#------------------------------------------------------------------------------ # # Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.
# Copyright (c) 2011 - 2017, ARM Limited. All rights reserved. # Copyright (c) 2016, Linaro Limited. All rights reserved. # # SPDX-License-Identifier: BSD-2-Clause-Patent # #------------------------------------------------------------------------------ #include #include .set CTRL_M_BIT, (1 << 0) .set CTRL_A_BIT, (1 << 1) .set CTRL_C_BIT, (1 << 2) .set CTRL_SA_BIT, (1 << 3) .set CTRL_I_BIT, (1 << 12) .set CTRL_V_BIT, (1 << 12) .set CPACR_VFP_BITS, (3 << 20) ASM_FUNC(ArmInvalidateDataCacheEntryByMVA) dc ivac, x0 // Invalidate single data cache line ret ASM_FUNC(ArmCleanDataCacheEntryByMVA) dc cvac, x0 // Clean single data cache line ret ASM_FUNC(ArmCleanDataCacheEntryToPoUByMVA) dc cvau, x0 // Clean single data cache line to PoU ret ASM_FUNC(ArmInvalidateInstructionCacheEntryToPoUByMVA) ic ivau, x0 // Invalidate single instruction cache line to PoU ret ASM_FUNC(ArmCleanInvalidateDataCacheEntryByMVA) dc civac, x0 // Clean and invalidate single data cache line ret ASM_FUNC(ArmInvalidateDataCacheEntryBySetWay) dc isw, x0 // Invalidate this line ret ASM_FUNC(ArmCleanInvalidateDataCacheEntryBySetWay) dc cisw, x0 // Clean and Invalidate this line ret ASM_FUNC(ArmCleanDataCacheEntryBySetWay) dc csw, x0 // Clean this line ret ASM_FUNC(ArmInvalidateInstructionCache) ic iallu // Invalidate entire instruction cache dsb sy isb ret ASM_FUNC(ArmEnableMmu) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Read System control register EL1 b 4f 2: mrs x0, sctlr_el2 // Read System control register EL2 b 4f 3: mrs x0, sctlr_el3 // Read System control register EL3 4: orr x0, x0, #CTRL_M_BIT // Set MMU enable bit EL1_OR_EL2_OR_EL3(x1) 1: tlbi vmalle1 dsb nsh isb msr sctlr_el1, x0 // Write back b 4f 2: tlbi alle2 dsb nsh isb msr sctlr_el2, x0 // Write back b 4f 3: tlbi alle3 dsb nsh isb msr sctlr_el3, x0 // Write back 4: isb ret ASM_FUNC(ArmDisableMmu) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Read System Control Register EL1 b 4f 2: mrs x0, sctlr_el2 // Read System Control Register EL2 b 4f 3: mrs x0, sctlr_el3 // Read System Control Register EL3 4: and x0, x0, #~CTRL_M_BIT // Clear MMU enable bit EL1_OR_EL2_OR_EL3(x1) 1: msr sctlr_el1, x0 // Write back tlbi vmalle1 b 4f 2: msr sctlr_el2, x0 // Write back tlbi alle2 b 4f 3: msr sctlr_el3, x0 // Write back tlbi alle3 4: dsb sy isb ret ASM_FUNC(ArmDisableCachesAndMmu) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 4f 2: mrs x0, sctlr_el2 // Get control register EL2 b 4f 3: mrs x0, sctlr_el3 // Get control register EL3 4: mov x1, #~(CTRL_M_BIT | CTRL_C_BIT | CTRL_I_BIT) // Disable MMU, D & I caches and x0, x0, x1 EL1_OR_EL2_OR_EL3(x1) 1: msr sctlr_el1, x0 // Write back control register b 4f 2: msr sctlr_el2, x0 // Write back control register b 4f 3: msr sctlr_el3, x0 // Write back control register 4: dsb sy isb ret ASM_FUNC(ArmMmuEnabled) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 4f 2: mrs x0, sctlr_el2 // Get control register EL2 b 4f 3: mrs x0, sctlr_el3 // Get control register EL3 4: and x0, x0, #CTRL_M_BIT ret ASM_FUNC(ArmEnableDataCache) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 4f 2: mrs x0, sctlr_el2 // Get control register EL2 b 4f 3: mrs x0, sctlr_el3 // Get control register EL3 4: orr x0, x0, #CTRL_C_BIT // Set C bit EL1_OR_EL2_OR_EL3(x1) 1: msr sctlr_el1, x0 // Write back control register b 4f 2: msr sctlr_el2, x0 // Write back control register b 4f 3: msr sctlr_el3, x0 // Write back control register 4: dsb sy isb ret ASM_FUNC(ArmDisableDataCache) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 4f 2: mrs x0, sctlr_el2 // Get control register EL2 b 4f 3: mrs x0, sctlr_el3 // Get control register EL3 4: and x0, x0, #~CTRL_C_BIT // Clear C bit EL1_OR_EL2_OR_EL3(x1) 1: msr sctlr_el1, x0 // Write back control register b 4f 2: msr sctlr_el2, x0 // Write back control register b 4f 3: msr sctlr_el3, x0 // Write back control register 4: dsb sy isb ret ASM_FUNC(ArmEnableInstructionCache) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 4f 2: mrs x0, sctlr_el2 // Get control register EL2 b 4f 3: mrs x0, sctlr_el3 // Get control register EL3 4: orr x0, x0, #CTRL_I_BIT // Set I bit EL1_OR_EL2_OR_EL3(x1) 1: msr sctlr_el1, x0 // Write back control register b 4f 2: msr sctlr_el2, x0 // Write back control register b 4f 3: msr sctlr_el3, x0 // Write back control register 4: dsb sy isb ret ASM_FUNC(ArmDisableInstructionCache) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 4f 2: mrs x0, sctlr_el2 // Get control register EL2 b 4f 3: mrs x0, sctlr_el3 // Get control register EL3 4: and x0, x0, #~CTRL_I_BIT // Clear I bit EL1_OR_EL2_OR_EL3(x1) 1: msr sctlr_el1, x0 // Write back control register b 4f 2: msr sctlr_el2, x0 // Write back control register b 4f 3: msr sctlr_el3, x0 // Write back control register 4: dsb sy isb ret ASM_FUNC(ArmEnableAlignmentCheck) EL1_OR_EL2(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 3f 2: mrs x0, sctlr_el2 // Get control register EL2 3: orr x0, x0, #CTRL_A_BIT // Set A (alignment check) bit EL1_OR_EL2(x1) 1: msr sctlr_el1, x0 // Write back control register b 3f 2: msr sctlr_el2, x0 // Write back control register 3: dsb sy isb ret ASM_FUNC(ArmDisableAlignmentCheck) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 4f 2: mrs x0, sctlr_el2 // Get control register EL2 b 4f 3: mrs x0, sctlr_el3 // Get control register EL3 4: and x0, x0, #~CTRL_A_BIT // Clear A (alignment check) bit EL1_OR_EL2_OR_EL3(x1) 1: msr sctlr_el1, x0 // Write back control register b 4f 2: msr sctlr_el2, x0 // Write back control register b 4f 3: msr sctlr_el3, x0 // Write back control register 4: dsb sy isb ret ASM_FUNC(ArmEnableStackAlignmentCheck) EL1_OR_EL2(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 3f 2: mrs x0, sctlr_el2 // Get control register EL2 3: orr x0, x0, #CTRL_SA_BIT // Set SA (stack alignment check) bit EL1_OR_EL2(x1) 1: msr sctlr_el1, x0 // Write back control register b 3f 2: msr sctlr_el2, x0 // Write back control register 3: dsb sy isb ret ASM_FUNC(ArmDisableStackAlignmentCheck) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, sctlr_el1 // Get control register EL1 b 4f 2: mrs x0, sctlr_el2 // Get control register EL2 b 4f 3: mrs x0, sctlr_el3 // Get control register EL3 4: bic x0, x0, #CTRL_SA_BIT // Clear SA (stack alignment check) bit EL1_OR_EL2_OR_EL3(x1) 1: msr sctlr_el1, x0 // Write back control register b 4f 2: msr sctlr_el2, x0 // Write back control register b 4f 3: msr sctlr_el3, x0 // Write back control register 4: dsb sy isb ret // Always turned on in AArch64. Else implementation specific. Leave in for C compatibility for now ASM_FUNC(ArmEnableBranchPrediction) ret // Always turned on in AArch64. Else implementation specific. Leave in for C compatibility for now. ASM_FUNC(ArmDisableBranchPrediction) ret ASM_FUNC(AArch64AllDataCachesOperation) // We can use regs 0-7 and 9-15 without having to save/restore. // Save our link register on the stack. - The stack must always be quad-word aligned stp x29, x30, [sp, #-16]! mov x29, sp mov x1, x0 // Save Function call in x1 mrs x6, clidr_el1 // Read EL1 CLIDR and x3, x6, #0x7000000 // Mask out all but Level of Coherency (LoC) lsr x3, x3, #23 // Left align cache level value - the level is shifted by 1 to the // right to ease the access to CSSELR and the Set/Way operation. cbz x3, L_Finished // No need to clean if LoC is 0 mov x10, #0 // Start clean at cache level 0 Loop1: add x2, x10, x10, lsr #1 // Work out 3x cachelevel for cache info lsr x12, x6, x2 // bottom 3 bits are the Cache type for this level and x12, x12, #7 // get those 3 bits alone cmp x12, #2 // what cache at this level? b.lt L_Skip // no cache or only instruction cache at this level msr csselr_el1, x10 // write the Cache Size selection register with current level (CSSELR) isb // isb to sync the change to the CacheSizeID reg mrs x12, ccsidr_el1 // reads current Cache Size ID register (CCSIDR) and x2, x12, #0x7 // extract the line length field add x2, x2, #4 // add 4 for the line length offset (log2 16 bytes) mov x4, #0x400 sub x4, x4, #1 and x4, x4, x12, lsr #3 // x4 is the max number on the way size (right aligned) clz w5, w4 // w5 is the bit position of the way size increment mov x7, #0x00008000 sub x7, x7, #1 and x7, x7, x12, lsr #13 // x7 is the max number of the index size (right aligned) Loop2: mov x9, x4 // x9 working copy of the max way size (right aligned) Loop3: lsl x11, x9, x5 orr x0, x10, x11 // factor in the way number and cache number lsl x11, x7, x2 orr x0, x0, x11 // factor in the index number blr x1 // Goto requested cache operation subs x9, x9, #1 // decrement the way number b.ge Loop3 subs x7, x7, #1 // decrement the index b.ge Loop2 L_Skip: add x10, x10, #2 // increment the cache number cmp x3, x10 b.gt Loop1 L_Finished: dsb sy isb ldp x29, x30, [sp], #0x10 ret ASM_FUNC(ArmDataMemoryBarrier) dmb sy ret ASM_FUNC(ArmDataSynchronizationBarrier) dsb sy ret ASM_FUNC(ArmInstructionSynchronizationBarrier) isb ret ASM_FUNC(ArmWriteVBar) EL1_OR_EL2_OR_EL3(x1) 1: msr vbar_el1, x0 // Set the Address of the EL1 Vector Table in the VBAR register b 4f 2: msr vbar_el2, x0 // Set the Address of the EL2 Vector Table in the VBAR register b 4f 3: msr vbar_el3, x0 // Set the Address of the EL3 Vector Table in the VBAR register 4: isb ret ASM_FUNC(ArmReadVBar) EL1_OR_EL2_OR_EL3(x1) 1: mrs x0, vbar_el1 // Set the Address of the EL1 Vector Table in the VBAR register ret 2: mrs x0, vbar_el2 // Set the Address of the EL2 Vector Table in the VBAR register ret 3: mrs x0, vbar_el3 // Set the Address of the EL3 Vector Table in the VBAR register ret ASM_FUNC(ArmEnableVFP) // Check whether floating-point is implemented in the processor. mov x1, x30 // Save LR bl ArmReadIdPfr0 // Read EL1 Processor Feature Register (PFR0) mov x30, x1 // Restore LR ubfx x0, x0, #16, #4 // Extract the FP bits 16:19 cmp x0, #0xF // Check if FP bits are '1111b', // i.e. Floating Point not implemented b.eq 4f // Exit when VFP is not implemented. // FVP is implemented. // Make sure VFP exceptions are not trapped (to any exception level). mrs x0, cpacr_el1 // Read EL1 Coprocessor Access Control Register (CPACR) orr x0, x0, #CPACR_VFP_BITS // Disable FVP traps to EL1 msr cpacr_el1, x0 // Write back EL1 Coprocessor Access Control Register (CPACR) mov x1, #AARCH64_CPTR_TFP // TFP Bit for trapping VFP Exceptions EL1_OR_EL2_OR_EL3(x2) 1:ret // Not configurable in EL1 2:mrs x0, cptr_el2 // Disable VFP traps to EL2 bic x0, x0, x1 msr cptr_el2, x0 ret 3:mrs x0, cptr_el3 // Disable VFP traps to EL3 bic x0, x0, x1 msr cptr_el3, x0 4:ret ASM_FUNC(ArmCallWFI) wfi ret ASM_FUNC(ArmReadMpidr) mrs x0, mpidr_el1 // read EL1 MPIDR ret // Keep old function names for C compatibilty for now. Change later? ASM_FUNC(ArmReadTpidrurw) mrs x0, tpidr_el0 // read tpidr_el0 (v7 TPIDRURW) -> (v8 TPIDR_EL0) ret // Keep old function names for C compatibilty for now. Change later? ASM_FUNC(ArmWriteTpidrurw) msr tpidr_el0, x0 // write tpidr_el0 (v7 TPIDRURW) -> (v8 TPIDR_EL0) ret // Arch timers are mandatory on AArch64 ASM_FUNC(ArmIsArchTimerImplemented) mov x0, #1 ret ASM_FUNC(ArmReadIdPfr0) mrs x0, id_aa64pfr0_el1 // Read ID_AA64PFR0 Register ret // Q: id_aa64pfr1_el1 not defined yet. What does this funtion want to access? // A: used to setup arch timer. Check if we have security extensions, permissions to set stuff. // See: ArmPkg/Library/ArmArchTimerLib/AArch64/ArmArchTimerLib.c // Not defined yet, but stick in here for now, should read all zeros. ASM_FUNC(ArmReadIdPfr1) mrs x0, id_aa64pfr1_el1 // Read ID_PFR1 Register ret // VOID ArmWriteHcr(UINTN Hcr) ASM_FUNC(ArmWriteHcr) msr hcr_el2, x0 // Write the passed HCR value ret // UINTN ArmReadHcr(VOID) ASM_FUNC(ArmReadHcr) mrs x0, hcr_el2 ret // UINTN ArmReadCurrentEL(VOID) ASM_FUNC(ArmReadCurrentEL) mrs x0, CurrentEL ret // UINT32 ArmReadCntHctl(VOID) ASM_FUNC(ArmReadCntHctl) mrs x0, cnthctl_el2 ret // VOID ArmWriteCntHctl(UINT32 CntHctl) ASM_FUNC(ArmWriteCntHctl) msr cnthctl_el2, x0 ret ASM_FUNCTION_REMOVE_IF_UNREFERENCED