]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/CpuDxe/CpuDxe.c
UefiCpuPkg/CpuDxe: Fix hard code actual TimerPeriod value
[mirror_edk2.git] / UefiCpuPkg / CpuDxe / CpuDxe.c
1 /** @file
2 CPU DXE Module to produce CPU ARCH Protocol.
3
4 Copyright (c) 2008 - 2017, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "CpuDxe.h"
16 #include "CpuMp.h"
17 #include "CpuPageTable.h"
18
19 #define CACHE_ATTRIBUTE_MASK (EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_WP)
20 #define MEMORY_ATTRIBUTE_MASK (EFI_MEMORY_RP | EFI_MEMORY_XP | EFI_MEMORY_RO)
21
22 //
23 // Global Variables
24 //
25 BOOLEAN InterruptState = FALSE;
26 EFI_HANDLE mCpuHandle = NULL;
27 BOOLEAN mIsFlushingGCD;
28 UINT64 mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS;
29 UINT64 mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK;
30 UINT64 mTimerPeriod = 0;
31
32 FIXED_MTRR mFixedMtrrTable[] = {
33 {
34 MTRR_LIB_IA32_MTRR_FIX64K_00000,
35 0,
36 0x10000
37 },
38 {
39 MTRR_LIB_IA32_MTRR_FIX16K_80000,
40 0x80000,
41 0x4000
42 },
43 {
44 MTRR_LIB_IA32_MTRR_FIX16K_A0000,
45 0xA0000,
46 0x4000
47 },
48 {
49 MTRR_LIB_IA32_MTRR_FIX4K_C0000,
50 0xC0000,
51 0x1000
52 },
53 {
54 MTRR_LIB_IA32_MTRR_FIX4K_C8000,
55 0xC8000,
56 0x1000
57 },
58 {
59 MTRR_LIB_IA32_MTRR_FIX4K_D0000,
60 0xD0000,
61 0x1000
62 },
63 {
64 MTRR_LIB_IA32_MTRR_FIX4K_D8000,
65 0xD8000,
66 0x1000
67 },
68 {
69 MTRR_LIB_IA32_MTRR_FIX4K_E0000,
70 0xE0000,
71 0x1000
72 },
73 {
74 MTRR_LIB_IA32_MTRR_FIX4K_E8000,
75 0xE8000,
76 0x1000
77 },
78 {
79 MTRR_LIB_IA32_MTRR_FIX4K_F0000,
80 0xF0000,
81 0x1000
82 },
83 {
84 MTRR_LIB_IA32_MTRR_FIX4K_F8000,
85 0xF8000,
86 0x1000
87 },
88 };
89
90
91 EFI_CPU_ARCH_PROTOCOL gCpu = {
92 CpuFlushCpuDataCache,
93 CpuEnableInterrupt,
94 CpuDisableInterrupt,
95 CpuGetInterruptState,
96 CpuInit,
97 CpuRegisterInterruptHandler,
98 CpuGetTimerValue,
99 CpuSetMemoryAttributes,
100 1, // NumberOfTimers
101 4 // DmaBufferAlignment
102 };
103
104 //
105 // CPU Arch Protocol Functions
106 //
107
108 /**
109 Flush CPU data cache. If the instruction cache is fully coherent
110 with all DMA operations then function can just return EFI_SUCCESS.
111
112 @param This Protocol instance structure
113 @param Start Physical address to start flushing from.
114 @param Length Number of bytes to flush. Round up to chipset
115 granularity.
116 @param FlushType Specifies the type of flush operation to perform.
117
118 @retval EFI_SUCCESS If cache was flushed
119 @retval EFI_UNSUPPORTED If flush type is not supported.
120 @retval EFI_DEVICE_ERROR If requested range could not be flushed.
121
122 **/
123 EFI_STATUS
124 EFIAPI
125 CpuFlushCpuDataCache (
126 IN EFI_CPU_ARCH_PROTOCOL *This,
127 IN EFI_PHYSICAL_ADDRESS Start,
128 IN UINT64 Length,
129 IN EFI_CPU_FLUSH_TYPE FlushType
130 )
131 {
132 if (FlushType == EfiCpuFlushTypeWriteBackInvalidate) {
133 AsmWbinvd ();
134 return EFI_SUCCESS;
135 } else if (FlushType == EfiCpuFlushTypeInvalidate) {
136 AsmInvd ();
137 return EFI_SUCCESS;
138 } else {
139 return EFI_UNSUPPORTED;
140 }
141 }
142
143
144 /**
145 Enables CPU interrupts.
146
147 @param This Protocol instance structure
148
149 @retval EFI_SUCCESS If interrupts were enabled in the CPU
150 @retval EFI_DEVICE_ERROR If interrupts could not be enabled on the CPU.
151
152 **/
153 EFI_STATUS
154 EFIAPI
155 CpuEnableInterrupt (
156 IN EFI_CPU_ARCH_PROTOCOL *This
157 )
158 {
159 EnableInterrupts ();
160
161 InterruptState = TRUE;
162 return EFI_SUCCESS;
163 }
164
165
166 /**
167 Disables CPU interrupts.
168
169 @param This Protocol instance structure
170
171 @retval EFI_SUCCESS If interrupts were disabled in the CPU.
172 @retval EFI_DEVICE_ERROR If interrupts could not be disabled on the CPU.
173
174 **/
175 EFI_STATUS
176 EFIAPI
177 CpuDisableInterrupt (
178 IN EFI_CPU_ARCH_PROTOCOL *This
179 )
180 {
181 DisableInterrupts ();
182
183 InterruptState = FALSE;
184 return EFI_SUCCESS;
185 }
186
187
188 /**
189 Return the state of interrupts.
190
191 @param This Protocol instance structure
192 @param State Pointer to the CPU's current interrupt state
193
194 @retval EFI_SUCCESS If interrupts were disabled in the CPU.
195 @retval EFI_INVALID_PARAMETER State is NULL.
196
197 **/
198 EFI_STATUS
199 EFIAPI
200 CpuGetInterruptState (
201 IN EFI_CPU_ARCH_PROTOCOL *This,
202 OUT BOOLEAN *State
203 )
204 {
205 if (State == NULL) {
206 return EFI_INVALID_PARAMETER;
207 }
208
209 *State = InterruptState;
210 return EFI_SUCCESS;
211 }
212
213
214 /**
215 Generates an INIT to the CPU.
216
217 @param This Protocol instance structure
218 @param InitType Type of CPU INIT to perform
219
220 @retval EFI_SUCCESS If CPU INIT occurred. This value should never be
221 seen.
222 @retval EFI_DEVICE_ERROR If CPU INIT failed.
223 @retval EFI_UNSUPPORTED Requested type of CPU INIT not supported.
224
225 **/
226 EFI_STATUS
227 EFIAPI
228 CpuInit (
229 IN EFI_CPU_ARCH_PROTOCOL *This,
230 IN EFI_CPU_INIT_TYPE InitType
231 )
232 {
233 return EFI_UNSUPPORTED;
234 }
235
236
237 /**
238 Registers a function to be called from the CPU interrupt handler.
239
240 @param This Protocol instance structure
241 @param InterruptType Defines which interrupt to hook. IA-32
242 valid range is 0x00 through 0xFF
243 @param InterruptHandler A pointer to a function of type
244 EFI_CPU_INTERRUPT_HANDLER that is called
245 when a processor interrupt occurs. A null
246 pointer is an error condition.
247
248 @retval EFI_SUCCESS If handler installed or uninstalled.
249 @retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler
250 for InterruptType was previously installed.
251 @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for
252 InterruptType was not previously installed.
253 @retval EFI_UNSUPPORTED The interrupt specified by InterruptType
254 is not supported.
255
256 **/
257 EFI_STATUS
258 EFIAPI
259 CpuRegisterInterruptHandler (
260 IN EFI_CPU_ARCH_PROTOCOL *This,
261 IN EFI_EXCEPTION_TYPE InterruptType,
262 IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
263 )
264 {
265 return RegisterCpuInterruptHandler (InterruptType, InterruptHandler);
266 }
267
268
269 /**
270 Returns a timer value from one of the CPU's internal timers. There is no
271 inherent time interval between ticks but is a function of the CPU frequency.
272
273 @param This - Protocol instance structure.
274 @param TimerIndex - Specifies which CPU timer is requested.
275 @param TimerValue - Pointer to the returned timer value.
276 @param TimerPeriod - A pointer to the amount of time that passes
277 in femtoseconds (10-15) for each increment
278 of TimerValue. If TimerValue does not
279 increment at a predictable rate, then 0 is
280 returned. The amount of time that has
281 passed between two calls to GetTimerValue()
282 can be calculated with the formula
283 (TimerValue2 - TimerValue1) * TimerPeriod.
284 This parameter is optional and may be NULL.
285
286 @retval EFI_SUCCESS - If the CPU timer count was returned.
287 @retval EFI_UNSUPPORTED - If the CPU does not have any readable timers.
288 @retval EFI_DEVICE_ERROR - If an error occurred while reading the timer.
289 @retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL.
290
291 **/
292 EFI_STATUS
293 EFIAPI
294 CpuGetTimerValue (
295 IN EFI_CPU_ARCH_PROTOCOL *This,
296 IN UINT32 TimerIndex,
297 OUT UINT64 *TimerValue,
298 OUT UINT64 *TimerPeriod OPTIONAL
299 )
300 {
301 UINT64 BeginValue;
302 UINT64 EndValue;
303
304 if (TimerValue == NULL) {
305 return EFI_INVALID_PARAMETER;
306 }
307
308 if (TimerIndex != 0) {
309 return EFI_INVALID_PARAMETER;
310 }
311
312 *TimerValue = AsmReadTsc ();
313
314 if (TimerPeriod != NULL) {
315 if (mTimerPeriod == 0) {
316 //
317 // Read time stamp counter before and after delay of 100 microseconds
318 //
319 BeginValue = AsmReadTsc ();
320 MicroSecondDelay (100);
321 EndValue = AsmReadTsc ();
322 //
323 // Calculate the actual frequency
324 //
325 mTimerPeriod = DivU64x64Remainder (
326 MultU64x32 (
327 1000 * 1000 * 1000,
328 100
329 ),
330 EndValue - BeginValue,
331 NULL
332 );
333 }
334 *TimerPeriod = mTimerPeriod;
335 }
336
337 return EFI_SUCCESS;
338 }
339
340 /**
341 A minimal wrapper function that allows MtrrSetAllMtrrs() to be passed to
342 EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() as Procedure.
343
344 @param[in] Buffer Pointer to an MTRR_SETTINGS object, to be passed to
345 MtrrSetAllMtrrs().
346 **/
347 VOID
348 EFIAPI
349 SetMtrrsFromBuffer (
350 IN VOID *Buffer
351 )
352 {
353 MtrrSetAllMtrrs (Buffer);
354 }
355
356 /**
357 Implementation of SetMemoryAttributes() service of CPU Architecture Protocol.
358
359 This function modifies the attributes for the memory region specified by BaseAddress and
360 Length from their current attributes to the attributes specified by Attributes.
361
362 @param This The EFI_CPU_ARCH_PROTOCOL instance.
363 @param BaseAddress The physical address that is the start address of a memory region.
364 @param Length The size in bytes of the memory region.
365 @param Attributes The bit mask of attributes to set for the memory region.
366
367 @retval EFI_SUCCESS The attributes were set for the memory region.
368 @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by
369 BaseAddress and Length cannot be modified.
370 @retval EFI_INVALID_PARAMETER Length is zero.
371 Attributes specified an illegal combination of attributes that
372 cannot be set together.
373 @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
374 the memory resource range.
375 @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
376 resource range specified by BaseAddress and Length.
377 The bit mask of attributes is not support for the memory resource
378 range specified by BaseAddress and Length.
379
380 **/
381 EFI_STATUS
382 EFIAPI
383 CpuSetMemoryAttributes (
384 IN EFI_CPU_ARCH_PROTOCOL *This,
385 IN EFI_PHYSICAL_ADDRESS BaseAddress,
386 IN UINT64 Length,
387 IN UINT64 Attributes
388 )
389 {
390 RETURN_STATUS Status;
391 MTRR_MEMORY_CACHE_TYPE CacheType;
392 EFI_STATUS MpStatus;
393 EFI_MP_SERVICES_PROTOCOL *MpService;
394 MTRR_SETTINGS MtrrSettings;
395 UINT64 CacheAttributes;
396 UINT64 MemoryAttributes;
397 MTRR_MEMORY_CACHE_TYPE CurrentCacheType;
398
399 //
400 // If this function is called because GCD SetMemorySpaceAttributes () is called
401 // by RefreshGcdMemoryAttributes (), then we are just synchronzing GCD memory
402 // map with MTRR values. So there is no need to modify MTRRs, just return immediately
403 // to avoid unnecessary computing.
404 //
405 if (mIsFlushingGCD) {
406 DEBUG((EFI_D_INFO, " Flushing GCD\n"));
407 return EFI_SUCCESS;
408 }
409
410
411 CacheAttributes = Attributes & CACHE_ATTRIBUTE_MASK;
412 MemoryAttributes = Attributes & MEMORY_ATTRIBUTE_MASK;
413
414 if (Attributes != (CacheAttributes | MemoryAttributes)) {
415 return EFI_INVALID_PARAMETER;
416 }
417
418 if (CacheAttributes != 0) {
419 if (!IsMtrrSupported ()) {
420 return EFI_UNSUPPORTED;
421 }
422
423 switch (CacheAttributes) {
424 case EFI_MEMORY_UC:
425 CacheType = CacheUncacheable;
426 break;
427
428 case EFI_MEMORY_WC:
429 CacheType = CacheWriteCombining;
430 break;
431
432 case EFI_MEMORY_WT:
433 CacheType = CacheWriteThrough;
434 break;
435
436 case EFI_MEMORY_WP:
437 CacheType = CacheWriteProtected;
438 break;
439
440 case EFI_MEMORY_WB:
441 CacheType = CacheWriteBack;
442 break;
443
444 default:
445 return EFI_INVALID_PARAMETER;
446 }
447 CurrentCacheType = MtrrGetMemoryAttribute(BaseAddress);
448 if (CurrentCacheType != CacheType) {
449 //
450 // call MTRR libary function
451 //
452 Status = MtrrSetMemoryAttribute (
453 BaseAddress,
454 Length,
455 CacheType
456 );
457
458 if (!RETURN_ERROR (Status)) {
459 MpStatus = gBS->LocateProtocol (
460 &gEfiMpServiceProtocolGuid,
461 NULL,
462 (VOID **)&MpService
463 );
464 //
465 // Synchronize the update with all APs
466 //
467 if (!EFI_ERROR (MpStatus)) {
468 MtrrGetAllMtrrs (&MtrrSettings);
469 MpStatus = MpService->StartupAllAPs (
470 MpService, // This
471 SetMtrrsFromBuffer, // Procedure
472 FALSE, // SingleThread
473 NULL, // WaitEvent
474 0, // TimeoutInMicrosecsond
475 &MtrrSettings, // ProcedureArgument
476 NULL // FailedCpuList
477 );
478 ASSERT (MpStatus == EFI_SUCCESS || MpStatus == EFI_NOT_STARTED);
479 }
480 }
481 if (EFI_ERROR(Status)) {
482 return Status;
483 }
484 }
485 }
486
487 //
488 // Set memory attribute by page table
489 //
490 return AssignMemoryPageAttributes (NULL, BaseAddress, Length, MemoryAttributes, AllocatePages);
491 }
492
493 /**
494 Initializes the valid bits mask and valid address mask for MTRRs.
495
496 This function initializes the valid bits mask and valid address mask for MTRRs.
497
498 **/
499 VOID
500 InitializeMtrrMask (
501 VOID
502 )
503 {
504 UINT32 RegEax;
505 UINT8 PhysicalAddressBits;
506
507 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
508
509 if (RegEax >= 0x80000008) {
510 AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
511
512 PhysicalAddressBits = (UINT8) RegEax;
513
514 mValidMtrrBitsMask = LShiftU64 (1, PhysicalAddressBits) - 1;
515 mValidMtrrAddressMask = mValidMtrrBitsMask & 0xfffffffffffff000ULL;
516 } else {
517 mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK;
518 mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS;
519 }
520 }
521
522 /**
523 Gets GCD Mem Space type from MTRR Type.
524
525 This function gets GCD Mem Space type from MTRR Type.
526
527 @param MtrrAttributes MTRR memory type
528
529 @return GCD Mem Space type
530
531 **/
532 UINT64
533 GetMemorySpaceAttributeFromMtrrType (
534 IN UINT8 MtrrAttributes
535 )
536 {
537 switch (MtrrAttributes) {
538 case MTRR_CACHE_UNCACHEABLE:
539 return EFI_MEMORY_UC;
540 case MTRR_CACHE_WRITE_COMBINING:
541 return EFI_MEMORY_WC;
542 case MTRR_CACHE_WRITE_THROUGH:
543 return EFI_MEMORY_WT;
544 case MTRR_CACHE_WRITE_PROTECTED:
545 return EFI_MEMORY_WP;
546 case MTRR_CACHE_WRITE_BACK:
547 return EFI_MEMORY_WB;
548 default:
549 return 0;
550 }
551 }
552
553 /**
554 Searches memory descriptors covered by given memory range.
555
556 This function searches into the Gcd Memory Space for descriptors
557 (from StartIndex to EndIndex) that contains the memory range
558 specified by BaseAddress and Length.
559
560 @param MemorySpaceMap Gcd Memory Space Map as array.
561 @param NumberOfDescriptors Number of descriptors in map.
562 @param BaseAddress BaseAddress for the requested range.
563 @param Length Length for the requested range.
564 @param StartIndex Start index into the Gcd Memory Space Map.
565 @param EndIndex End index into the Gcd Memory Space Map.
566
567 @retval EFI_SUCCESS Search successfully.
568 @retval EFI_NOT_FOUND The requested descriptors does not exist.
569
570 **/
571 EFI_STATUS
572 SearchGcdMemorySpaces (
573 IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
574 IN UINTN NumberOfDescriptors,
575 IN EFI_PHYSICAL_ADDRESS BaseAddress,
576 IN UINT64 Length,
577 OUT UINTN *StartIndex,
578 OUT UINTN *EndIndex
579 )
580 {
581 UINTN Index;
582
583 *StartIndex = 0;
584 *EndIndex = 0;
585 for (Index = 0; Index < NumberOfDescriptors; Index++) {
586 if (BaseAddress >= MemorySpaceMap[Index].BaseAddress &&
587 BaseAddress < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
588 *StartIndex = Index;
589 }
590 if (BaseAddress + Length - 1 >= MemorySpaceMap[Index].BaseAddress &&
591 BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
592 *EndIndex = Index;
593 return EFI_SUCCESS;
594 }
595 }
596 return EFI_NOT_FOUND;
597 }
598
599 /**
600 Sets the attributes for a specified range in Gcd Memory Space Map.
601
602 This function sets the attributes for a specified range in
603 Gcd Memory Space Map.
604
605 @param MemorySpaceMap Gcd Memory Space Map as array
606 @param NumberOfDescriptors Number of descriptors in map
607 @param BaseAddress BaseAddress for the range
608 @param Length Length for the range
609 @param Attributes Attributes to set
610
611 @retval EFI_SUCCESS Memory attributes set successfully
612 @retval EFI_NOT_FOUND The specified range does not exist in Gcd Memory Space
613
614 **/
615 EFI_STATUS
616 SetGcdMemorySpaceAttributes (
617 IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
618 IN UINTN NumberOfDescriptors,
619 IN EFI_PHYSICAL_ADDRESS BaseAddress,
620 IN UINT64 Length,
621 IN UINT64 Attributes
622 )
623 {
624 EFI_STATUS Status;
625 UINTN Index;
626 UINTN StartIndex;
627 UINTN EndIndex;
628 EFI_PHYSICAL_ADDRESS RegionStart;
629 UINT64 RegionLength;
630
631 //
632 // Get all memory descriptors covered by the memory range
633 //
634 Status = SearchGcdMemorySpaces (
635 MemorySpaceMap,
636 NumberOfDescriptors,
637 BaseAddress,
638 Length,
639 &StartIndex,
640 &EndIndex
641 );
642 if (EFI_ERROR (Status)) {
643 return Status;
644 }
645
646 //
647 // Go through all related descriptors and set attributes accordingly
648 //
649 for (Index = StartIndex; Index <= EndIndex; Index++) {
650 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
651 continue;
652 }
653 //
654 // Calculate the start and end address of the overlapping range
655 //
656 if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) {
657 RegionStart = BaseAddress;
658 } else {
659 RegionStart = MemorySpaceMap[Index].BaseAddress;
660 }
661 if (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
662 RegionLength = BaseAddress + Length - RegionStart;
663 } else {
664 RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart;
665 }
666 //
667 // Set memory attributes according to MTRR attribute and the original attribute of descriptor
668 //
669 gDS->SetMemorySpaceAttributes (
670 RegionStart,
671 RegionLength,
672 (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes)
673 );
674 }
675
676 return EFI_SUCCESS;
677 }
678
679
680 /**
681 Refreshes the GCD Memory Space attributes according to MTRRs.
682
683 This function refreshes the GCD Memory Space attributes according to MTRRs.
684
685 **/
686 VOID
687 RefreshGcdMemoryAttributes (
688 VOID
689 )
690 {
691 EFI_STATUS Status;
692 UINTN Index;
693 UINTN SubIndex;
694 UINT64 RegValue;
695 EFI_PHYSICAL_ADDRESS BaseAddress;
696 UINT64 Length;
697 UINT64 Attributes;
698 UINT64 CurrentAttributes;
699 UINT8 MtrrType;
700 UINTN NumberOfDescriptors;
701 EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
702 UINT64 DefaultAttributes;
703 VARIABLE_MTRR VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR];
704 MTRR_FIXED_SETTINGS MtrrFixedSettings;
705 UINT32 FirmwareVariableMtrrCount;
706 UINT8 DefaultMemoryType;
707
708 if (!IsMtrrSupported ()) {
709 return;
710 }
711
712 FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount ();
713 ASSERT (FirmwareVariableMtrrCount <= MTRR_NUMBER_OF_VARIABLE_MTRR);
714
715 mIsFlushingGCD = TRUE;
716 MemorySpaceMap = NULL;
717
718 //
719 // Initialize the valid bits mask and valid address mask for MTRRs
720 //
721 InitializeMtrrMask ();
722
723 //
724 // Get the memory attribute of variable MTRRs
725 //
726 MtrrGetMemoryAttributeInVariableMtrr (
727 mValidMtrrBitsMask,
728 mValidMtrrAddressMask,
729 VariableMtrr
730 );
731
732 //
733 // Get the memory space map from GCD
734 //
735 Status = gDS->GetMemorySpaceMap (
736 &NumberOfDescriptors,
737 &MemorySpaceMap
738 );
739 ASSERT_EFI_ERROR (Status);
740
741 DefaultMemoryType = (UINT8) MtrrGetDefaultMemoryType ();
742 DefaultAttributes = GetMemorySpaceAttributeFromMtrrType (DefaultMemoryType);
743
744 //
745 // Set default attributes to all spaces.
746 //
747 for (Index = 0; Index < NumberOfDescriptors; Index++) {
748 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
749 continue;
750 }
751 gDS->SetMemorySpaceAttributes (
752 MemorySpaceMap[Index].BaseAddress,
753 MemorySpaceMap[Index].Length,
754 (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) |
755 (MemorySpaceMap[Index].Capabilities & DefaultAttributes)
756 );
757 }
758
759 //
760 // Go for variable MTRRs with WB attribute
761 //
762 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
763 if (VariableMtrr[Index].Valid &&
764 VariableMtrr[Index].Type == MTRR_CACHE_WRITE_BACK) {
765 SetGcdMemorySpaceAttributes (
766 MemorySpaceMap,
767 NumberOfDescriptors,
768 VariableMtrr[Index].BaseAddress,
769 VariableMtrr[Index].Length,
770 EFI_MEMORY_WB
771 );
772 }
773 }
774
775 //
776 // Go for variable MTRRs with the attribute except for WB and UC attributes
777 //
778 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
779 if (VariableMtrr[Index].Valid &&
780 VariableMtrr[Index].Type != MTRR_CACHE_WRITE_BACK &&
781 VariableMtrr[Index].Type != MTRR_CACHE_UNCACHEABLE) {
782 Attributes = GetMemorySpaceAttributeFromMtrrType ((UINT8) VariableMtrr[Index].Type);
783 SetGcdMemorySpaceAttributes (
784 MemorySpaceMap,
785 NumberOfDescriptors,
786 VariableMtrr[Index].BaseAddress,
787 VariableMtrr[Index].Length,
788 Attributes
789 );
790 }
791 }
792
793 //
794 // Go for variable MTRRs with UC attribute
795 //
796 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
797 if (VariableMtrr[Index].Valid &&
798 VariableMtrr[Index].Type == MTRR_CACHE_UNCACHEABLE) {
799 SetGcdMemorySpaceAttributes (
800 MemorySpaceMap,
801 NumberOfDescriptors,
802 VariableMtrr[Index].BaseAddress,
803 VariableMtrr[Index].Length,
804 EFI_MEMORY_UC
805 );
806 }
807 }
808
809 //
810 // Go for fixed MTRRs
811 //
812 Attributes = 0;
813 BaseAddress = 0;
814 Length = 0;
815 MtrrGetFixedMtrr (&MtrrFixedSettings);
816 for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) {
817 RegValue = MtrrFixedSettings.Mtrr[Index];
818 //
819 // Check for continuous fixed MTRR sections
820 //
821 for (SubIndex = 0; SubIndex < 8; SubIndex++) {
822 MtrrType = (UINT8) RShiftU64 (RegValue, SubIndex * 8);
823 CurrentAttributes = GetMemorySpaceAttributeFromMtrrType (MtrrType);
824 if (Length == 0) {
825 //
826 // A new MTRR attribute begins
827 //
828 Attributes = CurrentAttributes;
829 } else {
830 //
831 // If fixed MTRR attribute changed, then set memory attribute for previous atrribute
832 //
833 if (CurrentAttributes != Attributes) {
834 SetGcdMemorySpaceAttributes (
835 MemorySpaceMap,
836 NumberOfDescriptors,
837 BaseAddress,
838 Length,
839 Attributes
840 );
841 BaseAddress = mFixedMtrrTable[Index].BaseAddress + mFixedMtrrTable[Index].Length * SubIndex;
842 Length = 0;
843 Attributes = CurrentAttributes;
844 }
845 }
846 Length += mFixedMtrrTable[Index].Length;
847 }
848 }
849 //
850 // Handle the last fixed MTRR region
851 //
852 SetGcdMemorySpaceAttributes (
853 MemorySpaceMap,
854 NumberOfDescriptors,
855 BaseAddress,
856 Length,
857 Attributes
858 );
859
860 //
861 // Free memory space map allocated by GCD service GetMemorySpaceMap ()
862 //
863 if (MemorySpaceMap != NULL) {
864 FreePool (MemorySpaceMap);
865 }
866
867 mIsFlushingGCD = FALSE;
868 }
869
870 /**
871 Initialize Interrupt Descriptor Table for interrupt handling.
872
873 **/
874 VOID
875 InitInterruptDescriptorTable (
876 VOID
877 )
878 {
879 EFI_STATUS Status;
880 EFI_VECTOR_HANDOFF_INFO *VectorInfoList;
881 EFI_VECTOR_HANDOFF_INFO *VectorInfo;
882
883 VectorInfo = NULL;
884 Status = EfiGetSystemConfigurationTable (&gEfiVectorHandoffTableGuid, (VOID **) &VectorInfoList);
885 if (Status == EFI_SUCCESS && VectorInfoList != NULL) {
886 VectorInfo = VectorInfoList;
887 }
888 Status = InitializeCpuInterruptHandlers (VectorInfo);
889 ASSERT_EFI_ERROR (Status);
890 }
891
892
893 /**
894 Callback function for idle events.
895
896 @param Event Event whose notification function is being invoked.
897 @param Context The pointer to the notification function's context,
898 which is implementation-dependent.
899
900 **/
901 VOID
902 EFIAPI
903 IdleLoopEventCallback (
904 IN EFI_EVENT Event,
905 IN VOID *Context
906 )
907 {
908 CpuSleep ();
909 }
910
911 /**
912 Ensure the compatibility of a memory space descriptor with the MMIO aperture.
913
914 The memory space descriptor can come from the GCD memory space map, or it can
915 represent a gap between two neighboring memory space descriptors. In the
916 latter case, the GcdMemoryType field is expected to be
917 EfiGcdMemoryTypeNonExistent.
918
919 If the memory space descriptor already has type
920 EfiGcdMemoryTypeMemoryMappedIo, and its capabilities are a superset of the
921 required capabilities, then no action is taken -- it is by definition
922 compatible with the aperture.
923
924 Otherwise, the intersection of the memory space descriptor is calculated with
925 the aperture. If the intersection is the empty set (no overlap), no action is
926 taken; the memory space descriptor is compatible with the aperture.
927
928 Otherwise, the type of the descriptor is investigated again. If the type is
929 EfiGcdMemoryTypeNonExistent (representing a gap, or a genuine descriptor with
930 such a type), then an attempt is made to add the intersection as MMIO space
931 to the GCD memory space map, with the specified capabilities. This ensures
932 continuity for the aperture, and the descriptor is deemed compatible with the
933 aperture.
934
935 Otherwise, the memory space descriptor is incompatible with the MMIO
936 aperture.
937
938 @param[in] Base Base address of the aperture.
939 @param[in] Length Length of the aperture.
940 @param[in] Capabilities Capabilities required by the aperture.
941 @param[in] Descriptor The descriptor to ensure compatibility with the
942 aperture for.
943
944 @retval EFI_SUCCESS The descriptor is compatible. The GCD memory
945 space map may have been updated, for
946 continuity within the aperture.
947 @retval EFI_INVALID_PARAMETER The descriptor is incompatible.
948 @return Error codes from gDS->AddMemorySpace().
949 **/
950 EFI_STATUS
951 IntersectMemoryDescriptor (
952 IN UINT64 Base,
953 IN UINT64 Length,
954 IN UINT64 Capabilities,
955 IN CONST EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor
956 )
957 {
958 UINT64 IntersectionBase;
959 UINT64 IntersectionEnd;
960 EFI_STATUS Status;
961
962 if (Descriptor->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo &&
963 (Descriptor->Capabilities & Capabilities) == Capabilities) {
964 return EFI_SUCCESS;
965 }
966
967 IntersectionBase = MAX (Base, Descriptor->BaseAddress);
968 IntersectionEnd = MIN (Base + Length,
969 Descriptor->BaseAddress + Descriptor->Length);
970 if (IntersectionBase >= IntersectionEnd) {
971 //
972 // The descriptor and the aperture don't overlap.
973 //
974 return EFI_SUCCESS;
975 }
976
977 if (Descriptor->GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
978 Status = gDS->AddMemorySpace (EfiGcdMemoryTypeMemoryMappedIo,
979 IntersectionBase, IntersectionEnd - IntersectionBase,
980 Capabilities);
981
982 DEBUG ((EFI_ERROR (Status) ? EFI_D_ERROR : EFI_D_VERBOSE,
983 "%a: %a: add [%Lx, %Lx): %r\n", gEfiCallerBaseName, __FUNCTION__,
984 IntersectionBase, IntersectionEnd, Status));
985 return Status;
986 }
987
988 DEBUG ((EFI_D_ERROR, "%a: %a: desc [%Lx, %Lx) type %u cap %Lx conflicts "
989 "with aperture [%Lx, %Lx) cap %Lx\n", gEfiCallerBaseName, __FUNCTION__,
990 Descriptor->BaseAddress, Descriptor->BaseAddress + Descriptor->Length,
991 (UINT32)Descriptor->GcdMemoryType, Descriptor->Capabilities,
992 Base, Base + Length, Capabilities));
993 return EFI_INVALID_PARAMETER;
994 }
995
996 /**
997 Add MMIO space to GCD.
998 The routine checks the GCD database and only adds those which are
999 not added in the specified range to GCD.
1000
1001 @param Base Base address of the MMIO space.
1002 @param Length Length of the MMIO space.
1003 @param Capabilities Capabilities of the MMIO space.
1004
1005 @retval EFI_SUCCES The MMIO space was added successfully.
1006 **/
1007 EFI_STATUS
1008 AddMemoryMappedIoSpace (
1009 IN UINT64 Base,
1010 IN UINT64 Length,
1011 IN UINT64 Capabilities
1012 )
1013 {
1014 EFI_STATUS Status;
1015 UINTN Index;
1016 UINTN NumberOfDescriptors;
1017 EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
1018
1019 Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
1020 if (EFI_ERROR (Status)) {
1021 DEBUG ((EFI_D_ERROR, "%a: %a: GetMemorySpaceMap(): %r\n",
1022 gEfiCallerBaseName, __FUNCTION__, Status));
1023 return Status;
1024 }
1025
1026 for (Index = 0; Index < NumberOfDescriptors; Index++) {
1027 Status = IntersectMemoryDescriptor (Base, Length, Capabilities,
1028 &MemorySpaceMap[Index]);
1029 if (EFI_ERROR (Status)) {
1030 goto FreeMemorySpaceMap;
1031 }
1032 }
1033
1034 DEBUG_CODE (
1035 //
1036 // Make sure there are adjacent descriptors covering [Base, Base + Length).
1037 // It is possible that they have not been merged; merging can be prevented
1038 // by allocation and different capabilities.
1039 //
1040 UINT64 CheckBase;
1041 EFI_STATUS CheckStatus;
1042 EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor;
1043
1044 for (CheckBase = Base;
1045 CheckBase < Base + Length;
1046 CheckBase = Descriptor.BaseAddress + Descriptor.Length) {
1047 CheckStatus = gDS->GetMemorySpaceDescriptor (CheckBase, &Descriptor);
1048 ASSERT_EFI_ERROR (CheckStatus);
1049 ASSERT (Descriptor.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo);
1050 ASSERT ((Descriptor.Capabilities & Capabilities) == Capabilities);
1051 }
1052 );
1053
1054 FreeMemorySpaceMap:
1055 FreePool (MemorySpaceMap);
1056
1057 return Status;
1058 }
1059
1060 /**
1061 Add and allocate CPU local APIC memory mapped space.
1062
1063 @param[in]ImageHandle Image handle this driver.
1064
1065 **/
1066 VOID
1067 AddLocalApicMemorySpace (
1068 IN EFI_HANDLE ImageHandle
1069 )
1070 {
1071 EFI_STATUS Status;
1072 EFI_PHYSICAL_ADDRESS BaseAddress;
1073
1074 BaseAddress = (EFI_PHYSICAL_ADDRESS) GetLocalApicBaseAddress();
1075 Status = AddMemoryMappedIoSpace (BaseAddress, SIZE_4KB, EFI_MEMORY_UC);
1076 ASSERT_EFI_ERROR (Status);
1077
1078 Status = gDS->AllocateMemorySpace (
1079 EfiGcdAllocateAddress,
1080 EfiGcdMemoryTypeMemoryMappedIo,
1081 0,
1082 SIZE_4KB,
1083 &BaseAddress,
1084 ImageHandle,
1085 NULL
1086 );
1087 ASSERT_EFI_ERROR (Status);
1088 }
1089
1090 /**
1091 Initialize the state information for the CPU Architectural Protocol.
1092
1093 @param ImageHandle Image handle this driver.
1094 @param SystemTable Pointer to the System Table.
1095
1096 @retval EFI_SUCCESS Thread can be successfully created
1097 @retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
1098 @retval EFI_DEVICE_ERROR Cannot create the thread
1099
1100 **/
1101 EFI_STATUS
1102 EFIAPI
1103 InitializeCpu (
1104 IN EFI_HANDLE ImageHandle,
1105 IN EFI_SYSTEM_TABLE *SystemTable
1106 )
1107 {
1108 EFI_STATUS Status;
1109 EFI_EVENT IdleLoopEvent;
1110
1111 InitializePageTableLib();
1112
1113 InitializeFloatingPointUnits ();
1114
1115 //
1116 // Make sure interrupts are disabled
1117 //
1118 DisableInterrupts ();
1119
1120 //
1121 // Init GDT for DXE
1122 //
1123 InitGlobalDescriptorTable ();
1124
1125 //
1126 // Setup IDT pointer, IDT and interrupt entry points
1127 //
1128 InitInterruptDescriptorTable ();
1129
1130 //
1131 // Enable the local APIC for Virtual Wire Mode.
1132 //
1133 ProgramVirtualWireMode ();
1134
1135 //
1136 // Install CPU Architectural Protocol
1137 //
1138 Status = gBS->InstallMultipleProtocolInterfaces (
1139 &mCpuHandle,
1140 &gEfiCpuArchProtocolGuid, &gCpu,
1141 NULL
1142 );
1143 ASSERT_EFI_ERROR (Status);
1144
1145 //
1146 // Refresh GCD memory space map according to MTRR value.
1147 //
1148 RefreshGcdMemoryAttributes ();
1149
1150 //
1151 // Add and allocate local APIC memory mapped space
1152 //
1153 AddLocalApicMemorySpace (ImageHandle);
1154
1155 //
1156 // Setup a callback for idle events
1157 //
1158 Status = gBS->CreateEventEx (
1159 EVT_NOTIFY_SIGNAL,
1160 TPL_NOTIFY,
1161 IdleLoopEventCallback,
1162 NULL,
1163 &gIdleLoopEventGuid,
1164 &IdleLoopEvent
1165 );
1166 ASSERT_EFI_ERROR (Status);
1167
1168 InitializeMpSupport ();
1169
1170 return Status;
1171 }
1172