// // Copyright (c) 2011-2013, ARM Limited. All rights reserved. // Copyright (c) 2015, Linaro Limited. All rights reserved. // // This program and the accompanying materials // are licensed and made available under the terms and conditions of the BSD License // which accompanies this distribution. The full text of the license may be found at // http://opensource.org/licenses/bsd-license.php // // THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, // WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. // // #include #include #include #include .text .align 3 GCC_ASM_IMPORT(ArmPlatformIsPrimaryCore) GCC_ASM_IMPORT(ArmReadMpidr) GCC_ASM_IMPORT(ArmPlatformPeiBootAction) GCC_ASM_IMPORT(ArmPlatformStackSet) GCC_ASM_EXPORT(_ModuleEntryPoint) StartupAddr: .8byte ASM_PFX(CEntryPoint) ASM_PFX(_ModuleEntryPoint): // // We are built as a ET_DYN PIE executable, so we need to process all // relative relocations regardless of whether or not we are executing from // the same offset we were linked at. This is only possible if we are // running from RAM. // adr x8, __reloc_base adr x9, __reloc_start adr x10, __reloc_end .Lreloc_loop: cmp x9, x10 bhs .Lreloc_done // // AArch64 uses the ELF64 RELA format, which means each entry in the // relocation table consists of // // UINT64 offset : the relative offset of the value that needs to // be relocated // UINT64 info : relocation type and symbol index (the latter is // not used for R_AARCH64_RELATIVE relocations) // UINT64 addend : value to be added to the value being relocated // ldp x11, x12, [x9], #24 // read offset into x11 and info into x12 cmp x12, #0x403 // check info == R_AARCH64_RELATIVE? bne .Lreloc_loop // not a relative relocation? then skip ldr x12, [x9, #-8] // read addend into x12 add x12, x12, x8 // add reloc base to addend to get relocated value str x12, [x11, x8] // write relocated value at offset b .Lreloc_loop .Lreloc_done: // Do early platform specific actions bl ASM_PFX(ArmPlatformPeiBootAction) // Get ID of this CPU in Multicore system bl ASM_PFX(ArmReadMpidr) // Keep a copy of the MpId register value mov x10, x0 // Check if we can install the stack at the top of the System Memory or if we need // to install the stacks at the bottom of the Firmware Device (case the FD is located // at the top of the DRAM) _SetupStackPosition: // Compute Top of System Memory ldr x1, PcdGet64 (PcdSystemMemoryBase) ldr x2, PcdGet64 (PcdSystemMemorySize) sub x2, x2, #1 add x1, x1, x2 // x1 = SystemMemoryTop = PcdSystemMemoryBase + PcdSystemMemorySize // Calculate Top of the Firmware Device ldr x2, PcdGet64 (PcdFdBaseAddress) ldr w3, PcdGet32 (PcdFdSize) sub x3, x3, #1 add x3, x3, x2 // x3 = FdTop = PcdFdBaseAddress + PcdFdSize // UEFI Memory Size (stacks are allocated in this region) LoadConstantToReg (FixedPcdGet32(PcdSystemMemoryUefiRegionSize), x4) // // Reserve the memory for the UEFI region (contain stacks on its top) // // Calculate how much space there is between the top of the Firmware and the Top of the System Memory subs x0, x1, x3 // x0 = SystemMemoryTop - FdTop b.mi _SetupStack // Jump if negative (FdTop > SystemMemoryTop). Case when the PrePi is in XIP memory outside of the DRAM cmp x0, x4 b.ge _SetupStack // Case the top of stacks is the FdBaseAddress mov x1, x2 _SetupStack: // x1 contains the top of the stack (and the UEFI Memory) // Because the 'push' instruction is equivalent to 'stmdb' (decrement before), we need to increment // one to the top of the stack. We check if incrementing one does not overflow (case of DRAM at the // top of the memory space) adds x11, x1, #1 b.cs _SetupOverflowStack _SetupAlignedStack: mov x1, x11 b _GetBaseUefiMemory _SetupOverflowStack: // Case memory at the top of the address space. Ensure the top of the stack is EFI_PAGE_SIZE // aligned (4KB) LoadConstantToReg (EFI_PAGE_MASK, x11) and x11, x11, x1 sub x1, x1, x11 _GetBaseUefiMemory: // Calculate the Base of the UEFI Memory sub x11, x1, x4 _GetStackBase: // r1 = The top of the Mpcore Stacks // Stack for the primary core = PrimaryCoreStack LoadConstantToReg (FixedPcdGet32(PcdCPUCorePrimaryStackSize), x2) sub x12, x1, x2 // Stack for the secondary core = Number of Cores - 1 LoadConstantToReg (FixedPcdGet32(PcdCoreCount), x0) sub x0, x0, #1 LoadConstantToReg (FixedPcdGet32(PcdCPUCoreSecondaryStackSize), x1) mul x1, x1, x0 sub x12, x12, x1 // x12 = The base of the MpCore Stacks (primary stack & secondary stacks) mov x0, x12 mov x1, x10 //ArmPlatformStackSet(StackBase, MpId, PrimaryStackSize, SecondaryStackSize) LoadConstantToReg (FixedPcdGet32(PcdCPUCorePrimaryStackSize), x2) LoadConstantToReg (FixedPcdGet32(PcdCPUCoreSecondaryStackSize), x3) bl ASM_PFX(ArmPlatformStackSet) // Is it the Primary Core ? mov x0, x10 bl ASM_PFX(ArmPlatformIsPrimaryCore) cmp x0, #1 bne _PrepareArguments _ReserveGlobalVariable: LoadConstantToReg (FixedPcdGet32(PcdPeiGlobalVariableSize), x0) // InitializePrimaryStack($GlobalVariableSize, $Tmp1, $Tmp2) InitializePrimaryStack(x0, x1, x2) _PrepareArguments: mov x0, x10 mov x1, x11 mov x2, x12 mov x3, sp // Move sec startup address into a data register // Ensure we're jumping to FV version of the code (not boot remapped alias) ldr x4, StartupAddr // Jump to PrePiCore C code // x0 = MpId // x1 = UefiMemoryBase // x2 = StacksBase // x3 = GlobalVariableBase blr x4 _NeverReturn: b _NeverReturn