// // Copyright (c) 2011-2013, ARM Limited. All rights reserved. // Copyright (c) 2015, Linaro Limited. All rights reserved. // // This program and the accompanying materials // are licensed and made available under the terms and conditions of the BSD License // which accompanies this distribution. The full text of the license may be found at // http://opensource.org/licenses/bsd-license.php // // THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, // WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. // // #include #include #include #include .text .align 3 GCC_ASM_IMPORT(ArmPlatformIsPrimaryCore) GCC_ASM_IMPORT(ArmReadMpidr) GCC_ASM_IMPORT(ArmPlatformPeiBootAction) GCC_ASM_IMPORT(ArmPlatformStackSet) GCC_ASM_EXPORT(_ModuleEntryPoint) ASM_GLOBAL ASM_PFX(mSystemMemoryEnd) StartupAddr: .long ASM_PFX(CEntryPoint) ASM_PFX(mSystemMemoryEnd): .quad 0 __relocs: .long __reloc_base - __relocs .long __reloc_start - __relocs .long __reloc_end - __relocs ASM_PFX(_ModuleEntryPoint): // // We are built as a ET_DYN PIE executable, so we need to process all // relative relocations if we are executing from a different offset than we // were linked at. This is only possible if we are running from RAM. // adr r12, __relocs ldrd r4, r5, [r12] ldr r6, [r12, #8] add r4, r4, r12 add r5, r5, r12 add r6, r6, r12 .Lreloc_loop: cmp r5, r6 bhs .Lreloc_done // // AArch32 uses the ELF32 REL format, which means each entry in the // relocation table consists of // // UINT32 offset : the relative offset of the value that needs to // be relocated // UINT32 info : relocation type and symbol index (the latter is // not used for R_ARM_RELATIVE relocations) // ldrd r8, r9, [r5], #8 // read offset into r8 and info into r9 cmp r9, #23 // check info == R_ARM_RELATIVE? bne .Lreloc_loop // not a relative relocation? then skip ldr r9, [r8, r4] // read addend into r9 add r9, r9, r1 // add image base to addend to get relocated value str r9, [r8, r4] // write relocated value at offset b .Lreloc_loop .Lreloc_done: // Do early platform specific actions bl ASM_PFX(ArmPlatformPeiBootAction) // Get ID of this CPU in Multicore system bl ASM_PFX(ArmReadMpidr) // Keep a copy of the MpId register value mov r10, r0 // Check if we can install the stack at the top of the System Memory or if we need // to install the stacks at the bottom of the Firmware Device (case the FD is located // at the top of the DRAM) _SetupStackPosition: // Compute Top of System Memory ldr r12, =PcdGet64 (PcdSystemMemoryBase) ldr r1, [r12] ldr r12, =PcdGet64 (PcdSystemMemorySize) ldrd r2, r3, [r12] // calculate the top of memory, and record it in mSystemMemoryEnd adds r2, r2, r1 sub r2, r2, #1 addcs r3, r3, #1 adr r12, mSystemMemoryEnd strd r2, r3, [r12] // truncate the memory used by UEFI to 4 GB range teq r3, #0 movne r1, #-1 moveq r1, r2 // Calculate Top of the Firmware Device ldr r12, =PcdGet64 (PcdFdBaseAddress) ldr r2, [r12] ldr r3, =FixedPcdGet32 (PcdFdSize) sub r3, r3, #1 add r3, r3, r2 // r3 = FdTop = PcdFdBaseAddress + PcdFdSize // UEFI Memory Size (stacks are allocated in this region) LoadConstantToReg (FixedPcdGet32(PcdSystemMemoryUefiRegionSize), r4) // // Reserve the memory for the UEFI region (contain stacks on its top) // // Calculate how much space there is between the top of the Firmware and the Top of the System Memory subs r0, r1, r3 // r0 = SystemMemoryTop - FdTop bmi _SetupStack // Jump if negative (FdTop > SystemMemoryTop). Case when the PrePi is in XIP memory outside of the DRAM cmp r0, r4 bge _SetupStack // Case the top of stacks is the FdBaseAddress mov r1, r2 _SetupStack: // r1 contains the top of the stack (and the UEFI Memory) // Because the 'push' instruction is equivalent to 'stmdb' (decrement before), we need to increment // one to the top of the stack. We check if incrementing one does not overflow (case of DRAM at the // top of the memory space) adds r11, r1, #1 bcs _SetupOverflowStack _SetupAlignedStack: mov r1, r11 b _GetBaseUefiMemory _SetupOverflowStack: // Case memory at the top of the address space. Ensure the top of the stack is EFI_PAGE_SIZE // aligned (4KB) LoadConstantToReg (EFI_PAGE_MASK, r11) and r11, r11, r1 sub r1, r1, r11 _GetBaseUefiMemory: // Calculate the Base of the UEFI Memory sub r11, r1, r4 _GetStackBase: // r1 = The top of the Mpcore Stacks // Stack for the primary core = PrimaryCoreStack LoadConstantToReg (FixedPcdGet32(PcdCPUCorePrimaryStackSize), r2) sub r12, r1, r2 // Stack for the secondary core = Number of Cores - 1 LoadConstantToReg (FixedPcdGet32(PcdCoreCount), r0) sub r0, r0, #1 LoadConstantToReg (FixedPcdGet32(PcdCPUCoreSecondaryStackSize), r1) mul r1, r1, r0 sub r12, r12, r1 // r12 = The base of the MpCore Stacks (primary stack & secondary stacks) mov r0, r12 mov r1, r10 //ArmPlatformStackSet(StackBase, MpId, PrimaryStackSize, SecondaryStackSize) LoadConstantToReg (FixedPcdGet32(PcdCPUCorePrimaryStackSize), r2) LoadConstantToReg (FixedPcdGet32(PcdCPUCoreSecondaryStackSize), r3) bl ASM_PFX(ArmPlatformStackSet) // Is it the Primary Core ? mov r0, r10 bl ASM_PFX(ArmPlatformIsPrimaryCore) cmp r0, #1 bne _PrepareArguments _PrepareArguments: mov r0, r10 mov r1, r11 mov r2, r12 // Move sec startup address into a data register // Ensure we're jumping to FV version of the code (not boot remapped alias) ldr r4, StartupAddr // Jump to PrePiCore C code // r0 = MpId // r1 = UefiMemoryBase // r2 = StacksBase blx r4 _NeverReturn: b _NeverReturn