UefiCpuPkg/MpInitLib: Remove redundant CpuStateFinished State.
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
1 /** @file
2 CPU MP Initialize Library common functions.
3
4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "MpLib.h"
16
17 EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
18
19 /**
20 The function will check if BSP Execute Disable is enabled.
21
22 DxeIpl may have enabled Execute Disable for BSP, APs need to
23 get the status and sync up the settings.
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is
25 not working actually.
26
27 @retval TRUE BSP Execute Disable is enabled.
28 @retval FALSE BSP Execute Disable is not enabled.
29 **/
30 BOOLEAN
31 IsBspExecuteDisableEnabled (
32 VOID
33 )
34 {
35 UINT32 Eax;
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;
37 MSR_IA32_EFER_REGISTER EferMsr;
38 BOOLEAN Enabled;
39 IA32_CR0 Cr0;
40
41 Enabled = FALSE;
42 Cr0.UintN = AsmReadCr0 ();
43 if (Cr0.Bits.PG != 0) {
44 //
45 // If CR0 Paging bit is set
46 //
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
50 //
51 // CPUID 0x80000001
52 // Bit 20: Execute Disable Bit available.
53 //
54 if (Edx.Bits.NX != 0) {
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
56 //
57 // MSR 0xC0000080
58 // Bit 11: Execute Disable Bit enable.
59 //
60 if (EferMsr.Bits.NXE != 0) {
61 Enabled = TRUE;
62 }
63 }
64 }
65 }
66
67 return Enabled;
68 }
69
70 /**
71 Worker function for SwitchBSP().
72
73 Worker function for SwitchBSP(), assigned to the AP which is intended
74 to become BSP.
75
76 @param[in] Buffer Pointer to CPU MP Data
77 **/
78 VOID
79 EFIAPI
80 FutureBSPProc (
81 IN VOID *Buffer
82 )
83 {
84 CPU_MP_DATA *DataInHob;
85
86 DataInHob = (CPU_MP_DATA *) Buffer;
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
88 }
89
90 /**
91 Get the Application Processors state.
92
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
94
95 @return The AP status
96 **/
97 CPU_STATE
98 GetApState (
99 IN CPU_AP_DATA *CpuData
100 )
101 {
102 return CpuData->State;
103 }
104
105 /**
106 Set the Application Processors state.
107
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
109 @param[in] State The AP status
110 **/
111 VOID
112 SetApState (
113 IN CPU_AP_DATA *CpuData,
114 IN CPU_STATE State
115 )
116 {
117 AcquireSpinLock (&CpuData->ApLock);
118 CpuData->State = State;
119 ReleaseSpinLock (&CpuData->ApLock);
120 }
121
122 /**
123 Save BSP's local APIC timer setting.
124
125 @param[in] CpuMpData Pointer to CPU MP Data
126 **/
127 VOID
128 SaveLocalApicTimerSetting (
129 IN CPU_MP_DATA *CpuMpData
130 )
131 {
132 //
133 // Record the current local APIC timer setting of BSP
134 //
135 GetApicTimerState (
136 &CpuMpData->DivideValue,
137 &CpuMpData->PeriodicMode,
138 &CpuMpData->Vector
139 );
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
142 }
143
144 /**
145 Sync local APIC timer setting from BSP to AP.
146
147 @param[in] CpuMpData Pointer to CPU MP Data
148 **/
149 VOID
150 SyncLocalApicTimerSetting (
151 IN CPU_MP_DATA *CpuMpData
152 )
153 {
154 //
155 // Sync local APIC timer setting from BSP to AP
156 //
157 InitializeApicTimer (
158 CpuMpData->DivideValue,
159 CpuMpData->CurrentTimerCount,
160 CpuMpData->PeriodicMode,
161 CpuMpData->Vector
162 );
163 //
164 // Disable AP's local APIC timer interrupt
165 //
166 DisableApicTimerInterrupt ();
167 }
168
169 /**
170 Save the volatile registers required to be restored following INIT IPI.
171
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters
173 **/
174 VOID
175 SaveVolatileRegisters (
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
177 )
178 {
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;
180
181 VolatileRegisters->Cr0 = AsmReadCr0 ();
182 VolatileRegisters->Cr3 = AsmReadCr3 ();
183 VolatileRegisters->Cr4 = AsmReadCr4 ();
184
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
186 if (VersionInfoEdx.Bits.DE != 0) {
187 //
188 // If processor supports Debugging Extensions feature
189 // by CPUID.[EAX=01H]:EDX.BIT2
190 //
191 VolatileRegisters->Dr0 = AsmReadDr0 ();
192 VolatileRegisters->Dr1 = AsmReadDr1 ();
193 VolatileRegisters->Dr2 = AsmReadDr2 ();
194 VolatileRegisters->Dr3 = AsmReadDr3 ();
195 VolatileRegisters->Dr6 = AsmReadDr6 ();
196 VolatileRegisters->Dr7 = AsmReadDr7 ();
197 }
198
199 AsmReadGdtr (&VolatileRegisters->Gdtr);
200 AsmReadIdtr (&VolatileRegisters->Idtr);
201 VolatileRegisters->Tr = AsmReadTr ();
202 }
203
204 /**
205 Restore the volatile registers following INIT IPI.
206
207 @param[in] VolatileRegisters Pointer to volatile resisters
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported
209 FALSE: Do not restore DRx
210 **/
211 VOID
212 RestoreVolatileRegisters (
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
214 IN BOOLEAN IsRestoreDr
215 )
216 {
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;
218 IA32_TSS_DESCRIPTOR *Tss;
219
220 AsmWriteCr0 (VolatileRegisters->Cr0);
221 AsmWriteCr3 (VolatileRegisters->Cr3);
222 AsmWriteCr4 (VolatileRegisters->Cr4);
223
224 if (IsRestoreDr) {
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
226 if (VersionInfoEdx.Bits.DE != 0) {
227 //
228 // If processor supports Debugging Extensions feature
229 // by CPUID.[EAX=01H]:EDX.BIT2
230 //
231 AsmWriteDr0 (VolatileRegisters->Dr0);
232 AsmWriteDr1 (VolatileRegisters->Dr1);
233 AsmWriteDr2 (VolatileRegisters->Dr2);
234 AsmWriteDr3 (VolatileRegisters->Dr3);
235 AsmWriteDr6 (VolatileRegisters->Dr6);
236 AsmWriteDr7 (VolatileRegisters->Dr7);
237 }
238 }
239
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);
241 AsmWriteIdtr (&VolatileRegisters->Idtr);
242 if (VolatileRegisters->Tr != 0 &&
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
245 VolatileRegisters->Tr);
246 if (Tss->Bits.P == 1) {
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
248 AsmWriteTr (VolatileRegisters->Tr);
249 }
250 }
251 }
252
253 /**
254 Detect whether Mwait-monitor feature is supported.
255
256 @retval TRUE Mwait-monitor feature is supported.
257 @retval FALSE Mwait-monitor feature is not supported.
258 **/
259 BOOLEAN
260 IsMwaitSupport (
261 VOID
262 )
263 {
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;
265
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
268 }
269
270 /**
271 Get AP loop mode.
272
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
274
275 @return The AP loop mode.
276 **/
277 UINT8
278 GetApLoopMode (
279 OUT UINT32 *MonitorFilterSize
280 )
281 {
282 UINT8 ApLoopMode;
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
284
285 ASSERT (MonitorFilterSize != NULL);
286
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
289 if (ApLoopMode == ApInMwaitLoop) {
290 if (!IsMwaitSupport ()) {
291 //
292 // If processor does not support MONITOR/MWAIT feature,
293 // force AP in Hlt-loop mode
294 //
295 ApLoopMode = ApInHltLoop;
296 }
297 }
298
299 if (ApLoopMode != ApInMwaitLoop) {
300 *MonitorFilterSize = sizeof (UINT32);
301 } else {
302 //
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
305 //
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
308 }
309
310 return ApLoopMode;
311 }
312
313 /**
314 Sort the APIC ID of all processors.
315
316 This function sorts the APIC ID of all processors so that processor number is
317 assigned in the ascending order of APIC ID which eases MP debugging.
318
319 @param[in] CpuMpData Pointer to PEI CPU MP Data
320 **/
321 VOID
322 SortApicId (
323 IN CPU_MP_DATA *CpuMpData
324 )
325 {
326 UINTN Index1;
327 UINTN Index2;
328 UINTN Index3;
329 UINT32 ApicId;
330 CPU_INFO_IN_HOB CpuInfo;
331 UINT32 ApCount;
332 CPU_INFO_IN_HOB *CpuInfoInHob;
333 volatile UINT32 *StartupApSignal;
334
335 ApCount = CpuMpData->CpuCount - 1;
336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
337 if (ApCount != 0) {
338 for (Index1 = 0; Index1 < ApCount; Index1++) {
339 Index3 = Index1;
340 //
341 // Sort key is the hardware default APIC ID
342 //
343 ApicId = CpuInfoInHob[Index1].ApicId;
344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
345 if (ApicId > CpuInfoInHob[Index2].ApicId) {
346 Index3 = Index2;
347 ApicId = CpuInfoInHob[Index2].ApicId;
348 }
349 }
350 if (Index3 != Index1) {
351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
352 CopyMem (
353 &CpuInfoInHob[Index3],
354 &CpuInfoInHob[Index1],
355 sizeof (CPU_INFO_IN_HOB)
356 );
357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
358
359 //
360 // Also exchange the StartupApSignal.
361 //
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
363 CpuMpData->CpuData[Index3].StartupApSignal =
364 CpuMpData->CpuData[Index1].StartupApSignal;
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
366 }
367 }
368
369 //
370 // Get the processor number for the BSP
371 //
372 ApicId = GetInitialApicId ();
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
374 if (CpuInfoInHob[Index1].ApicId == ApicId) {
375 CpuMpData->BspNumber = (UINT32) Index1;
376 break;
377 }
378 }
379 }
380 }
381
382 /**
383 Enable x2APIC mode on APs.
384
385 @param[in, out] Buffer Pointer to private data buffer.
386 **/
387 VOID
388 EFIAPI
389 ApFuncEnableX2Apic (
390 IN OUT VOID *Buffer
391 )
392 {
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);
394 }
395
396 /**
397 Do sync on APs.
398
399 @param[in, out] Buffer Pointer to private data buffer.
400 **/
401 VOID
402 EFIAPI
403 ApInitializeSync (
404 IN OUT VOID *Buffer
405 )
406 {
407 CPU_MP_DATA *CpuMpData;
408
409 CpuMpData = (CPU_MP_DATA *) Buffer;
410 //
411 // Load microcode on AP
412 //
413 MicrocodeDetect (CpuMpData, FALSE);
414 //
415 // Sync BSP's MTRR table to AP
416 //
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
418 }
419
420 /**
421 Find the current Processor number by APIC ID.
422
423 @param[in] CpuMpData Pointer to PEI CPU MP Data
424 @param[out] ProcessorNumber Return the pocessor number found
425
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.
428 **/
429 EFI_STATUS
430 GetProcessorNumber (
431 IN CPU_MP_DATA *CpuMpData,
432 OUT UINTN *ProcessorNumber
433 )
434 {
435 UINTN TotalProcessorNumber;
436 UINTN Index;
437 CPU_INFO_IN_HOB *CpuInfoInHob;
438 UINT32 CurrentApicId;
439
440 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
441
442 TotalProcessorNumber = CpuMpData->CpuCount;
443 CurrentApicId = GetApicId ();
444 for (Index = 0; Index < TotalProcessorNumber; Index ++) {
445 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
446 *ProcessorNumber = Index;
447 return EFI_SUCCESS;
448 }
449 }
450
451 return EFI_NOT_FOUND;
452 }
453
454 /**
455 This function will get CPU count in the system.
456
457 @param[in] CpuMpData Pointer to PEI CPU MP Data
458
459 @return CPU count detected
460 **/
461 UINTN
462 CollectProcessorCount (
463 IN CPU_MP_DATA *CpuMpData
464 )
465 {
466 UINTN Index;
467
468 //
469 // Send 1st broadcast IPI to APs to wakeup APs
470 //
471 CpuMpData->InitFlag = ApInitConfig;
472 CpuMpData->X2ApicEnable = FALSE;
473 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);
474 CpuMpData->InitFlag = ApInitDone;
475 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
476 //
477 // Wait for all APs finished the initialization
478 //
479 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
480 CpuPause ();
481 }
482
483 if (CpuMpData->CpuCount > 255) {
484 //
485 // If there are more than 255 processor found, force to enable X2APIC
486 //
487 CpuMpData->X2ApicEnable = TRUE;
488 }
489 if (CpuMpData->X2ApicEnable) {
490 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
491 //
492 // Wakeup all APs to enable x2APIC mode
493 //
494 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);
495 //
496 // Wait for all known APs finished
497 //
498 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
499 CpuPause ();
500 }
501 //
502 // Enable x2APIC on BSP
503 //
504 SetApicMode (LOCAL_APIC_MODE_X2APIC);
505 //
506 // Set BSP/Aps state to IDLE
507 //
508 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
509 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
510 }
511 }
512 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
513 //
514 // Sort BSP/Aps by CPU APIC ID in ascending order
515 //
516 SortApicId (CpuMpData);
517
518 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
519
520 return CpuMpData->CpuCount;
521 }
522
523 /**
524 Initialize CPU AP Data when AP is wakeup at the first time.
525
526 @param[in, out] CpuMpData Pointer to PEI CPU MP Data
527 @param[in] ProcessorNumber The handle number of processor
528 @param[in] BistData Processor BIST data
529 @param[in] ApTopOfStack Top of AP stack
530
531 **/
532 VOID
533 InitializeApData (
534 IN OUT CPU_MP_DATA *CpuMpData,
535 IN UINTN ProcessorNumber,
536 IN UINT32 BistData,
537 IN UINT64 ApTopOfStack
538 )
539 {
540 CPU_INFO_IN_HOB *CpuInfoInHob;
541
542 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
543 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
544 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
545 CpuInfoInHob[ProcessorNumber].Health = BistData;
546 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
547
548 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
549 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
550 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {
551 //
552 // Set x2APIC mode if there are any logical processor reporting
553 // an Initial APIC ID of 255 or greater.
554 //
555 AcquireSpinLock(&CpuMpData->MpLock);
556 CpuMpData->X2ApicEnable = TRUE;
557 ReleaseSpinLock(&CpuMpData->MpLock);
558 }
559
560 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
561 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
562 }
563
564 /**
565 This function will be called from AP reset code if BSP uses WakeUpAP.
566
567 @param[in] ExchangeInfo Pointer to the MP exchange info buffer
568 @param[in] ApIndex Number of current executing AP
569 **/
570 VOID
571 EFIAPI
572 ApWakeupFunction (
573 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
574 IN UINTN ApIndex
575 )
576 {
577 CPU_MP_DATA *CpuMpData;
578 UINTN ProcessorNumber;
579 EFI_AP_PROCEDURE Procedure;
580 VOID *Parameter;
581 UINT32 BistData;
582 volatile UINT32 *ApStartupSignalBuffer;
583 CPU_INFO_IN_HOB *CpuInfoInHob;
584 UINT64 ApTopOfStack;
585 UINTN CurrentApicMode;
586
587 //
588 // AP finished assembly code and begin to execute C code
589 //
590 CpuMpData = ExchangeInfo->CpuMpData;
591
592 //
593 // AP's local APIC settings will be lost after received INIT IPI
594 // We need to re-initialize them at here
595 //
596 ProgramVirtualWireMode ();
597 //
598 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
599 //
600 DisableLvtInterrupts ();
601 SyncLocalApicTimerSetting (CpuMpData);
602
603 CurrentApicMode = GetApicMode ();
604 while (TRUE) {
605 if (CpuMpData->InitFlag == ApInitConfig) {
606 //
607 // Add CPU number
608 //
609 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
610 ProcessorNumber = ApIndex;
611 //
612 // This is first time AP wakeup, get BIST information from AP stack
613 //
614 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
615 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
616 //
617 // Do some AP initialize sync
618 //
619 ApInitializeSync (CpuMpData);
620 //
621 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
622 // to initialize AP in InitConfig path.
623 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
624 //
625 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
626 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
627 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
628 } else {
629 //
630 // Execute AP function if AP is ready
631 //
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);
633 //
634 // Clear AP start-up signal when AP waken up
635 //
636 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
637 InterlockedCompareExchange32 (
638 (UINT32 *) ApStartupSignalBuffer,
639 WAKEUP_AP_SIGNAL,
640 0
641 );
642 if (CpuMpData->ApLoopMode == ApInHltLoop) {
643 //
644 // Restore AP's volatile registers saved
645 //
646 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
647 } else {
648 //
649 // The CPU driver might not flush TLB for APs on spot after updating
650 // page attributes. AP in mwait loop mode needs to take care of it when
651 // woken up.
652 //
653 CpuFlushTlb ();
654 }
655
656 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
657 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
658 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
659 if (Procedure != NULL) {
660 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
661 //
662 // Enable source debugging on AP function
663 //
664 EnableDebugAgent ();
665 //
666 // Invoke AP function here
667 //
668 Procedure (Parameter);
669 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
670 if (CpuMpData->SwitchBspFlag) {
671 //
672 // Re-get the processor number due to BSP/AP maybe exchange in AP function
673 //
674 GetProcessorNumber (CpuMpData, &ProcessorNumber);
675 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
676 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
677 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
678 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
679 } else {
680 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
681 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
682 if (CurrentApicMode != GetApicMode ()) {
683 //
684 // If APIC mode change happened during AP function execution,
685 // we do not support APIC ID value changed.
686 //
687 ASSERT (FALSE);
688 CpuDeadLoop ();
689 } else {
690 //
691 // Re-get the CPU APICID and Initial APICID if they are changed
692 //
693 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
694 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
695 }
696 }
697 }
698 }
699 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
700 }
701 }
702
703 //
704 // AP finished executing C code
705 //
706 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
707 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
708
709 //
710 // Place AP is specified loop mode
711 //
712 if (CpuMpData->ApLoopMode == ApInHltLoop) {
713 //
714 // Save AP volatile registers
715 //
716 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
717 //
718 // Place AP in HLT-loop
719 //
720 while (TRUE) {
721 DisableInterrupts ();
722 CpuSleep ();
723 CpuPause ();
724 }
725 }
726 while (TRUE) {
727 DisableInterrupts ();
728 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
729 //
730 // Place AP in MWAIT-loop
731 //
732 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
733 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
734 //
735 // Check AP start-up signal again.
736 // If AP start-up signal is not set, place AP into
737 // the specified C-state
738 //
739 AsmMwait (CpuMpData->ApTargetCState << 4, 0);
740 }
741 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
742 //
743 // Place AP in Run-loop
744 //
745 CpuPause ();
746 } else {
747 ASSERT (FALSE);
748 }
749
750 //
751 // If AP start-up signal is written, AP is waken up
752 // otherwise place AP in loop again
753 //
754 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
755 break;
756 }
757 }
758 }
759 }
760
761 /**
762 Wait for AP wakeup and write AP start-up signal till AP is waken up.
763
764 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
765 **/
766 VOID
767 WaitApWakeup (
768 IN volatile UINT32 *ApStartupSignalBuffer
769 )
770 {
771 //
772 // If AP is waken up, StartupApSignal should be cleared.
773 // Otherwise, write StartupApSignal again till AP waken up.
774 //
775 while (InterlockedCompareExchange32 (
776 (UINT32 *) ApStartupSignalBuffer,
777 WAKEUP_AP_SIGNAL,
778 WAKEUP_AP_SIGNAL
779 ) != 0) {
780 CpuPause ();
781 }
782 }
783
784 /**
785 This function will fill the exchange info structure.
786
787 @param[in] CpuMpData Pointer to CPU MP Data
788
789 **/
790 VOID
791 FillExchangeInfoData (
792 IN CPU_MP_DATA *CpuMpData
793 )
794 {
795 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
796 UINTN Size;
797 IA32_SEGMENT_DESCRIPTOR *Selector;
798
799 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
800 ExchangeInfo->Lock = 0;
801 ExchangeInfo->StackStart = CpuMpData->Buffer;
802 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
803 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
804 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
805
806 ExchangeInfo->CodeSegment = AsmReadCs ();
807 ExchangeInfo->DataSegment = AsmReadDs ();
808
809 ExchangeInfo->Cr3 = AsmReadCr3 ();
810
811 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
812 ExchangeInfo->ApIndex = 0;
813 ExchangeInfo->NumApsExecuting = 0;
814 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;
815 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
816 ExchangeInfo->CpuMpData = CpuMpData;
817
818 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
819
820 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
821
822 //
823 // Get the BSP's data of GDT and IDT
824 //
825 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
826 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
827
828 //
829 // Find a 32-bit code segment
830 //
831 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
832 Size = ExchangeInfo->GdtrProfile.Limit + 1;
833 while (Size > 0) {
834 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {
835 ExchangeInfo->ModeTransitionSegment =
836 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
837 break;
838 }
839 Selector += 1;
840 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
841 }
842
843 //
844 // Copy all 32-bit code and 64-bit code into memory with type of
845 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
846 //
847 if (CpuMpData->WakeupBufferHigh != 0) {
848 Size = CpuMpData->AddressMap.RendezvousFunnelSize -
849 CpuMpData->AddressMap.ModeTransitionOffset;
850 CopyMem (
851 (VOID *)CpuMpData->WakeupBufferHigh,
852 CpuMpData->AddressMap.RendezvousFunnelAddress +
853 CpuMpData->AddressMap.ModeTransitionOffset,
854 Size
855 );
856
857 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
858 } else {
859 ExchangeInfo->ModeTransitionMemory = (UINT32)
860 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);
861 }
862
863 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
864 (UINT32)ExchangeInfo->ModeOffset -
865 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
866 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
867 }
868
869 /**
870 Helper function that waits until the finished AP count reaches the specified
871 limit, or the specified timeout elapses (whichever comes first).
872
873 @param[in] CpuMpData Pointer to CPU MP Data.
874 @param[in] FinishedApLimit The number of finished APs to wait for.
875 @param[in] TimeLimit The number of microseconds to wait for.
876 **/
877 VOID
878 TimedWaitForApFinish (
879 IN CPU_MP_DATA *CpuMpData,
880 IN UINT32 FinishedApLimit,
881 IN UINT32 TimeLimit
882 );
883
884 /**
885 Get available system memory below 1MB by specified size.
886
887 @param[in] CpuMpData The pointer to CPU MP Data structure.
888 **/
889 VOID
890 BackupAndPrepareWakeupBuffer(
891 IN CPU_MP_DATA *CpuMpData
892 )
893 {
894 CopyMem (
895 (VOID *) CpuMpData->BackupBuffer,
896 (VOID *) CpuMpData->WakeupBuffer,
897 CpuMpData->BackupBufferSize
898 );
899 CopyMem (
900 (VOID *) CpuMpData->WakeupBuffer,
901 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
902 CpuMpData->AddressMap.RendezvousFunnelSize
903 );
904 }
905
906 /**
907 Restore wakeup buffer data.
908
909 @param[in] CpuMpData The pointer to CPU MP Data structure.
910 **/
911 VOID
912 RestoreWakeupBuffer(
913 IN CPU_MP_DATA *CpuMpData
914 )
915 {
916 CopyMem (
917 (VOID *) CpuMpData->WakeupBuffer,
918 (VOID *) CpuMpData->BackupBuffer,
919 CpuMpData->BackupBufferSize
920 );
921 }
922
923 /**
924 Allocate reset vector buffer.
925
926 @param[in, out] CpuMpData The pointer to CPU MP Data structure.
927 **/
928 VOID
929 AllocateResetVector (
930 IN OUT CPU_MP_DATA *CpuMpData
931 )
932 {
933 UINTN ApResetVectorSize;
934
935 if (CpuMpData->WakeupBuffer == (UINTN) -1) {
936 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
937 sizeof (MP_CPU_EXCHANGE_INFO);
938
939 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
940 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
941 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
942 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (
943 CpuMpData->AddressMap.RendezvousFunnelSize -
944 CpuMpData->AddressMap.ModeTransitionOffset
945 );
946 }
947 BackupAndPrepareWakeupBuffer (CpuMpData);
948 }
949
950 /**
951 Free AP reset vector buffer.
952
953 @param[in] CpuMpData The pointer to CPU MP Data structure.
954 **/
955 VOID
956 FreeResetVector (
957 IN CPU_MP_DATA *CpuMpData
958 )
959 {
960 RestoreWakeupBuffer (CpuMpData);
961 }
962
963 /**
964 This function will be called by BSP to wakeup AP.
965
966 @param[in] CpuMpData Pointer to CPU MP Data
967 @param[in] Broadcast TRUE: Send broadcast IPI to all APs
968 FALSE: Send IPI to AP by ApicId
969 @param[in] ProcessorNumber The handle number of specified processor
970 @param[in] Procedure The function to be invoked by AP
971 @param[in] ProcedureArgument The argument to be passed into AP function
972 **/
973 VOID
974 WakeUpAP (
975 IN CPU_MP_DATA *CpuMpData,
976 IN BOOLEAN Broadcast,
977 IN UINTN ProcessorNumber,
978 IN EFI_AP_PROCEDURE Procedure, OPTIONAL
979 IN VOID *ProcedureArgument OPTIONAL
980 )
981 {
982 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
983 UINTN Index;
984 CPU_AP_DATA *CpuData;
985 BOOLEAN ResetVectorRequired;
986 CPU_INFO_IN_HOB *CpuInfoInHob;
987
988 CpuMpData->FinishedCount = 0;
989 ResetVectorRequired = FALSE;
990
991 if (CpuMpData->WakeUpByInitSipiSipi ||
992 CpuMpData->InitFlag != ApInitDone) {
993 ResetVectorRequired = TRUE;
994 AllocateResetVector (CpuMpData);
995 FillExchangeInfoData (CpuMpData);
996 SaveLocalApicTimerSetting (CpuMpData);
997 }
998
999 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
1000 //
1001 // Get AP target C-state each time when waking up AP,
1002 // for it maybe updated by platform again
1003 //
1004 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
1005 }
1006
1007 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
1008
1009 if (Broadcast) {
1010 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1011 if (Index != CpuMpData->BspNumber) {
1012 CpuData = &CpuMpData->CpuData[Index];
1013 CpuData->ApFunction = (UINTN) Procedure;
1014 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1015 SetApState (CpuData, CpuStateReady);
1016 if (CpuMpData->InitFlag != ApInitConfig) {
1017 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1018 }
1019 }
1020 }
1021 if (ResetVectorRequired) {
1022 //
1023 // Wakeup all APs
1024 //
1025 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
1026 }
1027 if (CpuMpData->InitFlag == ApInitConfig) {
1028 //
1029 // Here support two methods to collect AP count through adjust
1030 // PcdCpuApInitTimeOutInMicroSeconds values.
1031 //
1032 // one way is set a value to just let the first AP to start the
1033 // initialization, then through the later while loop to wait all Aps
1034 // finsh the initialization.
1035 // The other way is set a value to let all APs finished the initialzation.
1036 // In this case, the later while loop is useless.
1037 //
1038 TimedWaitForApFinish (
1039 CpuMpData,
1040 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
1041 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
1042 );
1043
1044 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
1045 CpuPause();
1046 }
1047 } else {
1048 //
1049 // Wait all APs waken up if this is not the 1st broadcast of SIPI
1050 //
1051 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1052 CpuData = &CpuMpData->CpuData[Index];
1053 if (Index != CpuMpData->BspNumber) {
1054 WaitApWakeup (CpuData->StartupApSignal);
1055 }
1056 }
1057 }
1058 } else {
1059 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1060 CpuData->ApFunction = (UINTN) Procedure;
1061 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1062 SetApState (CpuData, CpuStateReady);
1063 //
1064 // Wakeup specified AP
1065 //
1066 ASSERT (CpuMpData->InitFlag != ApInitConfig);
1067 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1068 if (ResetVectorRequired) {
1069 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1070 SendInitSipiSipi (
1071 CpuInfoInHob[ProcessorNumber].ApicId,
1072 (UINT32) ExchangeInfo->BufferStart
1073 );
1074 }
1075 //
1076 // Wait specified AP waken up
1077 //
1078 WaitApWakeup (CpuData->StartupApSignal);
1079 }
1080
1081 if (ResetVectorRequired) {
1082 FreeResetVector (CpuMpData);
1083 }
1084
1085 //
1086 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
1087 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
1088 // S3SmmInitDone Ppi.
1089 //
1090 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1091 }
1092
1093 /**
1094 Calculate timeout value and return the current performance counter value.
1095
1096 Calculate the number of performance counter ticks required for a timeout.
1097 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1098 as infinity.
1099
1100 @param[in] TimeoutInMicroseconds Timeout value in microseconds.
1101 @param[out] CurrentTime Returns the current value of the performance counter.
1102
1103 @return Expected time stamp counter for timeout.
1104 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1105 as infinity.
1106
1107 **/
1108 UINT64
1109 CalculateTimeout (
1110 IN UINTN TimeoutInMicroseconds,
1111 OUT UINT64 *CurrentTime
1112 )
1113 {
1114 UINT64 TimeoutInSeconds;
1115 UINT64 TimestampCounterFreq;
1116
1117 //
1118 // Read the current value of the performance counter
1119 //
1120 *CurrentTime = GetPerformanceCounter ();
1121
1122 //
1123 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1124 // as infinity.
1125 //
1126 if (TimeoutInMicroseconds == 0) {
1127 return 0;
1128 }
1129
1130 //
1131 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
1132 // in Hz.
1133 //
1134 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
1135
1136 //
1137 // Check the potential overflow before calculate the number of ticks for the timeout value.
1138 //
1139 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
1140 //
1141 // Convert microseconds into seconds if direct multiplication overflows
1142 //
1143 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
1144 //
1145 // Assertion if the final tick count exceeds MAX_UINT64
1146 //
1147 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
1148 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
1149 } else {
1150 //
1151 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
1152 // it by 1,000,000, to get the number of ticks for the timeout value.
1153 //
1154 return DivU64x32 (
1155 MultU64x64 (
1156 TimestampCounterFreq,
1157 TimeoutInMicroseconds
1158 ),
1159 1000000
1160 );
1161 }
1162 }
1163
1164 /**
1165 Checks whether timeout expires.
1166
1167 Check whether the number of elapsed performance counter ticks required for
1168 a timeout condition has been reached.
1169 If Timeout is zero, which means infinity, return value is always FALSE.
1170
1171 @param[in, out] PreviousTime On input, the value of the performance counter
1172 when it was last read.
1173 On output, the current value of the performance
1174 counter
1175 @param[in] TotalTime The total amount of elapsed time in performance
1176 counter ticks.
1177 @param[in] Timeout The number of performance counter ticks required
1178 to reach a timeout condition.
1179
1180 @retval TRUE A timeout condition has been reached.
1181 @retval FALSE A timeout condition has not been reached.
1182
1183 **/
1184 BOOLEAN
1185 CheckTimeout (
1186 IN OUT UINT64 *PreviousTime,
1187 IN UINT64 *TotalTime,
1188 IN UINT64 Timeout
1189 )
1190 {
1191 UINT64 Start;
1192 UINT64 End;
1193 UINT64 CurrentTime;
1194 INT64 Delta;
1195 INT64 Cycle;
1196
1197 if (Timeout == 0) {
1198 return FALSE;
1199 }
1200 GetPerformanceCounterProperties (&Start, &End);
1201 Cycle = End - Start;
1202 if (Cycle < 0) {
1203 Cycle = -Cycle;
1204 }
1205 Cycle++;
1206 CurrentTime = GetPerformanceCounter();
1207 Delta = (INT64) (CurrentTime - *PreviousTime);
1208 if (Start > End) {
1209 Delta = -Delta;
1210 }
1211 if (Delta < 0) {
1212 Delta += Cycle;
1213 }
1214 *TotalTime += Delta;
1215 *PreviousTime = CurrentTime;
1216 if (*TotalTime > Timeout) {
1217 return TRUE;
1218 }
1219 return FALSE;
1220 }
1221
1222 /**
1223 Helper function that waits until the finished AP count reaches the specified
1224 limit, or the specified timeout elapses (whichever comes first).
1225
1226 @param[in] CpuMpData Pointer to CPU MP Data.
1227 @param[in] FinishedApLimit The number of finished APs to wait for.
1228 @param[in] TimeLimit The number of microseconds to wait for.
1229 **/
1230 VOID
1231 TimedWaitForApFinish (
1232 IN CPU_MP_DATA *CpuMpData,
1233 IN UINT32 FinishedApLimit,
1234 IN UINT32 TimeLimit
1235 )
1236 {
1237 //
1238 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
1239 // "infinity", so check for (TimeLimit == 0) explicitly.
1240 //
1241 if (TimeLimit == 0) {
1242 return;
1243 }
1244
1245 CpuMpData->TotalTime = 0;
1246 CpuMpData->ExpectedTime = CalculateTimeout (
1247 TimeLimit,
1248 &CpuMpData->CurrentTime
1249 );
1250 while (CpuMpData->FinishedCount < FinishedApLimit &&
1251 !CheckTimeout (
1252 &CpuMpData->CurrentTime,
1253 &CpuMpData->TotalTime,
1254 CpuMpData->ExpectedTime
1255 )) {
1256 CpuPause ();
1257 }
1258
1259 if (CpuMpData->FinishedCount >= FinishedApLimit) {
1260 DEBUG ((
1261 DEBUG_VERBOSE,
1262 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
1263 __FUNCTION__,
1264 FinishedApLimit,
1265 DivU64x64Remainder (
1266 MultU64x32 (CpuMpData->TotalTime, 1000000),
1267 GetPerformanceCounterProperties (NULL, NULL),
1268 NULL
1269 )
1270 ));
1271 }
1272 }
1273
1274 /**
1275 Reset an AP to Idle state.
1276
1277 Any task being executed by the AP will be aborted and the AP
1278 will be waiting for a new task in Wait-For-SIPI state.
1279
1280 @param[in] ProcessorNumber The handle number of processor.
1281 **/
1282 VOID
1283 ResetProcessorToIdleState (
1284 IN UINTN ProcessorNumber
1285 )
1286 {
1287 CPU_MP_DATA *CpuMpData;
1288
1289 CpuMpData = GetCpuMpData ();
1290
1291 CpuMpData->InitFlag = ApInitReconfig;
1292 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);
1293 while (CpuMpData->FinishedCount < 1) {
1294 CpuPause ();
1295 }
1296 CpuMpData->InitFlag = ApInitDone;
1297
1298 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1299 }
1300
1301 /**
1302 Searches for the next waiting AP.
1303
1304 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1305
1306 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
1307
1308 @retval EFI_SUCCESS The next waiting AP has been found.
1309 @retval EFI_NOT_FOUND No waiting AP exists.
1310
1311 **/
1312 EFI_STATUS
1313 GetNextWaitingProcessorNumber (
1314 OUT UINTN *NextProcessorNumber
1315 )
1316 {
1317 UINTN ProcessorNumber;
1318 CPU_MP_DATA *CpuMpData;
1319
1320 CpuMpData = GetCpuMpData ();
1321
1322 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1323 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1324 *NextProcessorNumber = ProcessorNumber;
1325 return EFI_SUCCESS;
1326 }
1327 }
1328
1329 return EFI_NOT_FOUND;
1330 }
1331
1332 /** Checks status of specified AP.
1333
1334 This function checks whether the specified AP has finished the task assigned
1335 by StartupThisAP(), and whether timeout expires.
1336
1337 @param[in] ProcessorNumber The handle number of processor.
1338
1339 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
1340 @retval EFI_TIMEOUT The timeout expires.
1341 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
1342 **/
1343 EFI_STATUS
1344 CheckThisAP (
1345 IN UINTN ProcessorNumber
1346 )
1347 {
1348 CPU_MP_DATA *CpuMpData;
1349 CPU_AP_DATA *CpuData;
1350
1351 CpuMpData = GetCpuMpData ();
1352 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1353
1354 //
1355 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1356 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1357 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1358 //
1359 //
1360 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
1361 //
1362 if (GetApState(CpuData) == CpuStateIdle) {
1363 if (CpuData->Finished != NULL) {
1364 *(CpuData->Finished) = TRUE;
1365 }
1366 return EFI_SUCCESS;
1367 } else {
1368 //
1369 // If timeout expires for StartupThisAP(), report timeout.
1370 //
1371 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
1372 if (CpuData->Finished != NULL) {
1373 *(CpuData->Finished) = FALSE;
1374 }
1375 //
1376 // Reset failed AP to idle state
1377 //
1378 ResetProcessorToIdleState (ProcessorNumber);
1379
1380 return EFI_TIMEOUT;
1381 }
1382 }
1383 return EFI_NOT_READY;
1384 }
1385
1386 /**
1387 Checks status of all APs.
1388
1389 This function checks whether all APs have finished task assigned by StartupAllAPs(),
1390 and whether timeout expires.
1391
1392 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
1393 @retval EFI_TIMEOUT The timeout expires.
1394 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
1395 **/
1396 EFI_STATUS
1397 CheckAllAPs (
1398 VOID
1399 )
1400 {
1401 UINTN ProcessorNumber;
1402 UINTN NextProcessorNumber;
1403 UINTN ListIndex;
1404 EFI_STATUS Status;
1405 CPU_MP_DATA *CpuMpData;
1406 CPU_AP_DATA *CpuData;
1407
1408 CpuMpData = GetCpuMpData ();
1409
1410 NextProcessorNumber = 0;
1411
1412 //
1413 // Go through all APs that are responsible for the StartupAllAPs().
1414 //
1415 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1416 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
1417 continue;
1418 }
1419
1420 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1421 //
1422 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1423 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1424 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1425 //
1426 if (GetApState(CpuData) == CpuStateIdle) {
1427 CpuMpData->RunningCount ++;
1428 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1429
1430 //
1431 // If in Single Thread mode, then search for the next waiting AP for execution.
1432 //
1433 if (CpuMpData->SingleThread) {
1434 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
1435
1436 if (!EFI_ERROR (Status)) {
1437 WakeUpAP (
1438 CpuMpData,
1439 FALSE,
1440 (UINT32) NextProcessorNumber,
1441 CpuMpData->Procedure,
1442 CpuMpData->ProcArguments
1443 );
1444 }
1445 }
1446 }
1447 }
1448
1449 //
1450 // If all APs finish, return EFI_SUCCESS.
1451 //
1452 if (CpuMpData->RunningCount == CpuMpData->StartCount) {
1453 return EFI_SUCCESS;
1454 }
1455
1456 //
1457 // If timeout expires, report timeout.
1458 //
1459 if (CheckTimeout (
1460 &CpuMpData->CurrentTime,
1461 &CpuMpData->TotalTime,
1462 CpuMpData->ExpectedTime)
1463 ) {
1464 //
1465 // If FailedCpuList is not NULL, record all failed APs in it.
1466 //
1467 if (CpuMpData->FailedCpuList != NULL) {
1468 *CpuMpData->FailedCpuList =
1469 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));
1470 ASSERT (*CpuMpData->FailedCpuList != NULL);
1471 }
1472 ListIndex = 0;
1473
1474 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1475 //
1476 // Check whether this processor is responsible for StartupAllAPs().
1477 //
1478 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1479 //
1480 // Reset failed APs to idle state
1481 //
1482 ResetProcessorToIdleState (ProcessorNumber);
1483 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1484 if (CpuMpData->FailedCpuList != NULL) {
1485 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
1486 }
1487 }
1488 }
1489 if (CpuMpData->FailedCpuList != NULL) {
1490 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
1491 }
1492 return EFI_TIMEOUT;
1493 }
1494 return EFI_NOT_READY;
1495 }
1496
1497 /**
1498 MP Initialize Library initialization.
1499
1500 This service will allocate AP reset vector and wakeup all APs to do APs
1501 initialization.
1502
1503 This service must be invoked before all other MP Initialize Library
1504 service are invoked.
1505
1506 @retval EFI_SUCCESS MP initialization succeeds.
1507 @retval Others MP initialization fails.
1508
1509 **/
1510 EFI_STATUS
1511 EFIAPI
1512 MpInitLibInitialize (
1513 VOID
1514 )
1515 {
1516 CPU_MP_DATA *OldCpuMpData;
1517 CPU_INFO_IN_HOB *CpuInfoInHob;
1518 UINT32 MaxLogicalProcessorNumber;
1519 UINT32 ApStackSize;
1520 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1521 CPU_VOLATILE_REGISTERS VolatileRegisters;
1522 UINTN BufferSize;
1523 UINT32 MonitorFilterSize;
1524 VOID *MpBuffer;
1525 UINTN Buffer;
1526 CPU_MP_DATA *CpuMpData;
1527 UINT8 ApLoopMode;
1528 UINT8 *MonitorBuffer;
1529 UINTN Index;
1530 UINTN ApResetVectorSize;
1531 UINTN BackupBufferAddr;
1532 UINTN ApIdtBase;
1533 VOID *MicrocodePatchInRam;
1534
1535 OldCpuMpData = GetCpuMpDataFromGuidedHob ();
1536 if (OldCpuMpData == NULL) {
1537 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
1538 } else {
1539 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
1540 }
1541 ASSERT (MaxLogicalProcessorNumber != 0);
1542
1543 AsmGetAddressMap (&AddressMap);
1544 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
1545 ApStackSize = PcdGet32(PcdCpuApStackSize);
1546 ApLoopMode = GetApLoopMode (&MonitorFilterSize);
1547
1548 //
1549 // Save BSP's Control registers for APs
1550 //
1551 SaveVolatileRegisters (&VolatileRegisters);
1552
1553 BufferSize = ApStackSize * MaxLogicalProcessorNumber;
1554 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
1555 BufferSize += ApResetVectorSize;
1556 BufferSize = ALIGN_VALUE (BufferSize, 8);
1557 BufferSize += VolatileRegisters.Idtr.Limit + 1;
1558 BufferSize += sizeof (CPU_MP_DATA);
1559 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
1560 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
1561 ASSERT (MpBuffer != NULL);
1562 ZeroMem (MpBuffer, BufferSize);
1563 Buffer = (UINTN) MpBuffer;
1564
1565 //
1566 // The layout of the Buffer is as below:
1567 //
1568 // +--------------------+ <-- Buffer
1569 // AP Stacks (N)
1570 // +--------------------+ <-- MonitorBuffer
1571 // AP Monitor Filters (N)
1572 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
1573 // Backup Buffer
1574 // +--------------------+
1575 // Padding
1576 // +--------------------+ <-- ApIdtBase (8-byte boundary)
1577 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
1578 // +--------------------+ <-- CpuMpData
1579 // CPU_MP_DATA
1580 // +--------------------+ <-- CpuMpData->CpuData
1581 // CPU_AP_DATA (N)
1582 // +--------------------+ <-- CpuMpData->CpuInfoInHob
1583 // CPU_INFO_IN_HOB (N)
1584 // +--------------------+
1585 //
1586 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
1587 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
1588 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);
1589 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
1590 CpuMpData->Buffer = Buffer;
1591 CpuMpData->CpuApStackSize = ApStackSize;
1592 CpuMpData->BackupBuffer = BackupBufferAddr;
1593 CpuMpData->BackupBufferSize = ApResetVectorSize;
1594 CpuMpData->WakeupBuffer = (UINTN) -1;
1595 CpuMpData->CpuCount = 1;
1596 CpuMpData->BspNumber = 0;
1597 CpuMpData->WaitEvent = NULL;
1598 CpuMpData->SwitchBspFlag = FALSE;
1599 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
1600 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
1601 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);
1602 //
1603 // If platform has more than one CPU, relocate microcode to memory to reduce
1604 // loading microcode time.
1605 //
1606 MicrocodePatchInRam = NULL;
1607 if (MaxLogicalProcessorNumber > 1) {
1608 MicrocodePatchInRam = AllocatePages (
1609 EFI_SIZE_TO_PAGES (
1610 (UINTN)CpuMpData->MicrocodePatchRegionSize
1611 )
1612 );
1613 }
1614 if (MicrocodePatchInRam == NULL) {
1615 //
1616 // there is only one processor, or no microcode patch is available, or
1617 // memory allocation failed
1618 //
1619 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);
1620 } else {
1621 //
1622 // there are multiple processors, and a microcode patch is available, and
1623 // memory allocation succeeded
1624 //
1625 CopyMem (
1626 MicrocodePatchInRam,
1627 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),
1628 (UINTN)CpuMpData->MicrocodePatchRegionSize
1629 );
1630 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;
1631 }
1632
1633 InitializeSpinLock(&CpuMpData->MpLock);
1634
1635 //
1636 // Make sure no memory usage outside of the allocated buffer.
1637 //
1638 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
1639 Buffer + BufferSize);
1640
1641 //
1642 // Duplicate BSP's IDT to APs.
1643 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
1644 //
1645 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
1646 VolatileRegisters.Idtr.Base = ApIdtBase;
1647 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
1648 //
1649 // Set BSP basic information
1650 //
1651 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
1652 //
1653 // Save assembly code information
1654 //
1655 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
1656 //
1657 // Finally set AP loop mode
1658 //
1659 CpuMpData->ApLoopMode = ApLoopMode;
1660 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
1661
1662 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1663
1664 //
1665 // Set up APs wakeup signal buffer
1666 //
1667 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
1668 CpuMpData->CpuData[Index].StartupApSignal =
1669 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
1670 }
1671 //
1672 // Load Microcode on BSP
1673 //
1674 MicrocodeDetect (CpuMpData, TRUE);
1675 //
1676 // Store BSP's MTRR setting
1677 //
1678 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
1679 //
1680 // Enable the local APIC for Virtual Wire Mode.
1681 //
1682 ProgramVirtualWireMode ();
1683
1684 if (OldCpuMpData == NULL) {
1685 if (MaxLogicalProcessorNumber > 1) {
1686 //
1687 // Wakeup all APs and calculate the processor count in system
1688 //
1689 CollectProcessorCount (CpuMpData);
1690 }
1691 } else {
1692 //
1693 // APs have been wakeup before, just get the CPU Information
1694 // from HOB
1695 //
1696 CpuMpData->CpuCount = OldCpuMpData->CpuCount;
1697 CpuMpData->BspNumber = OldCpuMpData->BspNumber;
1698 CpuMpData->InitFlag = ApInitReconfig;
1699 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
1700 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1701 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1702 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
1703 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {
1704 CpuMpData->X2ApicEnable = TRUE;
1705 }
1706 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
1707 CpuMpData->CpuData[Index].ApFunction = 0;
1708 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));
1709 }
1710 if (MaxLogicalProcessorNumber > 1) {
1711 //
1712 // Wakeup APs to do some AP initialize sync
1713 //
1714 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);
1715 //
1716 // Wait for all APs finished initialization
1717 //
1718 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
1719 CpuPause ();
1720 }
1721 CpuMpData->InitFlag = ApInitDone;
1722 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1723 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
1724 }
1725 }
1726 }
1727
1728 //
1729 // Initialize global data for MP support
1730 //
1731 InitMpGlobalData (CpuMpData);
1732
1733 return EFI_SUCCESS;
1734 }
1735
1736 /**
1737 Gets detailed MP-related information on the requested processor at the
1738 instant this call is made. This service may only be called from the BSP.
1739
1740 @param[in] ProcessorNumber The handle number of processor.
1741 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
1742 the requested processor is deposited.
1743 @param[out] HealthData Return processor health data.
1744
1745 @retval EFI_SUCCESS Processor information was returned.
1746 @retval EFI_DEVICE_ERROR The calling processor is an AP.
1747 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
1748 @retval EFI_NOT_FOUND The processor with the handle specified by
1749 ProcessorNumber does not exist in the platform.
1750 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1751
1752 **/
1753 EFI_STATUS
1754 EFIAPI
1755 MpInitLibGetProcessorInfo (
1756 IN UINTN ProcessorNumber,
1757 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
1758 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
1759 )
1760 {
1761 CPU_MP_DATA *CpuMpData;
1762 UINTN CallerNumber;
1763 CPU_INFO_IN_HOB *CpuInfoInHob;
1764
1765 CpuMpData = GetCpuMpData ();
1766 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1767
1768 //
1769 // Check whether caller processor is BSP
1770 //
1771 MpInitLibWhoAmI (&CallerNumber);
1772 if (CallerNumber != CpuMpData->BspNumber) {
1773 return EFI_DEVICE_ERROR;
1774 }
1775
1776 if (ProcessorInfoBuffer == NULL) {
1777 return EFI_INVALID_PARAMETER;
1778 }
1779
1780 if (ProcessorNumber >= CpuMpData->CpuCount) {
1781 return EFI_NOT_FOUND;
1782 }
1783
1784 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
1785 ProcessorInfoBuffer->StatusFlag = 0;
1786 if (ProcessorNumber == CpuMpData->BspNumber) {
1787 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
1788 }
1789 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
1790 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
1791 }
1792 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
1793 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
1794 } else {
1795 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
1796 }
1797
1798 //
1799 // Get processor location information
1800 //
1801 GetProcessorLocationByApicId (
1802 CpuInfoInHob[ProcessorNumber].ApicId,
1803 &ProcessorInfoBuffer->Location.Package,
1804 &ProcessorInfoBuffer->Location.Core,
1805 &ProcessorInfoBuffer->Location.Thread
1806 );
1807
1808 if (HealthData != NULL) {
1809 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
1810 }
1811
1812 return EFI_SUCCESS;
1813 }
1814
1815 /**
1816 Worker function to switch the requested AP to be the BSP from that point onward.
1817
1818 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
1819 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
1820 enabled AP. Otherwise, it will be disabled.
1821
1822 @retval EFI_SUCCESS BSP successfully switched.
1823 @retval others Failed to switch BSP.
1824
1825 **/
1826 EFI_STATUS
1827 SwitchBSPWorker (
1828 IN UINTN ProcessorNumber,
1829 IN BOOLEAN EnableOldBSP
1830 )
1831 {
1832 CPU_MP_DATA *CpuMpData;
1833 UINTN CallerNumber;
1834 CPU_STATE State;
1835 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
1836 BOOLEAN OldInterruptState;
1837 BOOLEAN OldTimerInterruptState;
1838
1839 //
1840 // Save and Disable Local APIC timer interrupt
1841 //
1842 OldTimerInterruptState = GetApicTimerInterruptState ();
1843 DisableApicTimerInterrupt ();
1844 //
1845 // Before send both BSP and AP to a procedure to exchange their roles,
1846 // interrupt must be disabled. This is because during the exchange role
1847 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
1848 // be corrupted, since interrupt return address will be pushed to stack
1849 // by hardware.
1850 //
1851 OldInterruptState = SaveAndDisableInterrupts ();
1852
1853 //
1854 // Mask LINT0 & LINT1 for the old BSP
1855 //
1856 DisableLvtInterrupts ();
1857
1858 CpuMpData = GetCpuMpData ();
1859
1860 //
1861 // Check whether caller processor is BSP
1862 //
1863 MpInitLibWhoAmI (&CallerNumber);
1864 if (CallerNumber != CpuMpData->BspNumber) {
1865 return EFI_DEVICE_ERROR;
1866 }
1867
1868 if (ProcessorNumber >= CpuMpData->CpuCount) {
1869 return EFI_NOT_FOUND;
1870 }
1871
1872 //
1873 // Check whether specified AP is disabled
1874 //
1875 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
1876 if (State == CpuStateDisabled) {
1877 return EFI_INVALID_PARAMETER;
1878 }
1879
1880 //
1881 // Check whether ProcessorNumber specifies the current BSP
1882 //
1883 if (ProcessorNumber == CpuMpData->BspNumber) {
1884 return EFI_INVALID_PARAMETER;
1885 }
1886
1887 //
1888 // Check whether specified AP is busy
1889 //
1890 if (State == CpuStateBusy) {
1891 return EFI_NOT_READY;
1892 }
1893
1894 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
1895 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
1896 CpuMpData->SwitchBspFlag = TRUE;
1897 CpuMpData->NewBspNumber = ProcessorNumber;
1898
1899 //
1900 // Clear the BSP bit of MSR_IA32_APIC_BASE
1901 //
1902 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1903 ApicBaseMsr.Bits.BSP = 0;
1904 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1905
1906 //
1907 // Need to wakeUp AP (future BSP).
1908 //
1909 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);
1910
1911 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
1912
1913 //
1914 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
1915 //
1916 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1917 ApicBaseMsr.Bits.BSP = 1;
1918 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1919 ProgramVirtualWireMode ();
1920
1921 //
1922 // Wait for old BSP finished AP task
1923 //
1924 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateIdle) {
1925 CpuPause ();
1926 }
1927
1928 CpuMpData->SwitchBspFlag = FALSE;
1929 //
1930 // Set old BSP enable state
1931 //
1932 if (!EnableOldBSP) {
1933 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
1934 } else {
1935 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
1936 }
1937 //
1938 // Save new BSP number
1939 //
1940 CpuMpData->BspNumber = (UINT32) ProcessorNumber;
1941
1942 //
1943 // Restore interrupt state.
1944 //
1945 SetInterruptState (OldInterruptState);
1946
1947 if (OldTimerInterruptState) {
1948 EnableApicTimerInterrupt ();
1949 }
1950
1951 return EFI_SUCCESS;
1952 }
1953
1954 /**
1955 Worker function to let the caller enable or disable an AP from this point onward.
1956 This service may only be called from the BSP.
1957
1958 @param[in] ProcessorNumber The handle number of AP.
1959 @param[in] EnableAP Specifies the new state for the processor for
1960 enabled, FALSE for disabled.
1961 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
1962 the new health status of the AP.
1963
1964 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
1965 @retval others Failed to Enable/Disable AP.
1966
1967 **/
1968 EFI_STATUS
1969 EnableDisableApWorker (
1970 IN UINTN ProcessorNumber,
1971 IN BOOLEAN EnableAP,
1972 IN UINT32 *HealthFlag OPTIONAL
1973 )
1974 {
1975 CPU_MP_DATA *CpuMpData;
1976 UINTN CallerNumber;
1977
1978 CpuMpData = GetCpuMpData ();
1979
1980 //
1981 // Check whether caller processor is BSP
1982 //
1983 MpInitLibWhoAmI (&CallerNumber);
1984 if (CallerNumber != CpuMpData->BspNumber) {
1985 return EFI_DEVICE_ERROR;
1986 }
1987
1988 if (ProcessorNumber == CpuMpData->BspNumber) {
1989 return EFI_INVALID_PARAMETER;
1990 }
1991
1992 if (ProcessorNumber >= CpuMpData->CpuCount) {
1993 return EFI_NOT_FOUND;
1994 }
1995
1996 if (!EnableAP) {
1997 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
1998 } else {
1999 ResetProcessorToIdleState (ProcessorNumber);
2000 }
2001
2002 if (HealthFlag != NULL) {
2003 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
2004 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
2005 }
2006
2007 return EFI_SUCCESS;
2008 }
2009
2010 /**
2011 This return the handle number for the calling processor. This service may be
2012 called from the BSP and APs.
2013
2014 @param[out] ProcessorNumber Pointer to the handle number of AP.
2015 The range is from 0 to the total number of
2016 logical processors minus 1. The total number of
2017 logical processors can be retrieved by
2018 MpInitLibGetNumberOfProcessors().
2019
2020 @retval EFI_SUCCESS The current processor handle number was returned
2021 in ProcessorNumber.
2022 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
2023 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2024
2025 **/
2026 EFI_STATUS
2027 EFIAPI
2028 MpInitLibWhoAmI (
2029 OUT UINTN *ProcessorNumber
2030 )
2031 {
2032 CPU_MP_DATA *CpuMpData;
2033
2034 if (ProcessorNumber == NULL) {
2035 return EFI_INVALID_PARAMETER;
2036 }
2037
2038 CpuMpData = GetCpuMpData ();
2039
2040 return GetProcessorNumber (CpuMpData, ProcessorNumber);
2041 }
2042
2043 /**
2044 Retrieves the number of logical processor in the platform and the number of
2045 those logical processors that are enabled on this boot. This service may only
2046 be called from the BSP.
2047
2048 @param[out] NumberOfProcessors Pointer to the total number of logical
2049 processors in the system, including the BSP
2050 and disabled APs.
2051 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
2052 processors that exist in system, including
2053 the BSP.
2054
2055 @retval EFI_SUCCESS The number of logical processors and enabled
2056 logical processors was retrieved.
2057 @retval EFI_DEVICE_ERROR The calling processor is an AP.
2058 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
2059 is NULL.
2060 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2061
2062 **/
2063 EFI_STATUS
2064 EFIAPI
2065 MpInitLibGetNumberOfProcessors (
2066 OUT UINTN *NumberOfProcessors, OPTIONAL
2067 OUT UINTN *NumberOfEnabledProcessors OPTIONAL
2068 )
2069 {
2070 CPU_MP_DATA *CpuMpData;
2071 UINTN CallerNumber;
2072 UINTN ProcessorNumber;
2073 UINTN EnabledProcessorNumber;
2074 UINTN Index;
2075
2076 CpuMpData = GetCpuMpData ();
2077
2078 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
2079 return EFI_INVALID_PARAMETER;
2080 }
2081
2082 //
2083 // Check whether caller processor is BSP
2084 //
2085 MpInitLibWhoAmI (&CallerNumber);
2086 if (CallerNumber != CpuMpData->BspNumber) {
2087 return EFI_DEVICE_ERROR;
2088 }
2089
2090 ProcessorNumber = CpuMpData->CpuCount;
2091 EnabledProcessorNumber = 0;
2092 for (Index = 0; Index < ProcessorNumber; Index++) {
2093 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
2094 EnabledProcessorNumber ++;
2095 }
2096 }
2097
2098 if (NumberOfProcessors != NULL) {
2099 *NumberOfProcessors = ProcessorNumber;
2100 }
2101 if (NumberOfEnabledProcessors != NULL) {
2102 *NumberOfEnabledProcessors = EnabledProcessorNumber;
2103 }
2104
2105 return EFI_SUCCESS;
2106 }
2107
2108
2109 /**
2110 Worker function to execute a caller provided function on all enabled APs.
2111
2112 @param[in] Procedure A pointer to the function to be run on
2113 enabled APs of the system.
2114 @param[in] SingleThread If TRUE, then all the enabled APs execute
2115 the function specified by Procedure one by
2116 one, in ascending order of processor handle
2117 number. If FALSE, then all the enabled APs
2118 execute the function specified by Procedure
2119 simultaneously.
2120 @param[in] WaitEvent The event created by the caller with CreateEvent()
2121 service.
2122 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2123 APs to return from Procedure, either for
2124 blocking or non-blocking mode.
2125 @param[in] ProcedureArgument The parameter passed into Procedure for
2126 all APs.
2127 @param[out] FailedCpuList If all APs finish successfully, then its
2128 content is set to NULL. If not all APs
2129 finish before timeout expires, then its
2130 content is set to address of the buffer
2131 holding handle numbers of the failed APs.
2132
2133 @retval EFI_SUCCESS In blocking mode, all APs have finished before
2134 the timeout expired.
2135 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
2136 to all enabled APs.
2137 @retval others Failed to Startup all APs.
2138
2139 **/
2140 EFI_STATUS
2141 StartupAllAPsWorker (
2142 IN EFI_AP_PROCEDURE Procedure,
2143 IN BOOLEAN SingleThread,
2144 IN EFI_EVENT WaitEvent OPTIONAL,
2145 IN UINTN TimeoutInMicroseconds,
2146 IN VOID *ProcedureArgument OPTIONAL,
2147 OUT UINTN **FailedCpuList OPTIONAL
2148 )
2149 {
2150 EFI_STATUS Status;
2151 CPU_MP_DATA *CpuMpData;
2152 UINTN ProcessorCount;
2153 UINTN ProcessorNumber;
2154 UINTN CallerNumber;
2155 CPU_AP_DATA *CpuData;
2156 BOOLEAN HasEnabledAp;
2157 CPU_STATE ApState;
2158
2159 CpuMpData = GetCpuMpData ();
2160
2161 if (FailedCpuList != NULL) {
2162 *FailedCpuList = NULL;
2163 }
2164
2165 if (CpuMpData->CpuCount == 1) {
2166 return EFI_NOT_STARTED;
2167 }
2168
2169 if (Procedure == NULL) {
2170 return EFI_INVALID_PARAMETER;
2171 }
2172
2173 //
2174 // Check whether caller processor is BSP
2175 //
2176 MpInitLibWhoAmI (&CallerNumber);
2177 if (CallerNumber != CpuMpData->BspNumber) {
2178 return EFI_DEVICE_ERROR;
2179 }
2180
2181 //
2182 // Update AP state
2183 //
2184 CheckAndUpdateApsStatus ();
2185
2186 ProcessorCount = CpuMpData->CpuCount;
2187 HasEnabledAp = FALSE;
2188 //
2189 // Check whether all enabled APs are idle.
2190 // If any enabled AP is not idle, return EFI_NOT_READY.
2191 //
2192 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2193 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2194 if (ProcessorNumber != CpuMpData->BspNumber) {
2195 ApState = GetApState (CpuData);
2196 if (ApState != CpuStateDisabled) {
2197 HasEnabledAp = TRUE;
2198 if (ApState != CpuStateIdle) {
2199 //
2200 // If any enabled APs are busy, return EFI_NOT_READY.
2201 //
2202 return EFI_NOT_READY;
2203 }
2204 }
2205 }
2206 }
2207
2208 if (!HasEnabledAp) {
2209 //
2210 // If no enabled AP exists, return EFI_NOT_STARTED.
2211 //
2212 return EFI_NOT_STARTED;
2213 }
2214
2215 CpuMpData->StartCount = 0;
2216 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2217 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2218 CpuData->Waiting = FALSE;
2219 if (ProcessorNumber != CpuMpData->BspNumber) {
2220 if (CpuData->State == CpuStateIdle) {
2221 //
2222 // Mark this processor as responsible for current calling.
2223 //
2224 CpuData->Waiting = TRUE;
2225 CpuMpData->StartCount++;
2226 }
2227 }
2228 }
2229
2230 CpuMpData->Procedure = Procedure;
2231 CpuMpData->ProcArguments = ProcedureArgument;
2232 CpuMpData->SingleThread = SingleThread;
2233 CpuMpData->FinishedCount = 0;
2234 CpuMpData->RunningCount = 0;
2235 CpuMpData->FailedCpuList = FailedCpuList;
2236 CpuMpData->ExpectedTime = CalculateTimeout (
2237 TimeoutInMicroseconds,
2238 &CpuMpData->CurrentTime
2239 );
2240 CpuMpData->TotalTime = 0;
2241 CpuMpData->WaitEvent = WaitEvent;
2242
2243 if (!SingleThread) {
2244 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);
2245 } else {
2246 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2247 if (ProcessorNumber == CallerNumber) {
2248 continue;
2249 }
2250 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
2251 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
2252 break;
2253 }
2254 }
2255 }
2256
2257 Status = EFI_SUCCESS;
2258 if (WaitEvent == NULL) {
2259 do {
2260 Status = CheckAllAPs ();
2261 } while (Status == EFI_NOT_READY);
2262 }
2263
2264 return Status;
2265 }
2266
2267 /**
2268 Worker function to let the caller get one enabled AP to execute a caller-provided
2269 function.
2270
2271 @param[in] Procedure A pointer to the function to be run on
2272 enabled APs of the system.
2273 @param[in] ProcessorNumber The handle number of the AP.
2274 @param[in] WaitEvent The event created by the caller with CreateEvent()
2275 service.
2276 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2277 APs to return from Procedure, either for
2278 blocking or non-blocking mode.
2279 @param[in] ProcedureArgument The parameter passed into Procedure for
2280 all APs.
2281 @param[out] Finished If AP returns from Procedure before the
2282 timeout expires, its content is set to TRUE.
2283 Otherwise, the value is set to FALSE.
2284
2285 @retval EFI_SUCCESS In blocking mode, specified AP finished before
2286 the timeout expires.
2287 @retval others Failed to Startup AP.
2288
2289 **/
2290 EFI_STATUS
2291 StartupThisAPWorker (
2292 IN EFI_AP_PROCEDURE Procedure,
2293 IN UINTN ProcessorNumber,
2294 IN EFI_EVENT WaitEvent OPTIONAL,
2295 IN UINTN TimeoutInMicroseconds,
2296 IN VOID *ProcedureArgument OPTIONAL,
2297 OUT BOOLEAN *Finished OPTIONAL
2298 )
2299 {
2300 EFI_STATUS Status;
2301 CPU_MP_DATA *CpuMpData;
2302 CPU_AP_DATA *CpuData;
2303 UINTN CallerNumber;
2304
2305 CpuMpData = GetCpuMpData ();
2306
2307 if (Finished != NULL) {
2308 *Finished = FALSE;
2309 }
2310
2311 //
2312 // Check whether caller processor is BSP
2313 //
2314 MpInitLibWhoAmI (&CallerNumber);
2315 if (CallerNumber != CpuMpData->BspNumber) {
2316 return EFI_DEVICE_ERROR;
2317 }
2318
2319 //
2320 // Check whether processor with the handle specified by ProcessorNumber exists
2321 //
2322 if (ProcessorNumber >= CpuMpData->CpuCount) {
2323 return EFI_NOT_FOUND;
2324 }
2325
2326 //
2327 // Check whether specified processor is BSP
2328 //
2329 if (ProcessorNumber == CpuMpData->BspNumber) {
2330 return EFI_INVALID_PARAMETER;
2331 }
2332
2333 //
2334 // Check parameter Procedure
2335 //
2336 if (Procedure == NULL) {
2337 return EFI_INVALID_PARAMETER;
2338 }
2339
2340 //
2341 // Update AP state
2342 //
2343 CheckAndUpdateApsStatus ();
2344
2345 //
2346 // Check whether specified AP is disabled
2347 //
2348 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
2349 return EFI_INVALID_PARAMETER;
2350 }
2351
2352 //
2353 // If WaitEvent is not NULL, execute in non-blocking mode.
2354 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
2355 // CheckAPsStatus() will check completion and timeout periodically.
2356 //
2357 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2358 CpuData->WaitEvent = WaitEvent;
2359 CpuData->Finished = Finished;
2360 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
2361 CpuData->TotalTime = 0;
2362
2363 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
2364
2365 //
2366 // If WaitEvent is NULL, execute in blocking mode.
2367 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
2368 //
2369 Status = EFI_SUCCESS;
2370 if (WaitEvent == NULL) {
2371 do {
2372 Status = CheckThisAP (ProcessorNumber);
2373 } while (Status == EFI_NOT_READY);
2374 }
2375
2376 return Status;
2377 }
2378
2379 /**
2380 Get pointer to CPU MP Data structure from GUIDed HOB.
2381
2382 @return The pointer to CPU MP Data structure.
2383 **/
2384 CPU_MP_DATA *
2385 GetCpuMpDataFromGuidedHob (
2386 VOID
2387 )
2388 {
2389 EFI_HOB_GUID_TYPE *GuidHob;
2390 VOID *DataInHob;
2391 CPU_MP_DATA *CpuMpData;
2392
2393 CpuMpData = NULL;
2394 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
2395 if (GuidHob != NULL) {
2396 DataInHob = GET_GUID_HOB_DATA (GuidHob);
2397 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
2398 }
2399 return CpuMpData;
2400 }
2401