]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/CpuDxe/CpuDxe.c
UefiCpuPkg/CpuDxe: Add no-op InitializeMpSupport
[mirror_edk2.git] / UefiCpuPkg / CpuDxe / CpuDxe.c
1 /** @file
2 CPU DXE Module.
3
4 Copyright (c) 2008 - 2013, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "CpuDxe.h"
16 #include "CpuMp.h"
17
18 //
19 // Global Variables
20 //
21 BOOLEAN InterruptState = FALSE;
22 EFI_HANDLE mCpuHandle = NULL;
23 BOOLEAN mIsFlushingGCD;
24 UINT64 mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS;
25 UINT64 mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK;
26
27 FIXED_MTRR mFixedMtrrTable[] = {
28 {
29 MTRR_LIB_IA32_MTRR_FIX64K_00000,
30 0,
31 0x10000
32 },
33 {
34 MTRR_LIB_IA32_MTRR_FIX16K_80000,
35 0x80000,
36 0x4000
37 },
38 {
39 MTRR_LIB_IA32_MTRR_FIX16K_A0000,
40 0xA0000,
41 0x4000
42 },
43 {
44 MTRR_LIB_IA32_MTRR_FIX4K_C0000,
45 0xC0000,
46 0x1000
47 },
48 {
49 MTRR_LIB_IA32_MTRR_FIX4K_C8000,
50 0xC8000,
51 0x1000
52 },
53 {
54 MTRR_LIB_IA32_MTRR_FIX4K_D0000,
55 0xD0000,
56 0x1000
57 },
58 {
59 MTRR_LIB_IA32_MTRR_FIX4K_D8000,
60 0xD8000,
61 0x1000
62 },
63 {
64 MTRR_LIB_IA32_MTRR_FIX4K_E0000,
65 0xE0000,
66 0x1000
67 },
68 {
69 MTRR_LIB_IA32_MTRR_FIX4K_E8000,
70 0xE8000,
71 0x1000
72 },
73 {
74 MTRR_LIB_IA32_MTRR_FIX4K_F0000,
75 0xF0000,
76 0x1000
77 },
78 {
79 MTRR_LIB_IA32_MTRR_FIX4K_F8000,
80 0xF8000,
81 0x1000
82 },
83 };
84
85
86 EFI_CPU_ARCH_PROTOCOL gCpu = {
87 CpuFlushCpuDataCache,
88 CpuEnableInterrupt,
89 CpuDisableInterrupt,
90 CpuGetInterruptState,
91 CpuInit,
92 CpuRegisterInterruptHandler,
93 CpuGetTimerValue,
94 CpuSetMemoryAttributes,
95 1, // NumberOfTimers
96 4 // DmaBufferAlignment
97 };
98
99 //
100 // CPU Arch Protocol Functions
101 //
102
103 /**
104 Flush CPU data cache. If the instruction cache is fully coherent
105 with all DMA operations then function can just return EFI_SUCCESS.
106
107 @param This Protocol instance structure
108 @param Start Physical address to start flushing from.
109 @param Length Number of bytes to flush. Round up to chipset
110 granularity.
111 @param FlushType Specifies the type of flush operation to perform.
112
113 @retval EFI_SUCCESS If cache was flushed
114 @retval EFI_UNSUPPORTED If flush type is not supported.
115 @retval EFI_DEVICE_ERROR If requested range could not be flushed.
116
117 **/
118 EFI_STATUS
119 EFIAPI
120 CpuFlushCpuDataCache (
121 IN EFI_CPU_ARCH_PROTOCOL *This,
122 IN EFI_PHYSICAL_ADDRESS Start,
123 IN UINT64 Length,
124 IN EFI_CPU_FLUSH_TYPE FlushType
125 )
126 {
127 if (FlushType == EfiCpuFlushTypeWriteBackInvalidate) {
128 AsmWbinvd ();
129 return EFI_SUCCESS;
130 } else if (FlushType == EfiCpuFlushTypeInvalidate) {
131 AsmInvd ();
132 return EFI_SUCCESS;
133 } else {
134 return EFI_UNSUPPORTED;
135 }
136 }
137
138
139 /**
140 Enables CPU interrupts.
141
142 @param This Protocol instance structure
143
144 @retval EFI_SUCCESS If interrupts were enabled in the CPU
145 @retval EFI_DEVICE_ERROR If interrupts could not be enabled on the CPU.
146
147 **/
148 EFI_STATUS
149 EFIAPI
150 CpuEnableInterrupt (
151 IN EFI_CPU_ARCH_PROTOCOL *This
152 )
153 {
154 EnableInterrupts ();
155
156 InterruptState = TRUE;
157 return EFI_SUCCESS;
158 }
159
160
161 /**
162 Disables CPU interrupts.
163
164 @param This Protocol instance structure
165
166 @retval EFI_SUCCESS If interrupts were disabled in the CPU.
167 @retval EFI_DEVICE_ERROR If interrupts could not be disabled on the CPU.
168
169 **/
170 EFI_STATUS
171 EFIAPI
172 CpuDisableInterrupt (
173 IN EFI_CPU_ARCH_PROTOCOL *This
174 )
175 {
176 DisableInterrupts ();
177
178 InterruptState = FALSE;
179 return EFI_SUCCESS;
180 }
181
182
183 /**
184 Return the state of interrupts.
185
186 @param This Protocol instance structure
187 @param State Pointer to the CPU's current interrupt state
188
189 @retval EFI_SUCCESS If interrupts were disabled in the CPU.
190 @retval EFI_INVALID_PARAMETER State is NULL.
191
192 **/
193 EFI_STATUS
194 EFIAPI
195 CpuGetInterruptState (
196 IN EFI_CPU_ARCH_PROTOCOL *This,
197 OUT BOOLEAN *State
198 )
199 {
200 if (State == NULL) {
201 return EFI_INVALID_PARAMETER;
202 }
203
204 *State = InterruptState;
205 return EFI_SUCCESS;
206 }
207
208
209 /**
210 Generates an INIT to the CPU.
211
212 @param This Protocol instance structure
213 @param InitType Type of CPU INIT to perform
214
215 @retval EFI_SUCCESS If CPU INIT occurred. This value should never be
216 seen.
217 @retval EFI_DEVICE_ERROR If CPU INIT failed.
218 @retval EFI_UNSUPPORTED Requested type of CPU INIT not supported.
219
220 **/
221 EFI_STATUS
222 EFIAPI
223 CpuInit (
224 IN EFI_CPU_ARCH_PROTOCOL *This,
225 IN EFI_CPU_INIT_TYPE InitType
226 )
227 {
228 return EFI_UNSUPPORTED;
229 }
230
231
232 /**
233 Registers a function to be called from the CPU interrupt handler.
234
235 @param This Protocol instance structure
236 @param InterruptType Defines which interrupt to hook. IA-32
237 valid range is 0x00 through 0xFF
238 @param InterruptHandler A pointer to a function of type
239 EFI_CPU_INTERRUPT_HANDLER that is called
240 when a processor interrupt occurs. A null
241 pointer is an error condition.
242
243 @retval EFI_SUCCESS If handler installed or uninstalled.
244 @retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler
245 for InterruptType was previously installed.
246 @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for
247 InterruptType was not previously installed.
248 @retval EFI_UNSUPPORTED The interrupt specified by InterruptType
249 is not supported.
250
251 **/
252 EFI_STATUS
253 EFIAPI
254 CpuRegisterInterruptHandler (
255 IN EFI_CPU_ARCH_PROTOCOL *This,
256 IN EFI_EXCEPTION_TYPE InterruptType,
257 IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
258 )
259 {
260 return RegisterCpuInterruptHandler (InterruptType, InterruptHandler);
261 }
262
263
264 /**
265 Returns a timer value from one of the CPU's internal timers. There is no
266 inherent time interval between ticks but is a function of the CPU frequency.
267
268 @param This - Protocol instance structure.
269 @param TimerIndex - Specifies which CPU timer is requested.
270 @param TimerValue - Pointer to the returned timer value.
271 @param TimerPeriod - A pointer to the amount of time that passes
272 in femtoseconds (10-15) for each increment
273 of TimerValue. If TimerValue does not
274 increment at a predictable rate, then 0 is
275 returned. The amount of time that has
276 passed between two calls to GetTimerValue()
277 can be calculated with the formula
278 (TimerValue2 - TimerValue1) * TimerPeriod.
279 This parameter is optional and may be NULL.
280
281 @retval EFI_SUCCESS - If the CPU timer count was returned.
282 @retval EFI_UNSUPPORTED - If the CPU does not have any readable timers.
283 @retval EFI_DEVICE_ERROR - If an error occurred while reading the timer.
284 @retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL.
285
286 **/
287 EFI_STATUS
288 EFIAPI
289 CpuGetTimerValue (
290 IN EFI_CPU_ARCH_PROTOCOL *This,
291 IN UINT32 TimerIndex,
292 OUT UINT64 *TimerValue,
293 OUT UINT64 *TimerPeriod OPTIONAL
294 )
295 {
296 if (TimerValue == NULL) {
297 return EFI_INVALID_PARAMETER;
298 }
299
300 if (TimerIndex != 0) {
301 return EFI_INVALID_PARAMETER;
302 }
303
304 *TimerValue = AsmReadTsc ();
305
306 if (TimerPeriod != NULL) {
307 //
308 // BugBug: Hard coded. Don't know how to do this generically
309 //
310 *TimerPeriod = 1000000000;
311 }
312
313 return EFI_SUCCESS;
314 }
315
316
317 /**
318 Implementation of SetMemoryAttributes() service of CPU Architecture Protocol.
319
320 This function modifies the attributes for the memory region specified by BaseAddress and
321 Length from their current attributes to the attributes specified by Attributes.
322
323 @param This The EFI_CPU_ARCH_PROTOCOL instance.
324 @param BaseAddress The physical address that is the start address of a memory region.
325 @param Length The size in bytes of the memory region.
326 @param Attributes The bit mask of attributes to set for the memory region.
327
328 @retval EFI_SUCCESS The attributes were set for the memory region.
329 @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by
330 BaseAddress and Length cannot be modified.
331 @retval EFI_INVALID_PARAMETER Length is zero.
332 Attributes specified an illegal combination of attributes that
333 cannot be set together.
334 @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
335 the memory resource range.
336 @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
337 resource range specified by BaseAddress and Length.
338 The bit mask of attributes is not support for the memory resource
339 range specified by BaseAddress and Length.
340
341 **/
342 EFI_STATUS
343 EFIAPI
344 CpuSetMemoryAttributes (
345 IN EFI_CPU_ARCH_PROTOCOL *This,
346 IN EFI_PHYSICAL_ADDRESS BaseAddress,
347 IN UINT64 Length,
348 IN UINT64 Attributes
349 )
350 {
351 RETURN_STATUS Status;
352 MTRR_MEMORY_CACHE_TYPE CacheType;
353
354 if (!IsMtrrSupported ()) {
355 return EFI_UNSUPPORTED;
356 }
357
358 //
359 // If this function is called because GCD SetMemorySpaceAttributes () is called
360 // by RefreshGcdMemoryAttributes (), then we are just synchronzing GCD memory
361 // map with MTRR values. So there is no need to modify MTRRs, just return immediately
362 // to avoid unnecessary computing.
363 //
364 if (mIsFlushingGCD) {
365 DEBUG((EFI_D_INFO, " Flushing GCD\n"));
366 return EFI_SUCCESS;
367 }
368
369 switch (Attributes) {
370 case EFI_MEMORY_UC:
371 CacheType = CacheUncacheable;
372 break;
373
374 case EFI_MEMORY_WC:
375 CacheType = CacheWriteCombining;
376 break;
377
378 case EFI_MEMORY_WT:
379 CacheType = CacheWriteThrough;
380 break;
381
382 case EFI_MEMORY_WP:
383 CacheType = CacheWriteProtected;
384 break;
385
386 case EFI_MEMORY_WB:
387 CacheType = CacheWriteBack;
388 break;
389
390 case EFI_MEMORY_UCE:
391 case EFI_MEMORY_RP:
392 case EFI_MEMORY_XP:
393 case EFI_MEMORY_RUNTIME:
394 return EFI_UNSUPPORTED;
395
396 default:
397 return EFI_INVALID_PARAMETER;
398 }
399 //
400 // call MTRR libary function
401 //
402 Status = MtrrSetMemoryAttribute (
403 BaseAddress,
404 Length,
405 CacheType
406 );
407
408 return (EFI_STATUS) Status;
409 }
410
411 /**
412 Initializes the valid bits mask and valid address mask for MTRRs.
413
414 This function initializes the valid bits mask and valid address mask for MTRRs.
415
416 **/
417 VOID
418 InitializeMtrrMask (
419 VOID
420 )
421 {
422 UINT32 RegEax;
423 UINT8 PhysicalAddressBits;
424
425 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
426
427 if (RegEax >= 0x80000008) {
428 AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
429
430 PhysicalAddressBits = (UINT8) RegEax;
431
432 mValidMtrrBitsMask = LShiftU64 (1, PhysicalAddressBits) - 1;
433 mValidMtrrAddressMask = mValidMtrrBitsMask & 0xfffffffffffff000ULL;
434 } else {
435 mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK;
436 mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS;
437 }
438 }
439
440 /**
441 Gets GCD Mem Space type from MTRR Type.
442
443 This function gets GCD Mem Space type from MTRR Type.
444
445 @param MtrrAttributes MTRR memory type
446
447 @return GCD Mem Space type
448
449 **/
450 UINT64
451 GetMemorySpaceAttributeFromMtrrType (
452 IN UINT8 MtrrAttributes
453 )
454 {
455 switch (MtrrAttributes) {
456 case MTRR_CACHE_UNCACHEABLE:
457 return EFI_MEMORY_UC;
458 case MTRR_CACHE_WRITE_COMBINING:
459 return EFI_MEMORY_WC;
460 case MTRR_CACHE_WRITE_THROUGH:
461 return EFI_MEMORY_WT;
462 case MTRR_CACHE_WRITE_PROTECTED:
463 return EFI_MEMORY_WP;
464 case MTRR_CACHE_WRITE_BACK:
465 return EFI_MEMORY_WB;
466 default:
467 return 0;
468 }
469 }
470
471 /**
472 Searches memory descriptors covered by given memory range.
473
474 This function searches into the Gcd Memory Space for descriptors
475 (from StartIndex to EndIndex) that contains the memory range
476 specified by BaseAddress and Length.
477
478 @param MemorySpaceMap Gcd Memory Space Map as array.
479 @param NumberOfDescriptors Number of descriptors in map.
480 @param BaseAddress BaseAddress for the requested range.
481 @param Length Length for the requested range.
482 @param StartIndex Start index into the Gcd Memory Space Map.
483 @param EndIndex End index into the Gcd Memory Space Map.
484
485 @retval EFI_SUCCESS Search successfully.
486 @retval EFI_NOT_FOUND The requested descriptors does not exist.
487
488 **/
489 EFI_STATUS
490 SearchGcdMemorySpaces (
491 IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
492 IN UINTN NumberOfDescriptors,
493 IN EFI_PHYSICAL_ADDRESS BaseAddress,
494 IN UINT64 Length,
495 OUT UINTN *StartIndex,
496 OUT UINTN *EndIndex
497 )
498 {
499 UINTN Index;
500
501 *StartIndex = 0;
502 *EndIndex = 0;
503 for (Index = 0; Index < NumberOfDescriptors; Index++) {
504 if (BaseAddress >= MemorySpaceMap[Index].BaseAddress &&
505 BaseAddress < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
506 *StartIndex = Index;
507 }
508 if (BaseAddress + Length - 1 >= MemorySpaceMap[Index].BaseAddress &&
509 BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
510 *EndIndex = Index;
511 return EFI_SUCCESS;
512 }
513 }
514 return EFI_NOT_FOUND;
515 }
516
517 /**
518 Sets the attributes for a specified range in Gcd Memory Space Map.
519
520 This function sets the attributes for a specified range in
521 Gcd Memory Space Map.
522
523 @param MemorySpaceMap Gcd Memory Space Map as array
524 @param NumberOfDescriptors Number of descriptors in map
525 @param BaseAddress BaseAddress for the range
526 @param Length Length for the range
527 @param Attributes Attributes to set
528
529 @retval EFI_SUCCESS Memory attributes set successfully
530 @retval EFI_NOT_FOUND The specified range does not exist in Gcd Memory Space
531
532 **/
533 EFI_STATUS
534 SetGcdMemorySpaceAttributes (
535 IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
536 IN UINTN NumberOfDescriptors,
537 IN EFI_PHYSICAL_ADDRESS BaseAddress,
538 IN UINT64 Length,
539 IN UINT64 Attributes
540 )
541 {
542 EFI_STATUS Status;
543 UINTN Index;
544 UINTN StartIndex;
545 UINTN EndIndex;
546 EFI_PHYSICAL_ADDRESS RegionStart;
547 UINT64 RegionLength;
548
549 //
550 // Get all memory descriptors covered by the memory range
551 //
552 Status = SearchGcdMemorySpaces (
553 MemorySpaceMap,
554 NumberOfDescriptors,
555 BaseAddress,
556 Length,
557 &StartIndex,
558 &EndIndex
559 );
560 if (EFI_ERROR (Status)) {
561 return Status;
562 }
563
564 //
565 // Go through all related descriptors and set attributes accordingly
566 //
567 for (Index = StartIndex; Index <= EndIndex; Index++) {
568 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
569 continue;
570 }
571 //
572 // Calculate the start and end address of the overlapping range
573 //
574 if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) {
575 RegionStart = BaseAddress;
576 } else {
577 RegionStart = MemorySpaceMap[Index].BaseAddress;
578 }
579 if (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
580 RegionLength = BaseAddress + Length - RegionStart;
581 } else {
582 RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart;
583 }
584 //
585 // Set memory attributes according to MTRR attribute and the original attribute of descriptor
586 //
587 gDS->SetMemorySpaceAttributes (
588 RegionStart,
589 RegionLength,
590 (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes)
591 );
592 }
593
594 return EFI_SUCCESS;
595 }
596
597
598 /**
599 Refreshes the GCD Memory Space attributes according to MTRRs.
600
601 This function refreshes the GCD Memory Space attributes according to MTRRs.
602
603 **/
604 VOID
605 RefreshGcdMemoryAttributes (
606 VOID
607 )
608 {
609 EFI_STATUS Status;
610 UINTN Index;
611 UINTN SubIndex;
612 UINT64 RegValue;
613 EFI_PHYSICAL_ADDRESS BaseAddress;
614 UINT64 Length;
615 UINT64 Attributes;
616 UINT64 CurrentAttributes;
617 UINT8 MtrrType;
618 UINTN NumberOfDescriptors;
619 EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
620 UINT64 DefaultAttributes;
621 VARIABLE_MTRR VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR];
622 MTRR_FIXED_SETTINGS MtrrFixedSettings;
623 UINT32 FirmwareVariableMtrrCount;
624 UINT8 DefaultMemoryType;
625
626 if (!IsMtrrSupported ()) {
627 return;
628 }
629
630 FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount ();
631 ASSERT (FirmwareVariableMtrrCount <= MTRR_NUMBER_OF_VARIABLE_MTRR);
632
633 mIsFlushingGCD = TRUE;
634 MemorySpaceMap = NULL;
635
636 //
637 // Initialize the valid bits mask and valid address mask for MTRRs
638 //
639 InitializeMtrrMask ();
640
641 //
642 // Get the memory attribute of variable MTRRs
643 //
644 MtrrGetMemoryAttributeInVariableMtrr (
645 mValidMtrrBitsMask,
646 mValidMtrrAddressMask,
647 VariableMtrr
648 );
649
650 //
651 // Get the memory space map from GCD
652 //
653 Status = gDS->GetMemorySpaceMap (
654 &NumberOfDescriptors,
655 &MemorySpaceMap
656 );
657 ASSERT_EFI_ERROR (Status);
658
659 DefaultMemoryType = (UINT8) MtrrGetDefaultMemoryType ();
660 DefaultAttributes = GetMemorySpaceAttributeFromMtrrType (DefaultMemoryType);
661
662 //
663 // Set default attributes to all spaces.
664 //
665 for (Index = 0; Index < NumberOfDescriptors; Index++) {
666 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
667 continue;
668 }
669 gDS->SetMemorySpaceAttributes (
670 MemorySpaceMap[Index].BaseAddress,
671 MemorySpaceMap[Index].Length,
672 (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) |
673 (MemorySpaceMap[Index].Capabilities & DefaultAttributes)
674 );
675 }
676
677 //
678 // Go for variable MTRRs with WB attribute
679 //
680 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
681 if (VariableMtrr[Index].Valid &&
682 VariableMtrr[Index].Type == MTRR_CACHE_WRITE_BACK) {
683 SetGcdMemorySpaceAttributes (
684 MemorySpaceMap,
685 NumberOfDescriptors,
686 VariableMtrr[Index].BaseAddress,
687 VariableMtrr[Index].Length,
688 EFI_MEMORY_WB
689 );
690 }
691 }
692
693 //
694 // Go for variable MTRRs with the attribute except for WB and UC attributes
695 //
696 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
697 if (VariableMtrr[Index].Valid &&
698 VariableMtrr[Index].Type != MTRR_CACHE_WRITE_BACK &&
699 VariableMtrr[Index].Type != MTRR_CACHE_UNCACHEABLE) {
700 Attributes = GetMemorySpaceAttributeFromMtrrType ((UINT8) VariableMtrr[Index].Type);
701 SetGcdMemorySpaceAttributes (
702 MemorySpaceMap,
703 NumberOfDescriptors,
704 VariableMtrr[Index].BaseAddress,
705 VariableMtrr[Index].Length,
706 Attributes
707 );
708 }
709 }
710
711 //
712 // Go for variable MTRRs with UC attribute
713 //
714 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
715 if (VariableMtrr[Index].Valid &&
716 VariableMtrr[Index].Type == MTRR_CACHE_UNCACHEABLE) {
717 SetGcdMemorySpaceAttributes (
718 MemorySpaceMap,
719 NumberOfDescriptors,
720 VariableMtrr[Index].BaseAddress,
721 VariableMtrr[Index].Length,
722 EFI_MEMORY_UC
723 );
724 }
725 }
726
727 //
728 // Go for fixed MTRRs
729 //
730 Attributes = 0;
731 BaseAddress = 0;
732 Length = 0;
733 MtrrGetFixedMtrr (&MtrrFixedSettings);
734 for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) {
735 RegValue = MtrrFixedSettings.Mtrr[Index];
736 //
737 // Check for continuous fixed MTRR sections
738 //
739 for (SubIndex = 0; SubIndex < 8; SubIndex++) {
740 MtrrType = (UINT8) RShiftU64 (RegValue, SubIndex * 8);
741 CurrentAttributes = GetMemorySpaceAttributeFromMtrrType (MtrrType);
742 if (Length == 0) {
743 //
744 // A new MTRR attribute begins
745 //
746 Attributes = CurrentAttributes;
747 } else {
748 //
749 // If fixed MTRR attribute changed, then set memory attribute for previous atrribute
750 //
751 if (CurrentAttributes != Attributes) {
752 SetGcdMemorySpaceAttributes (
753 MemorySpaceMap,
754 NumberOfDescriptors,
755 BaseAddress,
756 Length,
757 Attributes
758 );
759 BaseAddress = mFixedMtrrTable[Index].BaseAddress + mFixedMtrrTable[Index].Length * SubIndex;
760 Length = 0;
761 Attributes = CurrentAttributes;
762 }
763 }
764 Length += mFixedMtrrTable[Index].Length;
765 }
766 }
767 //
768 // Handle the last fixed MTRR region
769 //
770 SetGcdMemorySpaceAttributes (
771 MemorySpaceMap,
772 NumberOfDescriptors,
773 BaseAddress,
774 Length,
775 Attributes
776 );
777
778 //
779 // Free memory space map allocated by GCD service GetMemorySpaceMap ()
780 //
781 if (MemorySpaceMap != NULL) {
782 FreePool (MemorySpaceMap);
783 }
784
785 mIsFlushingGCD = FALSE;
786 }
787
788 /**
789 Initialize Interrupt Descriptor Table for interrupt handling.
790
791 **/
792 VOID
793 InitInterruptDescriptorTable (
794 VOID
795 )
796 {
797 EFI_STATUS Status;
798 EFI_VECTOR_HANDOFF_INFO *VectorInfoList;
799 EFI_VECTOR_HANDOFF_INFO *VectorInfo;
800
801 VectorInfo = NULL;
802 Status = EfiGetSystemConfigurationTable (&gEfiVectorHandoffTableGuid, (VOID **) &VectorInfoList);
803 if (Status == EFI_SUCCESS && VectorInfoList != NULL) {
804 VectorInfo = VectorInfoList;
805 }
806 Status = InitializeCpuInterruptHandlers (VectorInfo);
807 ASSERT_EFI_ERROR (Status);
808 }
809
810
811 /**
812 Callback function for idle events.
813
814 @param Event Event whose notification function is being invoked.
815 @param Context The pointer to the notification function's context,
816 which is implementation-dependent.
817
818 **/
819 VOID
820 EFIAPI
821 IdleLoopEventCallback (
822 IN EFI_EVENT Event,
823 IN VOID *Context
824 )
825 {
826 CpuSleep ();
827 }
828
829
830 /**
831 Initialize the state information for the CPU Architectural Protocol.
832
833 @param ImageHandle Image handle this driver.
834 @param SystemTable Pointer to the System Table.
835
836 @retval EFI_SUCCESS Thread can be successfully created
837 @retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
838 @retval EFI_DEVICE_ERROR Cannot create the thread
839
840 **/
841 EFI_STATUS
842 EFIAPI
843 InitializeCpu (
844 IN EFI_HANDLE ImageHandle,
845 IN EFI_SYSTEM_TABLE *SystemTable
846 )
847 {
848 EFI_STATUS Status;
849 EFI_EVENT IdleLoopEvent;
850
851 InitializeFloatingPointUnits ();
852
853 //
854 // Make sure interrupts are disabled
855 //
856 DisableInterrupts ();
857
858 //
859 // Init GDT for DXE
860 //
861 InitGlobalDescriptorTable ();
862
863 //
864 // Setup IDT pointer, IDT and interrupt entry points
865 //
866 InitInterruptDescriptorTable ();
867
868 //
869 // Enable the local APIC for Virtual Wire Mode.
870 //
871 ProgramVirtualWireMode ();
872
873 //
874 // Install CPU Architectural Protocol
875 //
876 Status = gBS->InstallMultipleProtocolInterfaces (
877 &mCpuHandle,
878 &gEfiCpuArchProtocolGuid, &gCpu,
879 NULL
880 );
881 ASSERT_EFI_ERROR (Status);
882
883 //
884 // Refresh GCD memory space map according to MTRR value.
885 //
886 RefreshGcdMemoryAttributes ();
887
888 //
889 // Setup a callback for idle events
890 //
891 Status = gBS->CreateEventEx (
892 EVT_NOTIFY_SIGNAL,
893 TPL_NOTIFY,
894 IdleLoopEventCallback,
895 NULL,
896 &gIdleLoopEventGuid,
897 &IdleLoopEvent
898 );
899 ASSERT_EFI_ERROR (Status);
900
901 InitializeMpSupport ();
902
903 return Status;
904 }
905