]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/CpuDxe/CpuDxe.c
UefiCpuPkg/CpuDxe: Fix multiple entries of RT_CODE in memory map
[mirror_edk2.git] / UefiCpuPkg / CpuDxe / CpuDxe.c
1 /** @file
2 CPU DXE Module to produce CPU ARCH Protocol.
3
4 Copyright (c) 2008 - 2017, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "CpuDxe.h"
16 #include "CpuMp.h"
17 #include "CpuPageTable.h"
18
19 #define CACHE_ATTRIBUTE_MASK (EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_WP)
20 #define MEMORY_ATTRIBUTE_MASK (EFI_MEMORY_RP | EFI_MEMORY_XP | EFI_MEMORY_RO)
21
22 //
23 // Global Variables
24 //
25 BOOLEAN InterruptState = FALSE;
26 EFI_HANDLE mCpuHandle = NULL;
27 BOOLEAN mIsFlushingGCD;
28 UINT64 mValidMtrrAddressMask;
29 UINT64 mValidMtrrBitsMask;
30 UINT64 mTimerPeriod = 0;
31
32 FIXED_MTRR mFixedMtrrTable[] = {
33 {
34 MSR_IA32_MTRR_FIX64K_00000,
35 0,
36 0x10000
37 },
38 {
39 MSR_IA32_MTRR_FIX16K_80000,
40 0x80000,
41 0x4000
42 },
43 {
44 MSR_IA32_MTRR_FIX16K_A0000,
45 0xA0000,
46 0x4000
47 },
48 {
49 MSR_IA32_MTRR_FIX4K_C0000,
50 0xC0000,
51 0x1000
52 },
53 {
54 MSR_IA32_MTRR_FIX4K_C8000,
55 0xC8000,
56 0x1000
57 },
58 {
59 MSR_IA32_MTRR_FIX4K_D0000,
60 0xD0000,
61 0x1000
62 },
63 {
64 MSR_IA32_MTRR_FIX4K_D8000,
65 0xD8000,
66 0x1000
67 },
68 {
69 MSR_IA32_MTRR_FIX4K_E0000,
70 0xE0000,
71 0x1000
72 },
73 {
74 MSR_IA32_MTRR_FIX4K_E8000,
75 0xE8000,
76 0x1000
77 },
78 {
79 MSR_IA32_MTRR_FIX4K_F0000,
80 0xF0000,
81 0x1000
82 },
83 {
84 MSR_IA32_MTRR_FIX4K_F8000,
85 0xF8000,
86 0x1000
87 },
88 };
89
90
91 EFI_CPU_ARCH_PROTOCOL gCpu = {
92 CpuFlushCpuDataCache,
93 CpuEnableInterrupt,
94 CpuDisableInterrupt,
95 CpuGetInterruptState,
96 CpuInit,
97 CpuRegisterInterruptHandler,
98 CpuGetTimerValue,
99 CpuSetMemoryAttributes,
100 1, // NumberOfTimers
101 4 // DmaBufferAlignment
102 };
103
104 //
105 // CPU Arch Protocol Functions
106 //
107
108 /**
109 Flush CPU data cache. If the instruction cache is fully coherent
110 with all DMA operations then function can just return EFI_SUCCESS.
111
112 @param This Protocol instance structure
113 @param Start Physical address to start flushing from.
114 @param Length Number of bytes to flush. Round up to chipset
115 granularity.
116 @param FlushType Specifies the type of flush operation to perform.
117
118 @retval EFI_SUCCESS If cache was flushed
119 @retval EFI_UNSUPPORTED If flush type is not supported.
120 @retval EFI_DEVICE_ERROR If requested range could not be flushed.
121
122 **/
123 EFI_STATUS
124 EFIAPI
125 CpuFlushCpuDataCache (
126 IN EFI_CPU_ARCH_PROTOCOL *This,
127 IN EFI_PHYSICAL_ADDRESS Start,
128 IN UINT64 Length,
129 IN EFI_CPU_FLUSH_TYPE FlushType
130 )
131 {
132 if (FlushType == EfiCpuFlushTypeWriteBackInvalidate) {
133 AsmWbinvd ();
134 return EFI_SUCCESS;
135 } else if (FlushType == EfiCpuFlushTypeInvalidate) {
136 AsmInvd ();
137 return EFI_SUCCESS;
138 } else {
139 return EFI_UNSUPPORTED;
140 }
141 }
142
143
144 /**
145 Enables CPU interrupts.
146
147 @param This Protocol instance structure
148
149 @retval EFI_SUCCESS If interrupts were enabled in the CPU
150 @retval EFI_DEVICE_ERROR If interrupts could not be enabled on the CPU.
151
152 **/
153 EFI_STATUS
154 EFIAPI
155 CpuEnableInterrupt (
156 IN EFI_CPU_ARCH_PROTOCOL *This
157 )
158 {
159 EnableInterrupts ();
160
161 InterruptState = TRUE;
162 return EFI_SUCCESS;
163 }
164
165
166 /**
167 Disables CPU interrupts.
168
169 @param This Protocol instance structure
170
171 @retval EFI_SUCCESS If interrupts were disabled in the CPU.
172 @retval EFI_DEVICE_ERROR If interrupts could not be disabled on the CPU.
173
174 **/
175 EFI_STATUS
176 EFIAPI
177 CpuDisableInterrupt (
178 IN EFI_CPU_ARCH_PROTOCOL *This
179 )
180 {
181 DisableInterrupts ();
182
183 InterruptState = FALSE;
184 return EFI_SUCCESS;
185 }
186
187
188 /**
189 Return the state of interrupts.
190
191 @param This Protocol instance structure
192 @param State Pointer to the CPU's current interrupt state
193
194 @retval EFI_SUCCESS If interrupts were disabled in the CPU.
195 @retval EFI_INVALID_PARAMETER State is NULL.
196
197 **/
198 EFI_STATUS
199 EFIAPI
200 CpuGetInterruptState (
201 IN EFI_CPU_ARCH_PROTOCOL *This,
202 OUT BOOLEAN *State
203 )
204 {
205 if (State == NULL) {
206 return EFI_INVALID_PARAMETER;
207 }
208
209 *State = InterruptState;
210 return EFI_SUCCESS;
211 }
212
213
214 /**
215 Generates an INIT to the CPU.
216
217 @param This Protocol instance structure
218 @param InitType Type of CPU INIT to perform
219
220 @retval EFI_SUCCESS If CPU INIT occurred. This value should never be
221 seen.
222 @retval EFI_DEVICE_ERROR If CPU INIT failed.
223 @retval EFI_UNSUPPORTED Requested type of CPU INIT not supported.
224
225 **/
226 EFI_STATUS
227 EFIAPI
228 CpuInit (
229 IN EFI_CPU_ARCH_PROTOCOL *This,
230 IN EFI_CPU_INIT_TYPE InitType
231 )
232 {
233 return EFI_UNSUPPORTED;
234 }
235
236
237 /**
238 Registers a function to be called from the CPU interrupt handler.
239
240 @param This Protocol instance structure
241 @param InterruptType Defines which interrupt to hook. IA-32
242 valid range is 0x00 through 0xFF
243 @param InterruptHandler A pointer to a function of type
244 EFI_CPU_INTERRUPT_HANDLER that is called
245 when a processor interrupt occurs. A null
246 pointer is an error condition.
247
248 @retval EFI_SUCCESS If handler installed or uninstalled.
249 @retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler
250 for InterruptType was previously installed.
251 @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for
252 InterruptType was not previously installed.
253 @retval EFI_UNSUPPORTED The interrupt specified by InterruptType
254 is not supported.
255
256 **/
257 EFI_STATUS
258 EFIAPI
259 CpuRegisterInterruptHandler (
260 IN EFI_CPU_ARCH_PROTOCOL *This,
261 IN EFI_EXCEPTION_TYPE InterruptType,
262 IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
263 )
264 {
265 return RegisterCpuInterruptHandler (InterruptType, InterruptHandler);
266 }
267
268
269 /**
270 Returns a timer value from one of the CPU's internal timers. There is no
271 inherent time interval between ticks but is a function of the CPU frequency.
272
273 @param This - Protocol instance structure.
274 @param TimerIndex - Specifies which CPU timer is requested.
275 @param TimerValue - Pointer to the returned timer value.
276 @param TimerPeriod - A pointer to the amount of time that passes
277 in femtoseconds (10-15) for each increment
278 of TimerValue. If TimerValue does not
279 increment at a predictable rate, then 0 is
280 returned. The amount of time that has
281 passed between two calls to GetTimerValue()
282 can be calculated with the formula
283 (TimerValue2 - TimerValue1) * TimerPeriod.
284 This parameter is optional and may be NULL.
285
286 @retval EFI_SUCCESS - If the CPU timer count was returned.
287 @retval EFI_UNSUPPORTED - If the CPU does not have any readable timers.
288 @retval EFI_DEVICE_ERROR - If an error occurred while reading the timer.
289 @retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL.
290
291 **/
292 EFI_STATUS
293 EFIAPI
294 CpuGetTimerValue (
295 IN EFI_CPU_ARCH_PROTOCOL *This,
296 IN UINT32 TimerIndex,
297 OUT UINT64 *TimerValue,
298 OUT UINT64 *TimerPeriod OPTIONAL
299 )
300 {
301 UINT64 BeginValue;
302 UINT64 EndValue;
303
304 if (TimerValue == NULL) {
305 return EFI_INVALID_PARAMETER;
306 }
307
308 if (TimerIndex != 0) {
309 return EFI_INVALID_PARAMETER;
310 }
311
312 *TimerValue = AsmReadTsc ();
313
314 if (TimerPeriod != NULL) {
315 if (mTimerPeriod == 0) {
316 //
317 // Read time stamp counter before and after delay of 100 microseconds
318 //
319 BeginValue = AsmReadTsc ();
320 MicroSecondDelay (100);
321 EndValue = AsmReadTsc ();
322 //
323 // Calculate the actual frequency
324 //
325 mTimerPeriod = DivU64x64Remainder (
326 MultU64x32 (
327 1000 * 1000 * 1000,
328 100
329 ),
330 EndValue - BeginValue,
331 NULL
332 );
333 }
334 *TimerPeriod = mTimerPeriod;
335 }
336
337 return EFI_SUCCESS;
338 }
339
340 /**
341 A minimal wrapper function that allows MtrrSetAllMtrrs() to be passed to
342 EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() as Procedure.
343
344 @param[in] Buffer Pointer to an MTRR_SETTINGS object, to be passed to
345 MtrrSetAllMtrrs().
346 **/
347 VOID
348 EFIAPI
349 SetMtrrsFromBuffer (
350 IN VOID *Buffer
351 )
352 {
353 MtrrSetAllMtrrs (Buffer);
354 }
355
356 /**
357 Implementation of SetMemoryAttributes() service of CPU Architecture Protocol.
358
359 This function modifies the attributes for the memory region specified by BaseAddress and
360 Length from their current attributes to the attributes specified by Attributes.
361
362 @param This The EFI_CPU_ARCH_PROTOCOL instance.
363 @param BaseAddress The physical address that is the start address of a memory region.
364 @param Length The size in bytes of the memory region.
365 @param Attributes The bit mask of attributes to set for the memory region.
366
367 @retval EFI_SUCCESS The attributes were set for the memory region.
368 @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by
369 BaseAddress and Length cannot be modified.
370 @retval EFI_INVALID_PARAMETER Length is zero.
371 Attributes specified an illegal combination of attributes that
372 cannot be set together.
373 @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
374 the memory resource range.
375 @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
376 resource range specified by BaseAddress and Length.
377 The bit mask of attributes is not support for the memory resource
378 range specified by BaseAddress and Length.
379
380 **/
381 EFI_STATUS
382 EFIAPI
383 CpuSetMemoryAttributes (
384 IN EFI_CPU_ARCH_PROTOCOL *This,
385 IN EFI_PHYSICAL_ADDRESS BaseAddress,
386 IN UINT64 Length,
387 IN UINT64 Attributes
388 )
389 {
390 RETURN_STATUS Status;
391 MTRR_MEMORY_CACHE_TYPE CacheType;
392 EFI_STATUS MpStatus;
393 EFI_MP_SERVICES_PROTOCOL *MpService;
394 MTRR_SETTINGS MtrrSettings;
395 UINT64 CacheAttributes;
396 UINT64 MemoryAttributes;
397 MTRR_MEMORY_CACHE_TYPE CurrentCacheType;
398
399 //
400 // If this function is called because GCD SetMemorySpaceAttributes () is called
401 // by RefreshGcdMemoryAttributes (), then we are just synchronzing GCD memory
402 // map with MTRR values. So there is no need to modify MTRRs, just return immediately
403 // to avoid unnecessary computing.
404 //
405 if (mIsFlushingGCD) {
406 DEBUG((DEBUG_INFO, " Flushing GCD\n"));
407 return EFI_SUCCESS;
408 }
409
410
411 CacheAttributes = Attributes & CACHE_ATTRIBUTE_MASK;
412 MemoryAttributes = Attributes & MEMORY_ATTRIBUTE_MASK;
413
414 if (Attributes != (CacheAttributes | MemoryAttributes)) {
415 return EFI_INVALID_PARAMETER;
416 }
417
418 if (CacheAttributes != 0) {
419 if (!IsMtrrSupported ()) {
420 return EFI_UNSUPPORTED;
421 }
422
423 switch (CacheAttributes) {
424 case EFI_MEMORY_UC:
425 CacheType = CacheUncacheable;
426 break;
427
428 case EFI_MEMORY_WC:
429 CacheType = CacheWriteCombining;
430 break;
431
432 case EFI_MEMORY_WT:
433 CacheType = CacheWriteThrough;
434 break;
435
436 case EFI_MEMORY_WP:
437 CacheType = CacheWriteProtected;
438 break;
439
440 case EFI_MEMORY_WB:
441 CacheType = CacheWriteBack;
442 break;
443
444 default:
445 return EFI_INVALID_PARAMETER;
446 }
447 CurrentCacheType = MtrrGetMemoryAttribute(BaseAddress);
448 if (CurrentCacheType != CacheType) {
449 //
450 // call MTRR libary function
451 //
452 Status = MtrrSetMemoryAttribute (
453 BaseAddress,
454 Length,
455 CacheType
456 );
457
458 if (!RETURN_ERROR (Status)) {
459 MpStatus = gBS->LocateProtocol (
460 &gEfiMpServiceProtocolGuid,
461 NULL,
462 (VOID **)&MpService
463 );
464 //
465 // Synchronize the update with all APs
466 //
467 if (!EFI_ERROR (MpStatus)) {
468 MtrrGetAllMtrrs (&MtrrSettings);
469 MpStatus = MpService->StartupAllAPs (
470 MpService, // This
471 SetMtrrsFromBuffer, // Procedure
472 FALSE, // SingleThread
473 NULL, // WaitEvent
474 0, // TimeoutInMicrosecsond
475 &MtrrSettings, // ProcedureArgument
476 NULL // FailedCpuList
477 );
478 ASSERT (MpStatus == EFI_SUCCESS || MpStatus == EFI_NOT_STARTED);
479 }
480 }
481 if (EFI_ERROR(Status)) {
482 return Status;
483 }
484 }
485 }
486
487 //
488 // Set memory attribute by page table
489 //
490 return AssignMemoryPageAttributes (NULL, BaseAddress, Length, MemoryAttributes, AllocatePages);
491 }
492
493 /**
494 Initializes the valid bits mask and valid address mask for MTRRs.
495
496 This function initializes the valid bits mask and valid address mask for MTRRs.
497
498 **/
499 VOID
500 InitializeMtrrMask (
501 VOID
502 )
503 {
504 UINT32 RegEax;
505 UINT8 PhysicalAddressBits;
506
507 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
508
509 if (RegEax >= 0x80000008) {
510 AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
511
512 PhysicalAddressBits = (UINT8) RegEax;
513 } else {
514 PhysicalAddressBits = 36;
515 }
516
517 mValidMtrrBitsMask = LShiftU64 (1, PhysicalAddressBits) - 1;
518 mValidMtrrAddressMask = mValidMtrrBitsMask & 0xfffffffffffff000ULL;
519 }
520
521 /**
522 Gets GCD Mem Space type from MTRR Type.
523
524 This function gets GCD Mem Space type from MTRR Type.
525
526 @param MtrrAttributes MTRR memory type
527
528 @return GCD Mem Space type
529
530 **/
531 UINT64
532 GetMemorySpaceAttributeFromMtrrType (
533 IN UINT8 MtrrAttributes
534 )
535 {
536 switch (MtrrAttributes) {
537 case MTRR_CACHE_UNCACHEABLE:
538 return EFI_MEMORY_UC;
539 case MTRR_CACHE_WRITE_COMBINING:
540 return EFI_MEMORY_WC;
541 case MTRR_CACHE_WRITE_THROUGH:
542 return EFI_MEMORY_WT;
543 case MTRR_CACHE_WRITE_PROTECTED:
544 return EFI_MEMORY_WP;
545 case MTRR_CACHE_WRITE_BACK:
546 return EFI_MEMORY_WB;
547 default:
548 return 0;
549 }
550 }
551
552 /**
553 Searches memory descriptors covered by given memory range.
554
555 This function searches into the Gcd Memory Space for descriptors
556 (from StartIndex to EndIndex) that contains the memory range
557 specified by BaseAddress and Length.
558
559 @param MemorySpaceMap Gcd Memory Space Map as array.
560 @param NumberOfDescriptors Number of descriptors in map.
561 @param BaseAddress BaseAddress for the requested range.
562 @param Length Length for the requested range.
563 @param StartIndex Start index into the Gcd Memory Space Map.
564 @param EndIndex End index into the Gcd Memory Space Map.
565
566 @retval EFI_SUCCESS Search successfully.
567 @retval EFI_NOT_FOUND The requested descriptors does not exist.
568
569 **/
570 EFI_STATUS
571 SearchGcdMemorySpaces (
572 IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
573 IN UINTN NumberOfDescriptors,
574 IN EFI_PHYSICAL_ADDRESS BaseAddress,
575 IN UINT64 Length,
576 OUT UINTN *StartIndex,
577 OUT UINTN *EndIndex
578 )
579 {
580 UINTN Index;
581
582 *StartIndex = 0;
583 *EndIndex = 0;
584 for (Index = 0; Index < NumberOfDescriptors; Index++) {
585 if (BaseAddress >= MemorySpaceMap[Index].BaseAddress &&
586 BaseAddress < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
587 *StartIndex = Index;
588 }
589 if (BaseAddress + Length - 1 >= MemorySpaceMap[Index].BaseAddress &&
590 BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
591 *EndIndex = Index;
592 return EFI_SUCCESS;
593 }
594 }
595 return EFI_NOT_FOUND;
596 }
597
598 /**
599 Sets the attributes for a specified range in Gcd Memory Space Map.
600
601 This function sets the attributes for a specified range in
602 Gcd Memory Space Map.
603
604 @param MemorySpaceMap Gcd Memory Space Map as array
605 @param NumberOfDescriptors Number of descriptors in map
606 @param BaseAddress BaseAddress for the range
607 @param Length Length for the range
608 @param Attributes Attributes to set
609
610 @retval EFI_SUCCESS Memory attributes set successfully
611 @retval EFI_NOT_FOUND The specified range does not exist in Gcd Memory Space
612
613 **/
614 EFI_STATUS
615 SetGcdMemorySpaceAttributes (
616 IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
617 IN UINTN NumberOfDescriptors,
618 IN EFI_PHYSICAL_ADDRESS BaseAddress,
619 IN UINT64 Length,
620 IN UINT64 Attributes
621 )
622 {
623 EFI_STATUS Status;
624 UINTN Index;
625 UINTN StartIndex;
626 UINTN EndIndex;
627 EFI_PHYSICAL_ADDRESS RegionStart;
628 UINT64 RegionLength;
629
630 //
631 // Get all memory descriptors covered by the memory range
632 //
633 Status = SearchGcdMemorySpaces (
634 MemorySpaceMap,
635 NumberOfDescriptors,
636 BaseAddress,
637 Length,
638 &StartIndex,
639 &EndIndex
640 );
641 if (EFI_ERROR (Status)) {
642 return Status;
643 }
644
645 //
646 // Go through all related descriptors and set attributes accordingly
647 //
648 for (Index = StartIndex; Index <= EndIndex; Index++) {
649 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
650 continue;
651 }
652 //
653 // Calculate the start and end address of the overlapping range
654 //
655 if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) {
656 RegionStart = BaseAddress;
657 } else {
658 RegionStart = MemorySpaceMap[Index].BaseAddress;
659 }
660 if (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
661 RegionLength = BaseAddress + Length - RegionStart;
662 } else {
663 RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart;
664 }
665 //
666 // Set memory attributes according to MTRR attribute and the original attribute of descriptor
667 //
668 gDS->SetMemorySpaceAttributes (
669 RegionStart,
670 RegionLength,
671 (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes)
672 );
673 }
674
675 return EFI_SUCCESS;
676 }
677
678
679 /**
680 Refreshes the GCD Memory Space attributes according to MTRRs.
681
682 This function refreshes the GCD Memory Space attributes according to MTRRs.
683
684 **/
685 VOID
686 RefreshMemoryAttributesFromMtrr (
687 VOID
688 )
689 {
690 EFI_STATUS Status;
691 UINTN Index;
692 UINTN SubIndex;
693 UINT64 RegValue;
694 EFI_PHYSICAL_ADDRESS BaseAddress;
695 UINT64 Length;
696 UINT64 Attributes;
697 UINT64 CurrentAttributes;
698 UINT8 MtrrType;
699 UINTN NumberOfDescriptors;
700 EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
701 UINT64 DefaultAttributes;
702 VARIABLE_MTRR VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR];
703 MTRR_FIXED_SETTINGS MtrrFixedSettings;
704 UINT32 FirmwareVariableMtrrCount;
705 UINT8 DefaultMemoryType;
706
707 FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount ();
708 ASSERT (FirmwareVariableMtrrCount <= MTRR_NUMBER_OF_VARIABLE_MTRR);
709
710 MemorySpaceMap = NULL;
711
712 //
713 // Initialize the valid bits mask and valid address mask for MTRRs
714 //
715 InitializeMtrrMask ();
716
717 //
718 // Get the memory attribute of variable MTRRs
719 //
720 MtrrGetMemoryAttributeInVariableMtrr (
721 mValidMtrrBitsMask,
722 mValidMtrrAddressMask,
723 VariableMtrr
724 );
725
726 //
727 // Get the memory space map from GCD
728 //
729 Status = gDS->GetMemorySpaceMap (
730 &NumberOfDescriptors,
731 &MemorySpaceMap
732 );
733 ASSERT_EFI_ERROR (Status);
734
735 DefaultMemoryType = (UINT8) MtrrGetDefaultMemoryType ();
736 DefaultAttributes = GetMemorySpaceAttributeFromMtrrType (DefaultMemoryType);
737
738 //
739 // Set default attributes to all spaces.
740 //
741 for (Index = 0; Index < NumberOfDescriptors; Index++) {
742 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
743 continue;
744 }
745 gDS->SetMemorySpaceAttributes (
746 MemorySpaceMap[Index].BaseAddress,
747 MemorySpaceMap[Index].Length,
748 (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) |
749 (MemorySpaceMap[Index].Capabilities & DefaultAttributes)
750 );
751 }
752
753 //
754 // Go for variable MTRRs with WB attribute
755 //
756 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
757 if (VariableMtrr[Index].Valid &&
758 VariableMtrr[Index].Type == MTRR_CACHE_WRITE_BACK) {
759 SetGcdMemorySpaceAttributes (
760 MemorySpaceMap,
761 NumberOfDescriptors,
762 VariableMtrr[Index].BaseAddress,
763 VariableMtrr[Index].Length,
764 EFI_MEMORY_WB
765 );
766 }
767 }
768
769 //
770 // Go for variable MTRRs with the attribute except for WB and UC attributes
771 //
772 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
773 if (VariableMtrr[Index].Valid &&
774 VariableMtrr[Index].Type != MTRR_CACHE_WRITE_BACK &&
775 VariableMtrr[Index].Type != MTRR_CACHE_UNCACHEABLE) {
776 Attributes = GetMemorySpaceAttributeFromMtrrType ((UINT8) VariableMtrr[Index].Type);
777 SetGcdMemorySpaceAttributes (
778 MemorySpaceMap,
779 NumberOfDescriptors,
780 VariableMtrr[Index].BaseAddress,
781 VariableMtrr[Index].Length,
782 Attributes
783 );
784 }
785 }
786
787 //
788 // Go for variable MTRRs with UC attribute
789 //
790 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
791 if (VariableMtrr[Index].Valid &&
792 VariableMtrr[Index].Type == MTRR_CACHE_UNCACHEABLE) {
793 SetGcdMemorySpaceAttributes (
794 MemorySpaceMap,
795 NumberOfDescriptors,
796 VariableMtrr[Index].BaseAddress,
797 VariableMtrr[Index].Length,
798 EFI_MEMORY_UC
799 );
800 }
801 }
802
803 //
804 // Go for fixed MTRRs
805 //
806 Attributes = 0;
807 BaseAddress = 0;
808 Length = 0;
809 MtrrGetFixedMtrr (&MtrrFixedSettings);
810 for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) {
811 RegValue = MtrrFixedSettings.Mtrr[Index];
812 //
813 // Check for continuous fixed MTRR sections
814 //
815 for (SubIndex = 0; SubIndex < 8; SubIndex++) {
816 MtrrType = (UINT8) RShiftU64 (RegValue, SubIndex * 8);
817 CurrentAttributes = GetMemorySpaceAttributeFromMtrrType (MtrrType);
818 if (Length == 0) {
819 //
820 // A new MTRR attribute begins
821 //
822 Attributes = CurrentAttributes;
823 } else {
824 //
825 // If fixed MTRR attribute changed, then set memory attribute for previous atrribute
826 //
827 if (CurrentAttributes != Attributes) {
828 SetGcdMemorySpaceAttributes (
829 MemorySpaceMap,
830 NumberOfDescriptors,
831 BaseAddress,
832 Length,
833 Attributes
834 );
835 BaseAddress = mFixedMtrrTable[Index].BaseAddress + mFixedMtrrTable[Index].Length * SubIndex;
836 Length = 0;
837 Attributes = CurrentAttributes;
838 }
839 }
840 Length += mFixedMtrrTable[Index].Length;
841 }
842 }
843 //
844 // Handle the last fixed MTRR region
845 //
846 SetGcdMemorySpaceAttributes (
847 MemorySpaceMap,
848 NumberOfDescriptors,
849 BaseAddress,
850 Length,
851 Attributes
852 );
853
854 //
855 // Free memory space map allocated by GCD service GetMemorySpaceMap ()
856 //
857 if (MemorySpaceMap != NULL) {
858 FreePool (MemorySpaceMap);
859 }
860 }
861
862 /**
863 Check if paging is enabled or not.
864 **/
865 BOOLEAN
866 IsPagingAndPageAddressExtensionsEnabled (
867 VOID
868 )
869 {
870 IA32_CR0 Cr0;
871 IA32_CR4 Cr4;
872
873 Cr0.UintN = AsmReadCr0 ();
874 Cr4.UintN = AsmReadCr4 ();
875
876 return ((Cr0.Bits.PG != 0) && (Cr4.Bits.PAE != 0));
877 }
878
879 /**
880 Refreshes the GCD Memory Space attributes according to MTRRs and Paging.
881
882 This function refreshes the GCD Memory Space attributes according to MTRRs
883 and page tables.
884
885 **/
886 VOID
887 RefreshGcdMemoryAttributes (
888 VOID
889 )
890 {
891 mIsFlushingGCD = TRUE;
892
893 if (IsMtrrSupported ()) {
894 RefreshMemoryAttributesFromMtrr ();
895 }
896
897 if (IsPagingAndPageAddressExtensionsEnabled ()) {
898 RefreshGcdMemoryAttributesFromPaging ();
899 }
900
901 mIsFlushingGCD = FALSE;
902 }
903
904 /**
905 Initialize Interrupt Descriptor Table for interrupt handling.
906
907 **/
908 VOID
909 InitInterruptDescriptorTable (
910 VOID
911 )
912 {
913 EFI_STATUS Status;
914 EFI_VECTOR_HANDOFF_INFO *VectorInfoList;
915 EFI_VECTOR_HANDOFF_INFO *VectorInfo;
916
917 VectorInfo = NULL;
918 Status = EfiGetSystemConfigurationTable (&gEfiVectorHandoffTableGuid, (VOID **) &VectorInfoList);
919 if (Status == EFI_SUCCESS && VectorInfoList != NULL) {
920 VectorInfo = VectorInfoList;
921 }
922 Status = InitializeCpuInterruptHandlers (VectorInfo);
923 ASSERT_EFI_ERROR (Status);
924 }
925
926
927 /**
928 Callback function for idle events.
929
930 @param Event Event whose notification function is being invoked.
931 @param Context The pointer to the notification function's context,
932 which is implementation-dependent.
933
934 **/
935 VOID
936 EFIAPI
937 IdleLoopEventCallback (
938 IN EFI_EVENT Event,
939 IN VOID *Context
940 )
941 {
942 CpuSleep ();
943 }
944
945 /**
946 Ensure the compatibility of a memory space descriptor with the MMIO aperture.
947
948 The memory space descriptor can come from the GCD memory space map, or it can
949 represent a gap between two neighboring memory space descriptors. In the
950 latter case, the GcdMemoryType field is expected to be
951 EfiGcdMemoryTypeNonExistent.
952
953 If the memory space descriptor already has type
954 EfiGcdMemoryTypeMemoryMappedIo, and its capabilities are a superset of the
955 required capabilities, then no action is taken -- it is by definition
956 compatible with the aperture.
957
958 Otherwise, the intersection of the memory space descriptor is calculated with
959 the aperture. If the intersection is the empty set (no overlap), no action is
960 taken; the memory space descriptor is compatible with the aperture.
961
962 Otherwise, the type of the descriptor is investigated again. If the type is
963 EfiGcdMemoryTypeNonExistent (representing a gap, or a genuine descriptor with
964 such a type), then an attempt is made to add the intersection as MMIO space
965 to the GCD memory space map, with the specified capabilities. This ensures
966 continuity for the aperture, and the descriptor is deemed compatible with the
967 aperture.
968
969 Otherwise, the memory space descriptor is incompatible with the MMIO
970 aperture.
971
972 @param[in] Base Base address of the aperture.
973 @param[in] Length Length of the aperture.
974 @param[in] Capabilities Capabilities required by the aperture.
975 @param[in] Descriptor The descriptor to ensure compatibility with the
976 aperture for.
977
978 @retval EFI_SUCCESS The descriptor is compatible. The GCD memory
979 space map may have been updated, for
980 continuity within the aperture.
981 @retval EFI_INVALID_PARAMETER The descriptor is incompatible.
982 @return Error codes from gDS->AddMemorySpace().
983 **/
984 EFI_STATUS
985 IntersectMemoryDescriptor (
986 IN UINT64 Base,
987 IN UINT64 Length,
988 IN UINT64 Capabilities,
989 IN CONST EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor
990 )
991 {
992 UINT64 IntersectionBase;
993 UINT64 IntersectionEnd;
994 EFI_STATUS Status;
995
996 if (Descriptor->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo &&
997 (Descriptor->Capabilities & Capabilities) == Capabilities) {
998 return EFI_SUCCESS;
999 }
1000
1001 IntersectionBase = MAX (Base, Descriptor->BaseAddress);
1002 IntersectionEnd = MIN (Base + Length,
1003 Descriptor->BaseAddress + Descriptor->Length);
1004 if (IntersectionBase >= IntersectionEnd) {
1005 //
1006 // The descriptor and the aperture don't overlap.
1007 //
1008 return EFI_SUCCESS;
1009 }
1010
1011 if (Descriptor->GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
1012 Status = gDS->AddMemorySpace (EfiGcdMemoryTypeMemoryMappedIo,
1013 IntersectionBase, IntersectionEnd - IntersectionBase,
1014 Capabilities);
1015
1016 DEBUG ((EFI_ERROR (Status) ? DEBUG_ERROR : DEBUG_VERBOSE,
1017 "%a: %a: add [%Lx, %Lx): %r\n", gEfiCallerBaseName, __FUNCTION__,
1018 IntersectionBase, IntersectionEnd, Status));
1019 return Status;
1020 }
1021
1022 DEBUG ((DEBUG_ERROR, "%a: %a: desc [%Lx, %Lx) type %u cap %Lx conflicts "
1023 "with aperture [%Lx, %Lx) cap %Lx\n", gEfiCallerBaseName, __FUNCTION__,
1024 Descriptor->BaseAddress, Descriptor->BaseAddress + Descriptor->Length,
1025 (UINT32)Descriptor->GcdMemoryType, Descriptor->Capabilities,
1026 Base, Base + Length, Capabilities));
1027 return EFI_INVALID_PARAMETER;
1028 }
1029
1030 /**
1031 Add MMIO space to GCD.
1032 The routine checks the GCD database and only adds those which are
1033 not added in the specified range to GCD.
1034
1035 @param Base Base address of the MMIO space.
1036 @param Length Length of the MMIO space.
1037 @param Capabilities Capabilities of the MMIO space.
1038
1039 @retval EFI_SUCCES The MMIO space was added successfully.
1040 **/
1041 EFI_STATUS
1042 AddMemoryMappedIoSpace (
1043 IN UINT64 Base,
1044 IN UINT64 Length,
1045 IN UINT64 Capabilities
1046 )
1047 {
1048 EFI_STATUS Status;
1049 UINTN Index;
1050 UINTN NumberOfDescriptors;
1051 EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
1052
1053 Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
1054 if (EFI_ERROR (Status)) {
1055 DEBUG ((DEBUG_ERROR, "%a: %a: GetMemorySpaceMap(): %r\n",
1056 gEfiCallerBaseName, __FUNCTION__, Status));
1057 return Status;
1058 }
1059
1060 for (Index = 0; Index < NumberOfDescriptors; Index++) {
1061 Status = IntersectMemoryDescriptor (Base, Length, Capabilities,
1062 &MemorySpaceMap[Index]);
1063 if (EFI_ERROR (Status)) {
1064 goto FreeMemorySpaceMap;
1065 }
1066 }
1067
1068 DEBUG_CODE (
1069 //
1070 // Make sure there are adjacent descriptors covering [Base, Base + Length).
1071 // It is possible that they have not been merged; merging can be prevented
1072 // by allocation and different capabilities.
1073 //
1074 UINT64 CheckBase;
1075 EFI_STATUS CheckStatus;
1076 EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;
1077
1078 for (CheckBase = Base;
1079 CheckBase < Base + Length;
1080 CheckBase = Descriptor.BaseAddress + Descriptor.Length) {
1081 CheckStatus = gDS->GetMemorySpaceDescriptor (CheckBase, &Descriptor);
1082 ASSERT_EFI_ERROR (CheckStatus);
1083 ASSERT (Descriptor.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo);
1084 ASSERT ((Descriptor.Capabilities & Capabilities) == Capabilities);
1085 }
1086 );
1087
1088 FreeMemorySpaceMap:
1089 FreePool (MemorySpaceMap);
1090
1091 return Status;
1092 }
1093
1094 /**
1095 Add and allocate CPU local APIC memory mapped space.
1096
1097 @param[in]ImageHandle Image handle this driver.
1098
1099 **/
1100 VOID
1101 AddLocalApicMemorySpace (
1102 IN EFI_HANDLE ImageHandle
1103 )
1104 {
1105 EFI_STATUS Status;
1106 EFI_PHYSICAL_ADDRESS BaseAddress;
1107
1108 BaseAddress = (EFI_PHYSICAL_ADDRESS) GetLocalApicBaseAddress();
1109 Status = AddMemoryMappedIoSpace (BaseAddress, SIZE_4KB, EFI_MEMORY_UC);
1110 ASSERT_EFI_ERROR (Status);
1111
1112 //
1113 // Try to allocate APIC memory mapped space, does not check return
1114 // status because it may be allocated by other driver, or DXE Core if
1115 // this range is built into Memory Allocation HOB.
1116 //
1117 Status = gDS->AllocateMemorySpace (
1118 EfiGcdAllocateAddress,
1119 EfiGcdMemoryTypeMemoryMappedIo,
1120 0,
1121 SIZE_4KB,
1122 &BaseAddress,
1123 ImageHandle,
1124 NULL
1125 );
1126 if (EFI_ERROR (Status)) {
1127 DEBUG ((DEBUG_INFO, "%a: %a: AllocateMemorySpace() Status - %r\n",
1128 gEfiCallerBaseName, __FUNCTION__, Status));
1129 }
1130 }
1131
1132 /**
1133 Initialize the state information for the CPU Architectural Protocol.
1134
1135 @param ImageHandle Image handle this driver.
1136 @param SystemTable Pointer to the System Table.
1137
1138 @retval EFI_SUCCESS Thread can be successfully created
1139 @retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
1140 @retval EFI_DEVICE_ERROR Cannot create the thread
1141
1142 **/
1143 EFI_STATUS
1144 EFIAPI
1145 InitializeCpu (
1146 IN EFI_HANDLE ImageHandle,
1147 IN EFI_SYSTEM_TABLE *SystemTable
1148 )
1149 {
1150 EFI_STATUS Status;
1151 EFI_EVENT IdleLoopEvent;
1152
1153 InitializePageTableLib();
1154
1155 InitializeFloatingPointUnits ();
1156
1157 //
1158 // Make sure interrupts are disabled
1159 //
1160 DisableInterrupts ();
1161
1162 //
1163 // Init GDT for DXE
1164 //
1165 InitGlobalDescriptorTable ();
1166
1167 //
1168 // Setup IDT pointer, IDT and interrupt entry points
1169 //
1170 InitInterruptDescriptorTable ();
1171
1172 //
1173 // Install CPU Architectural Protocol
1174 //
1175 Status = gBS->InstallMultipleProtocolInterfaces (
1176 &mCpuHandle,
1177 &gEfiCpuArchProtocolGuid, &gCpu,
1178 NULL
1179 );
1180 ASSERT_EFI_ERROR (Status);
1181
1182 //
1183 // Refresh GCD memory space map according to MTRR value.
1184 //
1185 RefreshGcdMemoryAttributes ();
1186
1187 //
1188 // Add and allocate local APIC memory mapped space
1189 //
1190 AddLocalApicMemorySpace (ImageHandle);
1191
1192 //
1193 // Setup a callback for idle events
1194 //
1195 Status = gBS->CreateEventEx (
1196 EVT_NOTIFY_SIGNAL,
1197 TPL_NOTIFY,
1198 IdleLoopEventCallback,
1199 NULL,
1200 &gIdleLoopEventGuid,
1201 &IdleLoopEvent
1202 );
1203 ASSERT_EFI_ERROR (Status);
1204
1205 InitializeMpSupport ();
1206
1207 return Status;
1208 }
1209