;/** @file ; Low leve IA32 specific debug support functions. ; ; Copyright (c) 2006 - 2022, Intel Corporation. All rights reserved.
; SPDX-License-Identifier: BSD-2-Clause-Patent ; ;**/ %define EXCPT32_DIVIDE_ERROR 0 %define EXCPT32_DEBUG 1 %define EXCPT32_NMI 2 %define EXCPT32_BREAKPOINT 3 %define EXCPT32_OVERFLOW 4 %define EXCPT32_BOUND 5 %define EXCPT32_INVALID_OPCODE 6 %define EXCPT32_DOUBLE_FAULT 8 %define EXCPT32_INVALID_TSS 10 %define EXCPT32_SEG_NOT_PRESENT 11 %define EXCPT32_STACK_FAULT 12 %define EXCPT32_GP_FAULT 13 %define EXCPT32_PAGE_FAULT 14 %define EXCPT32_FP_ERROR 16 %define EXCPT32_ALIGNMENT_CHECK 17 %define EXCPT32_MACHINE_CHECK 18 %define EXCPT32_SIMD 19 %define FXSTOR_FLAG 0x1000000 ; bit cpuid 24 of feature flags SECTION .data global ASM_PFX(OrigVector) global ASM_PFX(InterruptEntryStub) global ASM_PFX(StubSize) global ASM_PFX(CommonIdtEntry) global ASM_PFX(FxStorSupport) extern ASM_PFX(InterruptDistrubutionHub) ASM_PFX(StubSize): dd InterruptEntryStubEnd - ASM_PFX(InterruptEntryStub) AppEsp: dd 0x11111111 ; ? DebugEsp: dd 0x22222222 ; ? ExtraPush: dd 0x33333333 ; ? ExceptData: dd 0x44444444 ; ? Eflags: dd 0x55555555 ; ? ASM_PFX(OrigVector): dd 0x66666666 ; ? ;; The declarations below define the memory region that will be used for the debug stack. ;; The context record will be built by pushing register values onto this stack. ;; It is imparitive that alignment be carefully managed, since the FXSTOR and ;; FXRSTOR instructions will GP fault if their memory operand is not 16 byte aligned. ;; ;; The stub will switch stacks from the application stack to the debuger stack ;; and pushes the exception number. ;; ;; Then we building the context record on the stack. Since the stack grows down, ;; we push the fields of the context record from the back to the front. There ;; are 132 bytes of stack used prior allocating the 512 bytes of stack to be ;; used as the memory buffer for the fxstor instruction. Therefore address of ;; the buffer used for the FXSTOR instruction is &Eax - 132 - 512, which ;; must be 16 byte aligned. ;; ;; We carefully locate the stack to make this happen. ;; ;; For reference, the context structure looks like this: ;; struct { ;; UINT32 ExceptionData; ;; FX_SAVE_STATE_IA32 FxSaveState; // 512 bytes, must be 16 byte aligned ;; UINT32 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7; ;; UINT32 Cr0, Cr1, Cr2, Cr3, Cr4; ;; UINT32 EFlags; ;; UINT32 Ldtr, Tr; ;; UINT32 Gdtr[2], Idtr[2]; ;; UINT32 Eip; ;; UINT32 Gs, Fs, Es, Ds, Cs, Ss; ;; UINT32 Edi, Esi, Ebp, Esp, Ebx, Edx, Ecx, Eax; ;; } SYSTEM_CONTEXT_IA32; // 32 bit system context record align 16 DebugStackEnd: db "DbgStkEnd >>>>>>" ;; 16 byte long string - must be 16 bytes to preserve alignment times 0x1ffc dd 0x0 ;; 32K should be enough stack ;; This allocation is coocked to insure ;; that the the buffer for the FXSTORE instruction ;; will be 16 byte aligned also. ;; ExceptionNumber: dd 0 ;; first entry will be the vector number pushed by the stub DebugStackBegin: db "<<<< DbgStkBegin" ;; initial debug ESP == DebugStackBegin, set in stub SECTION .text ;------------------------------------------------------------------------------ ; BOOLEAN ; FxStorSupport ( ; void ; ) ; ; Abstract: Returns TRUE if FxStor instructions are supported ; global ASM_PFX(FxStorSupport) ASM_PFX(FxStorSupport): ; ; cpuid corrupts ebx which must be preserved per the C calling convention ; push ebx mov eax, 1 cpuid mov eax, edx and eax, FXSTOR_FLAG shr eax, 24 pop ebx ret ;------------------------------------------------------------------------------ ; void ; Vect2Desc ( ; DESCRIPTOR * DestDesc, ; void (*Vector) (void) ; ) ; ; Abstract: Encodes an IDT descriptor with the given physical address ; global ASM_PFX(Vect2Desc) ASM_PFX(Vect2Desc): push ebp mov ebp, esp mov eax, [ebp + 0xC] mov ecx, [ebp + 0x8] mov word [ecx], ax ; write bits 15..0 of offset mov dx, cs mov word [ecx+2], dx ; SYS_CODE_SEL from GDT mov word [ecx+4], 0xe00 | 0x8000 ; type = 386 interrupt gate, present shr eax, 16 mov word [ecx+6], ax ; write bits 31..16 of offset leave ret ;------------------------------------------------------------------------------ ; InterruptEntryStub ; ; Abstract: This code is not a function, but is a small piece of code that is ; copied and fixed up once for each IDT entry that is hooked. ; ASM_PFX(InterruptEntryStub): mov [AppEsp], esp ; save stack top mov esp, DebugStackBegin ; switch to debugger stack push 0 ; push vector number - will be modified before installed db 0xe9 ; jump rel32 dd 0 ; fixed up to relative address of CommonIdtEntry InterruptEntryStubEnd: ;------------------------------------------------------------------------------ ; CommonIdtEntry ; ; Abstract: This code is not a function, but is the common part for all IDT ; vectors. ; ASM_PFX(CommonIdtEntry): ;; ;; At this point, the stub has saved the current application stack esp into AppEsp ;; and switched stacks to the debug stack, where it pushed the vector number ;; ;; The application stack looks like this: ;; ;; ... ;; (last application stack entry) ;; eflags from interrupted task ;; CS from interrupted task ;; EIP from interrupted task ;; Error code <-------------------- Only present for some exeption types ;; ;; ;; The stub switched us to the debug stack and pushed the interrupt number. ;; ;; Next, construct the context record. It will be build on the debug stack by ;; pushing the registers in the correct order so as to create the context structure ;; on the debug stack. The context record must be built from the end back to the ;; beginning because the stack grows down... ; ;; For reference, the context record looks like this: ;; ;; typedef ;; struct { ;; UINT32 ExceptionData; ;; FX_SAVE_STATE_IA32 FxSaveState; ;; UINT32 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7; ;; UINT32 Cr0, Cr2, Cr3, Cr4; ;; UINT32 EFlags; ;; UINT32 Ldtr, Tr; ;; UINT32 Gdtr[2], Idtr[2]; ;; UINT32 Eip; ;; UINT32 Gs, Fs, Es, Ds, Cs, Ss; ;; UINT32 Edi, Esi, Ebp, Esp, Ebx, Edx, Ecx, Eax; ;; } SYSTEM_CONTEXT_IA32; // 32 bit system context record ;; UINT32 Edi, Esi, Ebp, Esp, Ebx, Edx, Ecx, Eax; pushad ;; Save interrupt state eflags register... pushfd pop eax mov [Eflags], eax ;; We need to determine if any extra data was pushed by the exception, and if so, save it ;; To do this, we check the exception number pushed by the stub, and cache the ;; result in a variable since we'll need this again. cmp dword [ExceptionNumber], EXCPT32_DOUBLE_FAULT jz ExtraPushOne cmp dword [ExceptionNumber], EXCPT32_INVALID_TSS jz ExtraPushOne cmp dword [ExceptionNumber], EXCPT32_SEG_NOT_PRESENT jz ExtraPushOne cmp dword [ExceptionNumber], EXCPT32_STACK_FAULT jz ExtraPushOne cmp dword [ExceptionNumber], EXCPT32_GP_FAULT jz ExtraPushOne cmp dword [ExceptionNumber], EXCPT32_PAGE_FAULT jz ExtraPushOne cmp dword [ExceptionNumber], EXCPT32_ALIGNMENT_CHECK jz ExtraPushOne mov dword [ExtraPush], 0 mov dword [ExceptData], 0 jmp ExtraPushDone ExtraPushOne: mov dword [ExtraPush], 1 ;; If there's some extra data, save it also, and modify the saved AppEsp to effectively ;; pop this value off the application's stack. mov eax, [AppEsp] mov ebx, [eax] mov [ExceptData], ebx add eax, 4 mov [AppEsp], eax ExtraPushDone: ;; The "pushad" above pushed the debug stack esp. Since what we're actually doing ;; is building the context record on the debug stack, we need to save the pushed ;; debug ESP, and replace it with the application's last stack entry... mov eax, [esp + 12] mov [DebugEsp], eax mov eax, [AppEsp] add eax, 12 ; application stack has eflags, cs, & eip, so ; last actual application stack entry is ; 12 bytes into the application stack. mov [esp + 12], eax ;; continue building context record ;; UINT32 Gs, Fs, Es, Ds, Cs, Ss; insure high 16 bits of each is zero mov eax, ss push eax ; CS from application is one entry back in application stack mov eax, [AppEsp] movzx eax, word [eax + 4] push eax mov eax, ds push eax mov eax, es push eax mov eax, fs push eax mov eax, gs push eax ;; UINT32 Eip; ; Eip from application is on top of application stack mov eax, [AppEsp] push dword [eax] ;; UINT32 Gdtr[2], Idtr[2]; push 0 push 0 sidt [esp] push 0 push 0 sgdt [esp] ;; UINT32 Ldtr, Tr; xor eax, eax str ax push eax sldt ax push eax ;; UINT32 EFlags; ;; Eflags from application is two entries back in application stack mov eax, [AppEsp] push dword [eax + 8] ;; UINT32 Cr0, Cr1, Cr2, Cr3, Cr4; ;; insure FXSAVE/FXRSTOR is enabled in CR4... ;; ... while we're at it, make sure DE is also enabled... mov eax, cr4 or eax, 0x208 mov cr4, eax push eax mov eax, cr3 push eax mov eax, cr2 push eax push 0 mov eax, cr0 push eax ;; UINT32 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7; mov eax, dr7 push eax ;; clear Dr7 while executing debugger itself xor eax, eax mov dr7, eax mov eax, dr6 push eax ;; insure all status bits in dr6 are clear... xor eax, eax mov dr6, eax mov eax, dr3 push eax mov eax, dr2 push eax mov eax, dr1 push eax mov eax, dr0 push eax ;; FX_SAVE_STATE_IA32 FxSaveState; sub esp, 512 mov edi, esp ; IMPORTANT!! The debug stack has been carefully constructed to ; insure that esp and edi are 16 byte aligned when we get here. ; They MUST be. If they are not, a GP fault will occur. fxsave [edi] ;; UEFI calling convention for IA32 requires that Direction flag in EFLAGs is clear cld ;; UINT32 ExceptionData; mov eax, [ExceptData] push eax ; call to C code which will in turn call registered handler ; pass in the vector number mov eax, esp push eax mov eax, [ExceptionNumber] push eax call ASM_PFX(InterruptDistrubutionHub) add esp, 8 ; restore context... ;; UINT32 ExceptionData; add esp, 4 ;; FX_SAVE_STATE_IA32 FxSaveState; mov esi, esp fxrstor [esi] add esp, 512 ;; UINT32 Dr0, Dr1, Dr2, Dr3, Dr6, Dr7; pop eax mov dr0, eax pop eax mov dr1, eax pop eax mov dr2, eax pop eax mov dr3, eax ;; skip restore of dr6. We cleared dr6 during the context save. add esp, 4 pop eax mov dr7, eax ;; UINT32 Cr0, Cr1, Cr2, Cr3, Cr4; pop eax mov cr0, eax add esp, 4 pop eax mov cr2, eax pop eax mov cr3, eax pop eax mov cr4, eax ;; UINT32 EFlags; mov eax, [AppEsp] pop dword [eax + 8] ;; UINT32 Ldtr, Tr; ;; UINT32 Gdtr[2], Idtr[2]; ;; Best not let anyone mess with these particular registers... add esp, 24 ;; UINT32 Eip; pop dword [eax] ;; UINT32 SegGs, SegFs, SegEs, SegDs, SegCs, SegSs; ;; NOTE - modified segment registers could hang the debugger... We ;; could attempt to insulate ourselves against this possibility, ;; but that poses risks as well. ;; pop gs pop fs pop es pop ds pop dword [eax + 4] pop ss ;; The next stuff to restore is the general purpose registers that were pushed ;; using the "pushad" instruction. ;; ;; The value of ESP as stored in the context record is the application ESP ;; including the 3 entries on the application stack caused by the exception ;; itself. It may have been modified by the debug agent, so we need to ;; determine if we need to relocate the application stack. mov ebx, [esp + 12] ; move the potentially modified AppEsp into ebx mov eax, [AppEsp] add eax, 12 cmp ebx, eax je NoAppStackMove mov eax, [AppEsp] mov ecx, [eax] ; EIP mov [ebx], ecx mov ecx, [eax + 4] ; CS mov [ebx + 4], ecx mov ecx, [eax + 8] ; EFLAGS mov [ebx + 8], ecx mov eax, ebx ; modify the saved AppEsp to the new AppEsp mov [AppEsp], eax NoAppStackMove: mov eax, [DebugEsp] ; restore the DebugEsp on the debug stack ; so our "popad" will not cause a stack switch mov [esp + 12], eax cmp dword [ExceptionNumber], 0x68 jne NoChain Chain: ;; Restore eflags so when we chain, the flags will be exactly as if we were never here. ;; We gin up the stack to do an iretd so we can get ALL the flags. mov eax, [AppEsp] mov ebx, [eax + 8] and ebx, ~ 0x300 ; special handling for IF and TF push ebx push cs push PhonyIretd iretd PhonyIretd: ;; UINT32 Edi, Esi, Ebp, Esp, Ebx, Edx, Ecx, Eax; popad ;; Switch back to application stack mov esp, [AppEsp] ;; Jump to original handler jmp [ASM_PFX(OrigVector)] NoChain: ;; UINT32 Edi, Esi, Ebp, Esp, Ebx, Edx, Ecx, Eax; popad ;; Switch back to application stack mov esp, [AppEsp] ;; We're outa here... iretd