]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/SmmProfile.c
UefiCpuPkg/PiSmmCpuDxeSmm: Clean up CheckFeatureSupported()
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / SmmProfile.c
1 /** @file
2 Enable SMM profile.
3
4 Copyright (c) 2012 - 2016, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PiSmmCpuDxeSmm.h"
16 #include "SmmProfileInternal.h"
17
18 UINT32 mSmmProfileCr3;
19
20 SMM_PROFILE_HEADER *mSmmProfileBase;
21 MSR_DS_AREA_STRUCT *mMsrDsAreaBase;
22 //
23 // The buffer to store SMM profile data.
24 //
25 UINTN mSmmProfileSize;
26
27 //
28 // The buffer to enable branch trace store.
29 //
30 UINTN mMsrDsAreaSize = SMM_PROFILE_DTS_SIZE;
31
32 //
33 // The flag indicates if execute-disable is supported by processor.
34 //
35 BOOLEAN mXdSupported = TRUE;
36
37 //
38 // The flag indicates if execute-disable is enabled on processor.
39 //
40 BOOLEAN mXdEnabled = FALSE;
41
42 //
43 // The flag indicates if BTS is supported by processor.
44 //
45 BOOLEAN mBtsSupported = TRUE;
46
47 //
48 // The flag indicates if SMM profile starts to record data.
49 //
50 BOOLEAN mSmmProfileStart = FALSE;
51
52 //
53 // Record the page fault exception count for one instruction execution.
54 //
55 UINTN *mPFEntryCount;
56
57 UINT64 (*mLastPFEntryValue)[MAX_PF_ENTRY_COUNT];
58 UINT64 *(*mLastPFEntryPointer)[MAX_PF_ENTRY_COUNT];
59
60 MSR_DS_AREA_STRUCT **mMsrDsArea;
61 BRANCH_TRACE_RECORD **mMsrBTSRecord;
62 UINTN mBTSRecordNumber;
63 PEBS_RECORD **mMsrPEBSRecord;
64
65 //
66 // These memory ranges are always present, they does not generate the access type of page fault exception,
67 // but they possibly generate instruction fetch type of page fault exception.
68 //
69 MEMORY_PROTECTION_RANGE *mProtectionMemRange = NULL;
70 UINTN mProtectionMemRangeCount = 0;
71
72 //
73 // Some predefined memory ranges.
74 //
75 MEMORY_PROTECTION_RANGE mProtectionMemRangeTemplate[] = {
76 //
77 // SMRAM range (to be fixed in runtime).
78 // It is always present and instruction fetches are allowed.
79 //
80 {{0x00000000, 0x00000000},TRUE,FALSE},
81
82 //
83 // SMM profile data range( to be fixed in runtime).
84 // It is always present and instruction fetches are not allowed.
85 //
86 {{0x00000000, 0x00000000},TRUE,TRUE},
87
88 //
89 // Future extended range could be added here.
90 //
91
92 //
93 // PCI MMIO ranges (to be added in runtime).
94 // They are always present and instruction fetches are not allowed.
95 //
96 };
97
98 //
99 // These memory ranges are mapped by 4KB-page instead of 2MB-page.
100 //
101 MEMORY_RANGE *mSplitMemRange = NULL;
102 UINTN mSplitMemRangeCount = 0;
103
104 //
105 // SMI command port.
106 //
107 UINT32 mSmiCommandPort;
108
109 /**
110 Disable branch trace store.
111
112 **/
113 VOID
114 DisableBTS (
115 VOID
116 )
117 {
118 AsmMsrAnd64 (MSR_DEBUG_CTL, ~((UINT64)(MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR)));
119 }
120
121 /**
122 Enable branch trace store.
123
124 **/
125 VOID
126 EnableBTS (
127 VOID
128 )
129 {
130 AsmMsrOr64 (MSR_DEBUG_CTL, (MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR));
131 }
132
133 /**
134 Get CPU Index from APIC ID.
135
136 **/
137 UINTN
138 GetCpuIndex (
139 VOID
140 )
141 {
142 UINTN Index;
143 UINT32 ApicId;
144
145 ApicId = GetApicId ();
146
147 for (Index = 0; Index < PcdGet32 (PcdCpuMaxLogicalProcessorNumber); Index++) {
148 if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == ApicId) {
149 return Index;
150 }
151 }
152 ASSERT (FALSE);
153 return 0;
154 }
155
156 /**
157 Get the source of IP after execute-disable exception is triggered.
158
159 @param CpuIndex The index of CPU.
160 @param DestinationIP The destination address.
161
162 **/
163 UINT64
164 GetSourceFromDestinationOnBts (
165 UINTN CpuIndex,
166 UINT64 DestinationIP
167 )
168 {
169 BRANCH_TRACE_RECORD *CurrentBTSRecord;
170 UINTN Index;
171 BOOLEAN FirstMatch;
172
173 FirstMatch = FALSE;
174
175 CurrentBTSRecord = (BRANCH_TRACE_RECORD *)mMsrDsArea[CpuIndex]->BTSIndex;
176 for (Index = 0; Index < mBTSRecordNumber; Index++) {
177 if ((UINTN)CurrentBTSRecord < (UINTN)mMsrBTSRecord[CpuIndex]) {
178 //
179 // Underflow
180 //
181 CurrentBTSRecord = (BRANCH_TRACE_RECORD *)((UINTN)mMsrDsArea[CpuIndex]->BTSAbsoluteMaximum - 1);
182 CurrentBTSRecord --;
183 }
184 if (CurrentBTSRecord->LastBranchTo == DestinationIP) {
185 //
186 // Good! find 1st one, then find 2nd one.
187 //
188 if (!FirstMatch) {
189 //
190 // The first one is DEBUG exception
191 //
192 FirstMatch = TRUE;
193 } else {
194 //
195 // Good find proper one.
196 //
197 return CurrentBTSRecord->LastBranchFrom;
198 }
199 }
200 CurrentBTSRecord--;
201 }
202
203 return 0;
204 }
205
206 /**
207 SMM profile specific INT 1 (single-step) exception handler.
208
209 @param InterruptType Defines the type of interrupt or exception that
210 occurred on the processor.This parameter is processor architecture specific.
211 @param SystemContext A pointer to the processor context when
212 the interrupt occurred on the processor.
213 **/
214 VOID
215 EFIAPI
216 DebugExceptionHandler (
217 IN EFI_EXCEPTION_TYPE InterruptType,
218 IN EFI_SYSTEM_CONTEXT SystemContext
219 )
220 {
221 UINTN CpuIndex;
222 UINTN PFEntry;
223
224 if (!mSmmProfileStart) {
225 return;
226 }
227 CpuIndex = GetCpuIndex ();
228
229 //
230 // Clear last PF entries
231 //
232 for (PFEntry = 0; PFEntry < mPFEntryCount[CpuIndex]; PFEntry++) {
233 *mLastPFEntryPointer[CpuIndex][PFEntry] = mLastPFEntryValue[CpuIndex][PFEntry];
234 }
235
236 //
237 // Reset page fault exception count for next page fault.
238 //
239 mPFEntryCount[CpuIndex] = 0;
240
241 //
242 // Flush TLB
243 //
244 CpuFlushTlb ();
245
246 //
247 // Clear TF in EFLAGS
248 //
249 ClearTrapFlag (SystemContext);
250 }
251
252 /**
253 Check if the memory address will be mapped by 4KB-page.
254
255 @param Address The address of Memory.
256 @param Nx The flag indicates if the memory is execute-disable.
257
258 **/
259 BOOLEAN
260 IsAddressValid (
261 IN EFI_PHYSICAL_ADDRESS Address,
262 IN BOOLEAN *Nx
263 )
264 {
265 UINTN Index;
266
267 *Nx = FALSE;
268 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
269 //
270 // Check configuration
271 //
272 for (Index = 0; Index < mProtectionMemRangeCount; Index++) {
273 if ((Address >= mProtectionMemRange[Index].Range.Base) && (Address < mProtectionMemRange[Index].Range.Top)) {
274 *Nx = mProtectionMemRange[Index].Nx;
275 return mProtectionMemRange[Index].Present;
276 }
277 }
278 *Nx = TRUE;
279 return FALSE;
280
281 } else {
282 if ((Address < mCpuHotPlugData.SmrrBase) ||
283 (Address >= mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize)) {
284 *Nx = TRUE;
285 }
286 return TRUE;
287 }
288 }
289
290 /**
291 Check if the memory address will be mapped by 4KB-page.
292
293 @param Address The address of Memory.
294
295 **/
296 BOOLEAN
297 IsAddressSplit (
298 IN EFI_PHYSICAL_ADDRESS Address
299 )
300 {
301 UINTN Index;
302
303 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
304 //
305 // Check configuration
306 //
307 for (Index = 0; Index < mSplitMemRangeCount; Index++) {
308 if ((Address >= mSplitMemRange[Index].Base) && (Address < mSplitMemRange[Index].Top)) {
309 return TRUE;
310 }
311 }
312 } else {
313 if (Address < mCpuHotPlugData.SmrrBase) {
314 if ((mCpuHotPlugData.SmrrBase - Address) < BASE_2MB) {
315 return TRUE;
316 }
317 } else if (Address > (mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize - BASE_2MB)) {
318 if ((Address - (mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize - BASE_2MB)) < BASE_2MB) {
319 return TRUE;
320 }
321 }
322 }
323 //
324 // Return default
325 //
326 return FALSE;
327 }
328
329 /**
330 Initialize the protected memory ranges and the 4KB-page mapped memory ranges.
331
332 **/
333 VOID
334 InitProtectedMemRange (
335 VOID
336 )
337 {
338 UINTN Index;
339 UINTN NumberOfDescriptors;
340 UINTN NumberOfMmioDescriptors;
341 UINTN NumberOfProtectRange;
342 UINTN NumberOfSpliteRange;
343 EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
344 UINTN TotalSize;
345 EFI_PHYSICAL_ADDRESS ProtectBaseAddress;
346 EFI_PHYSICAL_ADDRESS ProtectEndAddress;
347 EFI_PHYSICAL_ADDRESS Top2MBAlignedAddress;
348 EFI_PHYSICAL_ADDRESS Base2MBAlignedAddress;
349 UINT64 High4KBPageSize;
350 UINT64 Low4KBPageSize;
351
352 NumberOfDescriptors = 0;
353 NumberOfMmioDescriptors = 0;
354 NumberOfSpliteRange = 0;
355 MemorySpaceMap = NULL;
356
357 //
358 // Get MMIO ranges from GCD and add them into protected memory ranges.
359 //
360 gDS->GetMemorySpaceMap (
361 &NumberOfDescriptors,
362 &MemorySpaceMap
363 );
364 for (Index = 0; Index < NumberOfDescriptors; Index++) {
365 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {
366 NumberOfMmioDescriptors++;
367 }
368 }
369
370 if (NumberOfMmioDescriptors != 0) {
371 TotalSize = NumberOfMmioDescriptors * sizeof (MEMORY_PROTECTION_RANGE) + sizeof (mProtectionMemRangeTemplate);
372 mProtectionMemRange = (MEMORY_PROTECTION_RANGE *) AllocateZeroPool (TotalSize);
373 ASSERT (mProtectionMemRange != NULL);
374 mProtectionMemRangeCount = TotalSize / sizeof (MEMORY_PROTECTION_RANGE);
375
376 //
377 // Copy existing ranges.
378 //
379 CopyMem (mProtectionMemRange, mProtectionMemRangeTemplate, sizeof (mProtectionMemRangeTemplate));
380
381 //
382 // Create split ranges which come from protected ranges.
383 //
384 TotalSize = (TotalSize / sizeof (MEMORY_PROTECTION_RANGE)) * sizeof (MEMORY_RANGE);
385 mSplitMemRange = (MEMORY_RANGE *) AllocateZeroPool (TotalSize);
386 ASSERT (mSplitMemRange != NULL);
387
388 //
389 // Create MMIO ranges which are set to present and execution-disable.
390 //
391 NumberOfProtectRange = sizeof (mProtectionMemRangeTemplate) / sizeof (MEMORY_PROTECTION_RANGE);
392 for (Index = 0; Index < NumberOfDescriptors; Index++) {
393 if (MemorySpaceMap[Index].GcdMemoryType != EfiGcdMemoryTypeMemoryMappedIo) {
394 continue;
395 }
396 mProtectionMemRange[NumberOfProtectRange].Range.Base = MemorySpaceMap[Index].BaseAddress;
397 mProtectionMemRange[NumberOfProtectRange].Range.Top = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length;
398 mProtectionMemRange[NumberOfProtectRange].Present = TRUE;
399 mProtectionMemRange[NumberOfProtectRange].Nx = TRUE;
400 NumberOfProtectRange++;
401 }
402 }
403
404 //
405 // According to protected ranges, create the ranges which will be mapped by 2KB page.
406 //
407 NumberOfSpliteRange = 0;
408 NumberOfProtectRange = mProtectionMemRangeCount;
409 for (Index = 0; Index < NumberOfProtectRange; Index++) {
410 //
411 // If MMIO base address is not 2MB alignment, make 2MB alignment for create 4KB page in page table.
412 //
413 ProtectBaseAddress = mProtectionMemRange[Index].Range.Base;
414 ProtectEndAddress = mProtectionMemRange[Index].Range.Top;
415 if (((ProtectBaseAddress & (SIZE_2MB - 1)) != 0) || ((ProtectEndAddress & (SIZE_2MB - 1)) != 0)) {
416 //
417 // Check if it is possible to create 4KB-page for not 2MB-aligned range and to create 2MB-page for 2MB-aligned range.
418 // A mix of 4KB and 2MB page could save SMRAM space.
419 //
420 Top2MBAlignedAddress = ProtectEndAddress & ~(SIZE_2MB - 1);
421 Base2MBAlignedAddress = (ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
422 if ((Top2MBAlignedAddress > Base2MBAlignedAddress) &&
423 ((Top2MBAlignedAddress - Base2MBAlignedAddress) >= SIZE_2MB)) {
424 //
425 // There is an range which could be mapped by 2MB-page.
426 //
427 High4KBPageSize = ((ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1)) - (ProtectEndAddress & ~(SIZE_2MB - 1));
428 Low4KBPageSize = ((ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1)) - (ProtectBaseAddress & ~(SIZE_2MB - 1));
429 if (High4KBPageSize != 0) {
430 //
431 // Add not 2MB-aligned range to be mapped by 4KB-page.
432 //
433 mSplitMemRange[NumberOfSpliteRange].Base = ProtectEndAddress & ~(SIZE_2MB - 1);
434 mSplitMemRange[NumberOfSpliteRange].Top = (ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
435 NumberOfSpliteRange++;
436 }
437 if (Low4KBPageSize != 0) {
438 //
439 // Add not 2MB-aligned range to be mapped by 4KB-page.
440 //
441 mSplitMemRange[NumberOfSpliteRange].Base = ProtectBaseAddress & ~(SIZE_2MB - 1);
442 mSplitMemRange[NumberOfSpliteRange].Top = (ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
443 NumberOfSpliteRange++;
444 }
445 } else {
446 //
447 // The range could only be mapped by 4KB-page.
448 //
449 mSplitMemRange[NumberOfSpliteRange].Base = ProtectBaseAddress & ~(SIZE_2MB - 1);
450 mSplitMemRange[NumberOfSpliteRange].Top = (ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
451 NumberOfSpliteRange++;
452 }
453 }
454 }
455
456 mSplitMemRangeCount = NumberOfSpliteRange;
457
458 DEBUG ((EFI_D_INFO, "SMM Profile Memory Ranges:\n"));
459 for (Index = 0; Index < mProtectionMemRangeCount; Index++) {
460 DEBUG ((EFI_D_INFO, "mProtectionMemRange[%d].Base = %lx\n", Index, mProtectionMemRange[Index].Range.Base));
461 DEBUG ((EFI_D_INFO, "mProtectionMemRange[%d].Top = %lx\n", Index, mProtectionMemRange[Index].Range.Top));
462 }
463 for (Index = 0; Index < mSplitMemRangeCount; Index++) {
464 DEBUG ((EFI_D_INFO, "mSplitMemRange[%d].Base = %lx\n", Index, mSplitMemRange[Index].Base));
465 DEBUG ((EFI_D_INFO, "mSplitMemRange[%d].Top = %lx\n", Index, mSplitMemRange[Index].Top));
466 }
467 }
468
469 /**
470 Update page table according to protected memory ranges and the 4KB-page mapped memory ranges.
471
472 **/
473 VOID
474 InitPaging (
475 VOID
476 )
477 {
478 UINT64 *Pml4;
479 UINT64 *Pde;
480 UINT64 *Pte;
481 UINT64 *Pt;
482 UINTN Address;
483 UINTN Level1;
484 UINTN Level2;
485 UINTN Level3;
486 UINTN Level4;
487 UINTN NumberOfPdpEntries;
488 UINTN NumberOfPml4Entries;
489 UINTN SizeOfMemorySpace;
490 BOOLEAN Nx;
491
492 if (sizeof (UINTN) == sizeof (UINT64)) {
493 Pml4 = (UINT64*)(UINTN)mSmmProfileCr3;
494 SizeOfMemorySpace = HighBitSet64 (gPhyMask) + 1;
495 //
496 // Calculate the table entries of PML4E and PDPTE.
497 //
498 if (SizeOfMemorySpace <= 39 ) {
499 NumberOfPml4Entries = 1;
500 NumberOfPdpEntries = (UINT32)LShiftU64 (1, (SizeOfMemorySpace - 30));
501 } else {
502 NumberOfPml4Entries = (UINT32)LShiftU64 (1, (SizeOfMemorySpace - 39));
503 NumberOfPdpEntries = 512;
504 }
505 } else {
506 NumberOfPml4Entries = 1;
507 NumberOfPdpEntries = 4;
508 }
509
510 //
511 // Go through page table and change 2MB-page into 4KB-page.
512 //
513 for (Level1 = 0; Level1 < NumberOfPml4Entries; Level1++) {
514 if (sizeof (UINTN) == sizeof (UINT64)) {
515 if ((Pml4[Level1] & IA32_PG_P) == 0) {
516 //
517 // If Pml4 entry does not exist, skip it
518 //
519 continue;
520 }
521 Pde = (UINT64 *)(UINTN)(Pml4[Level1] & PHYSICAL_ADDRESS_MASK);
522 } else {
523 Pde = (UINT64*)(UINTN)mSmmProfileCr3;
524 }
525 for (Level2 = 0; Level2 < NumberOfPdpEntries; Level2++, Pde++) {
526 if ((*Pde & IA32_PG_P) == 0) {
527 //
528 // If PDE entry does not exist, skip it
529 //
530 continue;
531 }
532 Pte = (UINT64 *)(UINTN)(*Pde & PHYSICAL_ADDRESS_MASK);
533 if (Pte == 0) {
534 continue;
535 }
536 for (Level3 = 0; Level3 < SIZE_4KB / sizeof (*Pte); Level3++, Pte++) {
537 if ((*Pte & IA32_PG_P) == 0) {
538 //
539 // If PTE entry does not exist, skip it
540 //
541 continue;
542 }
543 Address = (((Level2 << 9) + Level3) << 21);
544
545 //
546 // If it is 2M page, check IsAddressSplit()
547 //
548 if (((*Pte & IA32_PG_PS) != 0) && IsAddressSplit (Address)) {
549 //
550 // Based on current page table, create 4KB page table for split area.
551 //
552 ASSERT (Address == (*Pte & PHYSICAL_ADDRESS_MASK));
553
554 Pt = AllocatePageTableMemory (1);
555 ASSERT (Pt != NULL);
556
557 // Split it
558 for (Level4 = 0; Level4 < SIZE_4KB / sizeof(*Pt); Level4++) {
559 Pt[Level4] = Address + ((Level4 << 12) | PAGE_ATTRIBUTE_BITS);
560 } // end for PT
561 *Pte = (UINTN)Pt | PAGE_ATTRIBUTE_BITS;
562 } // end if IsAddressSplit
563 } // end for PTE
564 } // end for PDE
565 }
566
567 //
568 // Go through page table and set several page table entries to absent or execute-disable.
569 //
570 DEBUG ((EFI_D_INFO, "Patch page table start ...\n"));
571 for (Level1 = 0; Level1 < NumberOfPml4Entries; Level1++) {
572 if (sizeof (UINTN) == sizeof (UINT64)) {
573 if ((Pml4[Level1] & IA32_PG_P) == 0) {
574 //
575 // If Pml4 entry does not exist, skip it
576 //
577 continue;
578 }
579 Pde = (UINT64 *)(UINTN)(Pml4[Level1] & PHYSICAL_ADDRESS_MASK);
580 } else {
581 Pde = (UINT64*)(UINTN)mSmmProfileCr3;
582 }
583 for (Level2 = 0; Level2 < NumberOfPdpEntries; Level2++, Pde++) {
584 if ((*Pde & IA32_PG_P) == 0) {
585 //
586 // If PDE entry does not exist, skip it
587 //
588 continue;
589 }
590 Pte = (UINT64 *)(UINTN)(*Pde & PHYSICAL_ADDRESS_MASK);
591 if (Pte == 0) {
592 continue;
593 }
594 for (Level3 = 0; Level3 < SIZE_4KB / sizeof (*Pte); Level3++, Pte++) {
595 if ((*Pte & IA32_PG_P) == 0) {
596 //
597 // If PTE entry does not exist, skip it
598 //
599 continue;
600 }
601 Address = (((Level2 << 9) + Level3) << 21);
602
603 if ((*Pte & IA32_PG_PS) != 0) {
604 // 2MB page
605
606 if (!IsAddressValid (Address, &Nx)) {
607 //
608 // Patch to remove Present flag and RW flag
609 //
610 *Pte = *Pte & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
611 }
612 if (Nx && mXdSupported) {
613 *Pte = *Pte | IA32_PG_NX;
614 }
615 } else {
616 // 4KB page
617 Pt = (UINT64 *)(UINTN)(*Pte & PHYSICAL_ADDRESS_MASK);
618 if (Pt == 0) {
619 continue;
620 }
621 for (Level4 = 0; Level4 < SIZE_4KB / sizeof(*Pt); Level4++, Pt++) {
622 if (!IsAddressValid (Address, &Nx)) {
623 *Pt = *Pt & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
624 }
625 if (Nx && mXdSupported) {
626 *Pt = *Pt | IA32_PG_NX;
627 }
628 Address += SIZE_4KB;
629 } // end for PT
630 } // end if PS
631 } // end for PTE
632 } // end for PDE
633 }
634
635 //
636 // Flush TLB
637 //
638 CpuFlushTlb ();
639 DEBUG ((EFI_D_INFO, "Patch page table done!\n"));
640 //
641 // Set execute-disable flag
642 //
643 mXdEnabled = TRUE;
644
645 return ;
646 }
647
648 /**
649 To find FADT in ACPI tables.
650
651 @param AcpiTableGuid The GUID used to find ACPI table in UEFI ConfigurationTable.
652
653 @return FADT table pointer.
654 **/
655 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *
656 FindAcpiFadtTableByAcpiGuid (
657 IN EFI_GUID *AcpiTableGuid
658 )
659 {
660 EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp;
661 EFI_ACPI_DESCRIPTION_HEADER *Rsdt;
662 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
663 UINTN Index;
664 UINT32 Data32;
665 Rsdp = NULL;
666 Rsdt = NULL;
667 Fadt = NULL;
668 //
669 // found ACPI table RSD_PTR from system table
670 //
671 for (Index = 0; Index < gST->NumberOfTableEntries; Index++) {
672 if (CompareGuid (&(gST->ConfigurationTable[Index].VendorGuid), AcpiTableGuid)) {
673 //
674 // A match was found.
675 //
676 Rsdp = gST->ConfigurationTable[Index].VendorTable;
677 break;
678 }
679 }
680
681 if (Rsdp == NULL) {
682 return NULL;
683 }
684
685 Rsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN) Rsdp->RsdtAddress;
686 if (Rsdt == NULL || Rsdt->Signature != EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_TABLE_SIGNATURE) {
687 return NULL;
688 }
689
690 for (Index = sizeof (EFI_ACPI_DESCRIPTION_HEADER); Index < Rsdt->Length; Index = Index + sizeof (UINT32)) {
691
692 Data32 = *(UINT32 *) ((UINT8 *) Rsdt + Index);
693 Fadt = (EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *) (UINT32 *) (UINTN) Data32;
694 if (Fadt->Header.Signature == EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
695 break;
696 }
697 }
698
699 if (Fadt == NULL || Fadt->Header.Signature != EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
700 return NULL;
701 }
702
703 return Fadt;
704 }
705
706 /**
707 To find FADT in ACPI tables.
708
709 @return FADT table pointer.
710 **/
711 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *
712 FindAcpiFadtTable (
713 VOID
714 )
715 {
716 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
717
718 Fadt = FindAcpiFadtTableByAcpiGuid (&gEfiAcpi20TableGuid);
719 if (Fadt != NULL) {
720 return Fadt;
721 }
722
723 return FindAcpiFadtTableByAcpiGuid (&gEfiAcpi10TableGuid);
724 }
725
726 /**
727 To get system port address of the SMI Command Port in FADT table.
728
729 **/
730 VOID
731 GetSmiCommandPort (
732 VOID
733 )
734 {
735 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
736
737 Fadt = FindAcpiFadtTable ();
738 ASSERT (Fadt != NULL);
739
740 mSmiCommandPort = Fadt->SmiCmd;
741 DEBUG ((EFI_D_INFO, "mSmiCommandPort = %x\n", mSmiCommandPort));
742 }
743
744 /**
745 Updates page table to make some memory ranges (like system memory) absent
746 and make some memory ranges (like MMIO) present and execute disable. It also
747 update 2MB-page to 4KB-page for some memory ranges.
748
749 **/
750 VOID
751 SmmProfileStart (
752 VOID
753 )
754 {
755 //
756 // The flag indicates SMM profile starts to work.
757 //
758 mSmmProfileStart = TRUE;
759 }
760
761 /**
762 Initialize SMM profile in SmmReadyToLock protocol callback function.
763
764 @param Protocol Points to the protocol's unique identifier.
765 @param Interface Points to the interface instance.
766 @param Handle The handle on which the interface was installed.
767
768 @retval EFI_SUCCESS SmmReadyToLock protocol callback runs successfully.
769 **/
770 EFI_STATUS
771 EFIAPI
772 InitSmmProfileCallBack (
773 IN CONST EFI_GUID *Protocol,
774 IN VOID *Interface,
775 IN EFI_HANDLE Handle
776 )
777 {
778 //
779 // Save to variable so that SMM profile data can be found.
780 //
781 gRT->SetVariable (
782 SMM_PROFILE_NAME,
783 &gEfiCallerIdGuid,
784 EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
785 sizeof(mSmmProfileBase),
786 &mSmmProfileBase
787 );
788
789 //
790 // Get Software SMI from FADT
791 //
792 GetSmiCommandPort ();
793
794 //
795 // Initialize protected memory range for patching page table later.
796 //
797 InitProtectedMemRange ();
798
799 return EFI_SUCCESS;
800 }
801
802 /**
803 Initialize SMM profile data structures.
804
805 **/
806 VOID
807 InitSmmProfileInternal (
808 VOID
809 )
810 {
811 EFI_STATUS Status;
812 EFI_PHYSICAL_ADDRESS Base;
813 VOID *Registration;
814 UINTN Index;
815 UINTN MsrDsAreaSizePerCpu;
816 UINTN TotalSize;
817
818 mPFEntryCount = (UINTN *)AllocateZeroPool (sizeof (UINTN) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
819 ASSERT (mPFEntryCount != NULL);
820 mLastPFEntryValue = (UINT64 (*)[MAX_PF_ENTRY_COUNT])AllocateZeroPool (
821 sizeof (mLastPFEntryValue[0]) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
822 ASSERT (mLastPFEntryValue != NULL);
823 mLastPFEntryPointer = (UINT64 *(*)[MAX_PF_ENTRY_COUNT])AllocateZeroPool (
824 sizeof (mLastPFEntryPointer[0]) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
825 ASSERT (mLastPFEntryPointer != NULL);
826
827 //
828 // Allocate memory for SmmProfile below 4GB.
829 // The base address
830 //
831 mSmmProfileSize = PcdGet32 (PcdCpuSmmProfileSize);
832 ASSERT ((mSmmProfileSize & 0xFFF) == 0);
833
834 if (mBtsSupported) {
835 TotalSize = mSmmProfileSize + mMsrDsAreaSize;
836 } else {
837 TotalSize = mSmmProfileSize;
838 }
839
840 Base = 0xFFFFFFFF;
841 Status = gBS->AllocatePages (
842 AllocateMaxAddress,
843 EfiReservedMemoryType,
844 EFI_SIZE_TO_PAGES (TotalSize),
845 &Base
846 );
847 ASSERT_EFI_ERROR (Status);
848 ZeroMem ((VOID *)(UINTN)Base, TotalSize);
849 mSmmProfileBase = (SMM_PROFILE_HEADER *)(UINTN)Base;
850
851 //
852 // Initialize SMM profile data header.
853 //
854 mSmmProfileBase->HeaderSize = sizeof (SMM_PROFILE_HEADER);
855 mSmmProfileBase->MaxDataEntries = (UINT64)((mSmmProfileSize - sizeof(SMM_PROFILE_HEADER)) / sizeof (SMM_PROFILE_ENTRY));
856 mSmmProfileBase->MaxDataSize = MultU64x64 (mSmmProfileBase->MaxDataEntries, sizeof(SMM_PROFILE_ENTRY));
857 mSmmProfileBase->CurDataEntries = 0;
858 mSmmProfileBase->CurDataSize = 0;
859 mSmmProfileBase->TsegStart = mCpuHotPlugData.SmrrBase;
860 mSmmProfileBase->TsegSize = mCpuHotPlugData.SmrrSize;
861 mSmmProfileBase->NumSmis = 0;
862 mSmmProfileBase->NumCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
863
864 if (mBtsSupported) {
865 mMsrDsArea = (MSR_DS_AREA_STRUCT **)AllocateZeroPool (sizeof (MSR_DS_AREA_STRUCT *) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
866 ASSERT (mMsrDsArea != NULL);
867 mMsrBTSRecord = (BRANCH_TRACE_RECORD **)AllocateZeroPool (sizeof (BRANCH_TRACE_RECORD *) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
868 ASSERT (mMsrBTSRecord != NULL);
869 mMsrPEBSRecord = (PEBS_RECORD **)AllocateZeroPool (sizeof (PEBS_RECORD *) * PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
870 ASSERT (mMsrPEBSRecord != NULL);
871
872 mMsrDsAreaBase = (MSR_DS_AREA_STRUCT *)((UINTN)Base + mSmmProfileSize);
873 MsrDsAreaSizePerCpu = mMsrDsAreaSize / PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
874 mBTSRecordNumber = (MsrDsAreaSizePerCpu - sizeof(PEBS_RECORD) * PEBS_RECORD_NUMBER - sizeof(MSR_DS_AREA_STRUCT)) / sizeof(BRANCH_TRACE_RECORD);
875 for (Index = 0; Index < PcdGet32 (PcdCpuMaxLogicalProcessorNumber); Index++) {
876 mMsrDsArea[Index] = (MSR_DS_AREA_STRUCT *)((UINTN)mMsrDsAreaBase + MsrDsAreaSizePerCpu * Index);
877 mMsrBTSRecord[Index] = (BRANCH_TRACE_RECORD *)((UINTN)mMsrDsArea[Index] + sizeof(MSR_DS_AREA_STRUCT));
878 mMsrPEBSRecord[Index] = (PEBS_RECORD *)((UINTN)mMsrDsArea[Index] + MsrDsAreaSizePerCpu - sizeof(PEBS_RECORD) * PEBS_RECORD_NUMBER);
879
880 mMsrDsArea[Index]->BTSBufferBase = (UINTN)mMsrBTSRecord[Index];
881 mMsrDsArea[Index]->BTSIndex = mMsrDsArea[Index]->BTSBufferBase;
882 mMsrDsArea[Index]->BTSAbsoluteMaximum = mMsrDsArea[Index]->BTSBufferBase + mBTSRecordNumber * sizeof(BRANCH_TRACE_RECORD) + 1;
883 mMsrDsArea[Index]->BTSInterruptThreshold = mMsrDsArea[Index]->BTSAbsoluteMaximum + 1;
884
885 mMsrDsArea[Index]->PEBSBufferBase = (UINTN)mMsrPEBSRecord[Index];
886 mMsrDsArea[Index]->PEBSIndex = mMsrDsArea[Index]->PEBSBufferBase;
887 mMsrDsArea[Index]->PEBSAbsoluteMaximum = mMsrDsArea[Index]->PEBSBufferBase + PEBS_RECORD_NUMBER * sizeof(PEBS_RECORD) + 1;
888 mMsrDsArea[Index]->PEBSInterruptThreshold = mMsrDsArea[Index]->PEBSAbsoluteMaximum + 1;
889 }
890 }
891
892 mProtectionMemRange = mProtectionMemRangeTemplate;
893 mProtectionMemRangeCount = sizeof (mProtectionMemRangeTemplate) / sizeof (MEMORY_PROTECTION_RANGE);
894
895 //
896 // Update TSeg entry.
897 //
898 mProtectionMemRange[0].Range.Base = mCpuHotPlugData.SmrrBase;
899 mProtectionMemRange[0].Range.Top = mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize;
900
901 //
902 // Update SMM profile entry.
903 //
904 mProtectionMemRange[1].Range.Base = (EFI_PHYSICAL_ADDRESS)(UINTN)mSmmProfileBase;
905 mProtectionMemRange[1].Range.Top = (EFI_PHYSICAL_ADDRESS)(UINTN)mSmmProfileBase + TotalSize;
906
907 //
908 // Allocate memory reserved for creating 4KB pages.
909 //
910 InitPagesForPFHandler ();
911
912 //
913 // Start SMM profile when SmmReadyToLock protocol is installed.
914 //
915 Status = gSmst->SmmRegisterProtocolNotify (
916 &gEfiSmmReadyToLockProtocolGuid,
917 InitSmmProfileCallBack,
918 &Registration
919 );
920 ASSERT_EFI_ERROR (Status);
921
922 return ;
923 }
924
925 /**
926 Check if XD feature is supported by a processor.
927
928 **/
929 VOID
930 CheckFeatureSupported (
931 VOID
932 )
933 {
934 UINT32 RegEax;
935 UINT32 RegEdx;
936 MSR_IA32_MISC_ENABLE_REGISTER MiscEnableMsr;
937
938 if (mXdSupported) {
939 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
940 if (RegEax <= CPUID_EXTENDED_FUNCTION) {
941 //
942 // Extended CPUID functions are not supported on this processor.
943 //
944 mXdSupported = FALSE;
945 }
946
947 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
948 if ((RegEdx & CPUID1_EDX_XD_SUPPORT) == 0) {
949 //
950 // Execute Disable Bit feature is not supported on this processor.
951 //
952 mXdSupported = FALSE;
953 }
954 }
955
956 if (mBtsSupported) {
957 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx);
958 if ((RegEdx & CPUID1_EDX_BTS_AVAILABLE) != 0) {
959 //
960 // Per IA32 manuals:
961 // When CPUID.1:EDX[21] is set, the following BTS facilities are available:
962 // 1. The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates the
963 // availability of the BTS facilities, including the ability to set the BTS and
964 // BTINT bits in the MSR_DEBUGCTLA MSR.
965 // 2. The IA32_DS_AREA MSR can be programmed to point to the DS save area.
966 //
967 MiscEnableMsr.Uint64 = AsmReadMsr64 (MSR_IA32_MISC_ENABLE);
968 if (MiscEnableMsr.Bits.BTS == 1) {
969 //
970 // BTS facilities is not supported if MSR_IA32_MISC_ENABLE.BTS bit is set.
971 //
972 mBtsSupported = FALSE;
973 }
974 }
975 }
976 }
977
978 /**
979 Enable XD feature.
980
981 **/
982 VOID
983 ActivateXd (
984 VOID
985 )
986 {
987 UINT64 MsrRegisters;
988
989 MsrRegisters = AsmReadMsr64 (MSR_EFER);
990 if ((MsrRegisters & MSR_EFER_XD) != 0) {
991 return ;
992 }
993 MsrRegisters |= MSR_EFER_XD;
994 AsmWriteMsr64 (MSR_EFER, MsrRegisters);
995 }
996
997 /**
998 Enable single step.
999
1000 **/
1001 VOID
1002 ActivateSingleStepDB (
1003 VOID
1004 )
1005 {
1006 UINTN Dr6;
1007
1008 Dr6 = AsmReadDr6 ();
1009 if ((Dr6 & DR6_SINGLE_STEP) != 0) {
1010 return;
1011 }
1012 Dr6 |= DR6_SINGLE_STEP;
1013 AsmWriteDr6 (Dr6);
1014 }
1015
1016 /**
1017 Enable last branch.
1018
1019 **/
1020 VOID
1021 ActivateLBR (
1022 VOID
1023 )
1024 {
1025 UINT64 DebugCtl;
1026
1027 DebugCtl = AsmReadMsr64 (MSR_DEBUG_CTL);
1028 if ((DebugCtl & MSR_DEBUG_CTL_LBR) != 0) {
1029 return ;
1030 }
1031 DebugCtl |= MSR_DEBUG_CTL_LBR;
1032 AsmWriteMsr64 (MSR_DEBUG_CTL, DebugCtl);
1033 }
1034
1035 /**
1036 Enable branch trace store.
1037
1038 @param CpuIndex The index of the processor.
1039
1040 **/
1041 VOID
1042 ActivateBTS (
1043 IN UINTN CpuIndex
1044 )
1045 {
1046 UINT64 DebugCtl;
1047
1048 DebugCtl = AsmReadMsr64 (MSR_DEBUG_CTL);
1049 if ((DebugCtl & MSR_DEBUG_CTL_BTS) != 0) {
1050 return ;
1051 }
1052
1053 AsmWriteMsr64 (MSR_DS_AREA, (UINT64)(UINTN)mMsrDsArea[CpuIndex]);
1054 DebugCtl |= (UINT64)(MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR);
1055 DebugCtl &= ~((UINT64)MSR_DEBUG_CTL_BTINT);
1056 AsmWriteMsr64 (MSR_DEBUG_CTL, DebugCtl);
1057 }
1058
1059 /**
1060 Increase SMI number in each SMI entry.
1061
1062 **/
1063 VOID
1064 SmmProfileRecordSmiNum (
1065 VOID
1066 )
1067 {
1068 if (mSmmProfileStart) {
1069 mSmmProfileBase->NumSmis++;
1070 }
1071 }
1072
1073 /**
1074 Initialize processor environment for SMM profile.
1075
1076 @param CpuIndex The index of the processor.
1077
1078 **/
1079 VOID
1080 ActivateSmmProfile (
1081 IN UINTN CpuIndex
1082 )
1083 {
1084 //
1085 // Enable Single Step DB#
1086 //
1087 ActivateSingleStepDB ();
1088
1089 if (mBtsSupported) {
1090 //
1091 // We can not get useful information from LER, so we have to use BTS.
1092 //
1093 ActivateLBR ();
1094
1095 //
1096 // Enable BTS
1097 //
1098 ActivateBTS (CpuIndex);
1099 }
1100 }
1101
1102 /**
1103 Initialize SMM profile in SMM CPU entry point.
1104
1105 @param[in] Cr3 The base address of the page tables to use in SMM.
1106
1107 **/
1108 VOID
1109 InitSmmProfile (
1110 UINT32 Cr3
1111 )
1112 {
1113 //
1114 // Save Cr3
1115 //
1116 mSmmProfileCr3 = Cr3;
1117
1118 //
1119 // Skip SMM profile initialization if feature is disabled
1120 //
1121 if (!FeaturePcdGet (PcdCpuSmmProfileEnable)) {
1122 return;
1123 }
1124
1125 //
1126 // Initialize SmmProfile here
1127 //
1128 InitSmmProfileInternal ();
1129
1130 //
1131 // Initialize profile IDT.
1132 //
1133 InitIdtr ();
1134 }
1135
1136 /**
1137 Update page table to map the memory correctly in order to make the instruction
1138 which caused page fault execute successfully. And it also save the original page
1139 table to be restored in single-step exception.
1140
1141 @param PageTable PageTable Address.
1142 @param PFAddress The memory address which caused page fault exception.
1143 @param CpuIndex The index of the processor.
1144 @param ErrorCode The Error code of exception.
1145
1146 **/
1147 VOID
1148 RestorePageTableBelow4G (
1149 UINT64 *PageTable,
1150 UINT64 PFAddress,
1151 UINTN CpuIndex,
1152 UINTN ErrorCode
1153 )
1154 {
1155 UINTN PTIndex;
1156 UINTN PFIndex;
1157
1158 //
1159 // PML4
1160 //
1161 if (sizeof(UINT64) == sizeof(UINTN)) {
1162 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 39, 47);
1163 ASSERT (PageTable[PTIndex] != 0);
1164 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1165 }
1166
1167 //
1168 // PDPTE
1169 //
1170 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 30, 38);
1171 ASSERT (PageTable[PTIndex] != 0);
1172 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1173
1174 //
1175 // PD
1176 //
1177 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 21, 29);
1178 if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
1179 //
1180 // Large page
1181 //
1182
1183 //
1184 // Record old entries with non-present status
1185 // Old entries include the memory which instruction is at and the memory which instruction access.
1186 //
1187 //
1188 ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
1189 if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
1190 PFIndex = mPFEntryCount[CpuIndex];
1191 mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex];
1192 mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
1193 mPFEntryCount[CpuIndex]++;
1194 }
1195
1196 //
1197 // Set new entry
1198 //
1199 PageTable[PTIndex] = (PFAddress & ~((1ull << 21) - 1));
1200 PageTable[PTIndex] |= (UINT64)IA32_PG_PS;
1201 PageTable[PTIndex] |= (UINT64)PAGE_ATTRIBUTE_BITS;
1202 if ((ErrorCode & IA32_PF_EC_ID) != 0) {
1203 PageTable[PTIndex] &= ~IA32_PG_NX;
1204 }
1205 } else {
1206 //
1207 // Small page
1208 //
1209 ASSERT (PageTable[PTIndex] != 0);
1210 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1211
1212 //
1213 // 4K PTE
1214 //
1215 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 12, 20);
1216
1217 //
1218 // Record old entries with non-present status
1219 // Old entries include the memory which instruction is at and the memory which instruction access.
1220 //
1221 //
1222 ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
1223 if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
1224 PFIndex = mPFEntryCount[CpuIndex];
1225 mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex];
1226 mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
1227 mPFEntryCount[CpuIndex]++;
1228 }
1229
1230 //
1231 // Set new entry
1232 //
1233 PageTable[PTIndex] = (PFAddress & ~((1ull << 12) - 1));
1234 PageTable[PTIndex] |= (UINT64)PAGE_ATTRIBUTE_BITS;
1235 if ((ErrorCode & IA32_PF_EC_ID) != 0) {
1236 PageTable[PTIndex] &= ~IA32_PG_NX;
1237 }
1238 }
1239 }
1240
1241 /**
1242 The Page fault handler to save SMM profile data.
1243
1244 @param Rip The RIP when exception happens.
1245 @param ErrorCode The Error code of exception.
1246
1247 **/
1248 VOID
1249 SmmProfilePFHandler (
1250 UINTN Rip,
1251 UINTN ErrorCode
1252 )
1253 {
1254 UINT64 *PageTable;
1255 UINT64 PFAddress;
1256 UINTN CpuIndex;
1257 UINTN Index;
1258 UINT64 InstructionAddress;
1259 UINTN MaxEntryNumber;
1260 UINTN CurrentEntryNumber;
1261 BOOLEAN IsValidPFAddress;
1262 SMM_PROFILE_ENTRY *SmmProfileEntry;
1263 UINT64 SmiCommand;
1264 EFI_STATUS Status;
1265 UINT8 SoftSmiValue;
1266 EFI_SMM_SAVE_STATE_IO_INFO IoInfo;
1267
1268 if (!mSmmProfileStart) {
1269 //
1270 // If SMM profile does not start, call original page fault handler.
1271 //
1272 SmiDefaultPFHandler ();
1273 return;
1274 }
1275
1276 if (mBtsSupported) {
1277 DisableBTS ();
1278 }
1279
1280 IsValidPFAddress = FALSE;
1281 PageTable = (UINT64 *)AsmReadCr3 ();
1282 PFAddress = AsmReadCr2 ();
1283 CpuIndex = GetCpuIndex ();
1284
1285 if (PFAddress <= 0xFFFFFFFF) {
1286 RestorePageTableBelow4G (PageTable, PFAddress, CpuIndex, ErrorCode);
1287 } else {
1288 RestorePageTableAbove4G (PageTable, PFAddress, CpuIndex, ErrorCode, &IsValidPFAddress);
1289 }
1290
1291 if (!IsValidPFAddress) {
1292 InstructionAddress = Rip;
1293 if ((ErrorCode & IA32_PF_EC_ID) != 0 && (mBtsSupported)) {
1294 //
1295 // If it is instruction fetch failure, get the correct IP from BTS.
1296 //
1297 InstructionAddress = GetSourceFromDestinationOnBts (CpuIndex, Rip);
1298 if (InstructionAddress == 0) {
1299 //
1300 // It indicates the instruction which caused page fault is not a jump instruction,
1301 // set instruction address same as the page fault address.
1302 //
1303 InstructionAddress = PFAddress;
1304 }
1305 }
1306
1307 //
1308 // Indicate it is not software SMI
1309 //
1310 SmiCommand = 0xFFFFFFFFFFFFFFFFULL;
1311 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
1312 Status = SmmReadSaveState(&mSmmCpu, sizeof(IoInfo), EFI_SMM_SAVE_STATE_REGISTER_IO, Index, &IoInfo);
1313 if (EFI_ERROR (Status)) {
1314 continue;
1315 }
1316 if (IoInfo.IoPort == mSmiCommandPort) {
1317 //
1318 // A software SMI triggered by SMI command port has been found, get SmiCommand from SMI command port.
1319 //
1320 SoftSmiValue = IoRead8 (mSmiCommandPort);
1321 SmiCommand = (UINT64)SoftSmiValue;
1322 break;
1323 }
1324 }
1325
1326 SmmProfileEntry = (SMM_PROFILE_ENTRY *)(UINTN)(mSmmProfileBase + 1);
1327 //
1328 // Check if there is already a same entry in profile data.
1329 //
1330 for (Index = 0; Index < (UINTN) mSmmProfileBase->CurDataEntries; Index++) {
1331 if ((SmmProfileEntry[Index].ErrorCode == (UINT64)ErrorCode) &&
1332 (SmmProfileEntry[Index].Address == PFAddress) &&
1333 (SmmProfileEntry[Index].CpuNum == (UINT64)CpuIndex) &&
1334 (SmmProfileEntry[Index].Instruction == InstructionAddress) &&
1335 (SmmProfileEntry[Index].SmiCmd == SmiCommand)) {
1336 //
1337 // Same record exist, need not save again.
1338 //
1339 break;
1340 }
1341 }
1342 if (Index == mSmmProfileBase->CurDataEntries) {
1343 CurrentEntryNumber = (UINTN) mSmmProfileBase->CurDataEntries;
1344 MaxEntryNumber = (UINTN) mSmmProfileBase->MaxDataEntries;
1345 if (FeaturePcdGet (PcdCpuSmmProfileRingBuffer)) {
1346 CurrentEntryNumber = CurrentEntryNumber % MaxEntryNumber;
1347 }
1348 if (CurrentEntryNumber < MaxEntryNumber) {
1349 //
1350 // Log the new entry
1351 //
1352 SmmProfileEntry[CurrentEntryNumber].SmiNum = mSmmProfileBase->NumSmis;
1353 SmmProfileEntry[CurrentEntryNumber].ErrorCode = (UINT64)ErrorCode;
1354 SmmProfileEntry[CurrentEntryNumber].ApicId = (UINT64)GetApicId ();
1355 SmmProfileEntry[CurrentEntryNumber].CpuNum = (UINT64)CpuIndex;
1356 SmmProfileEntry[CurrentEntryNumber].Address = PFAddress;
1357 SmmProfileEntry[CurrentEntryNumber].Instruction = InstructionAddress;
1358 SmmProfileEntry[CurrentEntryNumber].SmiCmd = SmiCommand;
1359 //
1360 // Update current entry index and data size in the header.
1361 //
1362 mSmmProfileBase->CurDataEntries++;
1363 mSmmProfileBase->CurDataSize = MultU64x64 (mSmmProfileBase->CurDataEntries, sizeof (SMM_PROFILE_ENTRY));
1364 }
1365 }
1366 }
1367 //
1368 // Flush TLB
1369 //
1370 CpuFlushTlb ();
1371
1372 if (mBtsSupported) {
1373 EnableBTS ();
1374 }
1375 }
1376
1377 /**
1378 Replace INT1 exception handler to restore page table to absent/execute-disable state
1379 in order to trigger page fault again to save SMM profile data..
1380
1381 **/
1382 VOID
1383 InitIdtr (
1384 VOID
1385 )
1386 {
1387 SmmRegisterExceptionHandler (&mSmmCpuService, EXCEPT_IA32_DEBUG, DebugExceptionHandler);
1388 }