]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/CpuDxe/CpuDxe.c
UefiCpuPkg: CpuDxe: broadcast MTRR changes to APs
[mirror_edk2.git] / UefiCpuPkg / CpuDxe / CpuDxe.c
1 /** @file
2 CPU DXE Module.
3
4 Copyright (c) 2008 - 2013, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "CpuDxe.h"
16 #include "CpuMp.h"
17
18 //
19 // Global Variables
20 //
21 BOOLEAN InterruptState = FALSE;
22 EFI_HANDLE mCpuHandle = NULL;
23 BOOLEAN mIsFlushingGCD;
24 UINT64 mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS;
25 UINT64 mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK;
26
27 FIXED_MTRR mFixedMtrrTable[] = {
28 {
29 MTRR_LIB_IA32_MTRR_FIX64K_00000,
30 0,
31 0x10000
32 },
33 {
34 MTRR_LIB_IA32_MTRR_FIX16K_80000,
35 0x80000,
36 0x4000
37 },
38 {
39 MTRR_LIB_IA32_MTRR_FIX16K_A0000,
40 0xA0000,
41 0x4000
42 },
43 {
44 MTRR_LIB_IA32_MTRR_FIX4K_C0000,
45 0xC0000,
46 0x1000
47 },
48 {
49 MTRR_LIB_IA32_MTRR_FIX4K_C8000,
50 0xC8000,
51 0x1000
52 },
53 {
54 MTRR_LIB_IA32_MTRR_FIX4K_D0000,
55 0xD0000,
56 0x1000
57 },
58 {
59 MTRR_LIB_IA32_MTRR_FIX4K_D8000,
60 0xD8000,
61 0x1000
62 },
63 {
64 MTRR_LIB_IA32_MTRR_FIX4K_E0000,
65 0xE0000,
66 0x1000
67 },
68 {
69 MTRR_LIB_IA32_MTRR_FIX4K_E8000,
70 0xE8000,
71 0x1000
72 },
73 {
74 MTRR_LIB_IA32_MTRR_FIX4K_F0000,
75 0xF0000,
76 0x1000
77 },
78 {
79 MTRR_LIB_IA32_MTRR_FIX4K_F8000,
80 0xF8000,
81 0x1000
82 },
83 };
84
85
86 EFI_CPU_ARCH_PROTOCOL gCpu = {
87 CpuFlushCpuDataCache,
88 CpuEnableInterrupt,
89 CpuDisableInterrupt,
90 CpuGetInterruptState,
91 CpuInit,
92 CpuRegisterInterruptHandler,
93 CpuGetTimerValue,
94 CpuSetMemoryAttributes,
95 1, // NumberOfTimers
96 4 // DmaBufferAlignment
97 };
98
99 //
100 // CPU Arch Protocol Functions
101 //
102
103 /**
104 Flush CPU data cache. If the instruction cache is fully coherent
105 with all DMA operations then function can just return EFI_SUCCESS.
106
107 @param This Protocol instance structure
108 @param Start Physical address to start flushing from.
109 @param Length Number of bytes to flush. Round up to chipset
110 granularity.
111 @param FlushType Specifies the type of flush operation to perform.
112
113 @retval EFI_SUCCESS If cache was flushed
114 @retval EFI_UNSUPPORTED If flush type is not supported.
115 @retval EFI_DEVICE_ERROR If requested range could not be flushed.
116
117 **/
118 EFI_STATUS
119 EFIAPI
120 CpuFlushCpuDataCache (
121 IN EFI_CPU_ARCH_PROTOCOL *This,
122 IN EFI_PHYSICAL_ADDRESS Start,
123 IN UINT64 Length,
124 IN EFI_CPU_FLUSH_TYPE FlushType
125 )
126 {
127 if (FlushType == EfiCpuFlushTypeWriteBackInvalidate) {
128 AsmWbinvd ();
129 return EFI_SUCCESS;
130 } else if (FlushType == EfiCpuFlushTypeInvalidate) {
131 AsmInvd ();
132 return EFI_SUCCESS;
133 } else {
134 return EFI_UNSUPPORTED;
135 }
136 }
137
138
139 /**
140 Enables CPU interrupts.
141
142 @param This Protocol instance structure
143
144 @retval EFI_SUCCESS If interrupts were enabled in the CPU
145 @retval EFI_DEVICE_ERROR If interrupts could not be enabled on the CPU.
146
147 **/
148 EFI_STATUS
149 EFIAPI
150 CpuEnableInterrupt (
151 IN EFI_CPU_ARCH_PROTOCOL *This
152 )
153 {
154 EnableInterrupts ();
155
156 InterruptState = TRUE;
157 return EFI_SUCCESS;
158 }
159
160
161 /**
162 Disables CPU interrupts.
163
164 @param This Protocol instance structure
165
166 @retval EFI_SUCCESS If interrupts were disabled in the CPU.
167 @retval EFI_DEVICE_ERROR If interrupts could not be disabled on the CPU.
168
169 **/
170 EFI_STATUS
171 EFIAPI
172 CpuDisableInterrupt (
173 IN EFI_CPU_ARCH_PROTOCOL *This
174 )
175 {
176 DisableInterrupts ();
177
178 InterruptState = FALSE;
179 return EFI_SUCCESS;
180 }
181
182
183 /**
184 Return the state of interrupts.
185
186 @param This Protocol instance structure
187 @param State Pointer to the CPU's current interrupt state
188
189 @retval EFI_SUCCESS If interrupts were disabled in the CPU.
190 @retval EFI_INVALID_PARAMETER State is NULL.
191
192 **/
193 EFI_STATUS
194 EFIAPI
195 CpuGetInterruptState (
196 IN EFI_CPU_ARCH_PROTOCOL *This,
197 OUT BOOLEAN *State
198 )
199 {
200 if (State == NULL) {
201 return EFI_INVALID_PARAMETER;
202 }
203
204 *State = InterruptState;
205 return EFI_SUCCESS;
206 }
207
208
209 /**
210 Generates an INIT to the CPU.
211
212 @param This Protocol instance structure
213 @param InitType Type of CPU INIT to perform
214
215 @retval EFI_SUCCESS If CPU INIT occurred. This value should never be
216 seen.
217 @retval EFI_DEVICE_ERROR If CPU INIT failed.
218 @retval EFI_UNSUPPORTED Requested type of CPU INIT not supported.
219
220 **/
221 EFI_STATUS
222 EFIAPI
223 CpuInit (
224 IN EFI_CPU_ARCH_PROTOCOL *This,
225 IN EFI_CPU_INIT_TYPE InitType
226 )
227 {
228 return EFI_UNSUPPORTED;
229 }
230
231
232 /**
233 Registers a function to be called from the CPU interrupt handler.
234
235 @param This Protocol instance structure
236 @param InterruptType Defines which interrupt to hook. IA-32
237 valid range is 0x00 through 0xFF
238 @param InterruptHandler A pointer to a function of type
239 EFI_CPU_INTERRUPT_HANDLER that is called
240 when a processor interrupt occurs. A null
241 pointer is an error condition.
242
243 @retval EFI_SUCCESS If handler installed or uninstalled.
244 @retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler
245 for InterruptType was previously installed.
246 @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for
247 InterruptType was not previously installed.
248 @retval EFI_UNSUPPORTED The interrupt specified by InterruptType
249 is not supported.
250
251 **/
252 EFI_STATUS
253 EFIAPI
254 CpuRegisterInterruptHandler (
255 IN EFI_CPU_ARCH_PROTOCOL *This,
256 IN EFI_EXCEPTION_TYPE InterruptType,
257 IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
258 )
259 {
260 return RegisterCpuInterruptHandler (InterruptType, InterruptHandler);
261 }
262
263
264 /**
265 Returns a timer value from one of the CPU's internal timers. There is no
266 inherent time interval between ticks but is a function of the CPU frequency.
267
268 @param This - Protocol instance structure.
269 @param TimerIndex - Specifies which CPU timer is requested.
270 @param TimerValue - Pointer to the returned timer value.
271 @param TimerPeriod - A pointer to the amount of time that passes
272 in femtoseconds (10-15) for each increment
273 of TimerValue. If TimerValue does not
274 increment at a predictable rate, then 0 is
275 returned. The amount of time that has
276 passed between two calls to GetTimerValue()
277 can be calculated with the formula
278 (TimerValue2 - TimerValue1) * TimerPeriod.
279 This parameter is optional and may be NULL.
280
281 @retval EFI_SUCCESS - If the CPU timer count was returned.
282 @retval EFI_UNSUPPORTED - If the CPU does not have any readable timers.
283 @retval EFI_DEVICE_ERROR - If an error occurred while reading the timer.
284 @retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL.
285
286 **/
287 EFI_STATUS
288 EFIAPI
289 CpuGetTimerValue (
290 IN EFI_CPU_ARCH_PROTOCOL *This,
291 IN UINT32 TimerIndex,
292 OUT UINT64 *TimerValue,
293 OUT UINT64 *TimerPeriod OPTIONAL
294 )
295 {
296 if (TimerValue == NULL) {
297 return EFI_INVALID_PARAMETER;
298 }
299
300 if (TimerIndex != 0) {
301 return EFI_INVALID_PARAMETER;
302 }
303
304 *TimerValue = AsmReadTsc ();
305
306 if (TimerPeriod != NULL) {
307 //
308 // BugBug: Hard coded. Don't know how to do this generically
309 //
310 *TimerPeriod = 1000000000;
311 }
312
313 return EFI_SUCCESS;
314 }
315
316
317 /**
318 Implementation of SetMemoryAttributes() service of CPU Architecture Protocol.
319
320 This function modifies the attributes for the memory region specified by BaseAddress and
321 Length from their current attributes to the attributes specified by Attributes.
322
323 @param This The EFI_CPU_ARCH_PROTOCOL instance.
324 @param BaseAddress The physical address that is the start address of a memory region.
325 @param Length The size in bytes of the memory region.
326 @param Attributes The bit mask of attributes to set for the memory region.
327
328 @retval EFI_SUCCESS The attributes were set for the memory region.
329 @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by
330 BaseAddress and Length cannot be modified.
331 @retval EFI_INVALID_PARAMETER Length is zero.
332 Attributes specified an illegal combination of attributes that
333 cannot be set together.
334 @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
335 the memory resource range.
336 @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
337 resource range specified by BaseAddress and Length.
338 The bit mask of attributes is not support for the memory resource
339 range specified by BaseAddress and Length.
340
341 **/
342 EFI_STATUS
343 EFIAPI
344 CpuSetMemoryAttributes (
345 IN EFI_CPU_ARCH_PROTOCOL *This,
346 IN EFI_PHYSICAL_ADDRESS BaseAddress,
347 IN UINT64 Length,
348 IN UINT64 Attributes
349 )
350 {
351 RETURN_STATUS Status;
352 MTRR_MEMORY_CACHE_TYPE CacheType;
353 EFI_STATUS MpStatus;
354 EFI_MP_SERVICES_PROTOCOL *MpService;
355 MTRR_SETTINGS MtrrSettings;
356
357 if (!IsMtrrSupported ()) {
358 return EFI_UNSUPPORTED;
359 }
360
361 //
362 // If this function is called because GCD SetMemorySpaceAttributes () is called
363 // by RefreshGcdMemoryAttributes (), then we are just synchronzing GCD memory
364 // map with MTRR values. So there is no need to modify MTRRs, just return immediately
365 // to avoid unnecessary computing.
366 //
367 if (mIsFlushingGCD) {
368 DEBUG((EFI_D_INFO, " Flushing GCD\n"));
369 return EFI_SUCCESS;
370 }
371
372 switch (Attributes) {
373 case EFI_MEMORY_UC:
374 CacheType = CacheUncacheable;
375 break;
376
377 case EFI_MEMORY_WC:
378 CacheType = CacheWriteCombining;
379 break;
380
381 case EFI_MEMORY_WT:
382 CacheType = CacheWriteThrough;
383 break;
384
385 case EFI_MEMORY_WP:
386 CacheType = CacheWriteProtected;
387 break;
388
389 case EFI_MEMORY_WB:
390 CacheType = CacheWriteBack;
391 break;
392
393 case EFI_MEMORY_UCE:
394 case EFI_MEMORY_RP:
395 case EFI_MEMORY_XP:
396 case EFI_MEMORY_RUNTIME:
397 return EFI_UNSUPPORTED;
398
399 default:
400 return EFI_INVALID_PARAMETER;
401 }
402 //
403 // call MTRR libary function
404 //
405 Status = MtrrSetMemoryAttribute (
406 BaseAddress,
407 Length,
408 CacheType
409 );
410
411 if (!RETURN_ERROR (Status)) {
412 MpStatus = gBS->LocateProtocol (
413 &gEfiMpServiceProtocolGuid,
414 NULL,
415 (VOID **)&MpService
416 );
417 //
418 // Synchronize the update with all APs
419 //
420 if (!EFI_ERROR (MpStatus)) {
421 MtrrGetAllMtrrs (&MtrrSettings);
422 MpStatus = MpService->StartupAllAPs (
423 MpService, // This
424 SetMtrrsFromBuffer, // Procedure
425 TRUE, // SingleThread
426 NULL, // WaitEvent
427 0, // TimeoutInMicrosecsond
428 &MtrrSettings, // ProcedureArgument
429 NULL // FailedCpuList
430 );
431 ASSERT (MpStatus == EFI_SUCCESS || MpStatus == EFI_NOT_STARTED);
432 }
433 }
434 return (EFI_STATUS) Status;
435 }
436
437 /**
438 Initializes the valid bits mask and valid address mask for MTRRs.
439
440 This function initializes the valid bits mask and valid address mask for MTRRs.
441
442 **/
443 VOID
444 InitializeMtrrMask (
445 VOID
446 )
447 {
448 UINT32 RegEax;
449 UINT8 PhysicalAddressBits;
450
451 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
452
453 if (RegEax >= 0x80000008) {
454 AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
455
456 PhysicalAddressBits = (UINT8) RegEax;
457
458 mValidMtrrBitsMask = LShiftU64 (1, PhysicalAddressBits) - 1;
459 mValidMtrrAddressMask = mValidMtrrBitsMask & 0xfffffffffffff000ULL;
460 } else {
461 mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK;
462 mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS;
463 }
464 }
465
466 /**
467 Gets GCD Mem Space type from MTRR Type.
468
469 This function gets GCD Mem Space type from MTRR Type.
470
471 @param MtrrAttributes MTRR memory type
472
473 @return GCD Mem Space type
474
475 **/
476 UINT64
477 GetMemorySpaceAttributeFromMtrrType (
478 IN UINT8 MtrrAttributes
479 )
480 {
481 switch (MtrrAttributes) {
482 case MTRR_CACHE_UNCACHEABLE:
483 return EFI_MEMORY_UC;
484 case MTRR_CACHE_WRITE_COMBINING:
485 return EFI_MEMORY_WC;
486 case MTRR_CACHE_WRITE_THROUGH:
487 return EFI_MEMORY_WT;
488 case MTRR_CACHE_WRITE_PROTECTED:
489 return EFI_MEMORY_WP;
490 case MTRR_CACHE_WRITE_BACK:
491 return EFI_MEMORY_WB;
492 default:
493 return 0;
494 }
495 }
496
497 /**
498 Searches memory descriptors covered by given memory range.
499
500 This function searches into the Gcd Memory Space for descriptors
501 (from StartIndex to EndIndex) that contains the memory range
502 specified by BaseAddress and Length.
503
504 @param MemorySpaceMap Gcd Memory Space Map as array.
505 @param NumberOfDescriptors Number of descriptors in map.
506 @param BaseAddress BaseAddress for the requested range.
507 @param Length Length for the requested range.
508 @param StartIndex Start index into the Gcd Memory Space Map.
509 @param EndIndex End index into the Gcd Memory Space Map.
510
511 @retval EFI_SUCCESS Search successfully.
512 @retval EFI_NOT_FOUND The requested descriptors does not exist.
513
514 **/
515 EFI_STATUS
516 SearchGcdMemorySpaces (
517 IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
518 IN UINTN NumberOfDescriptors,
519 IN EFI_PHYSICAL_ADDRESS BaseAddress,
520 IN UINT64 Length,
521 OUT UINTN *StartIndex,
522 OUT UINTN *EndIndex
523 )
524 {
525 UINTN Index;
526
527 *StartIndex = 0;
528 *EndIndex = 0;
529 for (Index = 0; Index < NumberOfDescriptors; Index++) {
530 if (BaseAddress >= MemorySpaceMap[Index].BaseAddress &&
531 BaseAddress < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
532 *StartIndex = Index;
533 }
534 if (BaseAddress + Length - 1 >= MemorySpaceMap[Index].BaseAddress &&
535 BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
536 *EndIndex = Index;
537 return EFI_SUCCESS;
538 }
539 }
540 return EFI_NOT_FOUND;
541 }
542
543 /**
544 Sets the attributes for a specified range in Gcd Memory Space Map.
545
546 This function sets the attributes for a specified range in
547 Gcd Memory Space Map.
548
549 @param MemorySpaceMap Gcd Memory Space Map as array
550 @param NumberOfDescriptors Number of descriptors in map
551 @param BaseAddress BaseAddress for the range
552 @param Length Length for the range
553 @param Attributes Attributes to set
554
555 @retval EFI_SUCCESS Memory attributes set successfully
556 @retval EFI_NOT_FOUND The specified range does not exist in Gcd Memory Space
557
558 **/
559 EFI_STATUS
560 SetGcdMemorySpaceAttributes (
561 IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
562 IN UINTN NumberOfDescriptors,
563 IN EFI_PHYSICAL_ADDRESS BaseAddress,
564 IN UINT64 Length,
565 IN UINT64 Attributes
566 )
567 {
568 EFI_STATUS Status;
569 UINTN Index;
570 UINTN StartIndex;
571 UINTN EndIndex;
572 EFI_PHYSICAL_ADDRESS RegionStart;
573 UINT64 RegionLength;
574
575 //
576 // Get all memory descriptors covered by the memory range
577 //
578 Status = SearchGcdMemorySpaces (
579 MemorySpaceMap,
580 NumberOfDescriptors,
581 BaseAddress,
582 Length,
583 &StartIndex,
584 &EndIndex
585 );
586 if (EFI_ERROR (Status)) {
587 return Status;
588 }
589
590 //
591 // Go through all related descriptors and set attributes accordingly
592 //
593 for (Index = StartIndex; Index <= EndIndex; Index++) {
594 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
595 continue;
596 }
597 //
598 // Calculate the start and end address of the overlapping range
599 //
600 if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) {
601 RegionStart = BaseAddress;
602 } else {
603 RegionStart = MemorySpaceMap[Index].BaseAddress;
604 }
605 if (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
606 RegionLength = BaseAddress + Length - RegionStart;
607 } else {
608 RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart;
609 }
610 //
611 // Set memory attributes according to MTRR attribute and the original attribute of descriptor
612 //
613 gDS->SetMemorySpaceAttributes (
614 RegionStart,
615 RegionLength,
616 (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes)
617 );
618 }
619
620 return EFI_SUCCESS;
621 }
622
623
624 /**
625 Refreshes the GCD Memory Space attributes according to MTRRs.
626
627 This function refreshes the GCD Memory Space attributes according to MTRRs.
628
629 **/
630 VOID
631 RefreshGcdMemoryAttributes (
632 VOID
633 )
634 {
635 EFI_STATUS Status;
636 UINTN Index;
637 UINTN SubIndex;
638 UINT64 RegValue;
639 EFI_PHYSICAL_ADDRESS BaseAddress;
640 UINT64 Length;
641 UINT64 Attributes;
642 UINT64 CurrentAttributes;
643 UINT8 MtrrType;
644 UINTN NumberOfDescriptors;
645 EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
646 UINT64 DefaultAttributes;
647 VARIABLE_MTRR VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR];
648 MTRR_FIXED_SETTINGS MtrrFixedSettings;
649 UINT32 FirmwareVariableMtrrCount;
650 UINT8 DefaultMemoryType;
651
652 if (!IsMtrrSupported ()) {
653 return;
654 }
655
656 FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount ();
657 ASSERT (FirmwareVariableMtrrCount <= MTRR_NUMBER_OF_VARIABLE_MTRR);
658
659 mIsFlushingGCD = TRUE;
660 MemorySpaceMap = NULL;
661
662 //
663 // Initialize the valid bits mask and valid address mask for MTRRs
664 //
665 InitializeMtrrMask ();
666
667 //
668 // Get the memory attribute of variable MTRRs
669 //
670 MtrrGetMemoryAttributeInVariableMtrr (
671 mValidMtrrBitsMask,
672 mValidMtrrAddressMask,
673 VariableMtrr
674 );
675
676 //
677 // Get the memory space map from GCD
678 //
679 Status = gDS->GetMemorySpaceMap (
680 &NumberOfDescriptors,
681 &MemorySpaceMap
682 );
683 ASSERT_EFI_ERROR (Status);
684
685 DefaultMemoryType = (UINT8) MtrrGetDefaultMemoryType ();
686 DefaultAttributes = GetMemorySpaceAttributeFromMtrrType (DefaultMemoryType);
687
688 //
689 // Set default attributes to all spaces.
690 //
691 for (Index = 0; Index < NumberOfDescriptors; Index++) {
692 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
693 continue;
694 }
695 gDS->SetMemorySpaceAttributes (
696 MemorySpaceMap[Index].BaseAddress,
697 MemorySpaceMap[Index].Length,
698 (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) |
699 (MemorySpaceMap[Index].Capabilities & DefaultAttributes)
700 );
701 }
702
703 //
704 // Go for variable MTRRs with WB attribute
705 //
706 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
707 if (VariableMtrr[Index].Valid &&
708 VariableMtrr[Index].Type == MTRR_CACHE_WRITE_BACK) {
709 SetGcdMemorySpaceAttributes (
710 MemorySpaceMap,
711 NumberOfDescriptors,
712 VariableMtrr[Index].BaseAddress,
713 VariableMtrr[Index].Length,
714 EFI_MEMORY_WB
715 );
716 }
717 }
718
719 //
720 // Go for variable MTRRs with the attribute except for WB and UC attributes
721 //
722 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
723 if (VariableMtrr[Index].Valid &&
724 VariableMtrr[Index].Type != MTRR_CACHE_WRITE_BACK &&
725 VariableMtrr[Index].Type != MTRR_CACHE_UNCACHEABLE) {
726 Attributes = GetMemorySpaceAttributeFromMtrrType ((UINT8) VariableMtrr[Index].Type);
727 SetGcdMemorySpaceAttributes (
728 MemorySpaceMap,
729 NumberOfDescriptors,
730 VariableMtrr[Index].BaseAddress,
731 VariableMtrr[Index].Length,
732 Attributes
733 );
734 }
735 }
736
737 //
738 // Go for variable MTRRs with UC attribute
739 //
740 for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
741 if (VariableMtrr[Index].Valid &&
742 VariableMtrr[Index].Type == MTRR_CACHE_UNCACHEABLE) {
743 SetGcdMemorySpaceAttributes (
744 MemorySpaceMap,
745 NumberOfDescriptors,
746 VariableMtrr[Index].BaseAddress,
747 VariableMtrr[Index].Length,
748 EFI_MEMORY_UC
749 );
750 }
751 }
752
753 //
754 // Go for fixed MTRRs
755 //
756 Attributes = 0;
757 BaseAddress = 0;
758 Length = 0;
759 MtrrGetFixedMtrr (&MtrrFixedSettings);
760 for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) {
761 RegValue = MtrrFixedSettings.Mtrr[Index];
762 //
763 // Check for continuous fixed MTRR sections
764 //
765 for (SubIndex = 0; SubIndex < 8; SubIndex++) {
766 MtrrType = (UINT8) RShiftU64 (RegValue, SubIndex * 8);
767 CurrentAttributes = GetMemorySpaceAttributeFromMtrrType (MtrrType);
768 if (Length == 0) {
769 //
770 // A new MTRR attribute begins
771 //
772 Attributes = CurrentAttributes;
773 } else {
774 //
775 // If fixed MTRR attribute changed, then set memory attribute for previous atrribute
776 //
777 if (CurrentAttributes != Attributes) {
778 SetGcdMemorySpaceAttributes (
779 MemorySpaceMap,
780 NumberOfDescriptors,
781 BaseAddress,
782 Length,
783 Attributes
784 );
785 BaseAddress = mFixedMtrrTable[Index].BaseAddress + mFixedMtrrTable[Index].Length * SubIndex;
786 Length = 0;
787 Attributes = CurrentAttributes;
788 }
789 }
790 Length += mFixedMtrrTable[Index].Length;
791 }
792 }
793 //
794 // Handle the last fixed MTRR region
795 //
796 SetGcdMemorySpaceAttributes (
797 MemorySpaceMap,
798 NumberOfDescriptors,
799 BaseAddress,
800 Length,
801 Attributes
802 );
803
804 //
805 // Free memory space map allocated by GCD service GetMemorySpaceMap ()
806 //
807 if (MemorySpaceMap != NULL) {
808 FreePool (MemorySpaceMap);
809 }
810
811 mIsFlushingGCD = FALSE;
812 }
813
814 /**
815 Initialize Interrupt Descriptor Table for interrupt handling.
816
817 **/
818 VOID
819 InitInterruptDescriptorTable (
820 VOID
821 )
822 {
823 EFI_STATUS Status;
824 EFI_VECTOR_HANDOFF_INFO *VectorInfoList;
825 EFI_VECTOR_HANDOFF_INFO *VectorInfo;
826
827 VectorInfo = NULL;
828 Status = EfiGetSystemConfigurationTable (&gEfiVectorHandoffTableGuid, (VOID **) &VectorInfoList);
829 if (Status == EFI_SUCCESS && VectorInfoList != NULL) {
830 VectorInfo = VectorInfoList;
831 }
832 Status = InitializeCpuInterruptHandlers (VectorInfo);
833 ASSERT_EFI_ERROR (Status);
834 }
835
836
837 /**
838 Callback function for idle events.
839
840 @param Event Event whose notification function is being invoked.
841 @param Context The pointer to the notification function's context,
842 which is implementation-dependent.
843
844 **/
845 VOID
846 EFIAPI
847 IdleLoopEventCallback (
848 IN EFI_EVENT Event,
849 IN VOID *Context
850 )
851 {
852 CpuSleep ();
853 }
854
855
856 /**
857 Initialize the state information for the CPU Architectural Protocol.
858
859 @param ImageHandle Image handle this driver.
860 @param SystemTable Pointer to the System Table.
861
862 @retval EFI_SUCCESS Thread can be successfully created
863 @retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
864 @retval EFI_DEVICE_ERROR Cannot create the thread
865
866 **/
867 EFI_STATUS
868 EFIAPI
869 InitializeCpu (
870 IN EFI_HANDLE ImageHandle,
871 IN EFI_SYSTEM_TABLE *SystemTable
872 )
873 {
874 EFI_STATUS Status;
875 EFI_EVENT IdleLoopEvent;
876
877 InitializeFloatingPointUnits ();
878
879 //
880 // Make sure interrupts are disabled
881 //
882 DisableInterrupts ();
883
884 //
885 // Init GDT for DXE
886 //
887 InitGlobalDescriptorTable ();
888
889 //
890 // Setup IDT pointer, IDT and interrupt entry points
891 //
892 InitInterruptDescriptorTable ();
893
894 //
895 // Enable the local APIC for Virtual Wire Mode.
896 //
897 ProgramVirtualWireMode ();
898
899 //
900 // Install CPU Architectural Protocol
901 //
902 Status = gBS->InstallMultipleProtocolInterfaces (
903 &mCpuHandle,
904 &gEfiCpuArchProtocolGuid, &gCpu,
905 NULL
906 );
907 ASSERT_EFI_ERROR (Status);
908
909 //
910 // Refresh GCD memory space map according to MTRR value.
911 //
912 RefreshGcdMemoryAttributes ();
913
914 //
915 // Setup a callback for idle events
916 //
917 Status = gBS->CreateEventEx (
918 EVT_NOTIFY_SIGNAL,
919 TPL_NOTIFY,
920 IdleLoopEventCallback,
921 NULL,
922 &gIdleLoopEventGuid,
923 &IdleLoopEvent
924 );
925 ASSERT_EFI_ERROR (Status);
926
927 InitializeMpSupport ();
928
929 return Status;
930 }
931