]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
UefiCpuPkg/PiSmmCpuDxeSmm: Add MemoryMapped in SetProcessorRegister()
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / PiSmmCpuDxeSmm.c
1 /** @file
2 Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.
3
4 Copyright (c) 2009 - 2016, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PiSmmCpuDxeSmm.h"
16
17 //
18 // SMM CPU Private Data structure that contains SMM Configuration Protocol
19 // along its supporting fields.
20 //
21 SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {
22 SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature
23 NULL, // SmmCpuHandle
24 NULL, // Pointer to ProcessorInfo array
25 NULL, // Pointer to Operation array
26 NULL, // Pointer to CpuSaveStateSize array
27 NULL, // Pointer to CpuSaveState array
28 { {0} }, // SmmReservedSmramRegion
29 {
30 SmmStartupThisAp, // SmmCoreEntryContext.SmmStartupThisAp
31 0, // SmmCoreEntryContext.CurrentlyExecutingCpu
32 0, // SmmCoreEntryContext.NumberOfCpus
33 NULL, // SmmCoreEntryContext.CpuSaveStateSize
34 NULL // SmmCoreEntryContext.CpuSaveState
35 },
36 NULL, // SmmCoreEntry
37 {
38 mSmmCpuPrivateData.SmmReservedSmramRegion, // SmmConfiguration.SmramReservedRegions
39 RegisterSmmEntry // SmmConfiguration.RegisterSmmEntry
40 },
41 };
42
43 CPU_HOT_PLUG_DATA mCpuHotPlugData = {
44 CPU_HOT_PLUG_DATA_REVISION_1, // Revision
45 0, // Array Length of SmBase and APIC ID
46 NULL, // Pointer to APIC ID array
47 NULL, // Pointer to SMBASE array
48 0, // Reserved
49 0, // SmrrBase
50 0 // SmrrSize
51 };
52
53 //
54 // Global pointer used to access mSmmCpuPrivateData from outside and inside SMM
55 //
56 SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;
57
58 //
59 // SMM Relocation variables
60 //
61 volatile BOOLEAN *mRebased;
62 volatile BOOLEAN mIsBsp;
63
64 ///
65 /// Handle for the SMM CPU Protocol
66 ///
67 EFI_HANDLE mSmmCpuHandle = NULL;
68
69 ///
70 /// SMM CPU Protocol instance
71 ///
72 EFI_SMM_CPU_PROTOCOL mSmmCpu = {
73 SmmReadSaveState,
74 SmmWriteSaveState
75 };
76
77 EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];
78
79 //
80 // SMM stack information
81 //
82 UINTN mSmmStackArrayBase;
83 UINTN mSmmStackArrayEnd;
84 UINTN mSmmStackSize;
85
86 //
87 // Pointer to structure used during S3 Resume
88 //
89 SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;
90
91 UINTN mMaxNumberOfCpus = 1;
92 UINTN mNumberOfCpus = 1;
93
94 //
95 // SMM ready to lock flag
96 //
97 BOOLEAN mSmmReadyToLock = FALSE;
98
99 //
100 // Global used to cache PCD for SMM Code Access Check enable
101 //
102 BOOLEAN mSmmCodeAccessCheckEnable = FALSE;
103
104 //
105 // Spin lock used to serialize setting of SMM Code Access Check feature
106 //
107 SPIN_LOCK *mConfigSmmCodeAccessCheckLock = NULL;
108
109 /**
110 Initialize IDT to setup exception handlers for SMM.
111
112 **/
113 VOID
114 InitializeSmmIdt (
115 VOID
116 )
117 {
118 EFI_STATUS Status;
119 BOOLEAN InterruptState;
120 IA32_DESCRIPTOR DxeIdtr;
121 //
122 // Disable Interrupt and save DXE IDT table
123 //
124 InterruptState = SaveAndDisableInterrupts ();
125 AsmReadIdtr (&DxeIdtr);
126 //
127 // Load SMM temporary IDT table
128 //
129 AsmWriteIdtr (&gcSmiIdtr);
130 //
131 // Setup SMM default exception handlers, SMM IDT table
132 // will be updated and saved in gcSmiIdtr
133 //
134 Status = InitializeCpuExceptionHandlers (NULL);
135 ASSERT_EFI_ERROR (Status);
136 //
137 // Restore DXE IDT table and CPU interrupt
138 //
139 AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);
140 SetInterruptState (InterruptState);
141 }
142
143 /**
144 Search module name by input IP address and output it.
145
146 @param CallerIpAddress Caller instruction pointer.
147
148 **/
149 VOID
150 DumpModuleInfoByIp (
151 IN UINTN CallerIpAddress
152 )
153 {
154 UINTN Pe32Data;
155 EFI_IMAGE_DOS_HEADER *DosHdr;
156 EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
157 VOID *PdbPointer;
158 UINT64 DumpIpAddress;
159
160 //
161 // Find Image Base
162 //
163 Pe32Data = CallerIpAddress & ~(SIZE_4KB - 1);
164 while (Pe32Data != 0) {
165 DosHdr = (EFI_IMAGE_DOS_HEADER *) Pe32Data;
166 if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
167 //
168 // DOS image header is present, so read the PE header after the DOS image header.
169 //
170 Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)(Pe32Data + (UINTN) ((DosHdr->e_lfanew) & 0x0ffff));
171 //
172 // Make sure PE header address does not overflow and is less than the initial address.
173 //
174 if (((UINTN)Hdr.Pe32 > Pe32Data) && ((UINTN)Hdr.Pe32 < CallerIpAddress)) {
175 if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) {
176 //
177 // It's PE image.
178 //
179 break;
180 }
181 }
182 }
183
184 //
185 // Not found the image base, check the previous aligned address
186 //
187 Pe32Data -= SIZE_4KB;
188 }
189
190 DumpIpAddress = CallerIpAddress;
191 DEBUG ((EFI_D_ERROR, "It is invoked from the instruction before IP(0x%lx)", DumpIpAddress));
192
193 if (Pe32Data != 0) {
194 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);
195 if (PdbPointer != NULL) {
196 DEBUG ((EFI_D_ERROR, " in module (%a)", PdbPointer));
197 }
198 }
199 }
200
201 /**
202 Read information from the CPU save state.
203
204 @param This EFI_SMM_CPU_PROTOCOL instance
205 @param Width The number of bytes to read from the CPU save state.
206 @param Register Specifies the CPU register to read form the save state.
207 @param CpuIndex Specifies the zero-based index of the CPU save state.
208 @param Buffer Upon return, this holds the CPU register value read from the save state.
209
210 @retval EFI_SUCCESS The register was read from Save State
211 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
212 @retval EFI_INVALID_PARAMTER This or Buffer is NULL.
213
214 **/
215 EFI_STATUS
216 EFIAPI
217 SmmReadSaveState (
218 IN CONST EFI_SMM_CPU_PROTOCOL *This,
219 IN UINTN Width,
220 IN EFI_SMM_SAVE_STATE_REGISTER Register,
221 IN UINTN CpuIndex,
222 OUT VOID *Buffer
223 )
224 {
225 EFI_STATUS Status;
226
227 //
228 // Retrieve pointer to the specified CPU's SMM Save State buffer
229 //
230 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
231 return EFI_INVALID_PARAMETER;
232 }
233
234 //
235 // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
236 //
237 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
238 //
239 // The pseudo-register only supports the 64-bit size specified by Width.
240 //
241 if (Width != sizeof (UINT64)) {
242 return EFI_INVALID_PARAMETER;
243 }
244 //
245 // If the processor is in SMM at the time the SMI occurred,
246 // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.
247 // Otherwise, EFI_NOT_FOUND is returned.
248 //
249 if (*(mSmmMpSyncData->CpuData[CpuIndex].Present)) {
250 *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;
251 return EFI_SUCCESS;
252 } else {
253 return EFI_NOT_FOUND;
254 }
255 }
256
257 if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {
258 return EFI_INVALID_PARAMETER;
259 }
260
261 Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
262 if (Status == EFI_UNSUPPORTED) {
263 Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
264 }
265 return Status;
266 }
267
268 /**
269 Write data to the CPU save state.
270
271 @param This EFI_SMM_CPU_PROTOCOL instance
272 @param Width The number of bytes to read from the CPU save state.
273 @param Register Specifies the CPU register to write to the save state.
274 @param CpuIndex Specifies the zero-based index of the CPU save state
275 @param Buffer Upon entry, this holds the new CPU register value.
276
277 @retval EFI_SUCCESS The register was written from Save State
278 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
279 @retval EFI_INVALID_PARAMTER ProcessorIndex or Width is not correct
280
281 **/
282 EFI_STATUS
283 EFIAPI
284 SmmWriteSaveState (
285 IN CONST EFI_SMM_CPU_PROTOCOL *This,
286 IN UINTN Width,
287 IN EFI_SMM_SAVE_STATE_REGISTER Register,
288 IN UINTN CpuIndex,
289 IN CONST VOID *Buffer
290 )
291 {
292 EFI_STATUS Status;
293
294 //
295 // Retrieve pointer to the specified CPU's SMM Save State buffer
296 //
297 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
298 return EFI_INVALID_PARAMETER;
299 }
300
301 //
302 // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored
303 //
304 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
305 return EFI_SUCCESS;
306 }
307
308 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
309 return EFI_INVALID_PARAMETER;
310 }
311
312 Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
313 if (Status == EFI_UNSUPPORTED) {
314 Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
315 }
316 return Status;
317 }
318
319
320 /**
321 C function for SMI handler. To change all processor's SMMBase Register.
322
323 **/
324 VOID
325 EFIAPI
326 SmmInitHandler (
327 VOID
328 )
329 {
330 UINT32 ApicId;
331 UINTN Index;
332
333 //
334 // Update SMM IDT entries' code segment and load IDT
335 //
336 AsmWriteIdtr (&gcSmiIdtr);
337 ApicId = GetApicId ();
338
339 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
340
341 for (Index = 0; Index < mNumberOfCpus; Index++) {
342 if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
343 //
344 // Initialize SMM specific features on the currently executing CPU
345 //
346 SmmCpuFeaturesInitializeProcessor (
347 Index,
348 mIsBsp,
349 gSmmCpuPrivate->ProcessorInfo,
350 &mCpuHotPlugData
351 );
352
353 if (mIsBsp) {
354 //
355 // BSP rebase is already done above.
356 // Initialize private data during S3 resume
357 //
358 InitializeMpSyncData ();
359 }
360
361 //
362 // Hook return after RSM to set SMM re-based flag
363 //
364 SemaphoreHook (Index, &mRebased[Index]);
365
366 return;
367 }
368 }
369 ASSERT (FALSE);
370 }
371
372 /**
373 Relocate SmmBases for each processor.
374
375 Execute on first boot and all S3 resumes
376
377 **/
378 VOID
379 EFIAPI
380 SmmRelocateBases (
381 VOID
382 )
383 {
384 UINT8 BakBuf[BACK_BUF_SIZE];
385 SMRAM_SAVE_STATE_MAP BakBuf2;
386 SMRAM_SAVE_STATE_MAP *CpuStatePtr;
387 UINT8 *U8Ptr;
388 UINT32 ApicId;
389 UINTN Index;
390 UINTN BspIndex;
391
392 //
393 // Make sure the reserved size is large enough for procedure SmmInitTemplate.
394 //
395 ASSERT (sizeof (BakBuf) >= gcSmmInitSize);
396
397 //
398 // Patch ASM code template with current CR0, CR3, and CR4 values
399 //
400 gSmmCr0 = (UINT32)AsmReadCr0 ();
401 gSmmCr3 = (UINT32)AsmReadCr3 ();
402 gSmmCr4 = (UINT32)AsmReadCr4 ();
403
404 //
405 // Patch GDTR for SMM base relocation
406 //
407 gcSmiInitGdtr.Base = gcSmiGdtr.Base;
408 gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;
409
410 U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);
411 CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);
412
413 //
414 // Backup original contents at address 0x38000
415 //
416 CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));
417 CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));
418
419 //
420 // Load image for relocation
421 //
422 CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);
423
424 //
425 // Retrieve the local APIC ID of current processor
426 //
427 ApicId = GetApicId ();
428
429 //
430 // Relocate SM bases for all APs
431 // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate
432 //
433 mIsBsp = FALSE;
434 BspIndex = (UINTN)-1;
435 for (Index = 0; Index < mNumberOfCpus; Index++) {
436 mRebased[Index] = FALSE;
437 if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
438 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
439 //
440 // Wait for this AP to finish its 1st SMI
441 //
442 while (!mRebased[Index]);
443 } else {
444 //
445 // BSP will be Relocated later
446 //
447 BspIndex = Index;
448 }
449 }
450
451 //
452 // Relocate BSP's SMM base
453 //
454 ASSERT (BspIndex != (UINTN)-1);
455 mIsBsp = TRUE;
456 SendSmiIpi (ApicId);
457 //
458 // Wait for the BSP to finish its 1st SMI
459 //
460 while (!mRebased[BspIndex]);
461
462 //
463 // Restore contents at address 0x38000
464 //
465 CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));
466 CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));
467 }
468
469 /**
470 Perform SMM initialization for all processors in the S3 boot path.
471
472 For a native platform, MP initialization in the S3 boot path is also performed in this function.
473 **/
474 VOID
475 EFIAPI
476 SmmRestoreCpu (
477 VOID
478 )
479 {
480 SMM_S3_RESUME_STATE *SmmS3ResumeState;
481 IA32_DESCRIPTOR Ia32Idtr;
482 IA32_DESCRIPTOR X64Idtr;
483 IA32_IDT_GATE_DESCRIPTOR IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
484 EFI_STATUS Status;
485
486 DEBUG ((EFI_D_INFO, "SmmRestoreCpu()\n"));
487
488 InitializeSpinLock (mMemoryMappedLock);
489
490 //
491 // See if there is enough context to resume PEI Phase
492 //
493 if (mSmmS3ResumeState == NULL) {
494 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
495 CpuDeadLoop ();
496 }
497
498 SmmS3ResumeState = mSmmS3ResumeState;
499 ASSERT (SmmS3ResumeState != NULL);
500
501 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
502 //
503 // Save the IA32 IDT Descriptor
504 //
505 AsmReadIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
506
507 //
508 // Setup X64 IDT table
509 //
510 ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
511 X64Idtr.Base = (UINTN) IdtEntryTable;
512 X64Idtr.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
513 AsmWriteIdtr ((IA32_DESCRIPTOR *) &X64Idtr);
514
515 //
516 // Setup the default exception handler
517 //
518 Status = InitializeCpuExceptionHandlers (NULL);
519 ASSERT_EFI_ERROR (Status);
520
521 //
522 // Initialize Debug Agent to support source level debug
523 //
524 InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);
525 }
526
527 //
528 // Skip initialization if mAcpiCpuData is not valid
529 //
530 if (mAcpiCpuData.NumberOfCpus > 0) {
531 //
532 // First time microcode load and restore MTRRs
533 //
534 EarlyInitializeCpu ();
535 }
536
537 //
538 // Restore SMBASE for BSP and all APs
539 //
540 SmmRelocateBases ();
541
542 //
543 // Skip initialization if mAcpiCpuData is not valid
544 //
545 if (mAcpiCpuData.NumberOfCpus > 0) {
546 //
547 // Restore MSRs for BSP and all APs
548 //
549 InitializeCpu ();
550 }
551
552 //
553 // Set a flag to restore SMM configuration in S3 path.
554 //
555 mRestoreSmmConfigurationInS3 = TRUE;
556
557 DEBUG (( EFI_D_INFO, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs));
558 DEBUG (( EFI_D_INFO, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint));
559 DEBUG (( EFI_D_INFO, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1));
560 DEBUG (( EFI_D_INFO, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2));
561 DEBUG (( EFI_D_INFO, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer));
562
563 //
564 // If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase
565 //
566 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
567 DEBUG ((EFI_D_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));
568
569 SwitchStack (
570 (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
571 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
572 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
573 (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
574 );
575 }
576
577 //
578 // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase
579 //
580 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
581 DEBUG ((EFI_D_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));
582 //
583 // Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.
584 //
585 SaveAndSetDebugTimerInterrupt (FALSE);
586 //
587 // Restore IA32 IDT table
588 //
589 AsmWriteIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
590 AsmDisablePaging64 (
591 SmmS3ResumeState->ReturnCs,
592 (UINT32)SmmS3ResumeState->ReturnEntryPoint,
593 (UINT32)SmmS3ResumeState->ReturnContext1,
594 (UINT32)SmmS3ResumeState->ReturnContext2,
595 (UINT32)SmmS3ResumeState->ReturnStackPointer
596 );
597 }
598
599 //
600 // Can not resume PEI Phase
601 //
602 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
603 CpuDeadLoop ();
604 }
605
606 /**
607 Copy register table from ACPI NVS memory into SMRAM.
608
609 @param[in] DestinationRegisterTableList Points to destination register table.
610 @param[in] SourceRegisterTableList Points to source register table.
611 @param[in] NumberOfCpus Number of CPUs.
612
613 **/
614 VOID
615 CopyRegisterTable (
616 IN CPU_REGISTER_TABLE *DestinationRegisterTableList,
617 IN CPU_REGISTER_TABLE *SourceRegisterTableList,
618 IN UINT32 NumberOfCpus
619 )
620 {
621 UINTN Index;
622 UINTN Index1;
623 CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
624
625 CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
626 for (Index = 0; Index < NumberOfCpus; Index++) {
627 DestinationRegisterTableList[Index].RegisterTableEntry = AllocatePool (DestinationRegisterTableList[Index].AllocatedSize);
628 ASSERT (DestinationRegisterTableList[Index].RegisterTableEntry != NULL);
629 CopyMem (DestinationRegisterTableList[Index].RegisterTableEntry, SourceRegisterTableList[Index].RegisterTableEntry, DestinationRegisterTableList[Index].AllocatedSize);
630 //
631 // Go though all MSRs in register table to initialize MSR spin lock
632 //
633 RegisterTableEntry = DestinationRegisterTableList[Index].RegisterTableEntry;
634 for (Index1 = 0; Index1 < DestinationRegisterTableList[Index].TableLength; Index1++, RegisterTableEntry++) {
635 if ((RegisterTableEntry->RegisterType == Msr) && (RegisterTableEntry->ValidBitLength < 64)) {
636 //
637 // Initialize MSR spin lock only for those MSRs need bit field writing
638 //
639 InitMsrSpinLockByIndex (RegisterTableEntry->Index);
640 }
641 }
642 }
643 }
644
645 /**
646 SMM Ready To Lock event notification handler.
647
648 The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to
649 perform additional lock actions that must be performed from SMM on the next SMI.
650
651 @param[in] Protocol Points to the protocol's unique identifier.
652 @param[in] Interface Points to the interface instance.
653 @param[in] Handle The handle on which the interface was installed.
654
655 @retval EFI_SUCCESS Notification handler runs successfully.
656 **/
657 EFI_STATUS
658 EFIAPI
659 SmmReadyToLockEventNotify (
660 IN CONST EFI_GUID *Protocol,
661 IN VOID *Interface,
662 IN EFI_HANDLE Handle
663 )
664 {
665 ACPI_CPU_DATA *AcpiCpuData;
666 IA32_DESCRIPTOR *Gdtr;
667 IA32_DESCRIPTOR *Idtr;
668
669 //
670 // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
671 //
672 mAcpiCpuData.NumberOfCpus = 0;
673
674 //
675 // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM
676 //
677 AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
678 if (AcpiCpuData == 0) {
679 goto Done;
680 }
681
682 //
683 // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.
684 //
685 CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));
686
687 mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));
688 ASSERT (mAcpiCpuData.MtrrTable != 0);
689
690 CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));
691
692 mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
693 ASSERT (mAcpiCpuData.GdtrProfile != 0);
694
695 CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));
696
697 mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
698 ASSERT (mAcpiCpuData.IdtrProfile != 0);
699
700 CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));
701
702 mAcpiCpuData.PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
703 ASSERT (mAcpiCpuData.PreSmmInitRegisterTable != 0);
704
705 CopyRegisterTable (
706 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable,
707 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->PreSmmInitRegisterTable,
708 mAcpiCpuData.NumberOfCpus
709 );
710
711 mAcpiCpuData.RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
712 ASSERT (mAcpiCpuData.RegisterTable != 0);
713
714 CopyRegisterTable (
715 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable,
716 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->RegisterTable,
717 mAcpiCpuData.NumberOfCpus
718 );
719
720 //
721 // Copy AP's GDT, IDT and Machine Check handler into SMRAM.
722 //
723 Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
724 Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;
725
726 mGdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) + mAcpiCpuData.ApMachineCheckHandlerSize);
727 ASSERT (mGdtForAp != NULL);
728 mIdtForAp = (VOID *) ((UINTN)mGdtForAp + (Gdtr->Limit + 1));
729 mMachineCheckHandlerForAp = (VOID *) ((UINTN)mIdtForAp + (Idtr->Limit + 1));
730
731 CopyMem (mGdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
732 CopyMem (mIdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
733 CopyMem (mMachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);
734
735 Done:
736 //
737 // Set SMM ready to lock flag and return
738 //
739 mSmmReadyToLock = TRUE;
740 return EFI_SUCCESS;
741 }
742
743 /**
744 The module Entry Point of the CPU SMM driver.
745
746 @param ImageHandle The firmware allocated handle for the EFI image.
747 @param SystemTable A pointer to the EFI System Table.
748
749 @retval EFI_SUCCESS The entry point is executed successfully.
750 @retval Other Some error occurs when executing this entry point.
751
752 **/
753 EFI_STATUS
754 EFIAPI
755 PiCpuSmmEntry (
756 IN EFI_HANDLE ImageHandle,
757 IN EFI_SYSTEM_TABLE *SystemTable
758 )
759 {
760 EFI_STATUS Status;
761 EFI_MP_SERVICES_PROTOCOL *MpServices;
762 UINTN NumberOfEnabledProcessors;
763 UINTN Index;
764 VOID *Buffer;
765 UINTN BufferPages;
766 UINTN TileCodeSize;
767 UINTN TileDataSize;
768 UINTN TileSize;
769 VOID *GuidHob;
770 EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
771 SMM_S3_RESUME_STATE *SmmS3ResumeState;
772 UINT8 *Stacks;
773 VOID *Registration;
774 UINT32 RegEax;
775 UINT32 RegEdx;
776 UINTN FamilyId;
777 UINTN ModelId;
778 UINT32 Cr3;
779
780 //
781 // Initialize Debug Agent to support source level debug in SMM code
782 //
783 InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);
784
785 //
786 // Report the start of CPU SMM initialization.
787 //
788 REPORT_STATUS_CODE (
789 EFI_PROGRESS_CODE,
790 EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT
791 );
792
793 //
794 // Fix segment address of the long-mode-switch jump
795 //
796 if (sizeof (UINTN) == sizeof (UINT64)) {
797 gSmmJmpAddr.Segment = LONG_MODE_CODE_SEGMENT;
798 }
799
800 //
801 // Find out SMRR Base and SMRR Size
802 //
803 FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);
804
805 //
806 // Get MP Services Protocol
807 //
808 Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
809 ASSERT_EFI_ERROR (Status);
810
811 //
812 // Use MP Services Protocol to retrieve the number of processors and number of enabled processors
813 //
814 Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);
815 ASSERT_EFI_ERROR (Status);
816 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
817
818 //
819 // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.
820 // A constant BSP index makes no sense because it may be hot removed.
821 //
822 DEBUG_CODE (
823 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
824
825 ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));
826 }
827 );
828
829 //
830 // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.
831 //
832 mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);
833 DEBUG ((EFI_D_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));
834
835 //
836 // If support CPU hot plug, we need to allocate resources for possibly hot-added processors
837 //
838 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
839 mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
840 } else {
841 mMaxNumberOfCpus = mNumberOfCpus;
842 }
843 gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;
844
845 //
846 // The CPU save state and code for the SMI entry point are tiled within an SMRAM
847 // allocated buffer. The minimum size of this buffer for a uniprocessor system
848 // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area
849 // just below SMBASE + 64KB. If more than one CPU is present in the platform,
850 // then the SMI entry point and the CPU save state areas can be tiles to minimize
851 // the total amount SMRAM required for all the CPUs. The tile size can be computed
852 // by adding the // CPU save state size, any extra CPU specific context, and
853 // the size of code that must be placed at the SMI entry point to transfer
854 // control to a C function in the native SMM execution mode. This size is
855 // rounded up to the nearest power of 2 to give the tile size for a each CPU.
856 // The total amount of memory required is the maximum number of CPUs that
857 // platform supports times the tile size. The picture below shows the tiling,
858 // where m is the number of tiles that fit in 32KB.
859 //
860 // +-----------------------------+ <-- 2^n offset from Base of allocated buffer
861 // | CPU m+1 Save State |
862 // +-----------------------------+
863 // | CPU m+1 Extra Data |
864 // +-----------------------------+
865 // | Padding |
866 // +-----------------------------+
867 // | CPU 2m SMI Entry |
868 // +#############################+ <-- Base of allocated buffer + 64 KB
869 // | CPU m-1 Save State |
870 // +-----------------------------+
871 // | CPU m-1 Extra Data |
872 // +-----------------------------+
873 // | Padding |
874 // +-----------------------------+
875 // | CPU 2m-1 SMI Entry |
876 // +=============================+ <-- 2^n offset from Base of allocated buffer
877 // | . . . . . . . . . . . . |
878 // +=============================+ <-- 2^n offset from Base of allocated buffer
879 // | CPU 2 Save State |
880 // +-----------------------------+
881 // | CPU 2 Extra Data |
882 // +-----------------------------+
883 // | Padding |
884 // +-----------------------------+
885 // | CPU m+1 SMI Entry |
886 // +=============================+ <-- Base of allocated buffer + 32 KB
887 // | CPU 1 Save State |
888 // +-----------------------------+
889 // | CPU 1 Extra Data |
890 // +-----------------------------+
891 // | Padding |
892 // +-----------------------------+
893 // | CPU m SMI Entry |
894 // +#############################+ <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB
895 // | CPU 0 Save State |
896 // +-----------------------------+
897 // | CPU 0 Extra Data |
898 // +-----------------------------+
899 // | Padding |
900 // +-----------------------------+
901 // | CPU m-1 SMI Entry |
902 // +=============================+ <-- 2^n offset from Base of allocated buffer
903 // | . . . . . . . . . . . . |
904 // +=============================+ <-- 2^n offset from Base of allocated buffer
905 // | Padding |
906 // +-----------------------------+
907 // | CPU 1 SMI Entry |
908 // +=============================+ <-- 2^n offset from Base of allocated buffer
909 // | Padding |
910 // +-----------------------------+
911 // | CPU 0 SMI Entry |
912 // +#############################+ <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB
913 //
914
915 //
916 // Retrieve CPU Family
917 //
918 AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);
919 FamilyId = (RegEax >> 8) & 0xf;
920 ModelId = (RegEax >> 4) & 0xf;
921 if (FamilyId == 0x06 || FamilyId == 0x0f) {
922 ModelId = ModelId | ((RegEax >> 12) & 0xf0);
923 }
924
925 RegEdx = 0;
926 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
927 if (RegEax >= CPUID_EXTENDED_CPU_SIG) {
928 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
929 }
930 //
931 // Determine the mode of the CPU at the time an SMI occurs
932 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
933 // Volume 3C, Section 34.4.1.1
934 //
935 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;
936 if ((RegEdx & BIT29) != 0) {
937 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
938 }
939 if (FamilyId == 0x06) {
940 if (ModelId == 0x17 || ModelId == 0x0f || ModelId == 0x1c) {
941 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
942 }
943 }
944
945 //
946 // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU
947 // specific context in a PROCESSOR_SMM_DESCRIPTOR, and the SMI entry point. This size
948 // is rounded up to nearest power of 2.
949 //
950 TileCodeSize = GetSmiHandlerSize ();
951 TileCodeSize = ALIGN_VALUE(TileCodeSize, SIZE_4KB);
952 TileDataSize = sizeof (SMRAM_SAVE_STATE_MAP) + sizeof (PROCESSOR_SMM_DESCRIPTOR);
953 TileDataSize = ALIGN_VALUE(TileDataSize, SIZE_4KB);
954 TileSize = TileDataSize + TileCodeSize - 1;
955 TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);
956 DEBUG ((EFI_D_INFO, "SMRAM TileSize = 0x%08x (0x%08x, 0x%08x)\n", TileSize, TileCodeSize, TileDataSize));
957
958 //
959 // If the TileSize is larger than space available for the SMI Handler of CPU[i],
960 // the PROCESSOR_SMM_DESCRIPTOR of CPU[i+1] and the SMRAM Save State Map of CPU[i+1],
961 // the ASSERT(). If this ASSERT() is triggered, then the SMI Handler size must be
962 // reduced.
963 //
964 ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));
965
966 //
967 // Allocate buffer for all of the tiles.
968 //
969 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
970 // Volume 3C, Section 34.11 SMBASE Relocation
971 // For Pentium and Intel486 processors, the SMBASE values must be
972 // aligned on a 32-KByte boundary or the processor will enter shutdown
973 // state during the execution of a RSM instruction.
974 //
975 // Intel486 processors: FamilyId is 4
976 // Pentium processors : FamilyId is 5
977 //
978 BufferPages = EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1));
979 if ((FamilyId == 4) || (FamilyId == 5)) {
980 Buffer = AllocateAlignedPages (BufferPages, SIZE_32KB);
981 } else {
982 Buffer = AllocateAlignedPages (BufferPages, SIZE_4KB);
983 }
984 ASSERT (Buffer != NULL);
985 DEBUG ((EFI_D_INFO, "SMRAM SaveState Buffer (0x%08x, 0x%08x)\n", Buffer, EFI_PAGES_TO_SIZE(BufferPages)));
986
987 //
988 // Allocate buffer for pointers to array in SMM_CPU_PRIVATE_DATA.
989 //
990 gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);
991 ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);
992
993 gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);
994 ASSERT (gSmmCpuPrivate->Operation != NULL);
995
996 gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
997 ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);
998
999 gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);
1000 ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);
1001
1002 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;
1003 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState = gSmmCpuPrivate->CpuSaveState;
1004
1005 //
1006 // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.
1007 //
1008 mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);
1009 ASSERT (mCpuHotPlugData.ApicId != NULL);
1010 mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
1011 ASSERT (mCpuHotPlugData.SmBase != NULL);
1012 mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;
1013
1014 //
1015 // Retrieve APIC ID of each enabled processor from the MP Services protocol.
1016 // Also compute the SMBASE address, CPU Save State address, and CPU Save state
1017 // size for each CPU in the platform
1018 //
1019 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
1020 mCpuHotPlugData.SmBase[Index] = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;
1021 gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof(SMRAM_SAVE_STATE_MAP);
1022 gSmmCpuPrivate->CpuSaveState[Index] = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);
1023 gSmmCpuPrivate->Operation[Index] = SmmCpuNone;
1024
1025 if (Index < mNumberOfCpus) {
1026 Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);
1027 ASSERT_EFI_ERROR (Status);
1028 mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;
1029
1030 DEBUG ((EFI_D_INFO, "CPU[%03x] APIC ID=%04x SMBASE=%08x SaveState=%08x Size=%08x\n",
1031 Index,
1032 (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,
1033 mCpuHotPlugData.SmBase[Index],
1034 gSmmCpuPrivate->CpuSaveState[Index],
1035 gSmmCpuPrivate->CpuSaveStateSize[Index]
1036 ));
1037 } else {
1038 gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;
1039 mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;
1040 }
1041 }
1042
1043 //
1044 // Allocate SMI stacks for all processors.
1045 //
1046 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
1047 //
1048 // 2 more pages is allocated for each processor.
1049 // one is guard page and the other is known good stack.
1050 //
1051 // +-------------------------------------------+-----+-------------------------------------------+
1052 // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |
1053 // +-------------------------------------------+-----+-------------------------------------------+
1054 // | | | |
1055 // |<-------------- Processor 0 -------------->| |<-------------- Processor n -------------->|
1056 //
1057 mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2);
1058 Stacks = (UINT8 *) AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2));
1059 ASSERT (Stacks != NULL);
1060 mSmmStackArrayBase = (UINTN)Stacks;
1061 mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize - 1;
1062 } else {
1063 mSmmStackSize = PcdGet32 (PcdCpuSmmStackSize);
1064 Stacks = (UINT8 *) AllocatePages (EFI_SIZE_TO_PAGES (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize));
1065 ASSERT (Stacks != NULL);
1066 }
1067
1068 //
1069 // Set SMI stack for SMM base relocation
1070 //
1071 gSmmInitStack = (UINTN) (Stacks + mSmmStackSize - sizeof (UINTN));
1072
1073 //
1074 // Initialize IDT
1075 //
1076 InitializeSmmIdt ();
1077
1078 //
1079 // Relocate SMM Base addresses to the ones allocated from SMRAM
1080 //
1081 mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);
1082 ASSERT (mRebased != NULL);
1083 SmmRelocateBases ();
1084
1085 //
1086 // Call hook for BSP to perform extra actions in normal mode after all
1087 // SMM base addresses have been relocated on all CPUs
1088 //
1089 SmmCpuFeaturesSmmRelocationComplete ();
1090
1091 //
1092 // SMM Time initialization
1093 //
1094 InitializeSmmTimer ();
1095
1096 //
1097 // Initialize MP globals
1098 //
1099 Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize);
1100
1101 //
1102 // Fill in SMM Reserved Regions
1103 //
1104 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;
1105 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize = 0;
1106
1107 //
1108 // Install the SMM Configuration Protocol onto a new handle on the handle database.
1109 // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer
1110 // to an SMRAM address will be present in the handle database
1111 //
1112 Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (
1113 &gSmmCpuPrivate->SmmCpuHandle,
1114 &gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,
1115 NULL
1116 );
1117 ASSERT_EFI_ERROR (Status);
1118
1119 //
1120 // Install the SMM CPU Protocol into SMM protocol database
1121 //
1122 Status = gSmst->SmmInstallProtocolInterface (
1123 &mSmmCpuHandle,
1124 &gEfiSmmCpuProtocolGuid,
1125 EFI_NATIVE_INTERFACE,
1126 &mSmmCpu
1127 );
1128 ASSERT_EFI_ERROR (Status);
1129
1130 //
1131 // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.
1132 //
1133 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
1134 Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);
1135 ASSERT_EFI_ERROR (Status);
1136 }
1137
1138 //
1139 // Initialize SMM CPU Services Support
1140 //
1141 Status = InitializeSmmCpuServices (mSmmCpuHandle);
1142 ASSERT_EFI_ERROR (Status);
1143
1144 //
1145 // register SMM Ready To Lock Protocol notification
1146 //
1147 Status = gSmst->SmmRegisterProtocolNotify (
1148 &gEfiSmmReadyToLockProtocolGuid,
1149 SmmReadyToLockEventNotify,
1150 &Registration
1151 );
1152 ASSERT_EFI_ERROR (Status);
1153
1154 GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
1155 if (GuidHob != NULL) {
1156 SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);
1157
1158 DEBUG ((EFI_D_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));
1159 DEBUG ((EFI_D_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));
1160
1161 SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
1162 ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));
1163
1164 mSmmS3ResumeState = SmmS3ResumeState;
1165 SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;
1166
1167 SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;
1168
1169 SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;
1170 SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));
1171 if (SmmS3ResumeState->SmmS3StackBase == 0) {
1172 SmmS3ResumeState->SmmS3StackSize = 0;
1173 }
1174
1175 SmmS3ResumeState->SmmS3Cr0 = gSmmCr0;
1176 SmmS3ResumeState->SmmS3Cr3 = Cr3;
1177 SmmS3ResumeState->SmmS3Cr4 = gSmmCr4;
1178
1179 if (sizeof (UINTN) == sizeof (UINT64)) {
1180 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;
1181 }
1182 if (sizeof (UINTN) == sizeof (UINT32)) {
1183 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;
1184 }
1185 }
1186
1187 //
1188 // Check XD and BTS features
1189 //
1190 CheckProcessorFeature ();
1191
1192 //
1193 // Initialize SMM Profile feature
1194 //
1195 InitSmmProfile (Cr3);
1196
1197 //
1198 // Patch SmmS3ResumeState->SmmS3Cr3
1199 //
1200 InitSmmS3Cr3 ();
1201
1202 DEBUG ((EFI_D_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));
1203
1204 return EFI_SUCCESS;
1205 }
1206
1207 /**
1208
1209 Find out SMRAM information including SMRR base and SMRR size.
1210
1211 @param SmrrBase SMRR base
1212 @param SmrrSize SMRR size
1213
1214 **/
1215 VOID
1216 FindSmramInfo (
1217 OUT UINT32 *SmrrBase,
1218 OUT UINT32 *SmrrSize
1219 )
1220 {
1221 EFI_STATUS Status;
1222 UINTN Size;
1223 EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;
1224 EFI_SMRAM_DESCRIPTOR *CurrentSmramRange;
1225 EFI_SMRAM_DESCRIPTOR *SmramRanges;
1226 UINTN SmramRangeCount;
1227 UINTN Index;
1228 UINT64 MaxSize;
1229 BOOLEAN Found;
1230
1231 //
1232 // Get SMM Access Protocol
1233 //
1234 Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);
1235 ASSERT_EFI_ERROR (Status);
1236
1237 //
1238 // Get SMRAM information
1239 //
1240 Size = 0;
1241 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);
1242 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
1243
1244 SmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);
1245 ASSERT (SmramRanges != NULL);
1246
1247 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, SmramRanges);
1248 ASSERT_EFI_ERROR (Status);
1249
1250 SmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);
1251
1252 //
1253 // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size
1254 //
1255 CurrentSmramRange = NULL;
1256 for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < SmramRangeCount; Index++) {
1257 //
1258 // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization
1259 //
1260 if ((SmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
1261 continue;
1262 }
1263
1264 if (SmramRanges[Index].CpuStart >= BASE_1MB) {
1265 if ((SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize) <= BASE_4GB) {
1266 if (SmramRanges[Index].PhysicalSize >= MaxSize) {
1267 MaxSize = SmramRanges[Index].PhysicalSize;
1268 CurrentSmramRange = &SmramRanges[Index];
1269 }
1270 }
1271 }
1272 }
1273
1274 ASSERT (CurrentSmramRange != NULL);
1275
1276 *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;
1277 *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;
1278
1279 do {
1280 Found = FALSE;
1281 for (Index = 0; Index < SmramRangeCount; Index++) {
1282 if (SmramRanges[Index].CpuStart < *SmrrBase && *SmrrBase == (SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize)) {
1283 *SmrrBase = (UINT32)SmramRanges[Index].CpuStart;
1284 *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
1285 Found = TRUE;
1286 } else if ((*SmrrBase + *SmrrSize) == SmramRanges[Index].CpuStart && SmramRanges[Index].PhysicalSize > 0) {
1287 *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
1288 Found = TRUE;
1289 }
1290 }
1291 } while (Found);
1292
1293 DEBUG ((EFI_D_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));
1294 }
1295
1296 /**
1297 Configure SMM Code Access Check feature on an AP.
1298 SMM Feature Control MSR will be locked after configuration.
1299
1300 @param[in,out] Buffer Pointer to private data buffer.
1301 **/
1302 VOID
1303 EFIAPI
1304 ConfigSmmCodeAccessCheckOnCurrentProcessor (
1305 IN OUT VOID *Buffer
1306 )
1307 {
1308 UINTN CpuIndex;
1309 UINT64 SmmFeatureControlMsr;
1310 UINT64 NewSmmFeatureControlMsr;
1311
1312 //
1313 // Retrieve the CPU Index from the context passed in
1314 //
1315 CpuIndex = *(UINTN *)Buffer;
1316
1317 //
1318 // Get the current SMM Feature Control MSR value
1319 //
1320 SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);
1321
1322 //
1323 // Compute the new SMM Feature Control MSR value
1324 //
1325 NewSmmFeatureControlMsr = SmmFeatureControlMsr;
1326 if (mSmmCodeAccessCheckEnable) {
1327 NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;
1328 if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {
1329 NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;
1330 }
1331 }
1332
1333 //
1334 // Only set the SMM Feature Control MSR value if the new value is different than the current value
1335 //
1336 if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {
1337 SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);
1338 }
1339
1340 //
1341 // Release the spin lock user to serialize the updates to the SMM Feature Control MSR
1342 //
1343 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);
1344 }
1345
1346 /**
1347 Configure SMM Code Access Check feature for all processors.
1348 SMM Feature Control MSR will be locked after configuration.
1349 **/
1350 VOID
1351 ConfigSmmCodeAccessCheck (
1352 VOID
1353 )
1354 {
1355 UINTN Index;
1356 EFI_STATUS Status;
1357
1358 //
1359 // Check to see if the Feature Control MSR is supported on this CPU
1360 //
1361 Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
1362 if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {
1363 mSmmCodeAccessCheckEnable = FALSE;
1364 return;
1365 }
1366
1367 //
1368 // Check to see if the CPU supports the SMM Code Access Check feature
1369 // Do not access this MSR unless the CPU supports the SmmRegFeatureControl
1370 //
1371 if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {
1372 mSmmCodeAccessCheckEnable = FALSE;
1373 return;
1374 }
1375
1376 //
1377 // Initialize the lock used to serialize the MSR programming in BSP and all APs
1378 //
1379 InitializeSpinLock (mConfigSmmCodeAccessCheckLock);
1380
1381 //
1382 // Acquire Config SMM Code Access Check spin lock. The BSP will release the
1383 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1384 //
1385 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);
1386
1387 //
1388 // Enable SMM Code Access Check feature on the BSP.
1389 //
1390 ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);
1391
1392 //
1393 // Enable SMM Code Access Check feature for the APs.
1394 //
1395 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
1396 if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
1397
1398 //
1399 // Acquire Config SMM Code Access Check spin lock. The AP will release the
1400 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1401 //
1402 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);
1403
1404 //
1405 // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.
1406 //
1407 Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);
1408 ASSERT_EFI_ERROR (Status);
1409
1410 //
1411 // Wait for the AP to release the Config SMM Code Access Check spin lock.
1412 //
1413 while (!AcquireSpinLockOrFail (mConfigSmmCodeAccessCheckLock)) {
1414 CpuPause ();
1415 }
1416
1417 //
1418 // Release the Config SMM Code Access Check spin lock.
1419 //
1420 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);
1421 }
1422 }
1423 }
1424
1425 /**
1426 This API provides a way to allocate memory for page table.
1427
1428 This API can be called more once to allocate memory for page tables.
1429
1430 Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the
1431 allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL
1432 is returned. If there is not enough memory remaining to satisfy the request, then NULL is
1433 returned.
1434
1435 @param Pages The number of 4 KB pages to allocate.
1436
1437 @return A pointer to the allocated buffer or NULL if allocation fails.
1438
1439 **/
1440 VOID *
1441 AllocatePageTableMemory (
1442 IN UINTN Pages
1443 )
1444 {
1445 VOID *Buffer;
1446
1447 Buffer = SmmCpuFeaturesAllocatePageTableMemory (Pages);
1448 if (Buffer != NULL) {
1449 return Buffer;
1450 }
1451 return AllocatePages (Pages);
1452 }
1453
1454 /**
1455 Perform the remaining tasks.
1456
1457 **/
1458 VOID
1459 PerformRemainingTasks (
1460 VOID
1461 )
1462 {
1463 if (mSmmReadyToLock) {
1464 //
1465 // Start SMM Profile feature
1466 //
1467 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
1468 SmmProfileStart ();
1469 }
1470 //
1471 // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.
1472 //
1473 InitPaging ();
1474 //
1475 // Configure SMM Code Access Check feature if available.
1476 //
1477 ConfigSmmCodeAccessCheck ();
1478
1479 SmmCpuFeaturesCompleteSmmReadyToLock ();
1480
1481 //
1482 // Clean SMM ready to lock flag
1483 //
1484 mSmmReadyToLock = FALSE;
1485 }
1486 }
1487
1488 /**
1489 Perform the pre tasks.
1490
1491 **/
1492 VOID
1493 PerformPreTasks (
1494 VOID
1495 )
1496 {
1497 //
1498 // Restore SMM Configuration in S3 boot path.
1499 //
1500 if (mRestoreSmmConfigurationInS3) {
1501 //
1502 // Need make sure gSmst is correct because below function may use them.
1503 //
1504 gSmst->SmmStartupThisAp = gSmmCpuPrivate->SmmCoreEntryContext.SmmStartupThisAp;
1505 gSmst->CurrentlyExecutingCpu = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
1506 gSmst->NumberOfCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
1507 gSmst->CpuSaveStateSize = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveStateSize;
1508 gSmst->CpuSaveState = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveState;
1509
1510 //
1511 // Configure SMM Code Access Check feature if available.
1512 //
1513 ConfigSmmCodeAccessCheck ();
1514
1515 SmmCpuFeaturesCompleteSmmReadyToLock ();
1516
1517 mRestoreSmmConfigurationInS3 = FALSE;
1518 }
1519 }