143 if (((UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage + sizeof (EFI_FFS_FILE_HEADER)) % DataAlignment == 0) {
1144 return EFI_SUCCESS;
1145 }
1146 //
1147 // Write pad file header
1148 //
1149 PadFile = (EFI_FFS_FILE_HEADER *) FvImage->CurrentFilePointer;
1150
1151 //
1152 // Verify that we have enough space for the file header
1153 //
1154 if ((UINTN) (PadFile + sizeof (EFI_FFS_FILE_HEADER)) >= (UINTN) FvImage->Eof) {
1155 return EFI_OUT_OF_RESOURCES;
1156 }
1157
1158 #ifdef __GNUC__
1159 {
1160 uuid_t tmp_id;
1161 uuid_generate (tmp_id);
1162 memcpy (&PadFileGuid, tmp_id, sizeof (EFI_GUID));
1163 }
1164 #else
1165 UuidCreate (&PadFileGuid);
1166 #endif
1167 memset (PadFile, 0, sizeof (EFI_FFS_FILE_HEADER));
1168 memcpy (&PadFile->Name, &PadFileGuid, sizeof (EFI_GUID));
1169 PadFile->Type = EFI_FV_FILETYPE_FFS_PAD;
1170 PadFile->Attributes = 0;
1171
1172 //
1173 // Calculate the pad file size
1174 //
1175 //
1176 // This is the earliest possible valid offset (current plus pad file header
1177 // plus the next file header)
1178 //
1179 PadFileSize = (UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage + (sizeof (EFI_FFS_FILE_HEADER) * 2);
1180
1181 //
1182 // Add whatever it takes to get to the next aligned address
1183 //
1184 while ((PadFileSize % DataAlignment) != 0) {
1185 PadFileSize++;
1186 }
1187 //
1188 // Subtract the next file header size
1189 //
1190 PadFileSize -= sizeof (EFI_FFS_FILE_HEADER);
1191
1192 //
1193 // Subtract the starting offset to get size
1194 //
1195 PadFileSize -= (UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage;
1196
1197 //
1198 // Write pad file size (calculated size minus next file header size)
1199 //
1200 PadFile->Size[0] = (UINT8) (PadFileSize & 0xFF);
1201 PadFile->Size[1] = (UINT8) ((PadFileSize >> 8) & 0xFF);
1202 PadFile->Size[2] = (UINT8) ((PadFileSize >> 16) & 0xFF);
1203
1204 //
1205 // Fill in checksums and state, they must be 0 for checksumming.
1206 //
1207 PadFile->IntegrityCheck.Checksum.Header = 0;
1208 PadFile->IntegrityCheck.Checksum.File = 0;
1209 PadFile->State = 0;
1210 PadFile->IntegrityCheck.Checksum.Header = CalculateChecksum8 ((UINT8 *) PadFile, sizeof (EFI_FFS_FILE_HEADER));
1211 if (PadFile->Attributes & FFS_ATTRIB_CHECKSUM) {
1212 PadFile->IntegrityCheck.Checksum.File = CalculateChecksum8 ((UINT8 *) PadFile, PadFileSize);
1213 } else {
1214 PadFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
1215 }
1216
1217 PadFile->State = EFI_FILE_HEADER_CONSTRUCTION | EFI_FILE_HEADER_VALID | EFI_FILE_DATA_VALID;
1218 UpdateFfsFileState (
1219 (EFI_FFS_FILE_HEADER *) PadFile,
1220 (EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage
1221 );
1222
1223 //
1224 // Verify that we have enough space (including the padding
1225 //
1226 if ((UINTN) (PadFile + sizeof (EFI_FFS_FILE_HEADER)) >= (UINTN) FvImage->Eof) {
1227 return EFI_OUT_OF_RESOURCES;
1228 }
1229 //
1230 // Update the current FV pointer
1231 //
1232 FvImage->CurrentFilePointer += PadFileSize;
1233
1234 return EFI_SUCCESS;
1235 }
1236
1237 BOOLEAN
1238 IsVtfFile (
1239 IN EFI_FFS_FILE_HEADER *FileBuffer
1240 )
1241 /*++
1242
1243 Routine Description:
1244
1245 This function checks the header to validate if it is a VTF file
1246
1247 Arguments:
1248
1249 FileBuffer Buffer in which content of a file has been read.
1250
1251 Returns:
1252
1253 TRUE If this is a VTF file
1254 FALSE If this is not a VTF file
1255
1256 --*/
1257 {
1258 EFI_GUID VtfGuid = EFI_FFS_VOLUME_TOP_FILE_GUID;
1259 if (!memcmp (&FileBuffer->Name, &VtfGuid, sizeof (EFI_GUID))) {
1260 return TRUE;
1261 } else {
1262 return FALSE;
1263 }
1264 }
1265
1266 EFI_STATUS
1267 FfsRebaseImageRead (
1268 IN VOID *FileHandle,
1269 IN UINTN FileOffset,
1270 IN OUT UINT32 *ReadSize,
1271 OUT VOID *Buffer
1272 )
1273 /*++
1274
1275 Routine Description:
1276
1277 Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
1278
1279 Arguments:
1280
1281 FileHandle - The handle to the PE/COFF file
1282
1283 FileOffset - The offset, in bytes, into the file to read
1284
1285 ReadSize - The number of bytes to read from the file starting at FileOffset
1286
1287 Buffer - A pointer to the buffer to read the data into.
1288
1289 Returns:
1290
1291 EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
1292
1293 --*/
1294 {
1295 CHAR8 *Destination8;
1296 CHAR8 *Source8;
1297 UINT32 Length;
1298
1299 Destination8 = Buffer;
1300 Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
1301 Length = *ReadSize;
1302 while (Length--) {
1303 *(Destination8++) = *(Source8++);
1304 }
1305
1306 return EFI_SUCCESS;
1307 }
1308
1309
1310 EFI_STATUS
1311 AddSymFile (
1312 IN UINT64 BaseAddress,
1313 IN EFI_FFS_FILE_HEADER *FfsFile,
1314 IN OUT MEMORY_FILE *SymImage,
1315 IN CHAR8 *SourceFileName
1316 )
1317 /*++
1318
1319 Routine Description:
1320
1321 This function adds the SYM tokens in the source file to the destination file.
1322 The SYM tokens are updated to reflect the base address.
1323
1324 Arguments:
1325
1326 BaseAddress The base address for the new SYM tokens.
1327 FfsFile Pointer to the beginning of the FFS file in question.
1328 SymImage The memory file to update with symbol information.
1329 SourceFileName The source file.
1330
1331 Returns:
1332
1333 EFI_SUCCESS The function completed successfully.
1334 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1335 EFI_ABORTED An error occurred.
1336
1337 --*/
1338 {
1339 FILE *SourceFile;
1340
1341 CHAR8 Buffer[_MAX_PATH];
1342 CHAR8 Type[_MAX_PATH];
1343 CHAR8 Address[_MAX_PATH];
1344 CHAR8 Section[_MAX_PATH];
1345 CHAR8 Token[_MAX_PATH];
1346 CHAR8 SymFileName[_MAX_PATH];
1347 CHAR8 CodeModuleName[_MAX_PATH];
1348 CHAR8 *Ptr;
1349
1350 UINT64 TokenAddress;
1351
1352 EFI_STATUS Status;
1353 EFI_FILE_SECTION_POINTER Pe32Section;
1354 UINT32 EntryPoint;
1355 UINT32 BaseOfCode;
1356 UINT16 MachineType;
1357 EFI_TE_IMAGE_HEADER *TeHdr;
1358
1359 TeHdr = NULL;
1360 //
1361 // Verify input parameters.
1362 //
1363 if (BaseAddress == 0 || FfsFile == NULL || SymImage == NULL || SourceFileName == NULL) {
1364 Error (NULL, 0, 0, "invalid parameter passed to AddSymFile()", NULL);
1365 return EFI_INVALID_PARAMETER;
1366 }
1367 //
1368 // Check if we want to add this file
1369 //
1370 //
1371 // Get the file name
1372 //
1373 strcpy (Buffer, SourceFileName);
1374
1375 //
1376 // Copy the file name for the path of the sym file and truncate the name portion.
1377 //
1378 strcpy (SymFileName, Buffer);
1379 Ptr = strrchr (SymFileName, '\\');
1380 assert (Ptr);
1381 Ptr[0] = 0;
1382
1383 //
1384 // Find the file extension and make it lower case
1385 //
1386 Ptr = strrchr (SymFileName, '.');
1387 if (Ptr != NULL) {
1388 strlwr (Ptr);
1389 }
1390 //
1391 // Check if it is PEI file
1392 //
1393 if (strstr (Buffer, ".pei") != NULL) {
1394 //
1395 // Find the human readable portion
1396 //
1397 if (!strtok (Buffer, "-") ||
1398 !strtok (NULL, "-") ||
1399 !strtok (NULL, "-") ||
1400 !strtok (NULL, "-") ||
1401 !strtok (NULL, "-") ||
1402 !strcpy (Buffer, strtok (NULL, "."))
1403 ) {
1404 Error (NULL, 0, 0, "failed to find human readable portion of the file name in AddSymFile()", NULL);
1405 return EFI_ABORTED;
1406 }
1407 //
1408 // Save code module name
1409 //
1410 strcpy (CodeModuleName, Buffer);
1411
1412 //
1413 // Add the symbol file name and extension to the file path.
1414 //
1415 strcat (Buffer, ".sym");
1416 strcat (SymFileName, "\\");
1417 strcat (SymFileName, Buffer);
1418 } else {
1419 //
1420 // Only handle PEIM files.
1421 //
1422 return EFI_SUCCESS;
1423 }
1424 //
1425 // Find PE32 section
1426 //
1427 Status = GetSectionByType (FfsFile, EFI_SECTION_PE32, 1, &Pe32Section);
1428
1429 //
1430 // BUGBUG: Assume if no PE32 section it is PIC and hardcode base address
1431 //
1432 if (Status == EFI_NOT_FOUND) {
1433 Status = GetSectionByType (FfsFile, EFI_SECTION_TE, 1, &Pe32Section);
1434 if (Status == EFI_NOT_FOUND) {
1435 BaseOfCode = 0x60;
1436 } else {
1437 TeHdr = (EFI_TE_IMAGE_HEADER *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_COMMON_SECTION_HEADER));
1438 BaseOfCode = TeHdr->BaseOfCode - TeHdr->StrippedSize;
1439 }
1440 } else if (EFI_ERROR (Status)) {
1441 Error (NULL, 0, 0, "could not parse a PE32 section from the PEI file", NULL);
1442 return Status;
1443 } else {
1444 Status = GetPe32Info (
1445 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
1446 &EntryPoint,
1447 &BaseOfCode,
1448 &MachineType
1449 );
1450 if (EFI_ERROR (Status)) {
1451 Error (NULL, 0, 0, "GetPe32Info() could not get PE32 entry point for PEI file", NULL);
1452 return Status;
1453 }
1454 }
1455 //
1456 // Open the source file
1457 //
1458 SourceFile = fopen (SymFileName, "r");
1459 if (SourceFile == NULL) {
1460 //
1461 // SYM files are not required.
1462 //
1463 return EFI_SUCCESS;
1464 }
1465 //
1466 // Read the first line
1467 //
1468 if (fgets (Buffer, _MAX_PATH, SourceFile) == NULL) {
1469 Buffer[0] = 0;
1470 }
1471 //
1472 // Make sure it matches the expected sym format
1473 //
1474 if (strcmp (Buffer, "TEXTSYM format | V1.0\n")) {
1475 fclose (SourceFile);
1476 Error (NULL, 0, 0, "AddSymFile() found unexpected sym format in input file", NULL);
1477 return EFI_ABORTED;
1478 }
1479 //
1480 // Read in the file
1481 //
1482 while (feof (SourceFile) == 0) {
1483 //
1484 // Read a line
1485 //
1486 if (fscanf (
1487 SourceFile,
1488 "%s | %s | %s | %s\n",
1489 Type,
1490 Address,
1491 Section,
1492 Token
1493 ) == 4) {
1494 //
1495 // If the token starts with "??" ignore it
1496 //
1497 if (Token[0] == '?' && Token[1] == '?') {
1498 continue;
1499 }
1500 //
1501 // Get the token address
1502 //
1503 AsciiStringToUint64 (Address, TRUE, &TokenAddress);
1504
1505 //
1506 // Add the base address
1507 //
1508 TokenAddress += BaseAddress;
1509
1510 //
1511 // If PE32 then find the start of code. For PIC it is hardcoded.
1512 //
1513 if (TeHdr == NULL && Pe32Section.Pe32Section) {
1514 //
1515 // Add the offset of the PE32 section
1516 //
1517 TokenAddress += (UINTN) Pe32Section.Pe32Section - (UINTN) FfsFile;
1518
1519 //
1520 // Add the size of the PE32 section header
1521 //
1522 TokenAddress += sizeof (EFI_PE32_SECTION);
1523 } else if (TeHdr != NULL) {
1524 //
1525 // Add the Te section and FfsHeader
1526 //
1527 //
1528 // BUGBUG: Don't know why this is 0x28 bytes.
1529 //
1530 TokenAddress += (UINTN) TeHdr - (UINTN) FfsFile + 0x28;
1531 } else {
1532 //
1533 // BUGBUG: Don't know why this is 0x28 bytes.
1534 //
1535 TokenAddress += 0x28;
1536 }
1537 //
1538 // Add the beginning of the code
1539 //
1540 TokenAddress += BaseOfCode;
1541
1542 sprintf (
1543 Buffer,
1544 "%s | %016I64X | %s | _%s%s\n",
1545 Type,
1546 TokenAddress,
1547 Section,
1548 CodeModuleName,
1549 Token
1550 );
1551 memcpy (SymImage->CurrentFilePointer, Buffer, strlen (Buffer) + 1);
1552 SymImage->CurrentFilePointer = (UINT8 *) (((UINTN) SymImage->CurrentFilePointer) + strlen (Buffer) + 1);
1553 }
1554 }
1555
1556 fclose (SourceFile);
1557 return EFI_SUCCESS;
1558 }
1559
1560 EFI_STATUS
1561 AddFile (
1562 IN OUT MEMORY_FILE *FvImage,
1563 IN FV_INFO *FvInfo,
1564 IN UINTN Index,
1565 IN OUT EFI_FFS_FILE_HEADER **VtfFileImage,
1566 IN OUT MEMORY_FILE *SymImage
1567 )
1568 /*++
1569
1570 Routine Description:
1571
1572 This function adds a file to the FV image. The file will pad to the
1573 appropriate alignment if required.
1574
1575 Arguments:
1576
1577 FvImage The memory image of the FV to add it to. The current offset
1578 must be valid.
1579 FvInfo Pointer to information about the FV.
1580 Index The file in the FvInfo file list to add.
1581 VtfFileImage A pointer to the VTF file within the FvImage. If this is equal
1582 to the end of the FvImage then no VTF previously found.
1583 SymImage The memory image of the Sym file to update if symbols are present.
1584 The current offset must be valid.
1585
1586 Returns:
1587
1588 EFI_SUCCESS The function completed successfully.
1589 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1590 EFI_ABORTED An error occurred.
1591 EFI_OUT_OF_RESOURCES Insufficient resources exist to complete the add.
1592
1593 --*/
1594 {
1595 FILE *NewFile;
1596 UINTN FileSize;
1597 UINT8 *FileBuffer;
1598 UINTN NumBytesRead;
1599 UINT32 CurrentFileAlignment;
1600 EFI_STATUS Status;
1601 EFI_PHYSICAL_ADDRESS CurrentFileBaseAddress;
1602 UINT8 VtfHeaderChecksum;
1603 UINT8 VtfFileChecksum;
1604 UINT8 FileState;
1605 EFI_FFS_FILE_TAIL TailValue;
1606 UINT32 TailSize;
1607 //
1608 // Verify input parameters.
1609 //
1610 if (FvImage == NULL || FvInfo == NULL || FvInfo->FvFiles[Index][0] == 0 || VtfFileImage == NULL || SymImage == NULL) {
1611 return EFI_INVALID_PARAMETER;
1612 }
1613 //
1614 // Read the file to add
1615 //
1616 NewFile = fopen (FvInfo->FvFiles[Index], "rb");
1617
1618 if (NewFile == NULL) {
1619 Error (NULL, 0, 0, FvInfo->FvFiles[Index], "failed to open file for reading");
1620 return EFI_ABORTED;
1621 }
1622 //
1623 // Get the file size
1624 //
1625 #ifdef __GNUC__
1626 {
1627 struct stat stat_buf;
1628 fstat(fileno(NewFile), &stat_buf);
1629 FileSize = stat_buf.st_size;
1630 }
1631 #else
1632 FileSize = _filelength (fileno (NewFile));
1633 #endif
1634
1635 //
1636 // Read the file into a buffer
1637 //
1638 FileBuffer = malloc (FileSize);
1639 if (FileBuffer == NULL) {
1640 Error (NULL, 0, 0, "memory allocation failure", NULL);
1641 return EFI_OUT_OF_RESOURCES;
1642 }
1643
1644 NumBytesRead = fread (FileBuffer, sizeof (UINT8), FileSize, NewFile);
1645
1646 //
1647 // Done with the file, from this point on we will just use the buffer read.
1648 //
1649 fclose (NewFile);
1650
1651 //
1652 // Verify read successful
1653 //
1654 if (NumBytesRead != sizeof (UINT8) * FileSize) {
1655 free (FileBuffer);
1656 Error (NULL, 0, 0, FvInfo->FvFiles[Index], "failed to read input file contents");
1657 return EFI_ABORTED;
1658 }
1659 //
1660 // Verify space exists to add the file
1661 //
1662 if (FileSize > (UINTN) ((UINTN) *VtfFileImage - (UINTN) FvImage->CurrentFilePointer)) {
1663 Error (NULL, 0, 0, FvInfo->FvFiles[Index], "insufficient space remains to add the file");
1664 return EFI_OUT_OF_RESOURCES;
1665 }
1666 //
1667 // Update the file state based on polarity of the FV.
1668 //
1669 UpdateFfsFileState (
1670 (EFI_FFS_FILE_HEADER *) FileBuffer,
1671 (EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage
1672 );
1673
1674 //
1675 // If we have a VTF file, add it at the top.
1676 //
1677 if (IsVtfFile ((EFI_FFS_FILE_HEADER *) FileBuffer)) {
1678 if ((UINTN) *VtfFileImage == (UINTN) FvImage->Eof) {
1679 //
1680 // No previous VTF, add this one.
1681 //
1682 *VtfFileImage = (EFI_FFS_FILE_HEADER *) (UINTN) ((UINTN) FvImage->FileImage + FvInfo->Size - FileSize);
1683 //
1684 // Sanity check. The file MUST align appropriately
1685 //
1686 if ((((UINTN) *VtfFileImage) & 0x07) != 0) {
1687 Error (NULL, 0, 0, "VTF file does not align on 8-byte boundary", NULL);
1688 }
1689 //
1690 // copy VTF File Header
1691 //
1692 memcpy (*VtfFileImage, FileBuffer, sizeof (EFI_FFS_FILE_HEADER));
1693
1694 //
1695 // Copy VTF body
1696 //
1697 memcpy (
1698 (UINT8 *) *VtfFileImage + sizeof (EFI_FFS_FILE_HEADER),
1699 FileBuffer + sizeof (EFI_FFS_FILE_HEADER),
1700 FileSize - sizeof (EFI_FFS_FILE_HEADER)
1701 );
1702
1703 //
1704 // re-calculate the VTF File Header
1705 //
1706 FileState = (*VtfFileImage)->State;
1707 (*VtfFileImage)->State = 0;
1708 *(UINT32 *) ((*VtfFileImage)->Size) = FileSize;
1709 (*VtfFileImage)->IntegrityCheck.Checksum.Header = 0;
1710 (*VtfFileImage)->IntegrityCheck.Checksum.File = 0;
1711
1712 VtfHeaderChecksum = CalculateChecksum8 ((UINT8 *) *VtfFileImage, sizeof (EFI_FFS_FILE_HEADER));
1713 (*VtfFileImage)->IntegrityCheck.Checksum.Header = VtfHeaderChecksum;
1714 //
1715 // Determine if it has a tail
1716 //
1717 if ((*VtfFileImage)->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
1718 TailSize = sizeof (EFI_FFS_FILE_TAIL);
1719 } else {
1720 TailSize = 0;
1721 }
1722
1723 if ((*VtfFileImage)->Attributes & FFS_ATTRIB_CHECKSUM) {
1724 VtfFileChecksum = CalculateChecksum8 ((UINT8 *) *VtfFileImage, FileSize - TailSize);
1725 (*VtfFileImage)->IntegrityCheck.Checksum.File = VtfFileChecksum;
1726 } else {
1727 (*VtfFileImage)->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
1728 }
1729 //
1730 // If it has a file tail, update it
1731 //
1732 if ((*VtfFileImage)->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
1733 TailValue = (EFI_FFS_FILE_TAIL) (~((*VtfFileImage)->IntegrityCheck.TailReference));
1734 *(EFI_FFS_FILE_TAIL *) (((UINTN) (*VtfFileImage) + GetLength ((*VtfFileImage)->Size) - sizeof (EFI_FFS_FILE_TAIL))) = TailValue;
1735 }
1736 (*VtfFileImage)->State = FileState;
1737 free (FileBuffer);
1738 return EFI_SUCCESS;
1739 } else {
1740 //
1741 // Already found a VTF file.
1742 //
1743 Error (NULL, 0, 0, "multiple VTF files are illegal in a single FV", NULL);
1744 free (FileBuffer);
1745 return EFI_ABORTED;
1746 }
1747 }
1748 //
1749 // Check if alignment is required
1750 //
1751 Status = ReadFfsAlignment ((EFI_FFS_FILE_HEADER *) FileBuffer, &CurrentFileAlignment);
1752 if (EFI_ERROR (Status)) {
1753 printf ("ERROR: Could not determine alignment of file %s.\n", FvInfo->FvFiles[Index]);
1754 free (FileBuffer);
1755 return EFI_ABORTED;
1756 }
1757 //
1758 // Add pad file if necessary
1759 //
1760 Status = AddPadFile (FvImage, CurrentFileAlignment);
1761 if (EFI_ERROR (Status)) {
1762 printf ("ERROR: Could not align the file data properly.\n");
1763 free (FileBuffer);
1764 return EFI_ABORTED;
1765 }
1766 //
1767 // Add file
1768 //
1769 if ((FvImage->CurrentFilePointer + FileSize) < FvImage->Eof) {
1770 //
1771 // Copy the file
1772 //
1773 memcpy (FvImage->CurrentFilePointer, FileBuffer, FileSize);
1774
1775 //
1776 // If the file is XIP, rebase
1777 //
1778 CurrentFileBaseAddress = FvInfo->BaseAddress + ((UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage);
1779 //
1780 // Status = RebaseFfsFile ((EFI_FFS_FILE_HEADER*) FvImage->CurrentFilePointer, CurrentFileBaseAddress);
1781 // if (EFI_ERROR(Status)) {
1782 // printf ("ERROR: Could not rebase the file %s.\n", FvInfo->FvFiles[Index]);
1783 // return EFI_ABORTED;
1784 // }
1785 //
1786 // Update Symbol file
1787 //
1788 Status = AddSymFile (
1789 CurrentFileBaseAddress,
1790 (EFI_FFS_FILE_HEADER *) FvImage->CurrentFilePointer,
1791 SymImage,
1792 FvInfo->FvFiles[Index]
1793 );
1794 assert (!EFI_ERROR (Status));
1795
1796 //
1797 // Update the current pointer in the FV image
1798 //
1799 FvImage->CurrentFilePointer += FileSize;
1800 } else {
1801 printf ("ERROR: The firmware volume is out of space, could not add file %s.\n", FvInfo->FvFiles[Index]);
1802 return EFI_ABORTED;
1803 }
1804 //
1805 // Make next file start at QWord Boundry
1806 //
1807 while (((UINTN) FvImage->CurrentFilePointer & 0x07) != 0) {
1808 FvImage->CurrentFilePointer++;
1809 }
1810 //
1811 // Free allocated memory.
1812 //
1813 free (FileBuffer);
1814
1815 return EFI_SUCCESS;
1816 }
1817
1818 EFI_STATUS
1819 AddVariableBlock (
1820 IN UINT8 *FvImage,
1821 IN UINTN Size,
1822 IN FV_INFO *FvInfo
1823 )
1824 {
1825 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
1826 VARIABLE_STORE_HEADER *VarStoreHeader;
1827 //
1828 // Variable block should exclude FvHeader. Since the length of
1829 // FvHeader depends on the block map, which is variable length,
1830 // we could only decide the actual variable block length here.
1831 //
1832 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) FvImage;
1833 FvImage = FvImage + FvHeader->HeaderLength;
1834
1835 VarStoreHeader = (VARIABLE_STORE_HEADER *) FvImage;
1836
1837 VarStoreHeader->Signature = VARIABLE_STORE_SIGNATURE;
1838 VarStoreHeader->Size = Size - FvHeader->HeaderLength;
1839 VarStoreHeader->Format = VARIABLE_STORE_FORMATTED;
1840 VarStoreHeader->State = VARIABLE_STORE_HEALTHY;
1841 VarStoreHeader->Reserved = 0;
1842 VarStoreHeader->Reserved1 = 0;
1843
1844 return EFI_SUCCESS;
1845 }
1846
1847 EFI_STATUS
1848 AddEventLogBlock (
1849 IN UINT8 *FvImage,
1850 IN UINTN Size,
1851 IN FV_INFO *FvInfo
1852 )
1853 {
1854 return EFI_SUCCESS;
1855 }
1856
1857 EFI_STATUS
1858 AddFTWWorkingBlock (
1859 IN UINT8 *FvImage,
1860 IN UINTN Size,
1861 IN FV_INFO *FvInfo
1862 )
1863 {
1864 EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *FTWHeader;
1865 UINT32 Crc32;
1866
1867 Crc32 = 0;
1868 FTWHeader = (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *) FvImage;
1869 memcpy (&FTWHeader->Signature, &(FvInfo->FvGuid), sizeof (EFI_GUID));
1870 FTWHeader->WriteQueueSize = Size - sizeof (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER);
1871 CalculateCrc32 (FvImage, sizeof (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER), &Crc32);
1872 FTWHeader->Crc = Crc32;
1873 if (FvInfo->FvAttributes & EFI_FVB_ERASE_POLARITY) {
1874 FTWHeader->WorkingBlockValid = 0;
1875 FTWHeader->WorkingBlockInvalid = 1;
1876 } else {
1877 FTWHeader->WorkingBlockValid = 1;
1878 FTWHeader->WorkingBlockInvalid = 0;
1879 }
1880
1881 return EFI_SUCCESS;
1882 }
1883
1884 EFI_STATUS
1885 AddFTWSpareBlock (
1886 IN UINT8 *FvImage,
1887 IN UINTN Size,
1888 IN FV_INFO *FvInfo
1889 )
1890 {
1891 return EFI_SUCCESS;
1892 }
1893
1894 EFI_STATUS
1895 GenNonFFSFv (
1896 IN UINT8 *FvImage,
1897 IN FV_INFO *FvInfo
1898 )
1899 /*++
1900
1901 Routine Description:
1902
1903 This function generate the non FFS FV image, such as the working block
1904 and spare block. How each component of the FV is built is component
1905 specific.
1906
1907 Arguments:
1908
1909 FvImage The memory image of the FV to add it to. The current offset
1910 must be valid.
1911 FvInfo Pointer to information about the FV.
1912
1913 Returns:
1914
1915 EFI_SUCCESS The function completed successfully.
1916 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1917 EFI_ABORTED An error occurred.
1918 EFI_OUT_OF_RESOURCES Insufficient resources exist to complete the add.
1919
1920 --*/
1921 {
1922 UINTN Index;
1923 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
1924 UINT64 TotalSize;
1925
1926 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) FvImage;
1927 TotalSize = 0;
1928
1929 for (Index = 0; FvInfo->FvComponents[Index].Size != 0; Index++) {
1930 if (stricmp (FvInfo->FvComponents[Index].ComponentName, EFI_NV_VARIABLE_STRING) == 0) {
1931 AddVariableBlock (FvImage, FvInfo->FvComponents[Index].Size, FvInfo);
1932 } else if (stricmp (FvInfo->FvComponents[Index].ComponentName, EFI_NV_EVENT_LOG_STRING) == 0) {
1933 AddEventLogBlock (FvImage, FvInfo->FvComponents[Index].Size, FvInfo);
1934 } else if (stricmp (FvInfo->FvComponents[Index].ComponentName, EFI_NV_FTW_WORKING_STRING) == 0) {
1935 AddFTWWorkingBlock (FvImage, FvInfo->FvComponents[Index].Size, FvInfo);
1936 } else if (stricmp (FvInfo->FvComponents[Index].ComponentName, EFI_NV_FTW_SPARE_STRING) == 0) {
1937 AddFTWSpareBlock (FvImage, FvInfo->FvComponents[Index].Size, FvInfo);
1938 } else {
1939 printf ("Error. Unknown Non-FFS block %s \n", FvInfo->FvComponents[Index].ComponentName);
1940 return EFI_ABORTED;
1941 }
1942
1943 FvImage = FvImage + FvInfo->FvComponents[Index].Size;
1944 TotalSize = TotalSize + FvInfo->FvComponents[Index].Size;
1945 }
1946 //
1947 // Index and TotalSize is zero mean there's no component, so this is an empty fv
1948 //
1949 if ((Index != 0 || TotalSize != 0) && TotalSize != FvInfo->Size) {
1950 printf ("Error. Component size does not sum up to FV size.\n");
1951 return EFI_ABORTED;
1952 }
1953
1954 return EFI_SUCCESS;
1955 }
1956
1957 EFI_STATUS
1958 PadFvImage (
1959 IN MEMORY_FILE *FvImage,
1960 IN EFI_FFS_FILE_HEADER *VtfFileImage
1961 )
1962 /*++
1963
1964 Routine Description:
1965
1966 This function places a pad file between the last file in the FV and the VTF
1967 file if the VTF file exists.
1968
1969 Arguments:
1970
1971 FvImage Memory file for the FV memory image
1972 VtfFileImage The address of the VTF file. If this is the end of the FV
1973 image, no VTF exists and no pad file is needed.
1974
1975 Returns:
1976
1977 EFI_SUCCESS Completed successfully.
1978 EFI_INVALID_PARAMETER One of the input parameters was NULL.
1979
1980 --*/
1981 {
1982 EFI_FFS_FILE_HEADER *PadFile;
1983 UINTN FileSize;
1984
1985 //
1986 // If there is no VTF or the VTF naturally follows the previous file without a
1987 // pad file, then there's nothing to do
1988 //
1989 if ((UINTN) VtfFileImage == (UINTN) FvImage->Eof || (void *) FvImage->CurrentFilePointer == (void *) VtfFileImage) {
1990 return EFI_SUCCESS;
1991 }
1992 //
1993 // Pad file starts at beginning of free space
1994 //
1995 PadFile = (EFI_FFS_FILE_HEADER *) FvImage->CurrentFilePointer;
1996
1997 //
1998 // write header
1999 //
2000 memset (PadFile, 0, sizeof (EFI_FFS_FILE_HEADER));
2001 memcpy (&PadFile->Name, &DefaultFvPadFileNameGuid, sizeof (EFI_GUID));
2002 PadFile->Type = EFI_FV_FILETYPE_FFS_PAD;
2003 PadFile->Attributes = 0;
2004
2005 //
2006 // FileSize includes the EFI_FFS_FILE_HEADER
2007 //
2008 FileSize = (UINTN) VtfFileImage - (UINTN) FvImage->CurrentFilePointer;
2009 PadFile->Size[0] = (UINT8) (FileSize & 0x000000FF);
2010 PadFile->Size[1] = (UINT8) ((FileSize & 0x0000FF00) >> 8);
2011 PadFile->Size[2] = (UINT8) ((FileSize & 0x00FF0000) >> 16);
2012
2013 //
2014 // Fill in checksums and state, must be zero during checksum calculation.
2015 //
2016 PadFile->IntegrityCheck.Checksum.Header = 0;
2017 PadFile->IntegrityCheck.Checksum.File = 0;
2018 PadFile->State = 0;
2019 PadFile->IntegrityCheck.Checksum.Header = CalculateChecksum8 ((UINT8 *) PadFile, sizeof (EFI_FFS_FILE_HEADER));
2020 if (PadFile->Attributes & FFS_ATTRIB_CHECKSUM) {
2021 PadFile->IntegrityCheck.Checksum.File = CalculateChecksum8 ((UINT8 *) PadFile, FileSize);
2022 } else {
2023 PadFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
2024 }
2025
2026 PadFile->State = EFI_FILE_HEADER_CONSTRUCTION | EFI_FILE_HEADER_VALID | EFI_FILE_DATA_VALID;
2027
2028 UpdateFfsFileState (
2029 (EFI_FFS_FILE_HEADER *) PadFile,
2030 (EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage
2031 );
2032 //
2033 // Update the current FV pointer
2034 //
2035 FvImage->CurrentFilePointer = FvImage->Eof;
2036
2037 return EFI_SUCCESS;
2038 }
2039
2040 EFI_STATUS
2041 UpdateResetVector (
2042 IN MEMORY_FILE *FvImage,
2043 IN FV_INFO *FvInfo,
2044 IN EFI_FFS_FILE_HEADER *VtfFile
2045 )
2046 /*++
2047
2048 Routine Description:
2049
2050 This parses the FV looking for the PEI core and then plugs the address into
2051 the SALE_ENTRY point of the BSF/VTF for IPF and does BUGBUG TBD action to
2052 complete an IA32 Bootstrap FV.
2053
2054 Arguments:
2055
2056 FvImage Memory file for the FV memory image
2057 FvInfo Information read from INF file.
2058 VtfFile Pointer to the VTF file in the FV image.
2059
2060 Returns:
2061
2062 EFI_SUCCESS Function Completed successfully.
2063 EFI_ABORTED Error encountered.
2064 EFI_INVALID_PARAMETER A required parameter was NULL.
2065 EFI_NOT_FOUND PEI Core file not found.
2066
2067 --*/
2068 {
2069 EFI_FFS_FILE_HEADER *PeiCoreFile;
2070 EFI_FFS_FILE_HEADER *SecCoreFile;
2071 EFI_STATUS Status;
2072 EFI_FILE_SECTION_POINTER Pe32Section;
2073 UINT32 EntryPoint;
2074 UINT32 BaseOfCode;
2075 UINT16 MachineType;
2076 EFI_PHYSICAL_ADDRESS PeiCorePhysicalAddress;
2077 EFI_PHYSICAL_ADDRESS SecCorePhysicalAddress;
2078 EFI_PHYSICAL_ADDRESS *SecCoreEntryAddressPtr;
2079 UINT32 *Ia32ResetAddressPtr;
2080 UINT8 *BytePointer;
2081 UINT8 *BytePointer2;
2082 UINT16 *WordPointer;
2083 UINT16 CheckSum;
2084 UINTN Index;
2085 EFI_FFS_FILE_STATE SavedState;
2086 EFI_FFS_FILE_TAIL TailValue;
2087 UINT32 TailSize;
2088 UINT64 FitAddress;
2089 FIT_TABLE *FitTablePtr;
2090
2091 //
2092 // Verify input parameters
2093 //
2094 if (FvImage == NULL || FvInfo == NULL || VtfFile == NULL) {
2095 return EFI_INVALID_PARAMETER;
2096 }
2097 //
2098 // Initialize FV library
2099 //
2100 InitializeFvLib (FvImage->FileImage, (UINTN) FvImage->Eof - (UINTN) FvImage->FileImage);
2101
2102 //
2103 // Verify VTF file
2104 //
2105 Status = VerifyFfsFile (VtfFile);
2106 if (EFI_ERROR (Status)) {
2107 return EFI_INVALID_PARAMETER;
2108 }
2109 //
2110 // Find the PEI Core
2111 //
2112 Status = GetFileByType (EFI_FV_FILETYPE_PEI_CORE, 1, &PeiCoreFile);
2113 if (EFI_ERROR (Status) || PeiCoreFile == NULL) {
2114 Error (NULL, 0, 0, "could not find the PEI core in the FV", NULL);
2115 return EFI_ABORTED;
2116 }
2117 //
2118 // PEI Core found, now find PE32 section
2119 //
2120 Status = GetSectionByType (PeiCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
2121 if (EFI_ERROR (Status)) {
2122 Error (NULL, 0, 0, "could not find PE32 section in PEI core file", NULL);
2123 return EFI_ABORTED;
2124 }
2125
2126 Status = GetPe32Info (
2127 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
2128 &EntryPoint,
2129 &BaseOfCode,
2130 &MachineType
2131 );
2132 if (EFI_ERROR (Status)) {
2133 Error (NULL, 0, 0, "could not get PE32 entry point for PEI core", NULL);
2134 return EFI_ABORTED;
2135 }
2136 //
2137 // Physical address is FV base + offset of PE32 + offset of the entry point
2138 //
2139 PeiCorePhysicalAddress = FvInfo->BaseAddress;
2140 PeiCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32) - (UINTN) FvImage->FileImage;
2141 PeiCorePhysicalAddress += EntryPoint;
2142
2143 if (MachineType == EFI_IMAGE_MACHINE_IA64) {
2144 //
2145 // Update PEI_CORE address
2146 //
2147 //
2148 // Set the uncached attribute bit in the physical address
2149 //
2150 PeiCorePhysicalAddress |= 0x8000000000000000ULL;
2151
2152 //
2153 // Check if address is aligned on a 16 byte boundary
2154 //
2155 if (PeiCorePhysicalAddress & 0xF) {
2156 printf (
2157 "ERROR: PEI_CORE entry point is not aligned on a 16 byte boundary, address specified is %Xh.\n",
2158 PeiCorePhysicalAddress
2159 );
2160 return EFI_ABORTED;
2161 }
2162 //
2163 // First Get the FIT table address
2164 //
2165 FitAddress = (*(UINT64 *) (FvImage->Eof - IPF_FIT_ADDRESS_OFFSET)) & 0xFFFFFFFF;
2166
2167 FitTablePtr = (FIT_TABLE *) (FvImage->FileImage + (FitAddress - FvInfo->BaseAddress));
2168
2169 Status = UpdatePeiCoreEntryInFit (FitTablePtr, PeiCorePhysicalAddress);
2170
2171 if (!EFI_ERROR (Status)) {
2172 UpdateFitCheckSum (FitTablePtr);
2173 }
2174 //
2175 // Find the Sec Core
2176 //
2177 Status = GetFileByType (EFI_FV_FILETYPE_SECURITY_CORE, 1, &SecCoreFile);
2178 if (EFI_ERROR (Status) || SecCoreFile == NULL) {
2179 Error (NULL, 0, 0, "could not find the Sec core in the FV", NULL);
2180 return EFI_ABORTED;
2181 }
2182 //
2183 // Sec Core found, now find PE32 section
2184 //
2185 Status = GetSectionByType (SecCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
2186 if (EFI_ERROR (Status)) {
2187 Error (NULL, 0, 0, "could not find PE32 section in SEC core file", NULL);
2188 return EFI_ABORTED;
2189 }
2190
2191 Status = GetPe32Info (
2192 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
2193 &EntryPoint,
2194 &BaseOfCode,
2195 &MachineType
2196 );
2197 if (EFI_ERROR (Status)) {
2198 Error (NULL, 0, 0, "could not get PE32 entry point for SEC core", NULL);
2199 return EFI_ABORTED;
2200 }
2201 //
2202 // Physical address is FV base + offset of PE32 + offset of the entry point
2203 //
2204 SecCorePhysicalAddress = FvInfo->BaseAddress;
2205 SecCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32) - (UINTN) FvImage->FileImage;
2206 SecCorePhysicalAddress += EntryPoint;
2207
2208 //
2209 // Update SEC_CORE address
2210 //
2211 //
2212 // Set the uncached attribute bit in the physical address
2213 //
2214 SecCorePhysicalAddress |= 0x8000000000000000ULL;
2215
2216 //
2217 // Update the address
2218 //
2219 SecCoreEntryAddressPtr = (EFI_PHYSICAL_ADDRESS *) ((UINTN) FvImage->Eof - IPF_SALE_ENTRY_ADDRESS_OFFSET);
2220 *SecCoreEntryAddressPtr = SecCorePhysicalAddress;
2221
2222 //
2223 // Check if address is aligned on a 16 byte boundary
2224 //
2225 if (SecCorePhysicalAddress & 0xF) {
2226 printf (
2227 "ERROR: SALE_ENTRY entry point is not aligned on a 16 byte boundary, address specified is %Xh.\n",
2228 SecCorePhysicalAddress
2229 );
2230 return EFI_ABORTED;
2231 }
2232 } else if (MachineType == EFI_IMAGE_MACHINE_IA32) {
2233 //
2234 // Get the location to update
2235 //
2236 Ia32ResetAddressPtr = (UINT32 *) ((UINTN) FvImage->Eof - IA32_PEI_CORE_ENTRY_OFFSET);
2237
2238 //
2239 // Write lower 32 bits of physical address
2240 //
2241 *Ia32ResetAddressPtr = (UINT32) PeiCorePhysicalAddress;
2242
2243 //
2244 // Update the BFV base address
2245 //
2246 Ia32ResetAddressPtr = (UINT32 *) ((UINTN) FvImage->Eof - 4);
2247 *Ia32ResetAddressPtr = (UINT32) (FvInfo->BaseAddress);
2248
2249 CheckSum = 0x0000;
2250
2251 //
2252 // Update the Startup AP in the FVH header block ZeroVector region.
2253 //
2254 BytePointer = (UINT8 *) ((UINTN) FvImage->FileImage);
2255 BytePointer2 = (FvInfo->Size == 0x10000) ? m64kRecoveryStartupApDataArray : m128kRecoveryStartupApDataArray;
2256 for (Index = 0; Index < SIZEOF_STARTUP_DATA_ARRAY; Index++) {
2257 *BytePointer++ = *BytePointer2++;
2258 }
2259 //
2260 // Calculate the checksum
2261 //
2262 WordPointer = (UINT16 *) ((UINTN) FvImage->FileImage);
2263 for (Index = 0; Index < SIZEOF_STARTUP_DATA_ARRAY / 2; Index++) {
2264 CheckSum = (UINT16) (CheckSum + ((UINT16) *WordPointer));
2265 WordPointer++;
2266 }
2267 //
2268 // Update the checksum field
2269 //
2270 BytePointer = (UINT8 *) ((UINTN) FvImage->FileImage);
2271 BytePointer += (SIZEOF_STARTUP_DATA_ARRAY - 2);
2272 WordPointer = (UINT16 *) BytePointer;
2273 *WordPointer = (UINT16) (0x10000 - (UINT32) CheckSum);
2274 } else {
2275 Error (NULL, 0, 0, "invalid machine type in PEI core", "machine type=0x%X", (UINT32) MachineType);
2276 return EFI_ABORTED;
2277 }
2278 //
2279 // Determine if it has an FFS file tail.
2280 //
2281 if (VtfFile->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
2282 TailSize = sizeof (EFI_FFS_FILE_TAIL);
2283 } else {
2284 TailSize = 0;
2285 }
2286 //
2287 // Now update file checksum
2288 //
2289 SavedState = VtfFile->State;
2290 VtfFile->IntegrityCheck.Checksum.File = 0;
2291 VtfFile->State = 0;
2292 if (VtfFile->Attributes & FFS_ATTRIB_CHECKSUM) {
2293 VtfFile->IntegrityCheck.Checksum.File = CalculateChecksum8 (
2294 (UINT8 *) VtfFile,
2295 GetLength (VtfFile->Size) - TailSize
2296 );
2297 } else {
2298 VtfFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
2299 }
2300
2301 VtfFile->State = SavedState;
2302
2303 //
2304 // Update tail if present
2305 //
2306 if (VtfFile->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
2307 TailValue = (EFI_FFS_FILE_TAIL) (~(VtfFile->IntegrityCheck.TailReference));
2308 *(EFI_FFS_FILE_TAIL *) (((UINTN) (VtfFile) + GetLength (VtfFile->Size) - sizeof (EFI_FFS_FILE_TAIL))) = TailValue;
2309 }
2310
2311 return EFI_SUCCESS;
2312 }
2313
2314 EFI_STATUS
2315 GetPe32Info (
2316 IN UINT8 *Pe32,
2317 OUT UINT32 *EntryPoint,
2318 OUT UINT32 *BaseOfCode,
2319 OUT UINT16 *MachineType
2320 )
2321 /*++
2322
2323 Routine Description:
2324
2325 Retrieves the PE32 entry point offset and machine type. See EfiImage.h for
2326 machine types. The entry point offset is from the beginning of the PE32
2327 buffer passed in.
2328
2329 Arguments:
2330
2331 Pe32 Beginning of the PE32.
2332 EntryPoint Offset from the beginning of the PE32 to the image entry point.
2333 BaseOfCode Base address of code.
2334 MachineType Magic number for the machine type.
2335
2336 Returns:
2337
2338 EFI_SUCCESS Function completed successfully.
2339 EFI_ABORTED Error encountered.
2340 EFI_INVALID_PARAMETER A required parameter was NULL.
2341 EFI_UNSUPPORTED The operation is unsupported.
2342
2343 --*/
2344 {
2345 EFI_IMAGE_DOS_HEADER *DosHeader;
2346 EFI_IMAGE_NT_HEADERS *NtHeader;
2347
2348 //
2349 // Verify input parameters
2350 //
2351 if (Pe32 == NULL) {
2352 return EFI_INVALID_PARAMETER;
2353 }
2354 //
2355 // First is the DOS header
2356 //
2357 DosHeader = (EFI_IMAGE_DOS_HEADER *) Pe32;
2358
2359 //
2360 // Verify DOS header is expected
2361 //
2362 if (DosHeader->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
2363 printf ("ERROR: Unknown magic number in the DOS header, 0x%04X.\n", DosHeader->e_magic);
2364 return EFI_UNSUPPORTED;
2365 }
2366 //
2367 // Immediately following is the NT header.
2368 //
2369 NtHeader = (EFI_IMAGE_NT_HEADERS *) ((UINTN) Pe32 + DosHeader->e_lfanew);
2370
2371 //
2372 // Verify NT header is expected
2373 //
2374 if (NtHeader->Signature != EFI_IMAGE_NT_SIGNATURE) {
2375 printf ("ERROR: Unrecognized image signature 0x%08X.\n", NtHeader->Signature);
2376 return EFI_UNSUPPORTED;
2377 }
2378 //
2379 // Get output
2380 //
2381 *EntryPoint = NtHeader->OptionalHeader.AddressOfEntryPoint;
2382 *BaseOfCode = NtHeader->OptionalHeader.BaseOfCode;
2383 *MachineType = NtHeader->FileHeader.Machine;
2384
2385 //
2386 // Verify machine type is supported
2387 //
2388 if (*MachineType != EFI_IMAGE_MACHINE_IA32 && *MachineType != EFI_IMAGE_MACHINE_IA64 && *MachineType != EFI_IMAGE_MACHINE_X64 && *MachineType != EFI_IMAGE_MACHINE_EBC) {
2389 printf ("ERROR: Unrecognized machine type in the PE32 file.\n");
2390 return EFI_UNSUPPORTED;
2391 }
2392
2393 return EFI_SUCCESS;
2394 }
2395 //
2396 // Exposed function implementations (prototypes are defined in GenFvImageLib.h)
2397 //
2398 EFI_STATUS
2399 GenerateFvImage (
2400 IN CHAR8 *InfFileImage,
2401 IN UINTN InfFileSize,
2402 OUT UINT8 **FvImage,
2403 OUT UINTN *FvImageSize,
2404 OUT CHAR8 **FvFileName,
2405 OUT UINT8 **SymImage,
2406 OUT UINTN *SymImageSize,
2407 OUT CHAR8 **SymFileName
2408 )
2409 /*++
2410
2411 Routine Description:
2412
2413 This is the main function which will be called from application.
2414
2415 Arguments:
2416
2417 InfFileImage Buffer containing the INF file contents.
2418 InfFileSize Size of the contents of the InfFileImage buffer.
2419 FvImage Pointer to the FV image created.
2420 FvImageSize Size of the FV image created and pointed to by FvImage.
2421 FvFileName Requested name for the FV file.
2422 SymImage Pointer to the Sym image created.
2423 SymImageSize Size of the Sym image created and pointed to by SymImage.
2424 SymFileName Requested name for the Sym file.
2425
2426 Returns:
2427
2428 EFI_SUCCESS Function completed successfully.
2429 EFI_OUT_OF_RESOURCES Could not allocate required resources.
2430 EFI_ABORTED Error encountered.
2431 EFI_INVALID_PARAMETER A required parameter was NULL.
2432
2433 --*/
2434 {
2435 EFI_STATUS Status;
2436 MEMORY_FILE InfMemoryFile;
2437 MEMORY_FILE FvImageMemoryFile;
2438 MEMORY_FILE SymImageMemoryFile;
2439 FV_INFO FvInfo;
2440 UINTN Index;
2441 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
2442 EFI_FFS_FILE_HEADER *VtfFileImage;
2443
2444 //
2445 // Check for invalid parameter
2446 //
2447 if (InfFileImage == NULL || FvImage == NULL || FvImageSize == NULL || FvFileName == NULL) {
2448 return EFI_INVALID_PARAMETER;
2449 }
2450 //
2451 // Initialize file structures
2452 //
2453 InfMemoryFile.FileImage = InfFileImage;
2454 InfMemoryFile.CurrentFilePointer = InfFileImage;
2455 InfMemoryFile.Eof = InfFileImage + InfFileSize;
2456
2457 //
2458 // Parse the FV inf file for header information
2459 //
2460 Status = ParseFvInf (&InfMemoryFile, &FvInfo);
2461 if (EFI_ERROR (Status)) {
2462 printf ("ERROR: Could not parse the input INF file.\n");
2463 return EFI_ABORTED;
2464 }
2465 //
2466 // Update the file name return values
2467 //
2468 strcpy (*FvFileName, FvInfo.FvName);
2469 strcpy (*SymFileName, FvInfo.SymName);
2470
2471 //
2472 // Calculate the FV size
2473 //
2474 *FvImageSize = FvInfo.Size;
2475
2476 //
2477 // Allocate the FV
2478 //
2479 *FvImage = malloc (*FvImageSize);
2480 if (*FvImage == NULL) {
2481 return EFI_OUT_OF_RESOURCES;
2482 }
2483 //
2484 // Allocate space for symbol file storage
2485 //
2486 *SymImage = malloc (SYMBOL_FILE_SIZE);
2487 if (*SymImage == NULL) {
2488 return EFI_OUT_OF_RESOURCES;
2489 }
2490 //
2491 // Initialize the FV to the erase polarity
2492 //
2493 if (FvInfo.FvAttributes & EFI_FVB_ERASE_POLARITY) {
2494 memset (*FvImage, -1, *FvImageSize);
2495 } else {
2496 memset (*FvImage, 0, *FvImageSize);
2497 }
2498 //
2499 // Initialize FV header
2500 //
2501 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) *FvImage;
2502
2503 //
2504 // Initialize the zero vector to all zeros.
2505 //
2506 memset (FvHeader->ZeroVector, 0, 16);
2507
2508 //
2509 // Copy the FFS GUID
2510 //
2511 memcpy (&FvHeader->FileSystemGuid, &FvInfo.FvGuid, sizeof (EFI_GUID));
2512
2513 FvHeader->FvLength = *FvImageSize;
2514 FvHeader->Signature = EFI_FVH_SIGNATURE;
2515 FvHeader->Attributes = FvInfo.FvAttributes;
2516 FvHeader->Revision = EFI_FVH_REVISION;
2517 FvHeader->Reserved[0] = 0;
2518 FvHeader->Reserved[1] = 0;
2519 FvHeader->Reserved[2] = 0;
2520
2521 //
2522 // Copy firmware block map
2523 //
2524 for (Index = 0; FvInfo.FvBlocks[Index].NumBlocks != 0; Index++) {
2525 FvHeader->FvBlockMap[Index].NumBlocks = FvInfo.FvBlocks[Index].NumBlocks;
2526 FvHeader->FvBlockMap[Index].BlockLength = FvInfo.FvBlocks[Index].BlockLength;
2527 }
2528 //
2529 // Add block map terminator
2530 //
2531 FvHeader->FvBlockMap[Index].NumBlocks = 0;
2532 FvHeader->FvBlockMap[Index].BlockLength = 0;
2533
2534 //
2535 // Complete the header
2536 //
2537 FvHeader->HeaderLength = (UINT16) (((UINTN) &(FvHeader->FvBlockMap[Index + 1])) - (UINTN) *FvImage);
2538 FvHeader->Checksum = 0;
2539 FvHeader->Checksum = CalculateChecksum16 ((UINT16 *) FvHeader, FvHeader->HeaderLength / sizeof (UINT16));
2540
2541 //
2542 // If there is no FFS file, find and generate each components of the FV
2543 //
2544 if (FvInfo.FvFiles[0][0] == 0) {
2545 Status = GenNonFFSFv (*FvImage, &FvInfo);
2546 if (EFI_ERROR (Status)) {
2547 printf ("ERROR: Could not generate NonFFS FV.\n");
2548 free (*FvImage);
2549 return EFI_ABORTED;
2550 }
2551
2552 return EFI_SUCCESS;
2553 }
2554 //
2555 // Initialize our "file" view of the buffer
2556 //
2557 FvImageMemoryFile.FileImage = *FvImage;
2558 FvImageMemoryFile.CurrentFilePointer = *FvImage + FvHeader->HeaderLength;
2559 FvImageMemoryFile.Eof = *FvImage +*FvImageSize;
2560
2561 //
2562 // Initialize our "file" view of the symbol file.
2563 //
2564 SymImageMemoryFile.FileImage = *SymImage;
2565 SymImageMemoryFile.CurrentFilePointer = *SymImage;
2566 SymImageMemoryFile.Eof = *FvImage + SYMBOL_FILE_SIZE;
2567
2568 //
2569 // Initialize the FV library.
2570 //
2571 InitializeFvLib (FvImageMemoryFile.FileImage, FvInfo.Size);
2572
2573 //
2574 // Files start on 8 byte alignments, so move to the next 8 byte aligned
2575 // address. For now, just assert if it isn't. Currently FV header is
2576 // always a multiple of 8 bytes.
2577 // BUGBUG: Handle this better
2578 //
2579 assert ((((UINTN) FvImageMemoryFile.CurrentFilePointer) % 8) == 0);
2580
2581 //
2582 // Initialize the VTF file address.
2583 //
2584 VtfFileImage = (EFI_FFS_FILE_HEADER *) FvImageMemoryFile.Eof;
2585
2586 //
2587 // Add files to FV
2588 //
2589 for (Index = 0; FvInfo.FvFiles[Index][0] != 0; Index++) {
2590 //
2591 // Add the file
2592 //
2593 Status = AddFile (&FvImageMemoryFile, &FvInfo, Index, &VtfFileImage, &SymImageMemoryFile);
2594
2595 //
2596 // Exit if error detected while adding the file
2597 //
2598 if (EFI_ERROR (Status)) {
2599 printf ("ERROR: Could not add file %s.\n", FvInfo.FvFiles[Index]);
2600 free (*FvImage);
2601 return EFI_ABORTED;
2602 }
2603 }
2604 //
2605 // If there is a VTF file, some special actions need to occur.
2606 //
2607 if ((UINTN) VtfFileImage != (UINTN) FvImageMemoryFile.Eof) {
2608 //
2609 // Pad from the end of the last file to the beginning of the VTF file.
2610 //
2611 Status = PadFvImage (&FvImageMemoryFile, VtfFileImage);
2612 if (EFI_ERROR (Status)) {
2613 printf ("ERROR: Could not create the pad file between the last file and the VTF file.\n");
2614 free (*FvImage);
2615 return EFI_ABORTED;
2616 }
2617 //
2618 // Update reset vector (SALE_ENTRY for IPF)
2619 // Now for IA32 and IA64 platform, the fv which has bsf file must have the
2620 // EndAddress of 0xFFFFFFFF. Thus, only this type fv needs to update the
2621 // reset vector. If the PEI Core is found, the VTF file will probably get
2622 // corrupted by updating the entry point.
2623 //
2624 if ((FvInfo.BaseAddress + FvInfo.Size) == FV_IMAGES_TOP_ADDRESS) {
2625 Status = UpdateResetVector (&FvImageMemoryFile, &FvInfo, VtfFileImage);
2626 if (EFI_ERROR(Status)) {
2627 printf ("ERROR: Could not update the reset vector.\n");
2628 free (*FvImage);
2629 return EFI_ABORTED;
2630 }
2631 }
2632 }
2633 //
2634 // Determine final Sym file size
2635 //
2636 *SymImageSize = SymImageMemoryFile.CurrentFilePointer - SymImageMemoryFile.FileImage;
2637
2638 return EFI_SUCCESS;
2639 }
2640
2641 EFI_STATUS
2642 UpdatePeiCoreEntryInFit (
2643 IN FIT_TABLE *FitTablePtr,
2644 IN UINT64 PeiCorePhysicalAddress
2645 )
2646 /*++
2647
2648 Routine Description:
2649
2650 This function is used to update the Pei Core address in FIT, this can be used by Sec core to pass control from
2651 Sec to Pei Core
2652
2653 Arguments:
2654
2655 FitTablePtr - The pointer of FIT_TABLE.
2656 PeiCorePhysicalAddress - The address of Pei Core entry.
2657
2658 Returns:
2659
2660 EFI_SUCCESS - The PEI_CORE FIT entry was updated successfully.
2661 EFI_NOT_FOUND - Not found the PEI_CORE FIT entry.
2662
2663 --*/
2664 {
2665 FIT_TABLE *TmpFitPtr;
2666 UINTN Index;
2667 UINTN NumFitComponents;
2668
2669 TmpFitPtr = FitTablePtr;
2670 NumFitComponents = TmpFitPtr->CompSize;
2671
2672 for (Index = 0; Index < NumFitComponents; Index++) {
2673 if ((TmpFitPtr->CvAndType & FIT_TYPE_MASK) == COMP_TYPE_FIT_PEICORE) {
2674 TmpFitPtr->CompAddress = PeiCorePhysicalAddress;
2675 return EFI_SUCCESS;
2676 }
2677
2678 TmpFitPtr++;
2679 }
2680
2681 return EFI_NOT_FOUND;
2682 }
2683
2684 VOID
2685 UpdateFitCheckSum (
2686 IN FIT_TABLE *FitTablePtr
2687 )
2688 /*++
2689
2690 Routine Description:
2691
2692 This function is used to update the checksum for FIT.
2693
2694
2695 Arguments:
2696
2697 FitTablePtr - The pointer of FIT_TABLE.
2698
2699 Returns:
2700
2701 None.
2702
2703 --*/
2704 {
2705 if ((FitTablePtr->CvAndType & CHECKSUM_BIT_MASK) >> 7) {
2706 FitTablePtr->CheckSum = 0;
2707 FitTablePtr->CheckSum = CalculateChecksum8 ((UINT8 *) FitTablePtr, FitTablePtr->CompSize * 16);
2708 }
2709 }