]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/SmmProfile.c
UefiCpuPkg/PiSmmCpu: Update function call for 2 new APIs.
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / SmmProfile.c
1 /** @file
2 Enable SMM profile.
3
4 Copyright (c) 2012 - 2015, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PiSmmCpuDxeSmm.h"
16 #include "SmmProfileInternal.h"
17
18 UINT32 mSmmProfileCr3;
19
20 SMM_PROFILE_HEADER *mSmmProfileBase;
21 MSR_DS_AREA_STRUCT *mMsrDsAreaBase;
22 //
23 // The buffer to store SMM profile data.
24 //
25 UINTN mSmmProfileSize;
26
27 //
28 // The buffer to enable branch trace store.
29 //
30 UINTN mMsrDsAreaSize = SMM_PROFILE_DTS_SIZE;
31
32 //
33 // The flag indicates if execute-disable is supported by processor.
34 //
35 BOOLEAN mXdSupported = FALSE;
36
37 //
38 // The flag indicates if execute-disable is enabled on processor.
39 //
40 BOOLEAN mXdEnabled = FALSE;
41
42 //
43 // The flag indicates if BTS is supported by processor.
44 //
45 BOOLEAN mBtsSupported = FALSE;
46
47 //
48 // The flag indicates if SMM profile starts to record data.
49 //
50 BOOLEAN mSmmProfileStart = FALSE;
51
52 //
53 // Record the page fault exception count for one instruction execution.
54 //
55 UINTN *mPFEntryCount;
56
57 UINT64 (*mLastPFEntryValue)[MAX_PF_ENTRY_COUNT];
58 UINT64 *(*mLastPFEntryPointer)[MAX_PF_ENTRY_COUNT];
59
60 MSR_DS_AREA_STRUCT **mMsrDsArea;
61 BRANCH_TRACE_RECORD **mMsrBTSRecord;
62 UINTN mBTSRecordNumber;
63 PEBS_RECORD **mMsrPEBSRecord;
64
65 //
66 // These memory ranges are always present, they does not generate the access type of page fault exception,
67 // but they possibly generate instruction fetch type of page fault exception.
68 //
69 MEMORY_PROTECTION_RANGE *mProtectionMemRange = NULL;
70 UINTN mProtectionMemRangeCount = 0;
71
72 //
73 // Some predefined memory ranges.
74 //
75 MEMORY_PROTECTION_RANGE mProtectionMemRangeTemplate[] = {
76 //
77 // SMRAM range (to be fixed in runtime).
78 // It is always present and instruction fetches are allowed.
79 //
80 {{0x00000000, 0x00000000},TRUE,FALSE},
81
82 //
83 // SMM profile data range( to be fixed in runtime).
84 // It is always present and instruction fetches are not allowed.
85 //
86 {{0x00000000, 0x00000000},TRUE,TRUE},
87
88 //
89 // Future extended range could be added here.
90 //
91
92 //
93 // PCI MMIO ranges (to be added in runtime).
94 // They are always present and instruction fetches are not allowed.
95 //
96 };
97
98 //
99 // These memory ranges are mapped by 4KB-page instead of 2MB-page.
100 //
101 MEMORY_RANGE *mSplitMemRange = NULL;
102 UINTN mSplitMemRangeCount = 0;
103
104 //
105 // SMI command port.
106 //
107 UINT32 mSmiCommandPort;
108
109 /**
110 Disable branch trace store.
111
112 **/
113 VOID
114 DisableBTS (
115 VOID
116 )
117 {
118 AsmMsrAnd64 (MSR_DEBUG_CTL, ~((UINT64)(MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR)));
119 }
120
121 /**
122 Enable branch trace store.
123
124 **/
125 VOID
126 EnableBTS (
127 VOID
128 )
129 {
130 AsmMsrOr64 (MSR_DEBUG_CTL, (MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR));
131 }
132
133 /**
134 Get CPU Index from APIC ID.
135
136 **/
137 UINTN
138 GetCpuIndex (
139 VOID
140 )
141 {
142 UINTN Index;
143 UINT32 ApicId;
144
145 ApicId = GetApicId ();
146
147 for (Index = 0; Index < PcdGet32 (PcdCpuMaxLogicalProcessorNumber); Index++) {
148 if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == ApicId) {
149 return Index;
150 }
151 }
152 ASSERT (FALSE);
153 return 0;
154 }
155
156 /**
157 Get the source of IP after execute-disable exception is triggered.
158
159 @param CpuIndex The index of CPU.
160 @param DestinationIP The destination address.
161
162 **/
163 UINT64
164 GetSourceFromDestinationOnBts (
165 UINTN CpuIndex,
166 UINT64 DestinationIP
167 )
168 {
169 BRANCH_TRACE_RECORD *CurrentBTSRecord;
170 UINTN Index;
171 BOOLEAN FirstMatch;
172
173 FirstMatch = FALSE;
174
175 CurrentBTSRecord = (BRANCH_TRACE_RECORD *)mMsrDsArea[CpuIndex]->BTSIndex;
176 for (Index = 0; Index < mBTSRecordNumber; Index++) {
177 if ((UINTN)CurrentBTSRecord < (UINTN)mMsrBTSRecord[CpuIndex]) {
178 //
179 // Underflow
180 //
181 CurrentBTSRecord = (BRANCH_TRACE_RECORD *)((UINTN)mMsrDsArea[CpuIndex]->BTSAbsoluteMaximum - 1);
182 CurrentBTSRecord --;
183 }
184 if (CurrentBTSRecord->LastBranchTo == DestinationIP) {
185 //
186 // Good! find 1st one, then find 2nd one.
187 //
188 if (!FirstMatch) {
189 //
190 // The first one is DEBUG exception
191 //
192 FirstMatch = TRUE;
193 } else {
194 //
195 // Good find proper one.
196 //
197 return CurrentBTSRecord->LastBranchFrom;
198 }
199 }
200 CurrentBTSRecord--;
201 }
202
203 return 0;
204 }
205
206 /**
207 SMM profile specific INT 1 (single-step) exception handler.
208
209 @param InterruptType Defines the type of interrupt or exception that
210 occurred on the processor.This parameter is processor architecture specific.
211 @param SystemContext A pointer to the processor context when
212 the interrupt occurred on the processor.
213 **/
214 VOID
215 EFIAPI
216 DebugExceptionHandler (
217 IN EFI_EXCEPTION_TYPE InterruptType,
218 IN EFI_SYSTEM_CONTEXT SystemContext
219 )
220 {
221 UINTN CpuIndex;
222 UINTN PFEntry;
223
224 if (!mSmmProfileStart) {
225 return;
226 }
227 CpuIndex = GetCpuIndex ();
228
229 //
230 // Clear last PF entries
231 //
232 for (PFEntry = 0; PFEntry < mPFEntryCount[CpuIndex]; PFEntry++) {
233 *mLastPFEntryPointer[CpuIndex][PFEntry] = mLastPFEntryValue[CpuIndex][PFEntry];
234 }
235
236 //
237 // Reset page fault exception count for next page fault.
238 //
239 mPFEntryCount[CpuIndex] = 0;
240
241 //
242 // Flush TLB
243 //
244 CpuFlushTlb ();
245
246 //
247 // Clear TF in EFLAGS
248 //
249 ClearTrapFlag (SystemContext);
250 }
251
252 /**
253 Check if the memory address will be mapped by 4KB-page.
254
255 @param Address The address of Memory.
256 @param Nx The flag indicates if the memory is execute-disable.
257
258 **/
259 BOOLEAN
260 IsAddressValid (
261 IN EFI_PHYSICAL_ADDRESS Address,
262 IN BOOLEAN *Nx
263 )
264 {
265 UINTN Index;
266
267 *Nx = FALSE;
268 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
269 //
270 // Check configuration
271 //
272 for (Index = 0; Index < mProtectionMemRangeCount; Index++) {
273 if ((Address >= mProtectionMemRange[Index].Range.Base) && (Address < mProtectionMemRange[Index].Range.Top)) {
274 *Nx = mProtectionMemRange[Index].Nx;
275 return mProtectionMemRange[Index].Present;
276 }
277 }
278 *Nx = TRUE;
279 return FALSE;
280
281 } else {
282 if ((Address < mCpuHotPlugData.SmrrBase) ||
283 (Address >= mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize)) {
284 *Nx = TRUE;
285 }
286 return TRUE;
287 }
288 }
289
290 /**
291 Check if the memory address will be mapped by 4KB-page.
292
293 @param Address The address of Memory.
294
295 **/
296 BOOLEAN
297 IsAddressSplit (
298 IN EFI_PHYSICAL_ADDRESS Address
299 )
300 {
301 UINTN Index;
302
303 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
304 //
305 // Check configuration
306 //
307 for (Index = 0; Index < mSplitMemRangeCount; Index++) {
308 if ((Address >= mSplitMemRange[Index].Base) && (Address < mSplitMemRange[Index].Top)) {
309 return TRUE;
310 }
311 }
312 } else {
313 if (Address < mCpuHotPlugData.SmrrBase) {
314 if ((mCpuHotPlugData.SmrrBase - Address) < BASE_2MB) {
315 return TRUE;
316 }
317 } else if (Address > (mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize - BASE_2MB)) {
318 if ((Address - (mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize - BASE_2MB)) < BASE_2MB) {
319 return TRUE;
320 }
321 }
322 }
323 //
324 // Return default
325 //
326 return FALSE;
327 }
328
329 /**
330 Initialize the protected memory ranges and the 4KB-page mapped memory ranges.
331
332 **/
333 VOID
334 InitProtectedMemRange (
335 VOID
336 )
337 {
338 UINTN Index;
339 UINTN NumberOfDescriptors;
340 UINTN NumberOfMmioDescriptors;
341 UINTN NumberOfProtectRange;
342 UINTN NumberOfSpliteRange;
343 EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
344 UINTN TotalSize;
345 EFI_STATUS Status;
346 EFI_PHYSICAL_ADDRESS ProtectBaseAddress;
347 EFI_PHYSICAL_ADDRESS ProtectEndAddress;
348 EFI_PHYSICAL_ADDRESS Top2MBAlignedAddress;
349 EFI_PHYSICAL_ADDRESS Base2MBAlignedAddress;
350 UINT64 High4KBPageSize;
351 UINT64 Low4KBPageSize;
352
353 NumberOfDescriptors = 0;
354 NumberOfMmioDescriptors = 0;
355 NumberOfSpliteRange = 0;
356 MemorySpaceMap = NULL;
357
358 //
359 // Get MMIO ranges from GCD and add them into protected memory ranges.
360 //
361 Status = gDS->GetMemorySpaceMap (
362 &NumberOfDescriptors,
363 &MemorySpaceMap
364 );
365 for (Index = 0; Index < NumberOfDescriptors; Index++) {
366 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {
367 NumberOfMmioDescriptors++;
368 }
369 }
370
371 if (NumberOfMmioDescriptors != 0) {
372 TotalSize = NumberOfMmioDescriptors * sizeof (MEMORY_PROTECTION_RANGE) + sizeof (mProtectionMemRangeTemplate);
373 mProtectionMemRange = (MEMORY_PROTECTION_RANGE *) AllocateZeroPool (TotalSize);
374 ASSERT (mProtectionMemRange != NULL);
375 mProtectionMemRangeCount = TotalSize / sizeof (MEMORY_PROTECTION_RANGE);
376
377 //
378 // Copy existing ranges.
379 //
380 CopyMem (mProtectionMemRange, mProtectionMemRangeTemplate, sizeof (mProtectionMemRangeTemplate));
381
382 //
383 // Create split ranges which come from protected ranges.
384 //
385 TotalSize = (TotalSize / sizeof (MEMORY_PROTECTION_RANGE)) * sizeof (MEMORY_RANGE);
386 mSplitMemRange = (MEMORY_RANGE *) AllocateZeroPool (TotalSize);
387 ASSERT (mSplitMemRange != NULL);
388
389 //
390 // Create MMIO ranges which are set to present and execution-disable.
391 //
392 NumberOfProtectRange = sizeof (mProtectionMemRangeTemplate) / sizeof (MEMORY_PROTECTION_RANGE);
393 for (Index = 0; Index < NumberOfDescriptors; Index++) {
394 if (MemorySpaceMap[Index].GcdMemoryType != EfiGcdMemoryTypeMemoryMappedIo) {
395 continue;
396 }
397 mProtectionMemRange[NumberOfProtectRange].Range.Base = MemorySpaceMap[Index].BaseAddress;
398 mProtectionMemRange[NumberOfProtectRange].Range.Top = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length;
399 mProtectionMemRange[NumberOfProtectRange].Present = TRUE;
400 mProtectionMemRange[NumberOfProtectRange].Nx = TRUE;
401 NumberOfProtectRange++;
402 }
403 }
404
405 //
406 // According to protected ranges, create the ranges which will be mapped by 2KB page.
407 //
408 NumberOfSpliteRange = 0;
409 NumberOfProtectRange = mProtectionMemRangeCount;
410 for (Index = 0; Index < NumberOfProtectRange; Index++) {
411 //
412 // If MMIO base address is not 2MB alignment, make 2MB alignment for create 4KB page in page table.
413 //
414 ProtectBaseAddress = mProtectionMemRange[Index].Range.Base;
415 ProtectEndAddress = mProtectionMemRange[Index].Range.Top;
416 if (((ProtectBaseAddress & (SIZE_2MB - 1)) != 0) || ((ProtectEndAddress & (SIZE_2MB - 1)) != 0)) {
417 //
418 // Check if it is possible to create 4KB-page for not 2MB-aligned range and to create 2MB-page for 2MB-aligned range.
419 // A mix of 4KB and 2MB page could save SMRAM space.
420 //
421 Top2MBAlignedAddress = ProtectEndAddress & ~(SIZE_2MB - 1);
422 Base2MBAlignedAddress = (ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
423 if ((Top2MBAlignedAddress > Base2MBAlignedAddress) &&
424 ((Top2MBAlignedAddress - Base2MBAlignedAddress) >= SIZE_2MB)) {
425 //
426 // There is an range which could be mapped by 2MB-page.
427 //
428 High4KBPageSize = ((ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1)) - (ProtectEndAddress & ~(SIZE_2MB - 1));
429 Low4KBPageSize = ((ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1)) - (ProtectBaseAddress & ~(SIZE_2MB - 1));
430 if (High4KBPageSize != 0) {
431 //
432 // Add not 2MB-aligned range to be mapped by 4KB-page.
433 //
434 mSplitMemRange[NumberOfSpliteRange].Base = ProtectEndAddress & ~(SIZE_2MB - 1);
435 mSplitMemRange[NumberOfSpliteRange].Top = (ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
436 NumberOfSpliteRange++;
437 }
438 if (Low4KBPageSize != 0) {
439 //
440 // Add not 2MB-aligned range to be mapped by 4KB-page.
441 //
442 mSplitMemRange[NumberOfSpliteRange].Base = ProtectBaseAddress & ~(SIZE_2MB - 1);
443 mSplitMemRange[NumberOfSpliteRange].Top = (ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
444 NumberOfSpliteRange++;
445 }
446 } else {
447 //
448 // The range could only be mapped by 4KB-page.
449 //
450 mSplitMemRange[NumberOfSpliteRange].Base = ProtectBaseAddress & ~(SIZE_2MB - 1);
451 mSplitMemRange[NumberOfSpliteRange].Top = (ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
452 NumberOfSpliteRange++;
453 }
454 }
455 }
456
457 mSplitMemRangeCount = NumberOfSpliteRange;
458
459 DEBUG ((EFI_D_INFO, "SMM Profile Memory Ranges:\n"));
460 for (Index = 0; Index < mProtectionMemRangeCount; Index++) {
461 DEBUG ((EFI_D_INFO, "mProtectionMemRange[%d].Base = %lx\n", Index, mProtectionMemRange[Index].Range.Base));
462 DEBUG ((EFI_D_INFO, "mProtectionMemRange[%d].Top = %lx\n", Index, mProtectionMemRange[Index].Range.Top));
463 }
464 for (Index = 0; Index < mSplitMemRangeCount; Index++) {
465 DEBUG ((EFI_D_INFO, "mSplitMemRange[%d].Base = %lx\n", Index, mSplitMemRange[Index].Base));
466 DEBUG ((EFI_D_INFO, "mSplitMemRange[%d].Top = %lx\n", Index, mSplitMemRange[Index].Top));
467 }
468 }
469
470 /**
471 Update page table according to protected memory ranges and the 4KB-page mapped memory ranges.
472
473 **/
474 VOID
475 InitPaging (
476 VOID
477 )
478 {
479 UINT64 *Pml4;
480 UINT64 *Pde;
481 UINT64 *Pte;
482 UINT64 *Pt;
483 UINTN Address;
484 UINTN Level1;
485 UINTN Level2;
486 UINTN Level3;
487 UINTN Level4;
488 UINTN NumberOfPdpEntries;
489 UINTN NumberOfPml4Entries;
490 UINTN SizeOfMemorySpace;
491 BOOLEAN Nx;
492
493 if (sizeof (UINTN) == sizeof (UINT64)) {
494 Pml4 = (UINT64*)(UINTN)mSmmProfileCr3;
495 SizeOfMemorySpace = HighBitSet64 (gPhyMask) + 1;
496 //
497 // Calculate the table entries of PML4E and PDPTE.
498 //
499 if (SizeOfMemorySpace <= 39 ) {
500 NumberOfPml4Entries = 1;
501 NumberOfPdpEntries = (UINT32)LShiftU64 (1, (SizeOfMemorySpace - 30));
502 } else {
503 NumberOfPml4Entries = (UINT32)LShiftU64 (1, (SizeOfMemorySpace - 39));
504 NumberOfPdpEntries = 512;
505 }
506 } else {
507 NumberOfPml4Entries = 1;
508 NumberOfPdpEntries = 4;
509 }
510
511 //
512 // Go through page table and change 2MB-page into 4KB-page.
513 //
514 for (Level1 = 0; Level1 < NumberOfPml4Entries; Level1++) {
515 if (sizeof (UINTN) == sizeof (UINT64)) {
516 if ((Pml4[Level1] & IA32_PG_P) == 0) {
517 //
518 // If Pml4 entry does not exist, skip it
519 //
520 continue;
521 }
522 Pde = (UINT64 *)(UINTN)(Pml4[Level1] & PHYSICAL_ADDRESS_MASK);
523 } else {
524 Pde = (UINT64*)(UINTN)mSmmProfileCr3;
525 }
526 for (Level2 = 0; Level2 < NumberOfPdpEntries; Level2++, Pde++) {
527 if ((*Pde & IA32_PG_P) == 0) {
528 //
529 // If PDE entry does not exist, skip it
530 //
531 continue;
532 }
533 Pte = (UINT64 *)(UINTN)(*Pde & PHYSICAL_ADDRESS_MASK);
534 if (Pte == 0) {
535 continue;
536 }
537 for (Level3 = 0; Level3 < SIZE_4KB / sizeof (*Pte); Level3++, Pte++) {
538 if ((*Pte & IA32_PG_P) == 0) {
539 //
540 // If PTE entry does not exist, skip it
541 //
542 continue;
543 }
544 Address = (((Level2 << 9) + Level3) << 21);
545
546 //
547 // If it is 2M page, check IsAddressSplit()
548 //
549 if (((*Pte & IA32_PG_PS) != 0) && IsAddressSplit (Address)) {
550 //
551 // Based on current page table, create 4KB page table for split area.
552 //
553 ASSERT (Address == (*Pte & PHYSICAL_ADDRESS_MASK));
554
555 Pt = AllocatePageTableMemory (1);
556 ASSERT (Pt != NULL);
557
558 // Split it
559 for (Level4 = 0; Level4 < SIZE_4KB / sizeof(*Pt); Level4++) {
560 Pt[Level4] = Address + ((Level4 << 12) | IA32_PG_RW | IA32_PG_P);
561 } // end for PT
562 *Pte = (UINTN)Pt | IA32_PG_RW | IA32_PG_P;
563 } // end if IsAddressSplit
564 } // end for PTE
565 } // end for PDE
566 }
567
568 //
569 // Go through page table and set several page table entries to absent or execute-disable.
570 //
571 DEBUG ((EFI_D_INFO, "Patch page table start ...\n"));
572 for (Level1 = 0; Level1 < NumberOfPml4Entries; Level1++) {
573 if (sizeof (UINTN) == sizeof (UINT64)) {
574 if ((Pml4[Level1] & IA32_PG_P) == 0) {
575 //
576 // If Pml4 entry does not exist, skip it
577 //
578 continue;
579 }
580 Pde = (UINT64 *)(UINTN)(Pml4[Level1] & PHYSICAL_ADDRESS_MASK);
581 } else {
582 Pde = (UINT64*)(UINTN)mSmmProfileCr3;
583 }
584 for (Level2 = 0; Level2 < NumberOfPdpEntries; Level2++, Pde++) {
585 if ((*Pde & IA32_PG_P) == 0) {
586 //
587 // If PDE entry does not exist, skip it
588 //
589 continue;
590 }
591 Pte = (UINT64 *)(UINTN)(*Pde & PHYSICAL_ADDRESS_MASK);
592 if (Pte == 0) {
593 continue;
594 }
595 for (Level3 = 0; Level3 < SIZE_4KB / sizeof (*Pte); Level3++, Pte++) {
596 if ((*Pte & IA32_PG_P) == 0) {
597 //
598 // If PTE entry does not exist, skip it
599 //
600 continue;
601 }
602 Address = (((Level2 << 9) + Level3) << 21);
603
604 if ((*Pte & IA32_PG_PS) != 0) {
605 // 2MB page
606
607 if (!IsAddressValid (Address, &Nx)) {
608 //
609 // Patch to remove Present flag and RW flag
610 //
611 *Pte = *Pte & (INTN)(INT32)(~(IA32_PG_RW | IA32_PG_P));
612 }
613 if (Nx && mXdSupported) {
614 *Pte = *Pte | IA32_PG_NX;
615 }
616 } else {
617 // 4KB page
618 Pt = (UINT64 *)(UINTN)(*Pte & PHYSICAL_ADDRESS_MASK);
619 if (Pt == 0) {
620 continue;
621 }
622 for (Level4 = 0; Level4 < SIZE_4KB / sizeof(*Pt); Level4++, Pt++) {
623 if (!IsAddressValid (Address, &Nx)) {
624 *Pt = *Pt & (INTN)(INT32)(~(IA32_PG_RW | IA32_PG_P));
625 }
626 if (Nx && mXdSupported) {
627 *Pt = *Pt | IA32_PG_NX;
628 }
629 Address += SIZE_4KB;
630 } // end for PT
631 } // end if PS
632 } // end for PTE
633 } // end for PDE
634 }
635
636 //
637 // Flush TLB
638 //
639 CpuFlushTlb ();
640 DEBUG ((EFI_D_INFO, "Patch page table done!\n"));
641 //
642 // Set execute-disable flag
643 //
644 mXdEnabled = TRUE;
645
646 return ;
647 }
648
649 /**
650 To find FADT in ACPI tables.
651
652 @param AcpiTableGuid The GUID used to find ACPI table in UEFI ConfigurationTable.
653
654 @return FADT table pointer.
655 **/
656 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *
657 FindAcpiFadtTableByAcpiGuid (
658 IN EFI_GUID *AcpiTableGuid
659 )
660 {
661 EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp;
662 EFI_ACPI_DESCRIPTION_HEADER *Rsdt;
663 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
664 UINTN Index;
665 UINT32 Data32;
666 Rsdp = NULL;
667 Rsdt = NULL;
668 Fadt = NULL;
669 //
670 // found ACPI table RSD_PTR from system table
671 //
672 for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
673 if (CompareGuid (&(gST->ConfigurationTable[Index].VendorGuid), AcpiTableGuid)) {
674 //
675 // A match was found.
676 //
677 Rsdp = gST->ConfigurationTable[Index].VendorTable;
678 break;
679 }
680 }
681
682 if (Rsdp == NULL) {
683 return NULL;
684 }
685
686 Rsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN) Rsdp->RsdtAddress;
687 if (Rsdt == NULL || Rsdt->Signature != EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_TABLE_SIGNATURE) {
688 return NULL;
689 }
690
691 for (Index = sizeof (EFI_ACPI_DESCRIPTION_HEADER); Index < Rsdt->Length; Index = Index + sizeof (UINT32)) {
692
693 Data32 = *(UINT32 *) ((UINT8 *) Rsdt + Index);
694 Fadt = (EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *) (UINT32 *) (UINTN) Data32;
695 if (Fadt->Header.Signature == EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
696 break;
697 }
698 }
699
700 if (Fadt == NULL || Fadt->Header.Signature != EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
701 return NULL;
702 }
703
704 return Fadt;
705 }
706
707 /**
708 To find FADT in ACPI tables.
709
710 @return FADT table pointer.
711 **/
712 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *
713 FindAcpiFadtTable (
714 VOID
715 )
716 {
717 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
718
719 Fadt = FindAcpiFadtTableByAcpiGuid (&gEfiAcpi20TableGuid);
720 if (Fadt != NULL) {
721 return Fadt;
722 }
723
724 return FindAcpiFadtTableByAcpiGuid (&gEfiAcpi10TableGuid);
725 }
726
727 /**
728 To get system port address of the SMI Command Port in FADT table.
729
730 **/
731 VOID
732 GetSmiCommandPort (
733 VOID
734 )
735 {
736 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
737
738 Fadt = FindAcpiFadtTable ();
739 ASSERT (Fadt != NULL);
740
741 mSmiCommandPort = Fadt->SmiCmd;
742 DEBUG ((EFI_D_INFO, "mSmiCommandPort = %x\n", mSmiCommandPort));
743 }
744
745 /**
746 Updates page table to make some memory ranges (like system memory) absent
747 and make some memory ranges (like MMIO) present and execute disable. It also
748 update 2MB-page to 4KB-page for some memory ranges.
749
750 **/
751 VOID
752 SmmProfileStart (
753 VOID
754 )
755 {
756 //
757 // The flag indicates SMM profile starts to work.
758 //
759 mSmmProfileStart = TRUE;
760 }
761
762 /**
763 Initialize SMM profile in SmmReadyToLock protocol callback function.
764
765 @param Protocol Points to the protocol's unique identifier.
766 @param Interface Points to the interface instance.
767 @param Handle The handle on which the interface was installed.
768
769 @retval EFI_SUCCESS SmmReadyToLock protocol callback runs successfully.
770 **/
771 EFI_STATUS
772 EFIAPI
773 InitSmmProfileCallBack (
774 IN CONST EFI_GUID *Protocol,
775 IN VOID *Interface,
776 IN EFI_HANDLE Handle
777 )
778 {
779 EFI_STATUS Status;
780
781 //
782 // Save to variable so that SMM profile data can be found.
783 //
784 Status = gRT->SetVariable (
785 SMM_PROFILE_NAME,
786 &gEfiCallerIdGuid,
787 EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
788 sizeof(mSmmProfileBase),
789 &mSmmProfileBase
790 );
791
792 //
793 // Get Software SMI from FADT
794 //
795 GetSmiCommandPort ();
796
797 //
798 // Initialize protected memory range for patching page table later.
799 //
800 InitProtectedMemRange ();
801
802 return EFI_SUCCESS;
803 }
804
805 /**
806 Initialize SMM profile data structures.
807
808 **/
809 VOID
810 InitSmmProfileInternal (
811 VOID
812 )
813 {
814 EFI_STATUS Status;
815 EFI_PHYSICAL_ADDRESS Base;
816 VOID *Registration;
817 UINTN Index;
818 UINTN MsrDsAreaSizePerCpu;
819 UINTN TotalSize;
820
821 mPFEntryCount = (UINTN *)AllocateZeroPool (sizeof (UINTN) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
822 ASSERT (mPFEntryCount != NULL);
823 mLastPFEntryValue = (UINT64 (*)[MAX_PF_ENTRY_COUNT])AllocateZeroPool (
824 sizeof (mLastPFEntryValue[0]) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
825 ASSERT (mLastPFEntryValue != NULL);
826 mLastPFEntryPointer = (UINT64 *(*)[MAX_PF_ENTRY_COUNT])AllocateZeroPool (
827 sizeof (mLastPFEntryPointer[0]) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
828 ASSERT (mLastPFEntryPointer != NULL);
829
830 //
831 // Allocate memory for SmmProfile below 4GB.
832 // The base address
833 //
834 mSmmProfileSize = PcdGet32 (PcdCpuSmmProfileSize);
835 ASSERT ((mSmmProfileSize & 0xFFF) == 0);
836
837 if (mBtsSupported) {
838 TotalSize = mSmmProfileSize + mMsrDsAreaSize;
839 } else {
840 TotalSize = mSmmProfileSize;
841 }
842
843 Base = 0xFFFFFFFF;
844 Status = gBS->AllocatePages (
845 AllocateMaxAddress,
846 EfiReservedMemoryType,
847 EFI_SIZE_TO_PAGES (TotalSize),
848 &Base
849 );
850 ASSERT_EFI_ERROR (Status);
851 ZeroMem ((VOID *)(UINTN)Base, TotalSize);
852 mSmmProfileBase = (SMM_PROFILE_HEADER *)(UINTN)Base;
853
854 //
855 // Initialize SMM profile data header.
856 //
857 mSmmProfileBase->HeaderSize = sizeof (SMM_PROFILE_HEADER);
858 mSmmProfileBase->MaxDataEntries = (UINT64)((mSmmProfileSize - sizeof(SMM_PROFILE_HEADER)) / sizeof (SMM_PROFILE_ENTRY));
859 mSmmProfileBase->MaxDataSize = MultU64x64 (mSmmProfileBase->MaxDataEntries, sizeof(SMM_PROFILE_ENTRY));
860 mSmmProfileBase->CurDataEntries = 0;
861 mSmmProfileBase->CurDataSize = 0;
862 mSmmProfileBase->TsegStart = mCpuHotPlugData.SmrrBase;
863 mSmmProfileBase->TsegSize = mCpuHotPlugData.SmrrSize;
864 mSmmProfileBase->NumSmis = 0;
865 mSmmProfileBase->NumCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
866
867 if (mBtsSupported) {
868 mMsrDsArea = (MSR_DS_AREA_STRUCT **)AllocateZeroPool (sizeof (MSR_DS_AREA_STRUCT *) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
869 ASSERT (mMsrDsArea != NULL);
870 mMsrBTSRecord = (BRANCH_TRACE_RECORD **)AllocateZeroPool (sizeof (BRANCH_TRACE_RECORD *) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
871 ASSERT (mMsrBTSRecord != NULL);
872 mMsrPEBSRecord = (PEBS_RECORD **)AllocateZeroPool (sizeof (PEBS_RECORD *) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
873 ASSERT (mMsrPEBSRecord != NULL);
874
875 mMsrDsAreaBase = (MSR_DS_AREA_STRUCT *)((UINTN)Base + mSmmProfileSize);
876 MsrDsAreaSizePerCpu = mMsrDsAreaSize / PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
877 mBTSRecordNumber = (MsrDsAreaSizePerCpu - sizeof(PEBS_RECORD) * PEBS_RECORD_NUMBER - sizeof(MSR_DS_AREA_STRUCT)) / sizeof(BRANCH_TRACE_RECORD);
878 for (Index = 0; Index < PcdGet32 (PcdCpuMaxLogicalProcessorNumber); Index++) {
879 mMsrDsArea[Index] = (MSR_DS_AREA_STRUCT *)((UINTN)mMsrDsAreaBase + MsrDsAreaSizePerCpu * Index);
880 mMsrBTSRecord[Index] = (BRANCH_TRACE_RECORD *)((UINTN)mMsrDsArea[Index] + sizeof(MSR_DS_AREA_STRUCT));
881 mMsrPEBSRecord[Index] = (PEBS_RECORD *)((UINTN)mMsrDsArea[Index] + MsrDsAreaSizePerCpu - sizeof(PEBS_RECORD) * PEBS_RECORD_NUMBER);
882
883 mMsrDsArea[Index]->BTSBufferBase = (UINTN)mMsrBTSRecord[Index];
884 mMsrDsArea[Index]->BTSIndex = mMsrDsArea[Index]->BTSBufferBase;
885 mMsrDsArea[Index]->BTSAbsoluteMaximum = mMsrDsArea[Index]->BTSBufferBase + mBTSRecordNumber * sizeof(BRANCH_TRACE_RECORD) + 1;
886 mMsrDsArea[Index]->BTSInterruptThreshold = mMsrDsArea[Index]->BTSAbsoluteMaximum + 1;
887
888 mMsrDsArea[Index]->PEBSBufferBase = (UINTN)mMsrPEBSRecord[Index];
889 mMsrDsArea[Index]->PEBSIndex = mMsrDsArea[Index]->PEBSBufferBase;
890 mMsrDsArea[Index]->PEBSAbsoluteMaximum = mMsrDsArea[Index]->PEBSBufferBase + PEBS_RECORD_NUMBER * sizeof(PEBS_RECORD) + 1;
891 mMsrDsArea[Index]->PEBSInterruptThreshold = mMsrDsArea[Index]->PEBSAbsoluteMaximum + 1;
892 }
893 }
894
895 mProtectionMemRange = mProtectionMemRangeTemplate;
896 mProtectionMemRangeCount = sizeof (mProtectionMemRangeTemplate) / sizeof (MEMORY_PROTECTION_RANGE);
897
898 //
899 // Update TSeg entry.
900 //
901 mProtectionMemRange[0].Range.Base = mCpuHotPlugData.SmrrBase;
902 mProtectionMemRange[0].Range.Top = mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize;
903
904 //
905 // Update SMM profile entry.
906 //
907 mProtectionMemRange[1].Range.Base = (EFI_PHYSICAL_ADDRESS)(UINTN)mSmmProfileBase;
908 mProtectionMemRange[1].Range.Top = (EFI_PHYSICAL_ADDRESS)(UINTN)mSmmProfileBase + TotalSize;
909
910 //
911 // Allocate memory reserved for creating 4KB pages.
912 //
913 InitPagesForPFHandler ();
914
915 //
916 // Start SMM profile when SmmReadyToLock protocol is installed.
917 //
918 Status = gSmst->SmmRegisterProtocolNotify (
919 &gEfiSmmReadyToLockProtocolGuid,
920 InitSmmProfileCallBack,
921 &Registration
922 );
923 ASSERT_EFI_ERROR (Status);
924
925 return ;
926 }
927
928 /**
929 Check if XD feature is supported by a processor.
930
931 **/
932 VOID
933 CheckFeatureSupported (
934 VOID
935 )
936 {
937 UINT32 RegEax;
938 UINT32 RegEdx;
939
940 if (mXdSupported) {
941 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
942 if (RegEax <= CPUID_EXTENDED_FUNCTION) {
943 //
944 // Extended CPUID functions are not supported on this processor.
945 //
946 mXdSupported = FALSE;
947 }
948
949 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
950 if ((RegEdx & CPUID1_EDX_XD_SUPPORT) == 0) {
951 //
952 // Execute Disable Bit feature is not supported on this processor.
953 //
954 mXdSupported = FALSE;
955 }
956 }
957
958 if (mBtsSupported) {
959 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx);
960 if ((RegEdx & CPUID1_EDX_BTS_AVAILABLE) != 0) {
961 //
962 // Per IA32 manuals:
963 // When CPUID.1:EDX[21] is set, the following BTS facilities are available:
964 // 1. The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates the
965 // availability of the BTS facilities, including the ability to set the BTS and
966 // BTINT bits in the MSR_DEBUGCTLA MSR.
967 // 2. The IA32_DS_AREA MSR can be programmed to point to the DS save area.
968 //
969 if ((AsmMsrBitFieldRead64 (MSR_IA32_MISC_ENABLE, 11, 11) == 0) &&
970 (AsmMsrBitFieldRead64 (MSR_IA32_MISC_ENABLE, 12, 12) == 0)) {
971 //
972 // BTS facilities is supported.
973 //
974 mBtsSupported = FALSE;
975 }
976 }
977 }
978 }
979
980 /**
981 Check if XD and BTS features are supported by all processors.
982
983 **/
984 VOID
985 CheckProcessorFeature (
986 VOID
987 )
988 {
989 EFI_STATUS Status;
990 EFI_MP_SERVICES_PROTOCOL *MpServices;
991
992 Status = gBS->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
993 ASSERT_EFI_ERROR (Status);
994
995 //
996 // First detect if XD and BTS are supported
997 //
998 mXdSupported = TRUE;
999 mBtsSupported = TRUE;
1000
1001 //
1002 // Check if XD and BTS are supported on all processors.
1003 //
1004 CheckFeatureSupported ();
1005
1006 //
1007 //Check on other processors if BSP supports this
1008 //
1009 if (mXdSupported || mBtsSupported) {
1010 MpServices->StartupAllAPs (
1011 MpServices,
1012 (EFI_AP_PROCEDURE) CheckFeatureSupported,
1013 TRUE,
1014 NULL,
1015 0,
1016 NULL,
1017 NULL
1018 );
1019 }
1020 }
1021
1022 /**
1023 Enable XD feature.
1024
1025 **/
1026 VOID
1027 ActivateXd (
1028 VOID
1029 )
1030 {
1031 UINT64 MsrRegisters;
1032
1033 MsrRegisters = AsmReadMsr64 (MSR_EFER);
1034 if ((MsrRegisters & MSR_EFER_XD) != 0) {
1035 return ;
1036 }
1037 MsrRegisters |= MSR_EFER_XD;
1038 AsmWriteMsr64 (MSR_EFER, MsrRegisters);
1039 }
1040
1041 /**
1042 Enable single step.
1043
1044 **/
1045 VOID
1046 ActivateSingleStepDB (
1047 VOID
1048 )
1049 {
1050 UINTN Dr6;
1051
1052 Dr6 = AsmReadDr6 ();
1053 if ((Dr6 & DR6_SINGLE_STEP) != 0) {
1054 return;
1055 }
1056 Dr6 |= DR6_SINGLE_STEP;
1057 AsmWriteDr6 (Dr6);
1058 }
1059
1060 /**
1061 Enable last branch.
1062
1063 **/
1064 VOID
1065 ActivateLBR (
1066 VOID
1067 )
1068 {
1069 UINT64 DebugCtl;
1070
1071 DebugCtl = AsmReadMsr64 (MSR_DEBUG_CTL);
1072 if ((DebugCtl & MSR_DEBUG_CTL_LBR) != 0) {
1073 return ;
1074 }
1075 AsmWriteMsr64 (MSR_LER_FROM_LIP, 0);
1076 AsmWriteMsr64 (MSR_LER_TO_LIP, 0);
1077 DebugCtl |= MSR_DEBUG_CTL_LBR;
1078 AsmWriteMsr64 (MSR_DEBUG_CTL, DebugCtl);
1079 }
1080
1081 /**
1082 Enable branch trace store.
1083
1084 @param CpuIndex The index of the processor.
1085
1086 **/
1087 VOID
1088 ActivateBTS (
1089 IN UINTN CpuIndex
1090 )
1091 {
1092 UINT64 DebugCtl;
1093
1094 DebugCtl = AsmReadMsr64 (MSR_DEBUG_CTL);
1095 if ((DebugCtl & MSR_DEBUG_CTL_BTS) != 0) {
1096 return ;
1097 }
1098
1099 AsmWriteMsr64 (MSR_DS_AREA, (UINT64)(UINTN)mMsrDsArea[CpuIndex]);
1100 DebugCtl |= (UINT64)(MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR);
1101 DebugCtl &= ~((UINT64)MSR_DEBUG_CTL_BTINT);
1102 AsmWriteMsr64 (MSR_DEBUG_CTL, DebugCtl);
1103 }
1104
1105 /**
1106 Increase SMI number in each SMI entry.
1107
1108 **/
1109 VOID
1110 SmmProfileRecordSmiNum (
1111 VOID
1112 )
1113 {
1114 if (mSmmProfileStart) {
1115 mSmmProfileBase->NumSmis++;
1116 }
1117 }
1118
1119 /**
1120 Initialize processor environment for SMM profile.
1121
1122 @param CpuIndex The index of the processor.
1123
1124 **/
1125 VOID
1126 ActivateSmmProfile (
1127 IN UINTN CpuIndex
1128 )
1129 {
1130 //
1131 // Enable Single Step DB#
1132 //
1133 ActivateSingleStepDB ();
1134
1135 if (mBtsSupported) {
1136 //
1137 // We can not get useful information from LER, so we have to use BTS.
1138 //
1139 ActivateLBR ();
1140
1141 //
1142 // Enable BTS
1143 //
1144 ActivateBTS (CpuIndex);
1145 }
1146 }
1147
1148 /**
1149 Initialize SMM profile in SMM CPU entry point.
1150
1151 @param[in] Cr3 The base address of the page tables to use in SMM.
1152
1153 **/
1154 VOID
1155 InitSmmProfile (
1156 UINT32 Cr3
1157 )
1158 {
1159 //
1160 // Save Cr3
1161 //
1162 mSmmProfileCr3 = Cr3;
1163
1164 //
1165 // Skip SMM profile initialization if feature is disabled
1166 //
1167 if (!FeaturePcdGet (PcdCpuSmmProfileEnable)) {
1168 return;
1169 }
1170
1171 //
1172 // Initialize SmmProfile here
1173 //
1174 InitSmmProfileInternal ();
1175
1176 //
1177 // Initialize profile IDT.
1178 //
1179 InitIdtr ();
1180 }
1181
1182 /**
1183 Update page table to map the memory correctly in order to make the instruction
1184 which caused page fault execute successfully. And it also save the original page
1185 table to be restored in single-step exception.
1186
1187 @param PageTable PageTable Address.
1188 @param PFAddress The memory address which caused page fault exception.
1189 @param CpuIndex The index of the processor.
1190 @param ErrorCode The Error code of exception.
1191
1192 **/
1193 VOID
1194 RestorePageTableBelow4G (
1195 UINT64 *PageTable,
1196 UINT64 PFAddress,
1197 UINTN CpuIndex,
1198 UINTN ErrorCode
1199 )
1200 {
1201 UINTN PTIndex;
1202 UINTN PFIndex;
1203
1204 //
1205 // PML4
1206 //
1207 if (sizeof(UINT64) == sizeof(UINTN)) {
1208 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 39, 47);
1209 ASSERT (PageTable[PTIndex] != 0);
1210 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1211 }
1212
1213 //
1214 // PDPTE
1215 //
1216 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 30, 38);
1217 ASSERT (PageTable[PTIndex] != 0);
1218 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1219
1220 //
1221 // PD
1222 //
1223 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 21, 29);
1224 if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
1225 //
1226 // Large page
1227 //
1228
1229 //
1230 // Record old entries with non-present status
1231 // Old entries include the memory which instruction is at and the memory which instruction access.
1232 //
1233 //
1234 ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
1235 if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
1236 PFIndex = mPFEntryCount[CpuIndex];
1237 mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex];
1238 mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
1239 mPFEntryCount[CpuIndex]++;
1240 }
1241
1242 //
1243 // Set new entry
1244 //
1245 PageTable[PTIndex] = (PFAddress & ~((1ull << 21) - 1));
1246 PageTable[PTIndex] |= (UINT64)IA32_PG_PS;
1247 PageTable[PTIndex] |= (UINT64)(IA32_PG_RW | IA32_PG_P);
1248 if ((ErrorCode & IA32_PF_EC_ID) != 0) {
1249 PageTable[PTIndex] &= ~IA32_PG_NX;
1250 }
1251 } else {
1252 //
1253 // Small page
1254 //
1255 ASSERT (PageTable[PTIndex] != 0);
1256 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1257
1258 //
1259 // 4K PTE
1260 //
1261 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 12, 20);
1262
1263 //
1264 // Record old entries with non-present status
1265 // Old entries include the memory which instruction is at and the memory which instruction access.
1266 //
1267 //
1268 ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
1269 if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
1270 PFIndex = mPFEntryCount[CpuIndex];
1271 mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex];
1272 mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
1273 mPFEntryCount[CpuIndex]++;
1274 }
1275
1276 //
1277 // Set new entry
1278 //
1279 PageTable[PTIndex] = (PFAddress & ~((1ull << 12) - 1));
1280 PageTable[PTIndex] |= (UINT64)(IA32_PG_RW | IA32_PG_P);
1281 if ((ErrorCode & IA32_PF_EC_ID) != 0) {
1282 PageTable[PTIndex] &= ~IA32_PG_NX;
1283 }
1284 }
1285 }
1286
1287 /**
1288 The Page fault handler to save SMM profile data.
1289
1290 @param Rip The RIP when exception happens.
1291 @param ErrorCode The Error code of exception.
1292
1293 **/
1294 VOID
1295 SmmProfilePFHandler (
1296 UINTN Rip,
1297 UINTN ErrorCode
1298 )
1299 {
1300 UINT64 *PageTable;
1301 UINT64 PFAddress;
1302 UINTN CpuIndex;
1303 UINTN Index;
1304 UINT64 InstructionAddress;
1305 UINTN MaxEntryNumber;
1306 UINTN CurrentEntryNumber;
1307 BOOLEAN IsValidPFAddress;
1308 SMM_PROFILE_ENTRY *SmmProfileEntry;
1309 UINT64 SmiCommand;
1310 EFI_STATUS Status;
1311 UINTN SwSmiCpuIndex;
1312 UINT8 SoftSmiValue;
1313 EFI_SMM_SAVE_STATE_IO_INFO IoInfo;
1314
1315 if (!mSmmProfileStart) {
1316 //
1317 // If SMM profile does not start, call original page fault handler.
1318 //
1319 SmiDefaultPFHandler ();
1320 return;
1321 }
1322
1323 if (mBtsSupported) {
1324 DisableBTS ();
1325 }
1326
1327 IsValidPFAddress = FALSE;
1328 PageTable = (UINT64 *)AsmReadCr3 ();
1329 PFAddress = AsmReadCr2 ();
1330 CpuIndex = GetCpuIndex ();
1331
1332 if (PFAddress <= 0xFFFFFFFF) {
1333 RestorePageTableBelow4G (PageTable, PFAddress, CpuIndex, ErrorCode);
1334 } else {
1335 RestorePageTableAbove4G (PageTable, PFAddress, CpuIndex, ErrorCode, &IsValidPFAddress);
1336 }
1337
1338 if (!IsValidPFAddress) {
1339 InstructionAddress = Rip;
1340 if ((ErrorCode & IA32_PF_EC_ID) != 0 && (mBtsSupported)) {
1341 //
1342 // If it is instruction fetch failure, get the correct IP from BTS.
1343 //
1344 InstructionAddress = GetSourceFromDestinationOnBts (CpuIndex, Rip);
1345 if (InstructionAddress == 0) {
1346 //
1347 // It indicates the instruction which caused page fault is not a jump instruction,
1348 // set instruction address same as the page fault address.
1349 //
1350 InstructionAddress = PFAddress;
1351 }
1352 }
1353
1354 //
1355 // Try to find which CPU trigger SWSMI
1356 //
1357 SwSmiCpuIndex = 0;
1358 //
1359 // Indicate it is not software SMI
1360 //
1361 SmiCommand = 0xFFFFFFFFFFFFFFFFULL;
1362 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
1363 Status = SmmReadSaveState(&mSmmCpu, sizeof(IoInfo), EFI_SMM_SAVE_STATE_REGISTER_IO, Index, &IoInfo);
1364 if (EFI_ERROR (Status)) {
1365 continue;
1366 }
1367 if (IoInfo.IoPort == mSmiCommandPort) {
1368 //
1369 // Great! Find it.
1370 //
1371 SwSmiCpuIndex = Index;
1372 //
1373 // A software SMI triggered by SMI command port has been found, get SmiCommand from SMI command port.
1374 //
1375 SoftSmiValue = IoRead8 (mSmiCommandPort);
1376 SmiCommand = (UINT64)SoftSmiValue;
1377 break;
1378 }
1379 }
1380
1381 SmmProfileEntry = (SMM_PROFILE_ENTRY *)(UINTN)(mSmmProfileBase + 1);
1382 //
1383 // Check if there is already a same entry in profile data.
1384 //
1385 for (Index = 0; Index < (UINTN) mSmmProfileBase->CurDataEntries; Index++) {
1386 if ((SmmProfileEntry[Index].ErrorCode == (UINT64)ErrorCode) &&
1387 (SmmProfileEntry[Index].Address == PFAddress) &&
1388 (SmmProfileEntry[Index].CpuNum == (UINT64)CpuIndex) &&
1389 (SmmProfileEntry[Index].Instruction == InstructionAddress) &&
1390 (SmmProfileEntry[Index].SmiCmd == SmiCommand)) {
1391 //
1392 // Same record exist, need not save again.
1393 //
1394 break;
1395 }
1396 }
1397 if (Index == mSmmProfileBase->CurDataEntries) {
1398 CurrentEntryNumber = (UINTN) mSmmProfileBase->CurDataEntries;
1399 MaxEntryNumber = (UINTN) mSmmProfileBase->MaxDataEntries;
1400 if (FeaturePcdGet (PcdCpuSmmProfileRingBuffer)) {
1401 CurrentEntryNumber = CurrentEntryNumber % MaxEntryNumber;
1402 }
1403 if (CurrentEntryNumber < MaxEntryNumber) {
1404 //
1405 // Log the new entry
1406 //
1407 SmmProfileEntry[CurrentEntryNumber].SmiNum = mSmmProfileBase->NumSmis;
1408 SmmProfileEntry[CurrentEntryNumber].ErrorCode = (UINT64)ErrorCode;
1409 SmmProfileEntry[CurrentEntryNumber].ApicId = (UINT64)GetApicId ();
1410 SmmProfileEntry[CurrentEntryNumber].CpuNum = (UINT64)CpuIndex;
1411 SmmProfileEntry[CurrentEntryNumber].Address = PFAddress;
1412 SmmProfileEntry[CurrentEntryNumber].Instruction = InstructionAddress;
1413 SmmProfileEntry[CurrentEntryNumber].SmiCmd = SmiCommand;
1414 //
1415 // Update current entry index and data size in the header.
1416 //
1417 mSmmProfileBase->CurDataEntries++;
1418 mSmmProfileBase->CurDataSize = MultU64x64 (mSmmProfileBase->CurDataEntries, sizeof (SMM_PROFILE_ENTRY));
1419 }
1420 }
1421 }
1422 //
1423 // Flush TLB
1424 //
1425 CpuFlushTlb ();
1426
1427 if (mBtsSupported) {
1428 EnableBTS ();
1429 }
1430 }
1431
1432 /**
1433 Replace INT1 exception handler to restore page table to absent/execute-disable state
1434 in order to trigger page fault again to save SMM profile data..
1435
1436 **/
1437 VOID
1438 InitIdtr (
1439 VOID
1440 )
1441 {
1442 SmmRegisterExceptionHandler (&mSmmCpuService, EXCEPT_IA32_DEBUG, DebugExceptionHandler);
1443 }