]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
UefiCpuPkg: Not touch SmmFeatureControl if Code_Access_Chk not Set
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / PiSmmCpuDxeSmm.c
1 /** @file
2 Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.
3
4 Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PiSmmCpuDxeSmm.h"
16
17 //
18 // SMM CPU Private Data structure that contains SMM Configuration Protocol
19 // along its supporting fields.
20 //
21 SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {
22 SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature
23 NULL, // SmmCpuHandle
24 NULL, // Pointer to ProcessorInfo array
25 NULL, // Pointer to Operation array
26 NULL, // Pointer to CpuSaveStateSize array
27 NULL, // Pointer to CpuSaveState array
28 { {0} }, // SmmReservedSmramRegion
29 {
30 SmmStartupThisAp, // SmmCoreEntryContext.SmmStartupThisAp
31 0, // SmmCoreEntryContext.CurrentlyExecutingCpu
32 0, // SmmCoreEntryContext.NumberOfCpus
33 NULL, // SmmCoreEntryContext.CpuSaveStateSize
34 NULL // SmmCoreEntryContext.CpuSaveState
35 },
36 NULL, // SmmCoreEntry
37 {
38 mSmmCpuPrivateData.SmmReservedSmramRegion, // SmmConfiguration.SmramReservedRegions
39 RegisterSmmEntry // SmmConfiguration.RegisterSmmEntry
40 },
41 };
42
43 CPU_HOT_PLUG_DATA mCpuHotPlugData = {
44 CPU_HOT_PLUG_DATA_REVISION_1, // Revision
45 0, // Array Length of SmBase and APIC ID
46 NULL, // Pointer to APIC ID array
47 NULL, // Pointer to SMBASE array
48 0, // Reserved
49 0, // SmrrBase
50 0 // SmrrSize
51 };
52
53 //
54 // Global pointer used to access mSmmCpuPrivateData from outside and inside SMM
55 //
56 SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;
57
58 //
59 // SMM Relocation variables
60 //
61 volatile BOOLEAN *mRebased;
62 volatile BOOLEAN mIsBsp;
63
64 ///
65 /// Handle for the SMM CPU Protocol
66 ///
67 EFI_HANDLE mSmmCpuHandle = NULL;
68
69 ///
70 /// SMM CPU Protocol instance
71 ///
72 EFI_SMM_CPU_PROTOCOL mSmmCpu = {
73 SmmReadSaveState,
74 SmmWriteSaveState
75 };
76
77 EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];
78
79 //
80 // SMM stack information
81 //
82 UINTN mSmmStackArrayBase;
83 UINTN mSmmStackArrayEnd;
84 UINTN mSmmStackSize;
85
86 //
87 // Pointer to structure used during S3 Resume
88 //
89 SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;
90
91 UINTN mMaxNumberOfCpus = 1;
92 UINTN mNumberOfCpus = 1;
93
94 //
95 // SMM ready to lock flag
96 //
97 BOOLEAN mSmmReadyToLock = FALSE;
98
99 //
100 // Global used to cache PCD for SMM Code Access Check enable
101 //
102 BOOLEAN mSmmCodeAccessCheckEnable = FALSE;
103
104 //
105 // Spin lock used to serialize setting of SMM Code Access Check feature
106 //
107 SPIN_LOCK mConfigSmmCodeAccessCheckLock;
108
109 /**
110 Initialize IDT to setup exception handlers for SMM.
111
112 **/
113 VOID
114 InitializeSmmIdt (
115 VOID
116 )
117 {
118 EFI_STATUS Status;
119 BOOLEAN InterruptState;
120 IA32_DESCRIPTOR DxeIdtr;
121 //
122 // Disable Interrupt and save DXE IDT table
123 //
124 InterruptState = SaveAndDisableInterrupts ();
125 AsmReadIdtr (&DxeIdtr);
126 //
127 // Load SMM temporary IDT table
128 //
129 AsmWriteIdtr (&gcSmiIdtr);
130 //
131 // Setup SMM default exception handlers, SMM IDT table
132 // will be updated and saved in gcSmiIdtr
133 //
134 Status = InitializeCpuExceptionHandlers (NULL);
135 ASSERT_EFI_ERROR (Status);
136 //
137 // Restore DXE IDT table and CPU interrupt
138 //
139 AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);
140 SetInterruptState (InterruptState);
141 }
142
143 /**
144 Search module name by input IP address and output it.
145
146 @param CallerIpAddress Caller instruction pointer.
147
148 **/
149 VOID
150 DumpModuleInfoByIp (
151 IN UINTN CallerIpAddress
152 )
153 {
154 UINTN Pe32Data;
155 EFI_IMAGE_DOS_HEADER *DosHdr;
156 EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
157 VOID *PdbPointer;
158 UINT64 DumpIpAddress;
159
160 //
161 // Find Image Base
162 //
163 Pe32Data = CallerIpAddress & ~(SIZE_4KB - 1);
164 while (Pe32Data != 0) {
165 DosHdr = (EFI_IMAGE_DOS_HEADER *) Pe32Data;
166 if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
167 //
168 // DOS image header is present, so read the PE header after the DOS image header.
169 //
170 Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)(Pe32Data + (UINTN) ((DosHdr->e_lfanew) & 0x0ffff));
171 //
172 // Make sure PE header address does not overflow and is less than the initial address.
173 //
174 if (((UINTN)Hdr.Pe32 > Pe32Data) && ((UINTN)Hdr.Pe32 < CallerIpAddress)) {
175 if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) {
176 //
177 // It's PE image.
178 //
179 break;
180 }
181 }
182 }
183
184 //
185 // Not found the image base, check the previous aligned address
186 //
187 Pe32Data -= SIZE_4KB;
188 }
189
190 DumpIpAddress = CallerIpAddress;
191 DEBUG ((EFI_D_ERROR, "It is invoked from the instruction before IP(0x%lx)", DumpIpAddress));
192
193 if (Pe32Data != 0) {
194 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);
195 if (PdbPointer != NULL) {
196 DEBUG ((EFI_D_ERROR, " in module (%a)", PdbPointer));
197 }
198 }
199 }
200
201 /**
202 Read information from the CPU save state.
203
204 @param This EFI_SMM_CPU_PROTOCOL instance
205 @param Width The number of bytes to read from the CPU save state.
206 @param Register Specifies the CPU register to read form the save state.
207 @param CpuIndex Specifies the zero-based index of the CPU save state.
208 @param Buffer Upon return, this holds the CPU register value read from the save state.
209
210 @retval EFI_SUCCESS The register was read from Save State
211 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
212 @retval EFI_INVALID_PARAMTER This or Buffer is NULL.
213
214 **/
215 EFI_STATUS
216 EFIAPI
217 SmmReadSaveState (
218 IN CONST EFI_SMM_CPU_PROTOCOL *This,
219 IN UINTN Width,
220 IN EFI_SMM_SAVE_STATE_REGISTER Register,
221 IN UINTN CpuIndex,
222 OUT VOID *Buffer
223 )
224 {
225 EFI_STATUS Status;
226
227 //
228 // Retrieve pointer to the specified CPU's SMM Save State buffer
229 //
230 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
231 return EFI_INVALID_PARAMETER;
232 }
233
234 //
235 // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
236 //
237 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
238 //
239 // The pseudo-register only supports the 64-bit size specified by Width.
240 //
241 if (Width != sizeof (UINT64)) {
242 return EFI_INVALID_PARAMETER;
243 }
244 //
245 // If the processor is in SMM at the time the SMI occurred,
246 // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.
247 // Otherwise, EFI_NOT_FOUND is returned.
248 //
249 if (mSmmMpSyncData->CpuData[CpuIndex].Present) {
250 *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;
251 return EFI_SUCCESS;
252 } else {
253 return EFI_NOT_FOUND;
254 }
255 }
256
257 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
258 return EFI_INVALID_PARAMETER;
259 }
260
261 Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
262 if (Status == EFI_UNSUPPORTED) {
263 Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
264 }
265 return Status;
266 }
267
268 /**
269 Write data to the CPU save state.
270
271 @param This EFI_SMM_CPU_PROTOCOL instance
272 @param Width The number of bytes to read from the CPU save state.
273 @param Register Specifies the CPU register to write to the save state.
274 @param CpuIndex Specifies the zero-based index of the CPU save state
275 @param Buffer Upon entry, this holds the new CPU register value.
276
277 @retval EFI_SUCCESS The register was written from Save State
278 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
279 @retval EFI_INVALID_PARAMTER ProcessorIndex or Width is not correct
280
281 **/
282 EFI_STATUS
283 EFIAPI
284 SmmWriteSaveState (
285 IN CONST EFI_SMM_CPU_PROTOCOL *This,
286 IN UINTN Width,
287 IN EFI_SMM_SAVE_STATE_REGISTER Register,
288 IN UINTN CpuIndex,
289 IN CONST VOID *Buffer
290 )
291 {
292 EFI_STATUS Status;
293
294 //
295 // Retrieve pointer to the specified CPU's SMM Save State buffer
296 //
297 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
298 return EFI_INVALID_PARAMETER;
299 }
300
301 //
302 // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored
303 //
304 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
305 return EFI_SUCCESS;
306 }
307
308 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
309 return EFI_INVALID_PARAMETER;
310 }
311
312 Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
313 if (Status == EFI_UNSUPPORTED) {
314 Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
315 }
316 return Status;
317 }
318
319
320 /**
321 C function for SMI handler. To change all processor's SMMBase Register.
322
323 **/
324 VOID
325 EFIAPI
326 SmmInitHandler (
327 VOID
328 )
329 {
330 UINT32 ApicId;
331 UINTN Index;
332
333 //
334 // Update SMM IDT entries' code segment and load IDT
335 //
336 AsmWriteIdtr (&gcSmiIdtr);
337 ApicId = GetApicId ();
338
339 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
340
341 for (Index = 0; Index < mNumberOfCpus; Index++) {
342 if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
343 //
344 // Initialize SMM specific features on the currently executing CPU
345 //
346 SmmCpuFeaturesInitializeProcessor (
347 Index,
348 mIsBsp,
349 gSmmCpuPrivate->ProcessorInfo,
350 &mCpuHotPlugData
351 );
352
353 if (mIsBsp) {
354 //
355 // BSP rebase is already done above.
356 // Initialize private data during S3 resume
357 //
358 InitializeMpSyncData ();
359 }
360
361 //
362 // Hook return after RSM to set SMM re-based flag
363 //
364 SemaphoreHook (Index, &mRebased[Index]);
365
366 return;
367 }
368 }
369 ASSERT (FALSE);
370 }
371
372 /**
373 Relocate SmmBases for each processor.
374
375 Execute on first boot and all S3 resumes
376
377 **/
378 VOID
379 EFIAPI
380 SmmRelocateBases (
381 VOID
382 )
383 {
384 UINT8 BakBuf[BACK_BUF_SIZE];
385 SMRAM_SAVE_STATE_MAP BakBuf2;
386 SMRAM_SAVE_STATE_MAP *CpuStatePtr;
387 UINT8 *U8Ptr;
388 UINT32 ApicId;
389 UINTN Index;
390 UINTN BspIndex;
391
392 //
393 // Make sure the reserved size is large enough for procedure SmmInitTemplate.
394 //
395 ASSERT (sizeof (BakBuf) >= gcSmmInitSize);
396
397 //
398 // Patch ASM code template with current CR0, CR3, and CR4 values
399 //
400 gSmmCr0 = (UINT32)AsmReadCr0 ();
401 gSmmCr3 = (UINT32)AsmReadCr3 ();
402 gSmmCr4 = (UINT32)AsmReadCr4 ();
403
404 //
405 // Patch GDTR for SMM base relocation
406 //
407 gcSmiInitGdtr.Base = gcSmiGdtr.Base;
408 gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;
409
410 U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);
411 CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);
412
413 //
414 // Backup original contents at address 0x38000
415 //
416 CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));
417 CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));
418
419 //
420 // Load image for relocation
421 //
422 CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);
423
424 //
425 // Retrieve the local APIC ID of current processor
426 //
427 ApicId = GetApicId ();
428
429 //
430 // Relocate SM bases for all APs
431 // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate
432 //
433 mIsBsp = FALSE;
434 BspIndex = (UINTN)-1;
435 for (Index = 0; Index < mNumberOfCpus; Index++) {
436 mRebased[Index] = FALSE;
437 if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
438 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
439 //
440 // Wait for this AP to finish its 1st SMI
441 //
442 while (!mRebased[Index]);
443 } else {
444 //
445 // BSP will be Relocated later
446 //
447 BspIndex = Index;
448 }
449 }
450
451 //
452 // Relocate BSP's SMM base
453 //
454 ASSERT (BspIndex != (UINTN)-1);
455 mIsBsp = TRUE;
456 SendSmiIpi (ApicId);
457 //
458 // Wait for the BSP to finish its 1st SMI
459 //
460 while (!mRebased[BspIndex]);
461
462 //
463 // Restore contents at address 0x38000
464 //
465 CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));
466 CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));
467 }
468
469 /**
470 Perform SMM initialization for all processors in the S3 boot path.
471
472 For a native platform, MP initialization in the S3 boot path is also performed in this function.
473 **/
474 VOID
475 EFIAPI
476 SmmRestoreCpu (
477 VOID
478 )
479 {
480 SMM_S3_RESUME_STATE *SmmS3ResumeState;
481 IA32_DESCRIPTOR Ia32Idtr;
482 IA32_DESCRIPTOR X64Idtr;
483 IA32_IDT_GATE_DESCRIPTOR IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
484 EFI_STATUS Status;
485
486 DEBUG ((EFI_D_INFO, "SmmRestoreCpu()\n"));
487
488 //
489 // See if there is enough context to resume PEI Phase
490 //
491 if (mSmmS3ResumeState == NULL) {
492 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
493 CpuDeadLoop ();
494 }
495
496 SmmS3ResumeState = mSmmS3ResumeState;
497 ASSERT (SmmS3ResumeState != NULL);
498
499 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
500 //
501 // Save the IA32 IDT Descriptor
502 //
503 AsmReadIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
504
505 //
506 // Setup X64 IDT table
507 //
508 ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
509 X64Idtr.Base = (UINTN) IdtEntryTable;
510 X64Idtr.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
511 AsmWriteIdtr ((IA32_DESCRIPTOR *) &X64Idtr);
512
513 //
514 // Setup the default exception handler
515 //
516 Status = InitializeCpuExceptionHandlers (NULL);
517 ASSERT_EFI_ERROR (Status);
518
519 //
520 // Initialize Debug Agent to support source level debug
521 //
522 InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);
523 }
524
525 //
526 // Skip initialization if mAcpiCpuData is not valid
527 //
528 if (mAcpiCpuData.NumberOfCpus > 0) {
529 //
530 // First time microcode load and restore MTRRs
531 //
532 EarlyInitializeCpu ();
533 }
534
535 //
536 // Restore SMBASE for BSP and all APs
537 //
538 SmmRelocateBases ();
539
540 //
541 // Skip initialization if mAcpiCpuData is not valid
542 //
543 if (mAcpiCpuData.NumberOfCpus > 0) {
544 //
545 // Restore MSRs for BSP and all APs
546 //
547 InitializeCpu ();
548 }
549
550 //
551 // Set a flag to restore SMM configuration in S3 path.
552 //
553 mRestoreSmmConfigurationInS3 = TRUE;
554
555 DEBUG (( EFI_D_INFO, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs));
556 DEBUG (( EFI_D_INFO, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint));
557 DEBUG (( EFI_D_INFO, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1));
558 DEBUG (( EFI_D_INFO, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2));
559 DEBUG (( EFI_D_INFO, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer));
560
561 //
562 // If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase
563 //
564 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
565 DEBUG ((EFI_D_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));
566
567 SwitchStack (
568 (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
569 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
570 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
571 (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
572 );
573 }
574
575 //
576 // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase
577 //
578 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
579 DEBUG ((EFI_D_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));
580 //
581 // Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.
582 //
583 SaveAndSetDebugTimerInterrupt (FALSE);
584 //
585 // Restore IA32 IDT table
586 //
587 AsmWriteIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
588 AsmDisablePaging64 (
589 SmmS3ResumeState->ReturnCs,
590 (UINT32)SmmS3ResumeState->ReturnEntryPoint,
591 (UINT32)SmmS3ResumeState->ReturnContext1,
592 (UINT32)SmmS3ResumeState->ReturnContext2,
593 (UINT32)SmmS3ResumeState->ReturnStackPointer
594 );
595 }
596
597 //
598 // Can not resume PEI Phase
599 //
600 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
601 CpuDeadLoop ();
602 }
603
604 /**
605 Copy register table from ACPI NVS memory into SMRAM.
606
607 @param[in] DestinationRegisterTableList Points to destination register table.
608 @param[in] SourceRegisterTableList Points to source register table.
609 @param[in] NumberOfCpus Number of CPUs.
610
611 **/
612 VOID
613 CopyRegisterTable (
614 IN CPU_REGISTER_TABLE *DestinationRegisterTableList,
615 IN CPU_REGISTER_TABLE *SourceRegisterTableList,
616 IN UINT32 NumberOfCpus
617 )
618 {
619 UINTN Index;
620 UINTN Index1;
621 CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
622
623 CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
624 for (Index = 0; Index < NumberOfCpus; Index++) {
625 DestinationRegisterTableList[Index].RegisterTableEntry = AllocatePool (DestinationRegisterTableList[Index].AllocatedSize);
626 ASSERT (DestinationRegisterTableList[Index].RegisterTableEntry != NULL);
627 CopyMem (DestinationRegisterTableList[Index].RegisterTableEntry, SourceRegisterTableList[Index].RegisterTableEntry, DestinationRegisterTableList[Index].AllocatedSize);
628 //
629 // Go though all MSRs in register table to initialize MSR spin lock
630 //
631 RegisterTableEntry = DestinationRegisterTableList[Index].RegisterTableEntry;
632 for (Index1 = 0; Index1 < DestinationRegisterTableList[Index].TableLength; Index1++, RegisterTableEntry++) {
633 if ((RegisterTableEntry->RegisterType == Msr) && (RegisterTableEntry->ValidBitLength < 64)) {
634 //
635 // Initialize MSR spin lock only for those MSRs need bit field writing
636 //
637 InitMsrSpinLockByIndex (RegisterTableEntry->Index);
638 }
639 }
640 }
641 }
642
643 /**
644 SMM Ready To Lock event notification handler.
645
646 The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to
647 perform additional lock actions that must be performed from SMM on the next SMI.
648
649 @param[in] Protocol Points to the protocol's unique identifier.
650 @param[in] Interface Points to the interface instance.
651 @param[in] Handle The handle on which the interface was installed.
652
653 @retval EFI_SUCCESS Notification handler runs successfully.
654 **/
655 EFI_STATUS
656 EFIAPI
657 SmmReadyToLockEventNotify (
658 IN CONST EFI_GUID *Protocol,
659 IN VOID *Interface,
660 IN EFI_HANDLE Handle
661 )
662 {
663 ACPI_CPU_DATA *AcpiCpuData;
664 IA32_DESCRIPTOR *Gdtr;
665 IA32_DESCRIPTOR *Idtr;
666
667 //
668 // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
669 //
670 mAcpiCpuData.NumberOfCpus = 0;
671
672 //
673 // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM
674 //
675 AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
676 if (AcpiCpuData == 0) {
677 goto Done;
678 }
679
680 //
681 // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.
682 //
683 CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));
684
685 mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));
686 ASSERT (mAcpiCpuData.MtrrTable != 0);
687
688 CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));
689
690 mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
691 ASSERT (mAcpiCpuData.GdtrProfile != 0);
692
693 CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));
694
695 mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
696 ASSERT (mAcpiCpuData.IdtrProfile != 0);
697
698 CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));
699
700 mAcpiCpuData.PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
701 ASSERT (mAcpiCpuData.PreSmmInitRegisterTable != 0);
702
703 CopyRegisterTable (
704 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable,
705 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->PreSmmInitRegisterTable,
706 mAcpiCpuData.NumberOfCpus
707 );
708
709 mAcpiCpuData.RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
710 ASSERT (mAcpiCpuData.RegisterTable != 0);
711
712 CopyRegisterTable (
713 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable,
714 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->RegisterTable,
715 mAcpiCpuData.NumberOfCpus
716 );
717
718 //
719 // Copy AP's GDT, IDT and Machine Check handler into SMRAM.
720 //
721 Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
722 Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;
723
724 mGdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) + mAcpiCpuData.ApMachineCheckHandlerSize);
725 ASSERT (mGdtForAp != NULL);
726 mIdtForAp = (VOID *) ((UINTN)mGdtForAp + (Gdtr->Limit + 1));
727 mMachineCheckHandlerForAp = (VOID *) ((UINTN)mIdtForAp + (Idtr->Limit + 1));
728
729 CopyMem (mGdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
730 CopyMem (mIdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
731 CopyMem (mMachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);
732
733 Done:
734 //
735 // Set SMM ready to lock flag and return
736 //
737 mSmmReadyToLock = TRUE;
738 return EFI_SUCCESS;
739 }
740
741 /**
742 The module Entry Point of the CPU SMM driver.
743
744 @param ImageHandle The firmware allocated handle for the EFI image.
745 @param SystemTable A pointer to the EFI System Table.
746
747 @retval EFI_SUCCESS The entry point is executed successfully.
748 @retval Other Some error occurs when executing this entry point.
749
750 **/
751 EFI_STATUS
752 EFIAPI
753 PiCpuSmmEntry (
754 IN EFI_HANDLE ImageHandle,
755 IN EFI_SYSTEM_TABLE *SystemTable
756 )
757 {
758 EFI_STATUS Status;
759 EFI_MP_SERVICES_PROTOCOL *MpServices;
760 UINTN NumberOfEnabledProcessors;
761 UINTN Index;
762 VOID *Buffer;
763 UINTN TileSize;
764 VOID *GuidHob;
765 EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
766 SMM_S3_RESUME_STATE *SmmS3ResumeState;
767 UINT8 *Stacks;
768 VOID *Registration;
769 UINT32 RegEax;
770 UINT32 RegEdx;
771 UINTN FamilyId;
772 UINTN ModelId;
773 UINT32 Cr3;
774
775 //
776 // Initialize Debug Agent to support source level debug in SMM code
777 //
778 InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);
779
780 //
781 // Report the start of CPU SMM initialization.
782 //
783 REPORT_STATUS_CODE (
784 EFI_PROGRESS_CODE,
785 EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT
786 );
787
788 //
789 // Fix segment address of the long-mode-switch jump
790 //
791 if (sizeof (UINTN) == sizeof (UINT64)) {
792 gSmmJmpAddr.Segment = LONG_MODE_CODE_SEGMENT;
793 }
794
795 //
796 // Find out SMRR Base and SMRR Size
797 //
798 FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);
799
800 //
801 // Get MP Services Protocol
802 //
803 Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
804 ASSERT_EFI_ERROR (Status);
805
806 //
807 // Use MP Services Protocol to retrieve the number of processors and number of enabled processors
808 //
809 Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);
810 ASSERT_EFI_ERROR (Status);
811 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
812
813 //
814 // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.
815 // A constant BSP index makes no sense because it may be hot removed.
816 //
817 DEBUG_CODE (
818 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
819
820 ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));
821 }
822 );
823
824 //
825 // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.
826 //
827 mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);
828 DEBUG ((EFI_D_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));
829
830 //
831 // If support CPU hot plug, we need to allocate resources for possibly hot-added processors
832 //
833 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
834 mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
835 } else {
836 mMaxNumberOfCpus = mNumberOfCpus;
837 }
838 gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;
839
840 //
841 // The CPU save state and code for the SMI entry point are tiled within an SMRAM
842 // allocated buffer. The minimum size of this buffer for a uniprocessor system
843 // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area
844 // just below SMBASE + 64KB. If more than one CPU is present in the platform,
845 // then the SMI entry point and the CPU save state areas can be tiles to minimize
846 // the total amount SMRAM required for all the CPUs. The tile size can be computed
847 // by adding the // CPU save state size, any extra CPU specific context, and
848 // the size of code that must be placed at the SMI entry point to transfer
849 // control to a C function in the native SMM execution mode. This size is
850 // rounded up to the nearest power of 2 to give the tile size for a each CPU.
851 // The total amount of memory required is the maximum number of CPUs that
852 // platform supports times the tile size. The picture below shows the tiling,
853 // where m is the number of tiles that fit in 32KB.
854 //
855 // +-----------------------------+ <-- 2^n offset from Base of allocated buffer
856 // | CPU m+1 Save State |
857 // +-----------------------------+
858 // | CPU m+1 Extra Data |
859 // +-----------------------------+
860 // | Padding |
861 // +-----------------------------+
862 // | CPU 2m SMI Entry |
863 // +#############################+ <-- Base of allocated buffer + 64 KB
864 // | CPU m-1 Save State |
865 // +-----------------------------+
866 // | CPU m-1 Extra Data |
867 // +-----------------------------+
868 // | Padding |
869 // +-----------------------------+
870 // | CPU 2m-1 SMI Entry |
871 // +=============================+ <-- 2^n offset from Base of allocated buffer
872 // | . . . . . . . . . . . . |
873 // +=============================+ <-- 2^n offset from Base of allocated buffer
874 // | CPU 2 Save State |
875 // +-----------------------------+
876 // | CPU 2 Extra Data |
877 // +-----------------------------+
878 // | Padding |
879 // +-----------------------------+
880 // | CPU m+1 SMI Entry |
881 // +=============================+ <-- Base of allocated buffer + 32 KB
882 // | CPU 1 Save State |
883 // +-----------------------------+
884 // | CPU 1 Extra Data |
885 // +-----------------------------+
886 // | Padding |
887 // +-----------------------------+
888 // | CPU m SMI Entry |
889 // +#############################+ <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB
890 // | CPU 0 Save State |
891 // +-----------------------------+
892 // | CPU 0 Extra Data |
893 // +-----------------------------+
894 // | Padding |
895 // +-----------------------------+
896 // | CPU m-1 SMI Entry |
897 // +=============================+ <-- 2^n offset from Base of allocated buffer
898 // | . . . . . . . . . . . . |
899 // +=============================+ <-- 2^n offset from Base of allocated buffer
900 // | Padding |
901 // +-----------------------------+
902 // | CPU 1 SMI Entry |
903 // +=============================+ <-- 2^n offset from Base of allocated buffer
904 // | Padding |
905 // +-----------------------------+
906 // | CPU 0 SMI Entry |
907 // +#############################+ <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB
908 //
909
910 //
911 // Retrieve CPU Family
912 //
913 AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, &RegEdx);
914 FamilyId = (RegEax >> 8) & 0xf;
915 ModelId = (RegEax >> 4) & 0xf;
916 if (FamilyId == 0x06 || FamilyId == 0x0f) {
917 ModelId = ModelId | ((RegEax >> 12) & 0xf0);
918 }
919
920 //
921 // Determine the mode of the CPU at the time an SMI occurs
922 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
923 // Volume 3C, Section 34.4.1.1
924 //
925 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;
926 if ((RegEdx & BIT29) != 0) {
927 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
928 }
929 if (FamilyId == 0x06) {
930 if (ModelId == 0x17 || ModelId == 0x0f || ModelId == 0x1c) {
931 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
932 }
933 }
934
935 //
936 // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU
937 // specific context in a PROCESSOR_SMM_DESCRIPTOR, and the SMI entry point. This size
938 // is rounded up to nearest power of 2.
939 //
940 TileSize = sizeof (SMRAM_SAVE_STATE_MAP) + sizeof (PROCESSOR_SMM_DESCRIPTOR) + GetSmiHandlerSize () - 1;
941 TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);
942 DEBUG ((EFI_D_INFO, "SMRAM TileSize = %08x\n", TileSize));
943
944 //
945 // If the TileSize is larger than space available for the SMI Handler of CPU[i],
946 // the PROCESSOR_SMM_DESCRIPTOR of CPU[i+1] and the SMRAM Save State Map of CPU[i+1],
947 // the ASSERT(). If this ASSERT() is triggered, then the SMI Handler size must be
948 // reduced.
949 //
950 ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));
951
952 //
953 // Allocate buffer for all of the tiles.
954 //
955 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
956 // Volume 3C, Section 34.11 SMBASE Relocation
957 // For Pentium and Intel486 processors, the SMBASE values must be
958 // aligned on a 32-KByte boundary or the processor will enter shutdown
959 // state during the execution of a RSM instruction.
960 //
961 // Intel486 processors: FamilyId is 4
962 // Pentium processors : FamilyId is 5
963 //
964 if ((FamilyId == 4) || (FamilyId == 5)) {
965 Buffer = AllocateAlignedPages (EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1)), SIZE_32KB);
966 } else {
967 Buffer = AllocatePages (EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1)));
968 }
969 ASSERT (Buffer != NULL);
970
971 //
972 // Allocate buffer for pointers to array in SMM_CPU_PRIVATE_DATA.
973 //
974 gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);
975 ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);
976
977 gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);
978 ASSERT (gSmmCpuPrivate->Operation != NULL);
979
980 gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
981 ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);
982
983 gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);
984 ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);
985
986 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;
987 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState = gSmmCpuPrivate->CpuSaveState;
988
989 //
990 // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.
991 //
992 mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);
993 ASSERT (mCpuHotPlugData.ApicId != NULL);
994 mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
995 ASSERT (mCpuHotPlugData.SmBase != NULL);
996 mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;
997
998 //
999 // Retrieve APIC ID of each enabled processor from the MP Services protocol.
1000 // Also compute the SMBASE address, CPU Save State address, and CPU Save state
1001 // size for each CPU in the platform
1002 //
1003 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
1004 mCpuHotPlugData.SmBase[Index] = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;
1005 gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof(SMRAM_SAVE_STATE_MAP);
1006 gSmmCpuPrivate->CpuSaveState[Index] = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);
1007 gSmmCpuPrivate->Operation[Index] = SmmCpuNone;
1008
1009 if (Index < mNumberOfCpus) {
1010 Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);
1011 ASSERT_EFI_ERROR (Status);
1012 mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;
1013
1014 DEBUG ((EFI_D_INFO, "CPU[%03x] APIC ID=%04x SMBASE=%08x SaveState=%08x Size=%08x\n",
1015 Index,
1016 (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,
1017 mCpuHotPlugData.SmBase[Index],
1018 gSmmCpuPrivate->CpuSaveState[Index],
1019 gSmmCpuPrivate->CpuSaveStateSize[Index]
1020 ));
1021 } else {
1022 gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;
1023 mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;
1024 }
1025 }
1026
1027 //
1028 // Allocate SMI stacks for all processors.
1029 //
1030 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
1031 //
1032 // 2 more pages is allocated for each processor.
1033 // one is guard page and the other is known good stack.
1034 //
1035 // +-------------------------------------------+-----+-------------------------------------------+
1036 // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |
1037 // +-------------------------------------------+-----+-------------------------------------------+
1038 // | | | |
1039 // |<-------------- Processor 0 -------------->| |<-------------- Processor n -------------->|
1040 //
1041 mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2);
1042 Stacks = (UINT8 *) AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2));
1043 ASSERT (Stacks != NULL);
1044 mSmmStackArrayBase = (UINTN)Stacks;
1045 mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize - 1;
1046 } else {
1047 mSmmStackSize = PcdGet32 (PcdCpuSmmStackSize);
1048 Stacks = (UINT8 *) AllocatePages (EFI_SIZE_TO_PAGES (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize));
1049 ASSERT (Stacks != NULL);
1050 }
1051
1052 //
1053 // Set SMI stack for SMM base relocation
1054 //
1055 gSmmInitStack = (UINTN) (Stacks + mSmmStackSize - sizeof (UINTN));
1056
1057 //
1058 // Initialize IDT
1059 //
1060 InitializeSmmIdt ();
1061
1062 //
1063 // Relocate SMM Base addresses to the ones allocated from SMRAM
1064 //
1065 mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);
1066 ASSERT (mRebased != NULL);
1067 SmmRelocateBases ();
1068
1069 //
1070 // Call hook for BSP to perform extra actions in normal mode after all
1071 // SMM base addresses have been relocated on all CPUs
1072 //
1073 SmmCpuFeaturesSmmRelocationComplete ();
1074
1075 //
1076 // SMM Time initialization
1077 //
1078 InitializeSmmTimer ();
1079
1080 //
1081 // Initialize MP globals
1082 //
1083 Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize);
1084
1085 //
1086 // Fill in SMM Reserved Regions
1087 //
1088 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;
1089 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize = 0;
1090
1091 //
1092 // Install the SMM Configuration Protocol onto a new handle on the handle database.
1093 // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer
1094 // to an SMRAM address will be present in the handle database
1095 //
1096 Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (
1097 &gSmmCpuPrivate->SmmCpuHandle,
1098 &gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,
1099 NULL
1100 );
1101 ASSERT_EFI_ERROR (Status);
1102
1103 //
1104 // Install the SMM CPU Protocol into SMM protocol database
1105 //
1106 Status = gSmst->SmmInstallProtocolInterface (
1107 &mSmmCpuHandle,
1108 &gEfiSmmCpuProtocolGuid,
1109 EFI_NATIVE_INTERFACE,
1110 &mSmmCpu
1111 );
1112 ASSERT_EFI_ERROR (Status);
1113
1114 //
1115 // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.
1116 //
1117 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
1118 Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);
1119 ASSERT_EFI_ERROR (Status);
1120 }
1121
1122 //
1123 // Initialize SMM CPU Services Support
1124 //
1125 Status = InitializeSmmCpuServices (mSmmCpuHandle);
1126 ASSERT_EFI_ERROR (Status);
1127
1128 //
1129 // register SMM Ready To Lock Protocol notification
1130 //
1131 Status = gSmst->SmmRegisterProtocolNotify (
1132 &gEfiSmmReadyToLockProtocolGuid,
1133 SmmReadyToLockEventNotify,
1134 &Registration
1135 );
1136 ASSERT_EFI_ERROR (Status);
1137
1138 GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
1139 if (GuidHob != NULL) {
1140 SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);
1141
1142 DEBUG ((EFI_D_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));
1143 DEBUG ((EFI_D_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));
1144
1145 SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
1146 ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));
1147
1148 mSmmS3ResumeState = SmmS3ResumeState;
1149 SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;
1150
1151 SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;
1152
1153 SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;
1154 SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));
1155 if (SmmS3ResumeState->SmmS3StackBase == 0) {
1156 SmmS3ResumeState->SmmS3StackSize = 0;
1157 }
1158
1159 SmmS3ResumeState->SmmS3Cr0 = gSmmCr0;
1160 SmmS3ResumeState->SmmS3Cr3 = Cr3;
1161 SmmS3ResumeState->SmmS3Cr4 = gSmmCr4;
1162
1163 if (sizeof (UINTN) == sizeof (UINT64)) {
1164 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;
1165 }
1166 if (sizeof (UINTN) == sizeof (UINT32)) {
1167 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;
1168 }
1169 }
1170
1171 //
1172 // Check XD and BTS features
1173 //
1174 CheckProcessorFeature ();
1175
1176 //
1177 // Initialize SMM Profile feature
1178 //
1179 InitSmmProfile (Cr3);
1180
1181 //
1182 // Patch SmmS3ResumeState->SmmS3Cr3
1183 //
1184 InitSmmS3Cr3 ();
1185
1186 DEBUG ((EFI_D_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));
1187
1188 return EFI_SUCCESS;
1189 }
1190
1191 /**
1192
1193 Find out SMRAM information including SMRR base and SMRR size.
1194
1195 @param SmrrBase SMRR base
1196 @param SmrrSize SMRR size
1197
1198 **/
1199 VOID
1200 FindSmramInfo (
1201 OUT UINT32 *SmrrBase,
1202 OUT UINT32 *SmrrSize
1203 )
1204 {
1205 EFI_STATUS Status;
1206 UINTN Size;
1207 EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;
1208 EFI_SMRAM_DESCRIPTOR *CurrentSmramRange;
1209 EFI_SMRAM_DESCRIPTOR *SmramRanges;
1210 UINTN SmramRangeCount;
1211 UINTN Index;
1212 UINT64 MaxSize;
1213 BOOLEAN Found;
1214
1215 //
1216 // Get SMM Access Protocol
1217 //
1218 Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);
1219 ASSERT_EFI_ERROR (Status);
1220
1221 //
1222 // Get SMRAM information
1223 //
1224 Size = 0;
1225 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);
1226 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
1227
1228 SmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);
1229 ASSERT (SmramRanges != NULL);
1230
1231 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, SmramRanges);
1232 ASSERT_EFI_ERROR (Status);
1233
1234 SmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);
1235
1236 //
1237 // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size
1238 //
1239 CurrentSmramRange = NULL;
1240 for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < SmramRangeCount; Index++) {
1241 //
1242 // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization
1243 //
1244 if ((SmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
1245 continue;
1246 }
1247
1248 if (SmramRanges[Index].CpuStart >= BASE_1MB) {
1249 if ((SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize) <= BASE_4GB) {
1250 if (SmramRanges[Index].PhysicalSize >= MaxSize) {
1251 MaxSize = SmramRanges[Index].PhysicalSize;
1252 CurrentSmramRange = &SmramRanges[Index];
1253 }
1254 }
1255 }
1256 }
1257
1258 ASSERT (CurrentSmramRange != NULL);
1259
1260 *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;
1261 *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;
1262
1263 do {
1264 Found = FALSE;
1265 for (Index = 0; Index < SmramRangeCount; Index++) {
1266 if (SmramRanges[Index].CpuStart < *SmrrBase && *SmrrBase == (SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize)) {
1267 *SmrrBase = (UINT32)SmramRanges[Index].CpuStart;
1268 *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
1269 Found = TRUE;
1270 } else if ((*SmrrBase + *SmrrSize) == SmramRanges[Index].CpuStart && SmramRanges[Index].PhysicalSize > 0) {
1271 *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
1272 Found = TRUE;
1273 }
1274 }
1275 } while (Found);
1276
1277 DEBUG ((EFI_D_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));
1278 }
1279
1280 /**
1281 Configure SMM Code Access Check feature on an AP.
1282 SMM Feature Control MSR will be locked after configuration.
1283
1284 @param[in,out] Buffer Pointer to private data buffer.
1285 **/
1286 VOID
1287 EFIAPI
1288 ConfigSmmCodeAccessCheckOnCurrentProcessor (
1289 IN OUT VOID *Buffer
1290 )
1291 {
1292 UINTN CpuIndex;
1293 UINT64 SmmFeatureControlMsr;
1294 UINT64 NewSmmFeatureControlMsr;
1295
1296 //
1297 // Retrieve the CPU Index from the context passed in
1298 //
1299 CpuIndex = *(UINTN *)Buffer;
1300
1301 //
1302 // Get the current SMM Feature Control MSR value
1303 //
1304 SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);
1305
1306 //
1307 // Compute the new SMM Feature Control MSR value
1308 //
1309 NewSmmFeatureControlMsr = SmmFeatureControlMsr;
1310 if (mSmmCodeAccessCheckEnable) {
1311 NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;
1312 if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {
1313 NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;
1314 }
1315 }
1316
1317 //
1318 // Only set the SMM Feature Control MSR value if the new value is different than the current value
1319 //
1320 if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {
1321 SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);
1322 }
1323
1324 //
1325 // Release the spin lock user to serialize the updates to the SMM Feature Control MSR
1326 //
1327 ReleaseSpinLock (&mConfigSmmCodeAccessCheckLock);
1328 }
1329
1330 /**
1331 Configure SMM Code Access Check feature for all processors.
1332 SMM Feature Control MSR will be locked after configuration.
1333 **/
1334 VOID
1335 ConfigSmmCodeAccessCheck (
1336 VOID
1337 )
1338 {
1339 UINTN Index;
1340 EFI_STATUS Status;
1341
1342 //
1343 // Check to see if the Feature Control MSR is supported on this CPU
1344 //
1345 Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
1346 if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {
1347 mSmmCodeAccessCheckEnable = FALSE;
1348 return;
1349 }
1350
1351 //
1352 // Check to see if the CPU supports the SMM Code Access Check feature
1353 // Do not access this MSR unless the CPU supports the SmmRegFeatureControl
1354 //
1355 if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {
1356 mSmmCodeAccessCheckEnable = FALSE;
1357 return;
1358 }
1359
1360 //
1361 // Initialize the lock used to serialize the MSR programming in BSP and all APs
1362 //
1363 InitializeSpinLock (&mConfigSmmCodeAccessCheckLock);
1364
1365 //
1366 // Acquire Config SMM Code Access Check spin lock. The BSP will release the
1367 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1368 //
1369 AcquireSpinLock (&mConfigSmmCodeAccessCheckLock);
1370
1371 //
1372 // Enable SMM Code Access Check feature on the BSP.
1373 //
1374 ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);
1375
1376 //
1377 // Enable SMM Code Access Check feature for the APs.
1378 //
1379 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
1380 if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
1381
1382 //
1383 // Acquire Config SMM Code Access Check spin lock. The AP will release the
1384 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1385 //
1386 AcquireSpinLock (&mConfigSmmCodeAccessCheckLock);
1387
1388 //
1389 // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.
1390 //
1391 Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);
1392 ASSERT_EFI_ERROR (Status);
1393
1394 //
1395 // Wait for the AP to release the Config SMM Code Access Check spin lock.
1396 //
1397 while (!AcquireSpinLockOrFail (&mConfigSmmCodeAccessCheckLock)) {
1398 CpuPause ();
1399 }
1400
1401 //
1402 // Release the Config SMM Code Access Check spin lock.
1403 //
1404 ReleaseSpinLock (&mConfigSmmCodeAccessCheckLock);
1405 }
1406 }
1407 }
1408
1409 /**
1410 Perform the remaining tasks.
1411
1412 **/
1413 VOID
1414 PerformRemainingTasks (
1415 VOID
1416 )
1417 {
1418 if (mSmmReadyToLock) {
1419 //
1420 // Start SMM Profile feature
1421 //
1422 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
1423 SmmProfileStart ();
1424 }
1425 //
1426 // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.
1427 //
1428 InitPaging ();
1429 //
1430 // Configure SMM Code Access Check feature if available.
1431 //
1432 ConfigSmmCodeAccessCheck ();
1433
1434 //
1435 // Clean SMM ready to lock flag
1436 //
1437 mSmmReadyToLock = FALSE;
1438 }
1439 }