]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg MpInitLib: Save/restore original WakeupBuffer for DxeMpLib
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
1 /** @file
2 CPU MP Initialize Library common functions.
3
4 Copyright (c) 2016 - 2017, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "MpLib.h"
16
17 EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
18
19 /**
20 The function will check if BSP Execute Disable is enabled.
21
22 DxeIpl may have enabled Execute Disable for BSP, APs need to
23 get the status and sync up the settings.
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is
25 not working actually.
26
27 @retval TRUE BSP Execute Disable is enabled.
28 @retval FALSE BSP Execute Disable is not enabled.
29 **/
30 BOOLEAN
31 IsBspExecuteDisableEnabled (
32 VOID
33 )
34 {
35 UINT32 Eax;
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;
37 MSR_IA32_EFER_REGISTER EferMsr;
38 BOOLEAN Enabled;
39 IA32_CR0 Cr0;
40
41 Enabled = FALSE;
42 Cr0.UintN = AsmReadCr0 ();
43 if (Cr0.Bits.PG != 0) {
44 //
45 // If CR0 Paging bit is set
46 //
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
50 //
51 // CPUID 0x80000001
52 // Bit 20: Execute Disable Bit available.
53 //
54 if (Edx.Bits.NX != 0) {
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
56 //
57 // MSR 0xC0000080
58 // Bit 11: Execute Disable Bit enable.
59 //
60 if (EferMsr.Bits.NXE != 0) {
61 Enabled = TRUE;
62 }
63 }
64 }
65 }
66
67 return Enabled;
68 }
69
70 /**
71 Worker function for SwitchBSP().
72
73 Worker function for SwitchBSP(), assigned to the AP which is intended
74 to become BSP.
75
76 @param[in] Buffer Pointer to CPU MP Data
77 **/
78 VOID
79 EFIAPI
80 FutureBSPProc (
81 IN VOID *Buffer
82 )
83 {
84 CPU_MP_DATA *DataInHob;
85
86 DataInHob = (CPU_MP_DATA *) Buffer;
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
88 }
89
90 /**
91 Get the Application Processors state.
92
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
94
95 @return The AP status
96 **/
97 CPU_STATE
98 GetApState (
99 IN CPU_AP_DATA *CpuData
100 )
101 {
102 return CpuData->State;
103 }
104
105 /**
106 Set the Application Processors state.
107
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
109 @param[in] State The AP status
110 **/
111 VOID
112 SetApState (
113 IN CPU_AP_DATA *CpuData,
114 IN CPU_STATE State
115 )
116 {
117 AcquireSpinLock (&CpuData->ApLock);
118 CpuData->State = State;
119 ReleaseSpinLock (&CpuData->ApLock);
120 }
121
122 /**
123 Save BSP's local APIC timer setting.
124
125 @param[in] CpuMpData Pointer to CPU MP Data
126 **/
127 VOID
128 SaveLocalApicTimerSetting (
129 IN CPU_MP_DATA *CpuMpData
130 )
131 {
132 //
133 // Record the current local APIC timer setting of BSP
134 //
135 GetApicTimerState (
136 &CpuMpData->DivideValue,
137 &CpuMpData->PeriodicMode,
138 &CpuMpData->Vector
139 );
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
142 }
143
144 /**
145 Sync local APIC timer setting from BSP to AP.
146
147 @param[in] CpuMpData Pointer to CPU MP Data
148 **/
149 VOID
150 SyncLocalApicTimerSetting (
151 IN CPU_MP_DATA *CpuMpData
152 )
153 {
154 //
155 // Sync local APIC timer setting from BSP to AP
156 //
157 InitializeApicTimer (
158 CpuMpData->DivideValue,
159 CpuMpData->CurrentTimerCount,
160 CpuMpData->PeriodicMode,
161 CpuMpData->Vector
162 );
163 //
164 // Disable AP's local APIC timer interrupt
165 //
166 DisableApicTimerInterrupt ();
167 }
168
169 /**
170 Save the volatile registers required to be restored following INIT IPI.
171
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters
173 **/
174 VOID
175 SaveVolatileRegisters (
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
177 )
178 {
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;
180
181 VolatileRegisters->Cr0 = AsmReadCr0 ();
182 VolatileRegisters->Cr3 = AsmReadCr3 ();
183 VolatileRegisters->Cr4 = AsmReadCr4 ();
184
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
186 if (VersionInfoEdx.Bits.DE != 0) {
187 //
188 // If processor supports Debugging Extensions feature
189 // by CPUID.[EAX=01H]:EDX.BIT2
190 //
191 VolatileRegisters->Dr0 = AsmReadDr0 ();
192 VolatileRegisters->Dr1 = AsmReadDr1 ();
193 VolatileRegisters->Dr2 = AsmReadDr2 ();
194 VolatileRegisters->Dr3 = AsmReadDr3 ();
195 VolatileRegisters->Dr6 = AsmReadDr6 ();
196 VolatileRegisters->Dr7 = AsmReadDr7 ();
197 }
198 }
199
200 /**
201 Restore the volatile registers following INIT IPI.
202
203 @param[in] VolatileRegisters Pointer to volatile resisters
204 @param[in] IsRestoreDr TRUE: Restore DRx if supported
205 FALSE: Do not restore DRx
206 **/
207 VOID
208 RestoreVolatileRegisters (
209 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
210 IN BOOLEAN IsRestoreDr
211 )
212 {
213 CPUID_VERSION_INFO_EDX VersionInfoEdx;
214
215 AsmWriteCr0 (VolatileRegisters->Cr0);
216 AsmWriteCr3 (VolatileRegisters->Cr3);
217 AsmWriteCr4 (VolatileRegisters->Cr4);
218
219 if (IsRestoreDr) {
220 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
221 if (VersionInfoEdx.Bits.DE != 0) {
222 //
223 // If processor supports Debugging Extensions feature
224 // by CPUID.[EAX=01H]:EDX.BIT2
225 //
226 AsmWriteDr0 (VolatileRegisters->Dr0);
227 AsmWriteDr1 (VolatileRegisters->Dr1);
228 AsmWriteDr2 (VolatileRegisters->Dr2);
229 AsmWriteDr3 (VolatileRegisters->Dr3);
230 AsmWriteDr6 (VolatileRegisters->Dr6);
231 AsmWriteDr7 (VolatileRegisters->Dr7);
232 }
233 }
234 }
235
236 /**
237 Detect whether Mwait-monitor feature is supported.
238
239 @retval TRUE Mwait-monitor feature is supported.
240 @retval FALSE Mwait-monitor feature is not supported.
241 **/
242 BOOLEAN
243 IsMwaitSupport (
244 VOID
245 )
246 {
247 CPUID_VERSION_INFO_ECX VersionInfoEcx;
248
249 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
250 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
251 }
252
253 /**
254 Get AP loop mode.
255
256 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
257
258 @return The AP loop mode.
259 **/
260 UINT8
261 GetApLoopMode (
262 OUT UINT32 *MonitorFilterSize
263 )
264 {
265 UINT8 ApLoopMode;
266 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
267
268 ASSERT (MonitorFilterSize != NULL);
269
270 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
271 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
272 if (ApLoopMode == ApInMwaitLoop) {
273 if (!IsMwaitSupport ()) {
274 //
275 // If processor does not support MONITOR/MWAIT feature,
276 // force AP in Hlt-loop mode
277 //
278 ApLoopMode = ApInHltLoop;
279 }
280 }
281
282 if (ApLoopMode != ApInMwaitLoop) {
283 *MonitorFilterSize = sizeof (UINT32);
284 } else {
285 //
286 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
287 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
288 //
289 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
290 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
291 }
292
293 return ApLoopMode;
294 }
295
296 /**
297 Sort the APIC ID of all processors.
298
299 This function sorts the APIC ID of all processors so that processor number is
300 assigned in the ascending order of APIC ID which eases MP debugging.
301
302 @param[in] CpuMpData Pointer to PEI CPU MP Data
303 **/
304 VOID
305 SortApicId (
306 IN CPU_MP_DATA *CpuMpData
307 )
308 {
309 UINTN Index1;
310 UINTN Index2;
311 UINTN Index3;
312 UINT32 ApicId;
313 CPU_INFO_IN_HOB CpuInfo;
314 UINT32 ApCount;
315 CPU_INFO_IN_HOB *CpuInfoInHob;
316
317 ApCount = CpuMpData->CpuCount - 1;
318 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
319 if (ApCount != 0) {
320 for (Index1 = 0; Index1 < ApCount; Index1++) {
321 Index3 = Index1;
322 //
323 // Sort key is the hardware default APIC ID
324 //
325 ApicId = CpuInfoInHob[Index1].ApicId;
326 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
327 if (ApicId > CpuInfoInHob[Index2].ApicId) {
328 Index3 = Index2;
329 ApicId = CpuInfoInHob[Index2].ApicId;
330 }
331 }
332 if (Index3 != Index1) {
333 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
334 CopyMem (
335 &CpuInfoInHob[Index3],
336 &CpuInfoInHob[Index1],
337 sizeof (CPU_INFO_IN_HOB)
338 );
339 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
340 }
341 }
342
343 //
344 // Get the processor number for the BSP
345 //
346 ApicId = GetInitialApicId ();
347 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
348 if (CpuInfoInHob[Index1].ApicId == ApicId) {
349 CpuMpData->BspNumber = (UINT32) Index1;
350 break;
351 }
352 }
353 }
354 }
355
356 /**
357 Enable x2APIC mode on APs.
358
359 @param[in, out] Buffer Pointer to private data buffer.
360 **/
361 VOID
362 EFIAPI
363 ApFuncEnableX2Apic (
364 IN OUT VOID *Buffer
365 )
366 {
367 SetApicMode (LOCAL_APIC_MODE_X2APIC);
368 }
369
370 /**
371 Do sync on APs.
372
373 @param[in, out] Buffer Pointer to private data buffer.
374 **/
375 VOID
376 EFIAPI
377 ApInitializeSync (
378 IN OUT VOID *Buffer
379 )
380 {
381 CPU_MP_DATA *CpuMpData;
382
383 CpuMpData = (CPU_MP_DATA *) Buffer;
384 //
385 // Load microcode on AP
386 //
387 MicrocodeDetect (CpuMpData);
388 //
389 // Sync BSP's MTRR table to AP
390 //
391 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
392 }
393
394 /**
395 Find the current Processor number by APIC ID.
396
397 @param[in] CpuMpData Pointer to PEI CPU MP Data
398 @param[out] ProcessorNumber Return the pocessor number found
399
400 @retval EFI_SUCCESS ProcessorNumber is found and returned.
401 @retval EFI_NOT_FOUND ProcessorNumber is not found.
402 **/
403 EFI_STATUS
404 GetProcessorNumber (
405 IN CPU_MP_DATA *CpuMpData,
406 OUT UINTN *ProcessorNumber
407 )
408 {
409 UINTN TotalProcessorNumber;
410 UINTN Index;
411 CPU_INFO_IN_HOB *CpuInfoInHob;
412
413 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
414
415 TotalProcessorNumber = CpuMpData->CpuCount;
416 for (Index = 0; Index < TotalProcessorNumber; Index ++) {
417 if (CpuInfoInHob[Index].ApicId == GetApicId ()) {
418 *ProcessorNumber = Index;
419 return EFI_SUCCESS;
420 }
421 }
422 return EFI_NOT_FOUND;
423 }
424
425 /**
426 This function will get CPU count in the system.
427
428 @param[in] CpuMpData Pointer to PEI CPU MP Data
429
430 @return CPU count detected
431 **/
432 UINTN
433 CollectProcessorCount (
434 IN CPU_MP_DATA *CpuMpData
435 )
436 {
437 UINTN Index;
438
439 //
440 // Send 1st broadcast IPI to APs to wakeup APs
441 //
442 CpuMpData->InitFlag = ApInitConfig;
443 CpuMpData->X2ApicEnable = FALSE;
444 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);
445 CpuMpData->InitFlag = ApInitDone;
446 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
447 //
448 // Wait for all APs finished the initialization
449 //
450 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
451 CpuPause ();
452 }
453
454 if (CpuMpData->CpuCount > 255) {
455 //
456 // If there are more than 255 processor found, force to enable X2APIC
457 //
458 CpuMpData->X2ApicEnable = TRUE;
459 }
460 if (CpuMpData->X2ApicEnable) {
461 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
462 //
463 // Wakeup all APs to enable x2APIC mode
464 //
465 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);
466 //
467 // Wait for all known APs finished
468 //
469 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
470 CpuPause ();
471 }
472 //
473 // Enable x2APIC on BSP
474 //
475 SetApicMode (LOCAL_APIC_MODE_X2APIC);
476 //
477 // Set BSP/Aps state to IDLE
478 //
479 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
480 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
481 }
482 }
483 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
484 //
485 // Sort BSP/Aps by CPU APIC ID in ascending order
486 //
487 SortApicId (CpuMpData);
488
489 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
490
491 return CpuMpData->CpuCount;
492 }
493
494 /**
495 Initialize CPU AP Data when AP is wakeup at the first time.
496
497 @param[in, out] CpuMpData Pointer to PEI CPU MP Data
498 @param[in] ProcessorNumber The handle number of processor
499 @param[in] BistData Processor BIST data
500 @param[in] ApTopOfStack Top of AP stack
501
502 **/
503 VOID
504 InitializeApData (
505 IN OUT CPU_MP_DATA *CpuMpData,
506 IN UINTN ProcessorNumber,
507 IN UINT32 BistData,
508 IN UINT64 ApTopOfStack
509 )
510 {
511 CPU_INFO_IN_HOB *CpuInfoInHob;
512
513 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
514 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
515 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
516 CpuInfoInHob[ProcessorNumber].Health = BistData;
517 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
518
519 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
520 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
521 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {
522 //
523 // Set x2APIC mode if there are any logical processor reporting
524 // an Initial APIC ID of 255 or greater.
525 //
526 AcquireSpinLock(&CpuMpData->MpLock);
527 CpuMpData->X2ApicEnable = TRUE;
528 ReleaseSpinLock(&CpuMpData->MpLock);
529 }
530
531 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
532 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
533 }
534
535 /**
536 This function will be called from AP reset code if BSP uses WakeUpAP.
537
538 @param[in] ExchangeInfo Pointer to the MP exchange info buffer
539 @param[in] NumApsExecuting Number of current executing AP
540 **/
541 VOID
542 EFIAPI
543 ApWakeupFunction (
544 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
545 IN UINTN NumApsExecuting
546 )
547 {
548 CPU_MP_DATA *CpuMpData;
549 UINTN ProcessorNumber;
550 EFI_AP_PROCEDURE Procedure;
551 VOID *Parameter;
552 UINT32 BistData;
553 volatile UINT32 *ApStartupSignalBuffer;
554 CPU_INFO_IN_HOB *CpuInfoInHob;
555 UINT64 ApTopOfStack;
556 UINTN CurrentApicMode;
557
558 //
559 // AP finished assembly code and begin to execute C code
560 //
561 CpuMpData = ExchangeInfo->CpuMpData;
562
563 //
564 // AP's local APIC settings will be lost after received INIT IPI
565 // We need to re-initialize them at here
566 //
567 ProgramVirtualWireMode ();
568 SyncLocalApicTimerSetting (CpuMpData);
569
570 CurrentApicMode = GetApicMode ();
571 while (TRUE) {
572 if (CpuMpData->InitFlag == ApInitConfig) {
573 //
574 // Add CPU number
575 //
576 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
577 ProcessorNumber = NumApsExecuting;
578 //
579 // This is first time AP wakeup, get BIST information from AP stack
580 //
581 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
582 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
583 //
584 // Do some AP initialize sync
585 //
586 ApInitializeSync (CpuMpData);
587 //
588 // Sync BSP's Control registers to APs
589 //
590 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
591 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
592 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
593 } else {
594 //
595 // Execute AP function if AP is ready
596 //
597 GetProcessorNumber (CpuMpData, &ProcessorNumber);
598 //
599 // Clear AP start-up signal when AP waken up
600 //
601 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
602 InterlockedCompareExchange32 (
603 (UINT32 *) ApStartupSignalBuffer,
604 WAKEUP_AP_SIGNAL,
605 0
606 );
607 if (CpuMpData->ApLoopMode == ApInHltLoop) {
608 //
609 // Restore AP's volatile registers saved
610 //
611 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
612 }
613
614 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
615 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
616 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
617 if (Procedure != NULL) {
618 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
619 //
620 // Enable source debugging on AP function
621 //
622 EnableDebugAgent ();
623 //
624 // Invoke AP function here
625 //
626 Procedure (Parameter);
627 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
628 if (CpuMpData->SwitchBspFlag) {
629 //
630 // Re-get the processor number due to BSP/AP maybe exchange in AP function
631 //
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);
633 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
634 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
635 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
636 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
637 } else {
638 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
639 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
640 if (CurrentApicMode != GetApicMode ()) {
641 //
642 // If APIC mode change happened during AP function execution,
643 // we do not support APIC ID value changed.
644 //
645 ASSERT (FALSE);
646 CpuDeadLoop ();
647 } else {
648 //
649 // Re-get the CPU APICID and Initial APICID if they are changed
650 //
651 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
652 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
653 }
654 }
655 }
656 }
657 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
658 }
659 }
660
661 //
662 // AP finished executing C code
663 //
664 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
665
666 //
667 // Place AP is specified loop mode
668 //
669 if (CpuMpData->ApLoopMode == ApInHltLoop) {
670 //
671 // Save AP volatile registers
672 //
673 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
674 //
675 // Place AP in HLT-loop
676 //
677 while (TRUE) {
678 DisableInterrupts ();
679 CpuSleep ();
680 CpuPause ();
681 }
682 }
683 while (TRUE) {
684 DisableInterrupts ();
685 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
686 //
687 // Place AP in MWAIT-loop
688 //
689 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
690 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
691 //
692 // Check AP start-up signal again.
693 // If AP start-up signal is not set, place AP into
694 // the specified C-state
695 //
696 AsmMwait (CpuMpData->ApTargetCState << 4, 0);
697 }
698 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
699 //
700 // Place AP in Run-loop
701 //
702 CpuPause ();
703 } else {
704 ASSERT (FALSE);
705 }
706
707 //
708 // If AP start-up signal is written, AP is waken up
709 // otherwise place AP in loop again
710 //
711 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
712 break;
713 }
714 }
715 }
716 }
717
718 /**
719 Wait for AP wakeup and write AP start-up signal till AP is waken up.
720
721 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
722 **/
723 VOID
724 WaitApWakeup (
725 IN volatile UINT32 *ApStartupSignalBuffer
726 )
727 {
728 //
729 // If AP is waken up, StartupApSignal should be cleared.
730 // Otherwise, write StartupApSignal again till AP waken up.
731 //
732 while (InterlockedCompareExchange32 (
733 (UINT32 *) ApStartupSignalBuffer,
734 WAKEUP_AP_SIGNAL,
735 WAKEUP_AP_SIGNAL
736 ) != 0) {
737 CpuPause ();
738 }
739 }
740
741 /**
742 This function will fill the exchange info structure.
743
744 @param[in] CpuMpData Pointer to CPU MP Data
745
746 **/
747 VOID
748 FillExchangeInfoData (
749 IN CPU_MP_DATA *CpuMpData
750 )
751 {
752 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
753
754 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
755 ExchangeInfo->Lock = 0;
756 ExchangeInfo->StackStart = CpuMpData->Buffer;
757 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
758 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
759 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
760
761 ExchangeInfo->CodeSegment = AsmReadCs ();
762 ExchangeInfo->DataSegment = AsmReadDs ();
763
764 ExchangeInfo->Cr3 = AsmReadCr3 ();
765
766 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
767 ExchangeInfo->NumApsExecuting = 0;
768 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;
769 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
770 ExchangeInfo->CpuMpData = CpuMpData;
771
772 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
773
774 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
775
776 //
777 // Get the BSP's data of GDT and IDT
778 //
779 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
780 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
781 }
782
783 /**
784 Helper function that waits until the finished AP count reaches the specified
785 limit, or the specified timeout elapses (whichever comes first).
786
787 @param[in] CpuMpData Pointer to CPU MP Data.
788 @param[in] FinishedApLimit The number of finished APs to wait for.
789 @param[in] TimeLimit The number of microseconds to wait for.
790 **/
791 VOID
792 TimedWaitForApFinish (
793 IN CPU_MP_DATA *CpuMpData,
794 IN UINT32 FinishedApLimit,
795 IN UINT32 TimeLimit
796 );
797
798 /**
799 Get available system memory below 1MB by specified size.
800
801 @param[in] CpuMpData The pointer to CPU MP Data structure.
802 **/
803 VOID
804 BackupAndPrepareWakeupBuffer(
805 IN CPU_MP_DATA *CpuMpData
806 )
807 {
808 CopyMem (
809 (VOID *) CpuMpData->BackupBuffer,
810 (VOID *) CpuMpData->WakeupBuffer,
811 CpuMpData->BackupBufferSize
812 );
813 CopyMem (
814 (VOID *) CpuMpData->WakeupBuffer,
815 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
816 CpuMpData->AddressMap.RendezvousFunnelSize
817 );
818 }
819
820 /**
821 Restore wakeup buffer data.
822
823 @param[in] CpuMpData The pointer to CPU MP Data structure.
824 **/
825 VOID
826 RestoreWakeupBuffer(
827 IN CPU_MP_DATA *CpuMpData
828 )
829 {
830 CopyMem (
831 (VOID *) CpuMpData->WakeupBuffer,
832 (VOID *) CpuMpData->BackupBuffer,
833 CpuMpData->BackupBufferSize
834 );
835 }
836
837 /**
838 Allocate reset vector buffer.
839
840 @param[in, out] CpuMpData The pointer to CPU MP Data structure.
841 **/
842 VOID
843 AllocateResetVector (
844 IN OUT CPU_MP_DATA *CpuMpData
845 )
846 {
847 UINTN ApResetVectorSize;
848
849 if (CpuMpData->WakeupBuffer == (UINTN) -1) {
850 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
851 sizeof (MP_CPU_EXCHANGE_INFO);
852
853 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
854 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
855 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
856 }
857 BackupAndPrepareWakeupBuffer (CpuMpData);
858 }
859
860 /**
861 Free AP reset vector buffer.
862
863 @param[in] CpuMpData The pointer to CPU MP Data structure.
864 **/
865 VOID
866 FreeResetVector (
867 IN CPU_MP_DATA *CpuMpData
868 )
869 {
870 RestoreWakeupBuffer (CpuMpData);
871 }
872
873 /**
874 This function will be called by BSP to wakeup AP.
875
876 @param[in] CpuMpData Pointer to CPU MP Data
877 @param[in] Broadcast TRUE: Send broadcast IPI to all APs
878 FALSE: Send IPI to AP by ApicId
879 @param[in] ProcessorNumber The handle number of specified processor
880 @param[in] Procedure The function to be invoked by AP
881 @param[in] ProcedureArgument The argument to be passed into AP function
882 **/
883 VOID
884 WakeUpAP (
885 IN CPU_MP_DATA *CpuMpData,
886 IN BOOLEAN Broadcast,
887 IN UINTN ProcessorNumber,
888 IN EFI_AP_PROCEDURE Procedure, OPTIONAL
889 IN VOID *ProcedureArgument OPTIONAL
890 )
891 {
892 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
893 UINTN Index;
894 CPU_AP_DATA *CpuData;
895 BOOLEAN ResetVectorRequired;
896 CPU_INFO_IN_HOB *CpuInfoInHob;
897
898 CpuMpData->FinishedCount = 0;
899 ResetVectorRequired = FALSE;
900
901 if (CpuMpData->ApLoopMode == ApInHltLoop ||
902 CpuMpData->InitFlag != ApInitDone) {
903 ResetVectorRequired = TRUE;
904 AllocateResetVector (CpuMpData);
905 FillExchangeInfoData (CpuMpData);
906 SaveLocalApicTimerSetting (CpuMpData);
907 } else if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
908 //
909 // Get AP target C-state each time when waking up AP,
910 // for it maybe updated by platform again
911 //
912 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
913 }
914
915 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
916
917 if (Broadcast) {
918 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
919 if (Index != CpuMpData->BspNumber) {
920 CpuData = &CpuMpData->CpuData[Index];
921 CpuData->ApFunction = (UINTN) Procedure;
922 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
923 SetApState (CpuData, CpuStateReady);
924 if (CpuMpData->InitFlag != ApInitConfig) {
925 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
926 }
927 }
928 }
929 if (ResetVectorRequired) {
930 //
931 // Wakeup all APs
932 //
933 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
934 }
935 if (CpuMpData->InitFlag == ApInitConfig) {
936 //
937 // Wait for all potential APs waken up in one specified period
938 //
939 TimedWaitForApFinish (
940 CpuMpData,
941 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
942 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
943 );
944 } else {
945 //
946 // Wait all APs waken up if this is not the 1st broadcast of SIPI
947 //
948 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
949 CpuData = &CpuMpData->CpuData[Index];
950 if (Index != CpuMpData->BspNumber) {
951 WaitApWakeup (CpuData->StartupApSignal);
952 }
953 }
954 }
955 } else {
956 CpuData = &CpuMpData->CpuData[ProcessorNumber];
957 CpuData->ApFunction = (UINTN) Procedure;
958 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
959 SetApState (CpuData, CpuStateReady);
960 //
961 // Wakeup specified AP
962 //
963 ASSERT (CpuMpData->InitFlag != ApInitConfig);
964 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
965 if (ResetVectorRequired) {
966 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
967 SendInitSipiSipi (
968 CpuInfoInHob[ProcessorNumber].ApicId,
969 (UINT32) ExchangeInfo->BufferStart
970 );
971 }
972 //
973 // Wait specified AP waken up
974 //
975 WaitApWakeup (CpuData->StartupApSignal);
976 }
977
978 if (ResetVectorRequired) {
979 FreeResetVector (CpuMpData);
980 }
981 }
982
983 /**
984 Calculate timeout value and return the current performance counter value.
985
986 Calculate the number of performance counter ticks required for a timeout.
987 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
988 as infinity.
989
990 @param[in] TimeoutInMicroseconds Timeout value in microseconds.
991 @param[out] CurrentTime Returns the current value of the performance counter.
992
993 @return Expected time stamp counter for timeout.
994 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
995 as infinity.
996
997 **/
998 UINT64
999 CalculateTimeout (
1000 IN UINTN TimeoutInMicroseconds,
1001 OUT UINT64 *CurrentTime
1002 )
1003 {
1004 //
1005 // Read the current value of the performance counter
1006 //
1007 *CurrentTime = GetPerformanceCounter ();
1008
1009 //
1010 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1011 // as infinity.
1012 //
1013 if (TimeoutInMicroseconds == 0) {
1014 return 0;
1015 }
1016
1017 //
1018 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
1019 // in Hz. So multiply the return value with TimeoutInMicroseconds and then divide
1020 // it by 1,000,000, to get the number of ticks for the timeout value.
1021 //
1022 return DivU64x32 (
1023 MultU64x64 (
1024 GetPerformanceCounterProperties (NULL, NULL),
1025 TimeoutInMicroseconds
1026 ),
1027 1000000
1028 );
1029 }
1030
1031 /**
1032 Checks whether timeout expires.
1033
1034 Check whether the number of elapsed performance counter ticks required for
1035 a timeout condition has been reached.
1036 If Timeout is zero, which means infinity, return value is always FALSE.
1037
1038 @param[in, out] PreviousTime On input, the value of the performance counter
1039 when it was last read.
1040 On output, the current value of the performance
1041 counter
1042 @param[in] TotalTime The total amount of elapsed time in performance
1043 counter ticks.
1044 @param[in] Timeout The number of performance counter ticks required
1045 to reach a timeout condition.
1046
1047 @retval TRUE A timeout condition has been reached.
1048 @retval FALSE A timeout condition has not been reached.
1049
1050 **/
1051 BOOLEAN
1052 CheckTimeout (
1053 IN OUT UINT64 *PreviousTime,
1054 IN UINT64 *TotalTime,
1055 IN UINT64 Timeout
1056 )
1057 {
1058 UINT64 Start;
1059 UINT64 End;
1060 UINT64 CurrentTime;
1061 INT64 Delta;
1062 INT64 Cycle;
1063
1064 if (Timeout == 0) {
1065 return FALSE;
1066 }
1067 GetPerformanceCounterProperties (&Start, &End);
1068 Cycle = End - Start;
1069 if (Cycle < 0) {
1070 Cycle = -Cycle;
1071 }
1072 Cycle++;
1073 CurrentTime = GetPerformanceCounter();
1074 Delta = (INT64) (CurrentTime - *PreviousTime);
1075 if (Start > End) {
1076 Delta = -Delta;
1077 }
1078 if (Delta < 0) {
1079 Delta += Cycle;
1080 }
1081 *TotalTime += Delta;
1082 *PreviousTime = CurrentTime;
1083 if (*TotalTime > Timeout) {
1084 return TRUE;
1085 }
1086 return FALSE;
1087 }
1088
1089 /**
1090 Helper function that waits until the finished AP count reaches the specified
1091 limit, or the specified timeout elapses (whichever comes first).
1092
1093 @param[in] CpuMpData Pointer to CPU MP Data.
1094 @param[in] FinishedApLimit The number of finished APs to wait for.
1095 @param[in] TimeLimit The number of microseconds to wait for.
1096 **/
1097 VOID
1098 TimedWaitForApFinish (
1099 IN CPU_MP_DATA *CpuMpData,
1100 IN UINT32 FinishedApLimit,
1101 IN UINT32 TimeLimit
1102 )
1103 {
1104 //
1105 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
1106 // "infinity", so check for (TimeLimit == 0) explicitly.
1107 //
1108 if (TimeLimit == 0) {
1109 return;
1110 }
1111
1112 CpuMpData->TotalTime = 0;
1113 CpuMpData->ExpectedTime = CalculateTimeout (
1114 TimeLimit,
1115 &CpuMpData->CurrentTime
1116 );
1117 while (CpuMpData->FinishedCount < FinishedApLimit &&
1118 !CheckTimeout (
1119 &CpuMpData->CurrentTime,
1120 &CpuMpData->TotalTime,
1121 CpuMpData->ExpectedTime
1122 )) {
1123 CpuPause ();
1124 }
1125
1126 if (CpuMpData->FinishedCount >= FinishedApLimit) {
1127 DEBUG ((
1128 DEBUG_VERBOSE,
1129 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
1130 __FUNCTION__,
1131 FinishedApLimit,
1132 DivU64x64Remainder (
1133 MultU64x32 (CpuMpData->TotalTime, 1000000),
1134 GetPerformanceCounterProperties (NULL, NULL),
1135 NULL
1136 )
1137 ));
1138 }
1139 }
1140
1141 /**
1142 Reset an AP to Idle state.
1143
1144 Any task being executed by the AP will be aborted and the AP
1145 will be waiting for a new task in Wait-For-SIPI state.
1146
1147 @param[in] ProcessorNumber The handle number of processor.
1148 **/
1149 VOID
1150 ResetProcessorToIdleState (
1151 IN UINTN ProcessorNumber
1152 )
1153 {
1154 CPU_MP_DATA *CpuMpData;
1155
1156 CpuMpData = GetCpuMpData ();
1157
1158 CpuMpData->InitFlag = ApInitReconfig;
1159 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);
1160 while (CpuMpData->FinishedCount < 1) {
1161 CpuPause ();
1162 }
1163 CpuMpData->InitFlag = ApInitDone;
1164
1165 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1166 }
1167
1168 /**
1169 Searches for the next waiting AP.
1170
1171 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1172
1173 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
1174
1175 @retval EFI_SUCCESS The next waiting AP has been found.
1176 @retval EFI_NOT_FOUND No waiting AP exists.
1177
1178 **/
1179 EFI_STATUS
1180 GetNextWaitingProcessorNumber (
1181 OUT UINTN *NextProcessorNumber
1182 )
1183 {
1184 UINTN ProcessorNumber;
1185 CPU_MP_DATA *CpuMpData;
1186
1187 CpuMpData = GetCpuMpData ();
1188
1189 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1190 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1191 *NextProcessorNumber = ProcessorNumber;
1192 return EFI_SUCCESS;
1193 }
1194 }
1195
1196 return EFI_NOT_FOUND;
1197 }
1198
1199 /** Checks status of specified AP.
1200
1201 This function checks whether the specified AP has finished the task assigned
1202 by StartupThisAP(), and whether timeout expires.
1203
1204 @param[in] ProcessorNumber The handle number of processor.
1205
1206 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
1207 @retval EFI_TIMEOUT The timeout expires.
1208 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
1209 **/
1210 EFI_STATUS
1211 CheckThisAP (
1212 IN UINTN ProcessorNumber
1213 )
1214 {
1215 CPU_MP_DATA *CpuMpData;
1216 CPU_AP_DATA *CpuData;
1217
1218 CpuMpData = GetCpuMpData ();
1219 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1220
1221 //
1222 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
1223 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1224 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
1225 //
1226 //
1227 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
1228 //
1229 if (GetApState(CpuData) == CpuStateFinished) {
1230 if (CpuData->Finished != NULL) {
1231 *(CpuData->Finished) = TRUE;
1232 }
1233 SetApState (CpuData, CpuStateIdle);
1234 return EFI_SUCCESS;
1235 } else {
1236 //
1237 // If timeout expires for StartupThisAP(), report timeout.
1238 //
1239 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
1240 if (CpuData->Finished != NULL) {
1241 *(CpuData->Finished) = FALSE;
1242 }
1243 //
1244 // Reset failed AP to idle state
1245 //
1246 ResetProcessorToIdleState (ProcessorNumber);
1247
1248 return EFI_TIMEOUT;
1249 }
1250 }
1251 return EFI_NOT_READY;
1252 }
1253
1254 /**
1255 Checks status of all APs.
1256
1257 This function checks whether all APs have finished task assigned by StartupAllAPs(),
1258 and whether timeout expires.
1259
1260 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
1261 @retval EFI_TIMEOUT The timeout expires.
1262 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
1263 **/
1264 EFI_STATUS
1265 CheckAllAPs (
1266 VOID
1267 )
1268 {
1269 UINTN ProcessorNumber;
1270 UINTN NextProcessorNumber;
1271 UINTN ListIndex;
1272 EFI_STATUS Status;
1273 CPU_MP_DATA *CpuMpData;
1274 CPU_AP_DATA *CpuData;
1275
1276 CpuMpData = GetCpuMpData ();
1277
1278 NextProcessorNumber = 0;
1279
1280 //
1281 // Go through all APs that are responsible for the StartupAllAPs().
1282 //
1283 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1284 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
1285 continue;
1286 }
1287
1288 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1289 //
1290 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
1291 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1292 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
1293 //
1294 if (GetApState(CpuData) == CpuStateFinished) {
1295 CpuMpData->RunningCount ++;
1296 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1297 SetApState(CpuData, CpuStateIdle);
1298
1299 //
1300 // If in Single Thread mode, then search for the next waiting AP for execution.
1301 //
1302 if (CpuMpData->SingleThread) {
1303 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
1304
1305 if (!EFI_ERROR (Status)) {
1306 WakeUpAP (
1307 CpuMpData,
1308 FALSE,
1309 (UINT32) NextProcessorNumber,
1310 CpuMpData->Procedure,
1311 CpuMpData->ProcArguments
1312 );
1313 }
1314 }
1315 }
1316 }
1317
1318 //
1319 // If all APs finish, return EFI_SUCCESS.
1320 //
1321 if (CpuMpData->RunningCount == CpuMpData->StartCount) {
1322 return EFI_SUCCESS;
1323 }
1324
1325 //
1326 // If timeout expires, report timeout.
1327 //
1328 if (CheckTimeout (
1329 &CpuMpData->CurrentTime,
1330 &CpuMpData->TotalTime,
1331 CpuMpData->ExpectedTime)
1332 ) {
1333 //
1334 // If FailedCpuList is not NULL, record all failed APs in it.
1335 //
1336 if (CpuMpData->FailedCpuList != NULL) {
1337 *CpuMpData->FailedCpuList =
1338 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));
1339 ASSERT (*CpuMpData->FailedCpuList != NULL);
1340 }
1341 ListIndex = 0;
1342
1343 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1344 //
1345 // Check whether this processor is responsible for StartupAllAPs().
1346 //
1347 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1348 //
1349 // Reset failed APs to idle state
1350 //
1351 ResetProcessorToIdleState (ProcessorNumber);
1352 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1353 if (CpuMpData->FailedCpuList != NULL) {
1354 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
1355 }
1356 }
1357 }
1358 if (CpuMpData->FailedCpuList != NULL) {
1359 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
1360 }
1361 return EFI_TIMEOUT;
1362 }
1363 return EFI_NOT_READY;
1364 }
1365
1366 /**
1367 MP Initialize Library initialization.
1368
1369 This service will allocate AP reset vector and wakeup all APs to do APs
1370 initialization.
1371
1372 This service must be invoked before all other MP Initialize Library
1373 service are invoked.
1374
1375 @retval EFI_SUCCESS MP initialization succeeds.
1376 @retval Others MP initialization fails.
1377
1378 **/
1379 EFI_STATUS
1380 EFIAPI
1381 MpInitLibInitialize (
1382 VOID
1383 )
1384 {
1385 CPU_MP_DATA *OldCpuMpData;
1386 CPU_INFO_IN_HOB *CpuInfoInHob;
1387 UINT32 MaxLogicalProcessorNumber;
1388 UINT32 ApStackSize;
1389 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1390 UINTN BufferSize;
1391 UINT32 MonitorFilterSize;
1392 VOID *MpBuffer;
1393 UINTN Buffer;
1394 CPU_MP_DATA *CpuMpData;
1395 UINT8 ApLoopMode;
1396 UINT8 *MonitorBuffer;
1397 UINTN Index;
1398 UINTN ApResetVectorSize;
1399 UINTN BackupBufferAddr;
1400
1401 OldCpuMpData = GetCpuMpDataFromGuidedHob ();
1402 if (OldCpuMpData == NULL) {
1403 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
1404 } else {
1405 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
1406 }
1407 ASSERT (MaxLogicalProcessorNumber != 0);
1408
1409 AsmGetAddressMap (&AddressMap);
1410 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
1411 ApStackSize = PcdGet32(PcdCpuApStackSize);
1412 ApLoopMode = GetApLoopMode (&MonitorFilterSize);
1413
1414 BufferSize = ApStackSize * MaxLogicalProcessorNumber;
1415 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
1416 BufferSize += sizeof (CPU_MP_DATA);
1417 BufferSize += ApResetVectorSize;
1418 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
1419 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
1420 ASSERT (MpBuffer != NULL);
1421 ZeroMem (MpBuffer, BufferSize);
1422 Buffer = (UINTN) MpBuffer;
1423
1424 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
1425 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
1426 CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize);
1427 CpuMpData->Buffer = Buffer;
1428 CpuMpData->CpuApStackSize = ApStackSize;
1429 CpuMpData->BackupBuffer = BackupBufferAddr;
1430 CpuMpData->BackupBufferSize = ApResetVectorSize;
1431 CpuMpData->WakeupBuffer = (UINTN) -1;
1432 CpuMpData->CpuCount = 1;
1433 CpuMpData->BspNumber = 0;
1434 CpuMpData->WaitEvent = NULL;
1435 CpuMpData->SwitchBspFlag = FALSE;
1436 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
1437 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
1438 InitializeSpinLock(&CpuMpData->MpLock);
1439 //
1440 // Save BSP's Control registers to APs
1441 //
1442 SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters);
1443 //
1444 // Set BSP basic information
1445 //
1446 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer);
1447 //
1448 // Save assembly code information
1449 //
1450 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
1451 //
1452 // Finally set AP loop mode
1453 //
1454 CpuMpData->ApLoopMode = ApLoopMode;
1455 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
1456 //
1457 // Set up APs wakeup signal buffer
1458 //
1459 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
1460 CpuMpData->CpuData[Index].StartupApSignal =
1461 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
1462 }
1463 //
1464 // Load Microcode on BSP
1465 //
1466 MicrocodeDetect (CpuMpData);
1467 //
1468 // Store BSP's MTRR setting
1469 //
1470 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
1471 //
1472 // Enable the local APIC for Virtual Wire Mode.
1473 //
1474 ProgramVirtualWireMode ();
1475
1476 if (OldCpuMpData == NULL) {
1477 if (MaxLogicalProcessorNumber > 1) {
1478 //
1479 // Wakeup all APs and calculate the processor count in system
1480 //
1481 CollectProcessorCount (CpuMpData);
1482 }
1483 } else {
1484 //
1485 // APs have been wakeup before, just get the CPU Information
1486 // from HOB
1487 //
1488 CpuMpData->CpuCount = OldCpuMpData->CpuCount;
1489 CpuMpData->BspNumber = OldCpuMpData->BspNumber;
1490 CpuMpData->InitFlag = ApInitReconfig;
1491 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
1492 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1493 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1494 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
1495 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {
1496 CpuMpData->X2ApicEnable = TRUE;
1497 }
1498 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
1499 CpuMpData->CpuData[Index].ApFunction = 0;
1500 CopyMem (
1501 &CpuMpData->CpuData[Index].VolatileRegisters,
1502 &CpuMpData->CpuData[0].VolatileRegisters,
1503 sizeof (CPU_VOLATILE_REGISTERS)
1504 );
1505 }
1506 if (MaxLogicalProcessorNumber > 1) {
1507 //
1508 // Wakeup APs to do some AP initialize sync
1509 //
1510 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);
1511 //
1512 // Wait for all APs finished initialization
1513 //
1514 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
1515 CpuPause ();
1516 }
1517 CpuMpData->InitFlag = ApInitDone;
1518 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1519 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
1520 }
1521 }
1522 }
1523
1524 //
1525 // Initialize global data for MP support
1526 //
1527 InitMpGlobalData (CpuMpData);
1528
1529 return EFI_SUCCESS;
1530 }
1531
1532 /**
1533 Gets detailed MP-related information on the requested processor at the
1534 instant this call is made. This service may only be called from the BSP.
1535
1536 @param[in] ProcessorNumber The handle number of processor.
1537 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
1538 the requested processor is deposited.
1539 @param[out] HealthData Return processor health data.
1540
1541 @retval EFI_SUCCESS Processor information was returned.
1542 @retval EFI_DEVICE_ERROR The calling processor is an AP.
1543 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
1544 @retval EFI_NOT_FOUND The processor with the handle specified by
1545 ProcessorNumber does not exist in the platform.
1546 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1547
1548 **/
1549 EFI_STATUS
1550 EFIAPI
1551 MpInitLibGetProcessorInfo (
1552 IN UINTN ProcessorNumber,
1553 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
1554 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
1555 )
1556 {
1557 CPU_MP_DATA *CpuMpData;
1558 UINTN CallerNumber;
1559 CPU_INFO_IN_HOB *CpuInfoInHob;
1560
1561 CpuMpData = GetCpuMpData ();
1562 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1563
1564 //
1565 // Check whether caller processor is BSP
1566 //
1567 MpInitLibWhoAmI (&CallerNumber);
1568 if (CallerNumber != CpuMpData->BspNumber) {
1569 return EFI_DEVICE_ERROR;
1570 }
1571
1572 if (ProcessorInfoBuffer == NULL) {
1573 return EFI_INVALID_PARAMETER;
1574 }
1575
1576 if (ProcessorNumber >= CpuMpData->CpuCount) {
1577 return EFI_NOT_FOUND;
1578 }
1579
1580 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
1581 ProcessorInfoBuffer->StatusFlag = 0;
1582 if (ProcessorNumber == CpuMpData->BspNumber) {
1583 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
1584 }
1585 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
1586 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
1587 }
1588 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
1589 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
1590 } else {
1591 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
1592 }
1593
1594 //
1595 // Get processor location information
1596 //
1597 GetProcessorLocationByApicId (
1598 CpuInfoInHob[ProcessorNumber].ApicId,
1599 &ProcessorInfoBuffer->Location.Package,
1600 &ProcessorInfoBuffer->Location.Core,
1601 &ProcessorInfoBuffer->Location.Thread
1602 );
1603
1604 if (HealthData != NULL) {
1605 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
1606 }
1607
1608 return EFI_SUCCESS;
1609 }
1610
1611 /**
1612 Worker function to switch the requested AP to be the BSP from that point onward.
1613
1614 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
1615 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
1616 enabled AP. Otherwise, it will be disabled.
1617
1618 @retval EFI_SUCCESS BSP successfully switched.
1619 @retval others Failed to switch BSP.
1620
1621 **/
1622 EFI_STATUS
1623 SwitchBSPWorker (
1624 IN UINTN ProcessorNumber,
1625 IN BOOLEAN EnableOldBSP
1626 )
1627 {
1628 CPU_MP_DATA *CpuMpData;
1629 UINTN CallerNumber;
1630 CPU_STATE State;
1631 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
1632 BOOLEAN OldInterruptState;
1633 BOOLEAN OldTimerInterruptState;
1634
1635 //
1636 // Save and Disable Local APIC timer interrupt
1637 //
1638 OldTimerInterruptState = GetApicTimerInterruptState ();
1639 DisableApicTimerInterrupt ();
1640 //
1641 // Before send both BSP and AP to a procedure to exchange their roles,
1642 // interrupt must be disabled. This is because during the exchange role
1643 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
1644 // be corrupted, since interrupt return address will be pushed to stack
1645 // by hardware.
1646 //
1647 OldInterruptState = SaveAndDisableInterrupts ();
1648
1649 //
1650 // Mask LINT0 & LINT1 for the old BSP
1651 //
1652 DisableLvtInterrupts ();
1653
1654 CpuMpData = GetCpuMpData ();
1655
1656 //
1657 // Check whether caller processor is BSP
1658 //
1659 MpInitLibWhoAmI (&CallerNumber);
1660 if (CallerNumber != CpuMpData->BspNumber) {
1661 return EFI_DEVICE_ERROR;
1662 }
1663
1664 if (ProcessorNumber >= CpuMpData->CpuCount) {
1665 return EFI_NOT_FOUND;
1666 }
1667
1668 //
1669 // Check whether specified AP is disabled
1670 //
1671 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
1672 if (State == CpuStateDisabled) {
1673 return EFI_INVALID_PARAMETER;
1674 }
1675
1676 //
1677 // Check whether ProcessorNumber specifies the current BSP
1678 //
1679 if (ProcessorNumber == CpuMpData->BspNumber) {
1680 return EFI_INVALID_PARAMETER;
1681 }
1682
1683 //
1684 // Check whether specified AP is busy
1685 //
1686 if (State == CpuStateBusy) {
1687 return EFI_NOT_READY;
1688 }
1689
1690 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
1691 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
1692 CpuMpData->SwitchBspFlag = TRUE;
1693 CpuMpData->NewBspNumber = ProcessorNumber;
1694
1695 //
1696 // Clear the BSP bit of MSR_IA32_APIC_BASE
1697 //
1698 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1699 ApicBaseMsr.Bits.BSP = 0;
1700 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1701
1702 //
1703 // Need to wakeUp AP (future BSP).
1704 //
1705 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);
1706
1707 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
1708
1709 //
1710 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
1711 //
1712 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1713 ApicBaseMsr.Bits.BSP = 1;
1714 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1715
1716 //
1717 // Wait for old BSP finished AP task
1718 //
1719 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
1720 CpuPause ();
1721 }
1722
1723 CpuMpData->SwitchBspFlag = FALSE;
1724 //
1725 // Set old BSP enable state
1726 //
1727 if (!EnableOldBSP) {
1728 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
1729 } else {
1730 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
1731 }
1732 //
1733 // Save new BSP number
1734 //
1735 CpuMpData->BspNumber = (UINT32) ProcessorNumber;
1736
1737 //
1738 // Restore interrupt state.
1739 //
1740 SetInterruptState (OldInterruptState);
1741
1742 if (OldTimerInterruptState) {
1743 EnableApicTimerInterrupt ();
1744 }
1745
1746 return EFI_SUCCESS;
1747 }
1748
1749 /**
1750 Worker function to let the caller enable or disable an AP from this point onward.
1751 This service may only be called from the BSP.
1752
1753 @param[in] ProcessorNumber The handle number of AP.
1754 @param[in] EnableAP Specifies the new state for the processor for
1755 enabled, FALSE for disabled.
1756 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
1757 the new health status of the AP.
1758
1759 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
1760 @retval others Failed to Enable/Disable AP.
1761
1762 **/
1763 EFI_STATUS
1764 EnableDisableApWorker (
1765 IN UINTN ProcessorNumber,
1766 IN BOOLEAN EnableAP,
1767 IN UINT32 *HealthFlag OPTIONAL
1768 )
1769 {
1770 CPU_MP_DATA *CpuMpData;
1771 UINTN CallerNumber;
1772
1773 CpuMpData = GetCpuMpData ();
1774
1775 //
1776 // Check whether caller processor is BSP
1777 //
1778 MpInitLibWhoAmI (&CallerNumber);
1779 if (CallerNumber != CpuMpData->BspNumber) {
1780 return EFI_DEVICE_ERROR;
1781 }
1782
1783 if (ProcessorNumber == CpuMpData->BspNumber) {
1784 return EFI_INVALID_PARAMETER;
1785 }
1786
1787 if (ProcessorNumber >= CpuMpData->CpuCount) {
1788 return EFI_NOT_FOUND;
1789 }
1790
1791 if (!EnableAP) {
1792 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
1793 } else {
1794 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1795 }
1796
1797 if (HealthFlag != NULL) {
1798 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
1799 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
1800 }
1801
1802 return EFI_SUCCESS;
1803 }
1804
1805 /**
1806 This return the handle number for the calling processor. This service may be
1807 called from the BSP and APs.
1808
1809 @param[out] ProcessorNumber Pointer to the handle number of AP.
1810 The range is from 0 to the total number of
1811 logical processors minus 1. The total number of
1812 logical processors can be retrieved by
1813 MpInitLibGetNumberOfProcessors().
1814
1815 @retval EFI_SUCCESS The current processor handle number was returned
1816 in ProcessorNumber.
1817 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
1818 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1819
1820 **/
1821 EFI_STATUS
1822 EFIAPI
1823 MpInitLibWhoAmI (
1824 OUT UINTN *ProcessorNumber
1825 )
1826 {
1827 CPU_MP_DATA *CpuMpData;
1828
1829 if (ProcessorNumber == NULL) {
1830 return EFI_INVALID_PARAMETER;
1831 }
1832
1833 CpuMpData = GetCpuMpData ();
1834
1835 return GetProcessorNumber (CpuMpData, ProcessorNumber);
1836 }
1837
1838 /**
1839 Retrieves the number of logical processor in the platform and the number of
1840 those logical processors that are enabled on this boot. This service may only
1841 be called from the BSP.
1842
1843 @param[out] NumberOfProcessors Pointer to the total number of logical
1844 processors in the system, including the BSP
1845 and disabled APs.
1846 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
1847 processors that exist in system, including
1848 the BSP.
1849
1850 @retval EFI_SUCCESS The number of logical processors and enabled
1851 logical processors was retrieved.
1852 @retval EFI_DEVICE_ERROR The calling processor is an AP.
1853 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
1854 is NULL.
1855 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1856
1857 **/
1858 EFI_STATUS
1859 EFIAPI
1860 MpInitLibGetNumberOfProcessors (
1861 OUT UINTN *NumberOfProcessors, OPTIONAL
1862 OUT UINTN *NumberOfEnabledProcessors OPTIONAL
1863 )
1864 {
1865 CPU_MP_DATA *CpuMpData;
1866 UINTN CallerNumber;
1867 UINTN ProcessorNumber;
1868 UINTN EnabledProcessorNumber;
1869 UINTN Index;
1870
1871 CpuMpData = GetCpuMpData ();
1872
1873 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
1874 return EFI_INVALID_PARAMETER;
1875 }
1876
1877 //
1878 // Check whether caller processor is BSP
1879 //
1880 MpInitLibWhoAmI (&CallerNumber);
1881 if (CallerNumber != CpuMpData->BspNumber) {
1882 return EFI_DEVICE_ERROR;
1883 }
1884
1885 ProcessorNumber = CpuMpData->CpuCount;
1886 EnabledProcessorNumber = 0;
1887 for (Index = 0; Index < ProcessorNumber; Index++) {
1888 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
1889 EnabledProcessorNumber ++;
1890 }
1891 }
1892
1893 if (NumberOfProcessors != NULL) {
1894 *NumberOfProcessors = ProcessorNumber;
1895 }
1896 if (NumberOfEnabledProcessors != NULL) {
1897 *NumberOfEnabledProcessors = EnabledProcessorNumber;
1898 }
1899
1900 return EFI_SUCCESS;
1901 }
1902
1903
1904 /**
1905 Worker function to execute a caller provided function on all enabled APs.
1906
1907 @param[in] Procedure A pointer to the function to be run on
1908 enabled APs of the system.
1909 @param[in] SingleThread If TRUE, then all the enabled APs execute
1910 the function specified by Procedure one by
1911 one, in ascending order of processor handle
1912 number. If FALSE, then all the enabled APs
1913 execute the function specified by Procedure
1914 simultaneously.
1915 @param[in] WaitEvent The event created by the caller with CreateEvent()
1916 service.
1917 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
1918 APs to return from Procedure, either for
1919 blocking or non-blocking mode.
1920 @param[in] ProcedureArgument The parameter passed into Procedure for
1921 all APs.
1922 @param[out] FailedCpuList If all APs finish successfully, then its
1923 content is set to NULL. If not all APs
1924 finish before timeout expires, then its
1925 content is set to address of the buffer
1926 holding handle numbers of the failed APs.
1927
1928 @retval EFI_SUCCESS In blocking mode, all APs have finished before
1929 the timeout expired.
1930 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
1931 to all enabled APs.
1932 @retval others Failed to Startup all APs.
1933
1934 **/
1935 EFI_STATUS
1936 StartupAllAPsWorker (
1937 IN EFI_AP_PROCEDURE Procedure,
1938 IN BOOLEAN SingleThread,
1939 IN EFI_EVENT WaitEvent OPTIONAL,
1940 IN UINTN TimeoutInMicroseconds,
1941 IN VOID *ProcedureArgument OPTIONAL,
1942 OUT UINTN **FailedCpuList OPTIONAL
1943 )
1944 {
1945 EFI_STATUS Status;
1946 CPU_MP_DATA *CpuMpData;
1947 UINTN ProcessorCount;
1948 UINTN ProcessorNumber;
1949 UINTN CallerNumber;
1950 CPU_AP_DATA *CpuData;
1951 BOOLEAN HasEnabledAp;
1952 CPU_STATE ApState;
1953
1954 CpuMpData = GetCpuMpData ();
1955
1956 if (FailedCpuList != NULL) {
1957 *FailedCpuList = NULL;
1958 }
1959
1960 if (CpuMpData->CpuCount == 1) {
1961 return EFI_NOT_STARTED;
1962 }
1963
1964 if (Procedure == NULL) {
1965 return EFI_INVALID_PARAMETER;
1966 }
1967
1968 //
1969 // Check whether caller processor is BSP
1970 //
1971 MpInitLibWhoAmI (&CallerNumber);
1972 if (CallerNumber != CpuMpData->BspNumber) {
1973 return EFI_DEVICE_ERROR;
1974 }
1975
1976 //
1977 // Update AP state
1978 //
1979 CheckAndUpdateApsStatus ();
1980
1981 ProcessorCount = CpuMpData->CpuCount;
1982 HasEnabledAp = FALSE;
1983 //
1984 // Check whether all enabled APs are idle.
1985 // If any enabled AP is not idle, return EFI_NOT_READY.
1986 //
1987 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
1988 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1989 if (ProcessorNumber != CpuMpData->BspNumber) {
1990 ApState = GetApState (CpuData);
1991 if (ApState != CpuStateDisabled) {
1992 HasEnabledAp = TRUE;
1993 if (ApState != CpuStateIdle) {
1994 //
1995 // If any enabled APs are busy, return EFI_NOT_READY.
1996 //
1997 return EFI_NOT_READY;
1998 }
1999 }
2000 }
2001 }
2002
2003 if (!HasEnabledAp) {
2004 //
2005 // If no enabled AP exists, return EFI_NOT_STARTED.
2006 //
2007 return EFI_NOT_STARTED;
2008 }
2009
2010 CpuMpData->StartCount = 0;
2011 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2012 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2013 CpuData->Waiting = FALSE;
2014 if (ProcessorNumber != CpuMpData->BspNumber) {
2015 if (CpuData->State == CpuStateIdle) {
2016 //
2017 // Mark this processor as responsible for current calling.
2018 //
2019 CpuData->Waiting = TRUE;
2020 CpuMpData->StartCount++;
2021 }
2022 }
2023 }
2024
2025 CpuMpData->Procedure = Procedure;
2026 CpuMpData->ProcArguments = ProcedureArgument;
2027 CpuMpData->SingleThread = SingleThread;
2028 CpuMpData->FinishedCount = 0;
2029 CpuMpData->RunningCount = 0;
2030 CpuMpData->FailedCpuList = FailedCpuList;
2031 CpuMpData->ExpectedTime = CalculateTimeout (
2032 TimeoutInMicroseconds,
2033 &CpuMpData->CurrentTime
2034 );
2035 CpuMpData->TotalTime = 0;
2036 CpuMpData->WaitEvent = WaitEvent;
2037
2038 if (!SingleThread) {
2039 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);
2040 } else {
2041 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2042 if (ProcessorNumber == CallerNumber) {
2043 continue;
2044 }
2045 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
2046 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
2047 break;
2048 }
2049 }
2050 }
2051
2052 Status = EFI_SUCCESS;
2053 if (WaitEvent == NULL) {
2054 do {
2055 Status = CheckAllAPs ();
2056 } while (Status == EFI_NOT_READY);
2057 }
2058
2059 return Status;
2060 }
2061
2062 /**
2063 Worker function to let the caller get one enabled AP to execute a caller-provided
2064 function.
2065
2066 @param[in] Procedure A pointer to the function to be run on
2067 enabled APs of the system.
2068 @param[in] ProcessorNumber The handle number of the AP.
2069 @param[in] WaitEvent The event created by the caller with CreateEvent()
2070 service.
2071 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2072 APs to return from Procedure, either for
2073 blocking or non-blocking mode.
2074 @param[in] ProcedureArgument The parameter passed into Procedure for
2075 all APs.
2076 @param[out] Finished If AP returns from Procedure before the
2077 timeout expires, its content is set to TRUE.
2078 Otherwise, the value is set to FALSE.
2079
2080 @retval EFI_SUCCESS In blocking mode, specified AP finished before
2081 the timeout expires.
2082 @retval others Failed to Startup AP.
2083
2084 **/
2085 EFI_STATUS
2086 StartupThisAPWorker (
2087 IN EFI_AP_PROCEDURE Procedure,
2088 IN UINTN ProcessorNumber,
2089 IN EFI_EVENT WaitEvent OPTIONAL,
2090 IN UINTN TimeoutInMicroseconds,
2091 IN VOID *ProcedureArgument OPTIONAL,
2092 OUT BOOLEAN *Finished OPTIONAL
2093 )
2094 {
2095 EFI_STATUS Status;
2096 CPU_MP_DATA *CpuMpData;
2097 CPU_AP_DATA *CpuData;
2098 UINTN CallerNumber;
2099
2100 CpuMpData = GetCpuMpData ();
2101
2102 if (Finished != NULL) {
2103 *Finished = FALSE;
2104 }
2105
2106 //
2107 // Check whether caller processor is BSP
2108 //
2109 MpInitLibWhoAmI (&CallerNumber);
2110 if (CallerNumber != CpuMpData->BspNumber) {
2111 return EFI_DEVICE_ERROR;
2112 }
2113
2114 //
2115 // Check whether processor with the handle specified by ProcessorNumber exists
2116 //
2117 if (ProcessorNumber >= CpuMpData->CpuCount) {
2118 return EFI_NOT_FOUND;
2119 }
2120
2121 //
2122 // Check whether specified processor is BSP
2123 //
2124 if (ProcessorNumber == CpuMpData->BspNumber) {
2125 return EFI_INVALID_PARAMETER;
2126 }
2127
2128 //
2129 // Check parameter Procedure
2130 //
2131 if (Procedure == NULL) {
2132 return EFI_INVALID_PARAMETER;
2133 }
2134
2135 //
2136 // Update AP state
2137 //
2138 CheckAndUpdateApsStatus ();
2139
2140 //
2141 // Check whether specified AP is disabled
2142 //
2143 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
2144 return EFI_INVALID_PARAMETER;
2145 }
2146
2147 //
2148 // If WaitEvent is not NULL, execute in non-blocking mode.
2149 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
2150 // CheckAPsStatus() will check completion and timeout periodically.
2151 //
2152 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2153 CpuData->WaitEvent = WaitEvent;
2154 CpuData->Finished = Finished;
2155 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
2156 CpuData->TotalTime = 0;
2157
2158 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
2159
2160 //
2161 // If WaitEvent is NULL, execute in blocking mode.
2162 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
2163 //
2164 Status = EFI_SUCCESS;
2165 if (WaitEvent == NULL) {
2166 do {
2167 Status = CheckThisAP (ProcessorNumber);
2168 } while (Status == EFI_NOT_READY);
2169 }
2170
2171 return Status;
2172 }
2173
2174 /**
2175 Get pointer to CPU MP Data structure from GUIDed HOB.
2176
2177 @return The pointer to CPU MP Data structure.
2178 **/
2179 CPU_MP_DATA *
2180 GetCpuMpDataFromGuidedHob (
2181 VOID
2182 )
2183 {
2184 EFI_HOB_GUID_TYPE *GuidHob;
2185 VOID *DataInHob;
2186 CPU_MP_DATA *CpuMpData;
2187
2188 CpuMpData = NULL;
2189 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
2190 if (GuidHob != NULL) {
2191 DataInHob = GET_GUID_HOB_DATA (GuidHob);
2192 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
2193 }
2194 return CpuMpData;
2195 }
2196