fd2317924fd1fd998e0523edcaa14baef35ec3e7
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / DxeMpLib.c
1 /** @file
2 MP initialize support functions for DXE phase.
3
4 Copyright (c) 2016, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "MpLib.h"
16
17 #include <Library/UefiLib.h>
18 #include <Library/UefiBootServicesTableLib.h>
19 #include <Library/DebugAgentLib.h>
20 #include <Library/DxeServicesTableLib.h>
21
22 #include <Protocol/Timer.h>
23
24 #define AP_CHECK_INTERVAL (EFI_TIMER_PERIOD_MILLISECONDS (100))
25 #define AP_SAFE_STACK_SIZE 128
26
27 CPU_MP_DATA *mCpuMpData = NULL;
28 EFI_EVENT mCheckAllApsEvent = NULL;
29 EFI_EVENT mMpInitExitBootServicesEvent = NULL;
30 EFI_EVENT mLegacyBootEvent = NULL;
31 volatile BOOLEAN mStopCheckAllApsStatus = TRUE;
32 VOID *mReservedApLoopFunc = NULL;
33 UINTN mReservedTopOfApStack;
34 volatile UINT32 mNumberToFinish = 0;
35
36 /**
37 Enable Debug Agent to support source debugging on AP function.
38
39 **/
40 VOID
41 EnableDebugAgent (
42 VOID
43 )
44 {
45 //
46 // Initialize Debug Agent to support source level debug in DXE phase
47 //
48 InitializeDebugAgent (DEBUG_AGENT_INIT_DXE_AP, NULL, NULL);
49 }
50
51 /**
52 Get the pointer to CPU MP Data structure.
53
54 @return The pointer to CPU MP Data structure.
55 **/
56 CPU_MP_DATA *
57 GetCpuMpData (
58 VOID
59 )
60 {
61 ASSERT (mCpuMpData != NULL);
62 return mCpuMpData;
63 }
64
65 /**
66 Save the pointer to CPU MP Data structure.
67
68 @param[in] CpuMpData The pointer to CPU MP Data structure will be saved.
69 **/
70 VOID
71 SaveCpuMpData (
72 IN CPU_MP_DATA *CpuMpData
73 )
74 {
75 mCpuMpData = CpuMpData;
76 }
77
78 /**
79 Get available system memory below 1MB by specified size.
80
81 @param[in] WakeupBufferSize Wakeup buffer size required
82
83 @retval other Return wakeup buffer address below 1MB.
84 @retval -1 Cannot find free memory below 1MB.
85 **/
86 UINTN
87 GetWakeupBuffer (
88 IN UINTN WakeupBufferSize
89 )
90 {
91 EFI_STATUS Status;
92 EFI_PHYSICAL_ADDRESS StartAddress;
93
94 StartAddress = BASE_1MB;
95 Status = gBS->AllocatePages (
96 AllocateMaxAddress,
97 EfiBootServicesData,
98 EFI_SIZE_TO_PAGES (WakeupBufferSize),
99 &StartAddress
100 );
101 ASSERT_EFI_ERROR (Status);
102 if (!EFI_ERROR (Status)) {
103 Status = gBS->FreePages(
104 StartAddress,
105 EFI_SIZE_TO_PAGES (WakeupBufferSize)
106 );
107 ASSERT_EFI_ERROR (Status);
108 DEBUG ((DEBUG_INFO, "WakeupBufferStart = %x, WakeupBufferSize = %x\n",
109 (UINTN) StartAddress, WakeupBufferSize));
110 } else {
111 StartAddress = (EFI_PHYSICAL_ADDRESS) -1;
112 }
113 return (UINTN) StartAddress;
114 }
115
116 /**
117 Get available EfiBootServicesCode memory below 4GB by specified size.
118
119 This buffer is required to safely transfer AP from real address mode to
120 protected mode or long mode, due to the fact that the buffer returned by
121 GetWakeupBuffer() may be marked as non-executable.
122
123 @param[in] BufferSize Wakeup transition buffer size.
124
125 @retval other Return wakeup transition buffer address below 4GB.
126 @retval 0 Cannot find free memory below 4GB.
127 **/
128 UINTN
129 GetModeTransitionBuffer (
130 IN UINTN BufferSize
131 )
132 {
133 EFI_STATUS Status;
134 EFI_PHYSICAL_ADDRESS StartAddress;
135
136 StartAddress = BASE_4GB - 1;
137 Status = gBS->AllocatePages (
138 AllocateMaxAddress,
139 EfiBootServicesCode,
140 EFI_SIZE_TO_PAGES (BufferSize),
141 &StartAddress
142 );
143 if (EFI_ERROR (Status)) {
144 StartAddress = 0;
145 }
146
147 return (UINTN)StartAddress;
148 }
149
150 /**
151 Checks APs status and updates APs status if needed.
152
153 **/
154 VOID
155 CheckAndUpdateApsStatus (
156 VOID
157 )
158 {
159 UINTN ProcessorNumber;
160 EFI_STATUS Status;
161 CPU_MP_DATA *CpuMpData;
162
163 CpuMpData = GetCpuMpData ();
164
165 //
166 // First, check whether pending StartupAllAPs() exists.
167 //
168 if (CpuMpData->WaitEvent != NULL) {
169
170 Status = CheckAllAPs ();
171 //
172 // If all APs finish for StartupAllAPs(), signal the WaitEvent for it.
173 //
174 if (Status != EFI_NOT_READY) {
175 Status = gBS->SignalEvent (CpuMpData->WaitEvent);
176 CpuMpData->WaitEvent = NULL;
177 }
178 }
179
180 //
181 // Second, check whether pending StartupThisAPs() callings exist.
182 //
183 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
184
185 if (CpuMpData->CpuData[ProcessorNumber].WaitEvent == NULL) {
186 continue;
187 }
188
189 Status = CheckThisAP (ProcessorNumber);
190
191 if (Status != EFI_NOT_READY) {
192 gBS->SignalEvent (CpuMpData->CpuData[ProcessorNumber].WaitEvent);
193 CpuMpData->CpuData[ProcessorNumber].WaitEvent = NULL;
194 }
195 }
196 }
197
198 /**
199 Checks APs' status periodically.
200
201 This function is triggered by timer periodically to check the
202 state of APs for StartupAllAPs() and StartupThisAP() executed
203 in non-blocking mode.
204
205 @param[in] Event Event triggered.
206 @param[in] Context Parameter passed with the event.
207
208 **/
209 VOID
210 EFIAPI
211 CheckApsStatus (
212 IN EFI_EVENT Event,
213 IN VOID *Context
214 )
215 {
216 //
217 // If CheckApsStatus() is not stopped, otherwise return immediately.
218 //
219 if (!mStopCheckAllApsStatus) {
220 CheckAndUpdateApsStatus ();
221 }
222 }
223
224 /**
225 Get Protected mode code segment from current GDT table.
226
227 @return Protected mode code segment value.
228 **/
229 UINT16
230 GetProtectedModeCS (
231 VOID
232 )
233 {
234 IA32_DESCRIPTOR GdtrDesc;
235 IA32_SEGMENT_DESCRIPTOR *GdtEntry;
236 UINTN GdtEntryCount;
237 UINT16 Index;
238
239 Index = (UINT16) -1;
240 AsmReadGdtr (&GdtrDesc);
241 GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
242 GdtEntry = (IA32_SEGMENT_DESCRIPTOR *) GdtrDesc.Base;
243 for (Index = 0; Index < GdtEntryCount; Index++) {
244 if (GdtEntry->Bits.L == 0) {
245 if (GdtEntry->Bits.Type > 8 && GdtEntry->Bits.L == 0) {
246 break;
247 }
248 }
249 GdtEntry++;
250 }
251 ASSERT (Index != -1);
252 return Index * 8;
253 }
254
255 /**
256 Do sync on APs.
257
258 @param[in, out] Buffer Pointer to private data buffer.
259 **/
260 VOID
261 EFIAPI
262 RelocateApLoop (
263 IN OUT VOID *Buffer
264 )
265 {
266 CPU_MP_DATA *CpuMpData;
267 BOOLEAN MwaitSupport;
268 ASM_RELOCATE_AP_LOOP AsmRelocateApLoopFunc;
269 UINTN ProcessorNumber;
270
271 MpInitLibWhoAmI (&ProcessorNumber);
272 CpuMpData = GetCpuMpData ();
273 MwaitSupport = IsMwaitSupport ();
274 AsmRelocateApLoopFunc = (ASM_RELOCATE_AP_LOOP) (UINTN) mReservedApLoopFunc;
275 AsmRelocateApLoopFunc (
276 MwaitSupport,
277 CpuMpData->ApTargetCState,
278 CpuMpData->PmCodeSegment,
279 mReservedTopOfApStack - ProcessorNumber * AP_SAFE_STACK_SIZE,
280 (UINTN) &mNumberToFinish
281 );
282 //
283 // It should never reach here
284 //
285 ASSERT (FALSE);
286 }
287
288 /**
289 Callback function for ExitBootServices.
290
291 @param[in] Event Event whose notification function is being invoked.
292 @param[in] Context The pointer to the notification function's context,
293 which is implementation-dependent.
294
295 **/
296 VOID
297 EFIAPI
298 MpInitChangeApLoopCallback (
299 IN EFI_EVENT Event,
300 IN VOID *Context
301 )
302 {
303 CPU_MP_DATA *CpuMpData;
304
305 CpuMpData = GetCpuMpData ();
306 CpuMpData->PmCodeSegment = GetProtectedModeCS ();
307 CpuMpData->ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
308 mNumberToFinish = CpuMpData->CpuCount - 1;
309 WakeUpAP (CpuMpData, TRUE, 0, RelocateApLoop, NULL);
310 while (mNumberToFinish > 0) {
311 CpuPause ();
312 }
313 DEBUG ((DEBUG_INFO, "%a() done!\n", __FUNCTION__));
314 }
315
316 /**
317 Initialize global data for MP support.
318
319 @param[in] CpuMpData The pointer to CPU MP Data structure.
320 **/
321 VOID
322 InitMpGlobalData (
323 IN CPU_MP_DATA *CpuMpData
324 )
325 {
326 EFI_STATUS Status;
327 EFI_PHYSICAL_ADDRESS Address;
328 UINTN ApSafeBufferSize;
329 UINTN Index;
330 EFI_GCD_MEMORY_SPACE_DESCRIPTOR MemDesc;
331 UINTN StackBase;
332 CPU_INFO_IN_HOB *CpuInfoInHob;
333
334 SaveCpuMpData (CpuMpData);
335
336 if (CpuMpData->CpuCount == 1) {
337 //
338 // If only BSP exists, return
339 //
340 return;
341 }
342
343 if (PcdGetBool (PcdCpuStackGuard)) {
344 //
345 // One extra page at the bottom of the stack is needed for Guard page.
346 //
347 if (CpuMpData->CpuApStackSize <= EFI_PAGE_SIZE) {
348 DEBUG ((DEBUG_ERROR, "PcdCpuApStackSize is not big enough for Stack Guard!\n"));
349 ASSERT (FALSE);
350 }
351
352 //
353 // DXE will reuse stack allocated for APs at PEI phase if it's available.
354 // Let's check it here.
355 //
356 // Note: BSP's stack guard is set at DxeIpl phase. But for the sake of
357 // BSP/AP exchange, stack guard for ApTopOfStack of cpu 0 will still be
358 // set here.
359 //
360 CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
361 for (Index = 0; Index < CpuMpData->CpuCount; ++Index) {
362 if (CpuInfoInHob != NULL && CpuInfoInHob[Index].ApTopOfStack != 0) {
363 StackBase = (UINTN)CpuInfoInHob[Index].ApTopOfStack - CpuMpData->CpuApStackSize;
364 } else {
365 StackBase = CpuMpData->Buffer + Index * CpuMpData->CpuApStackSize;
366 }
367
368 Status = gDS->GetMemorySpaceDescriptor (StackBase, &MemDesc);
369 ASSERT_EFI_ERROR (Status);
370
371 Status = gDS->SetMemorySpaceAttributes (
372 StackBase,
373 EFI_PAGES_TO_SIZE (1),
374 MemDesc.Attributes | EFI_MEMORY_RP
375 );
376 ASSERT_EFI_ERROR (Status);
377
378 DEBUG ((DEBUG_INFO, "Stack Guard set at %lx [cpu%lu]!\n",
379 (UINT64)StackBase, (UINT64)Index));
380 }
381 }
382
383 //
384 // Avoid APs access invalid buffer data which allocated by BootServices,
385 // so we will allocate reserved data for AP loop code. We also need to
386 // allocate this buffer below 4GB due to APs may be transferred to 32bit
387 // protected mode on long mode DXE.
388 // Allocating it in advance since memory services are not available in
389 // Exit Boot Services callback function.
390 //
391 ApSafeBufferSize = CpuMpData->AddressMap.RelocateApLoopFuncSize;
392 ApSafeBufferSize += CpuMpData->CpuCount * AP_SAFE_STACK_SIZE;
393
394 Address = BASE_4GB - 1;
395 Status = gBS->AllocatePages (
396 AllocateMaxAddress,
397 EfiReservedMemoryType,
398 EFI_SIZE_TO_PAGES (ApSafeBufferSize),
399 &Address
400 );
401 ASSERT_EFI_ERROR (Status);
402 mReservedApLoopFunc = (VOID *) (UINTN) Address;
403 ASSERT (mReservedApLoopFunc != NULL);
404 mReservedTopOfApStack = (UINTN) Address + EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (ApSafeBufferSize));
405 ASSERT ((mReservedTopOfApStack & (UINTN)(CPU_STACK_ALIGNMENT - 1)) == 0);
406 CopyMem (
407 mReservedApLoopFunc,
408 CpuMpData->AddressMap.RelocateApLoopFuncAddress,
409 CpuMpData->AddressMap.RelocateApLoopFuncSize
410 );
411
412 Status = gBS->CreateEvent (
413 EVT_TIMER | EVT_NOTIFY_SIGNAL,
414 TPL_NOTIFY,
415 CheckApsStatus,
416 NULL,
417 &mCheckAllApsEvent
418 );
419 ASSERT_EFI_ERROR (Status);
420
421 //
422 // Set timer to check all APs status.
423 //
424 Status = gBS->SetTimer (
425 mCheckAllApsEvent,
426 TimerPeriodic,
427 AP_CHECK_INTERVAL
428 );
429 ASSERT_EFI_ERROR (Status);
430
431 Status = gBS->CreateEvent (
432 EVT_SIGNAL_EXIT_BOOT_SERVICES,
433 TPL_CALLBACK,
434 MpInitChangeApLoopCallback,
435 NULL,
436 &mMpInitExitBootServicesEvent
437 );
438 ASSERT_EFI_ERROR (Status);
439
440 Status = gBS->CreateEventEx (
441 EVT_NOTIFY_SIGNAL,
442 TPL_CALLBACK,
443 MpInitChangeApLoopCallback,
444 NULL,
445 &gEfiEventLegacyBootGuid,
446 &mLegacyBootEvent
447 );
448 ASSERT_EFI_ERROR (Status);
449 }
450
451 /**
452 This service executes a caller provided function on all enabled APs.
453
454 @param[in] Procedure A pointer to the function to be run on
455 enabled APs of the system. See type
456 EFI_AP_PROCEDURE.
457 @param[in] SingleThread If TRUE, then all the enabled APs execute
458 the function specified by Procedure one by
459 one, in ascending order of processor handle
460 number. If FALSE, then all the enabled APs
461 execute the function specified by Procedure
462 simultaneously.
463 @param[in] WaitEvent The event created by the caller with CreateEvent()
464 service. If it is NULL, then execute in
465 blocking mode. BSP waits until all APs finish
466 or TimeoutInMicroSeconds expires. If it's
467 not NULL, then execute in non-blocking mode.
468 BSP requests the function specified by
469 Procedure to be started on all the enabled
470 APs, and go on executing immediately. If
471 all return from Procedure, or TimeoutInMicroSeconds
472 expires, this event is signaled. The BSP
473 can use the CheckEvent() or WaitForEvent()
474 services to check the state of event. Type
475 EFI_EVENT is defined in CreateEvent() in
476 the Unified Extensible Firmware Interface
477 Specification.
478 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
479 APs to return from Procedure, either for
480 blocking or non-blocking mode. Zero means
481 infinity. If the timeout expires before
482 all APs return from Procedure, then Procedure
483 on the failed APs is terminated. All enabled
484 APs are available for next function assigned
485 by MpInitLibStartupAllAPs() or
486 MPInitLibStartupThisAP().
487 If the timeout expires in blocking mode,
488 BSP returns EFI_TIMEOUT. If the timeout
489 expires in non-blocking mode, WaitEvent
490 is signaled with SignalEvent().
491 @param[in] ProcedureArgument The parameter passed into Procedure for
492 all APs.
493 @param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
494 if all APs finish successfully, then its
495 content is set to NULL. If not all APs
496 finish before timeout expires, then its
497 content is set to address of the buffer
498 holding handle numbers of the failed APs.
499 The buffer is allocated by MP Initialization
500 library, and it's the caller's responsibility to
501 free the buffer with FreePool() service.
502 In blocking mode, it is ready for consumption
503 when the call returns. In non-blocking mode,
504 it is ready when WaitEvent is signaled. The
505 list of failed CPU is terminated by
506 END_OF_CPU_LIST.
507
508 @retval EFI_SUCCESS In blocking mode, all APs have finished before
509 the timeout expired.
510 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
511 to all enabled APs.
512 @retval EFI_UNSUPPORTED A non-blocking mode request was made after the
513 UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
514 signaled.
515 @retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
516 supported.
517 @retval EFI_DEVICE_ERROR Caller processor is AP.
518 @retval EFI_NOT_STARTED No enabled APs exist in the system.
519 @retval EFI_NOT_READY Any enabled APs are busy.
520 @retval EFI_NOT_READY MP Initialize Library is not initialized.
521 @retval EFI_TIMEOUT In blocking mode, the timeout expired before
522 all enabled APs have finished.
523 @retval EFI_INVALID_PARAMETER Procedure is NULL.
524
525 **/
526 EFI_STATUS
527 EFIAPI
528 MpInitLibStartupAllAPs (
529 IN EFI_AP_PROCEDURE Procedure,
530 IN BOOLEAN SingleThread,
531 IN EFI_EVENT WaitEvent OPTIONAL,
532 IN UINTN TimeoutInMicroseconds,
533 IN VOID *ProcedureArgument OPTIONAL,
534 OUT UINTN **FailedCpuList OPTIONAL
535 )
536 {
537 EFI_STATUS Status;
538
539 //
540 // Temporarily stop checkAllApsStatus for avoid resource dead-lock.
541 //
542 mStopCheckAllApsStatus = TRUE;
543
544 Status = StartupAllAPsWorker (
545 Procedure,
546 SingleThread,
547 WaitEvent,
548 TimeoutInMicroseconds,
549 ProcedureArgument,
550 FailedCpuList
551 );
552
553 //
554 // Start checkAllApsStatus
555 //
556 mStopCheckAllApsStatus = FALSE;
557
558 return Status;
559 }
560
561 /**
562 This service lets the caller get one enabled AP to execute a caller-provided
563 function.
564
565 @param[in] Procedure A pointer to the function to be run on the
566 designated AP of the system. See type
567 EFI_AP_PROCEDURE.
568 @param[in] ProcessorNumber The handle number of the AP. The range is
569 from 0 to the total number of logical
570 processors minus 1. The total number of
571 logical processors can be retrieved by
572 MpInitLibGetNumberOfProcessors().
573 @param[in] WaitEvent The event created by the caller with CreateEvent()
574 service. If it is NULL, then execute in
575 blocking mode. BSP waits until this AP finish
576 or TimeoutInMicroSeconds expires. If it's
577 not NULL, then execute in non-blocking mode.
578 BSP requests the function specified by
579 Procedure to be started on this AP,
580 and go on executing immediately. If this AP
581 return from Procedure or TimeoutInMicroSeconds
582 expires, this event is signaled. The BSP
583 can use the CheckEvent() or WaitForEvent()
584 services to check the state of event. Type
585 EFI_EVENT is defined in CreateEvent() in
586 the Unified Extensible Firmware Interface
587 Specification.
588 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
589 this AP to finish this Procedure, either for
590 blocking or non-blocking mode. Zero means
591 infinity. If the timeout expires before
592 this AP returns from Procedure, then Procedure
593 on the AP is terminated. The
594 AP is available for next function assigned
595 by MpInitLibStartupAllAPs() or
596 MpInitLibStartupThisAP().
597 If the timeout expires in blocking mode,
598 BSP returns EFI_TIMEOUT. If the timeout
599 expires in non-blocking mode, WaitEvent
600 is signaled with SignalEvent().
601 @param[in] ProcedureArgument The parameter passed into Procedure on the
602 specified AP.
603 @param[out] Finished If NULL, this parameter is ignored. In
604 blocking mode, this parameter is ignored.
605 In non-blocking mode, if AP returns from
606 Procedure before the timeout expires, its
607 content is set to TRUE. Otherwise, the
608 value is set to FALSE. The caller can
609 determine if the AP returned from Procedure
610 by evaluating this value.
611
612 @retval EFI_SUCCESS In blocking mode, specified AP finished before
613 the timeout expires.
614 @retval EFI_SUCCESS In non-blocking mode, the function has been
615 dispatched to specified AP.
616 @retval EFI_UNSUPPORTED A non-blocking mode request was made after the
617 UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
618 signaled.
619 @retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
620 supported.
621 @retval EFI_DEVICE_ERROR The calling processor is an AP.
622 @retval EFI_TIMEOUT In blocking mode, the timeout expired before
623 the specified AP has finished.
624 @retval EFI_NOT_READY The specified AP is busy.
625 @retval EFI_NOT_READY MP Initialize Library is not initialized.
626 @retval EFI_NOT_FOUND The processor with the handle specified by
627 ProcessorNumber does not exist.
628 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
629 @retval EFI_INVALID_PARAMETER Procedure is NULL.
630
631 **/
632 EFI_STATUS
633 EFIAPI
634 MpInitLibStartupThisAP (
635 IN EFI_AP_PROCEDURE Procedure,
636 IN UINTN ProcessorNumber,
637 IN EFI_EVENT WaitEvent OPTIONAL,
638 IN UINTN TimeoutInMicroseconds,
639 IN VOID *ProcedureArgument OPTIONAL,
640 OUT BOOLEAN *Finished OPTIONAL
641 )
642 {
643 EFI_STATUS Status;
644
645 //
646 // temporarily stop checkAllApsStatus for avoid resource dead-lock.
647 //
648 mStopCheckAllApsStatus = TRUE;
649
650 Status = StartupThisAPWorker (
651 Procedure,
652 ProcessorNumber,
653 WaitEvent,
654 TimeoutInMicroseconds,
655 ProcedureArgument,
656 Finished
657 );
658
659 mStopCheckAllApsStatus = FALSE;
660
661 return Status;
662 }
663
664 /**
665 This service switches the requested AP to be the BSP from that point onward.
666 This service changes the BSP for all purposes. This call can only be performed
667 by the current BSP.
668
669 @param[in] ProcessorNumber The handle number of AP that is to become the new
670 BSP. The range is from 0 to the total number of
671 logical processors minus 1. The total number of
672 logical processors can be retrieved by
673 MpInitLibGetNumberOfProcessors().
674 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
675 enabled AP. Otherwise, it will be disabled.
676
677 @retval EFI_SUCCESS BSP successfully switched.
678 @retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
679 this service returning.
680 @retval EFI_UNSUPPORTED Switching the BSP is not supported.
681 @retval EFI_DEVICE_ERROR The calling processor is an AP.
682 @retval EFI_NOT_FOUND The processor with the handle specified by
683 ProcessorNumber does not exist.
684 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
685 a disabled AP.
686 @retval EFI_NOT_READY The specified AP is busy.
687 @retval EFI_NOT_READY MP Initialize Library is not initialized.
688
689 **/
690 EFI_STATUS
691 EFIAPI
692 MpInitLibSwitchBSP (
693 IN UINTN ProcessorNumber,
694 IN BOOLEAN EnableOldBSP
695 )
696 {
697 EFI_STATUS Status;
698 EFI_TIMER_ARCH_PROTOCOL *Timer;
699 UINT64 TimerPeriod;
700
701 TimerPeriod = 0;
702 //
703 // Locate Timer Arch Protocol
704 //
705 Status = gBS->LocateProtocol (&gEfiTimerArchProtocolGuid, NULL, (VOID **) &Timer);
706 if (EFI_ERROR (Status)) {
707 Timer = NULL;
708 }
709
710 if (Timer != NULL) {
711 //
712 // Save current rate of DXE Timer
713 //
714 Timer->GetTimerPeriod (Timer, &TimerPeriod);
715 //
716 // Disable DXE Timer and drain pending interrupts
717 //
718 Timer->SetTimerPeriod (Timer, 0);
719 }
720
721 Status = SwitchBSPWorker (ProcessorNumber, EnableOldBSP);
722
723 if (Timer != NULL) {
724 //
725 // Enable and restore rate of DXE Timer
726 //
727 Timer->SetTimerPeriod (Timer, TimerPeriod);
728 }
729
730 return Status;
731 }
732
733 /**
734 This service lets the caller enable or disable an AP from this point onward.
735 This service may only be called from the BSP.
736
737 @param[in] ProcessorNumber The handle number of AP.
738 The range is from 0 to the total number of
739 logical processors minus 1. The total number of
740 logical processors can be retrieved by
741 MpInitLibGetNumberOfProcessors().
742 @param[in] EnableAP Specifies the new state for the processor for
743 enabled, FALSE for disabled.
744 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
745 the new health status of the AP. This flag
746 corresponds to StatusFlag defined in
747 EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
748 the PROCESSOR_HEALTH_STATUS_BIT is used. All other
749 bits are ignored. If it is NULL, this parameter
750 is ignored.
751
752 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
753 @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
754 prior to this service returning.
755 @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
756 @retval EFI_DEVICE_ERROR The calling processor is an AP.
757 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
758 does not exist.
759 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
760 @retval EFI_NOT_READY MP Initialize Library is not initialized.
761
762 **/
763 EFI_STATUS
764 EFIAPI
765 MpInitLibEnableDisableAP (
766 IN UINTN ProcessorNumber,
767 IN BOOLEAN EnableAP,
768 IN UINT32 *HealthFlag OPTIONAL
769 )
770 {
771 EFI_STATUS Status;
772 BOOLEAN TempStopCheckState;
773
774 TempStopCheckState = FALSE;
775 //
776 // temporarily stop checkAllAPsStatus for initialize parameters.
777 //
778 if (!mStopCheckAllApsStatus) {
779 mStopCheckAllApsStatus = TRUE;
780 TempStopCheckState = TRUE;
781 }
782
783 Status = EnableDisableApWorker (ProcessorNumber, EnableAP, HealthFlag);
784
785 if (TempStopCheckState) {
786 mStopCheckAllApsStatus = FALSE;
787 }
788
789 return Status;
790 }