]> git.proxmox.com Git - mirror_edk2.git/blobdiff - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpLib: Add GDTR, IDTR and TR in saved AP data
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
index 3a266e9607d4884ded4dc86bd28123a0f50b393c..0c2058a7b0db7e340e2e23a07e844d6fafe444a6 100644 (file)
@@ -1,7 +1,7 @@
 /** @file\r
   CPU MP Initialize Library common functions.\r
 \r
-  Copyright (c) 2016, Intel Corporation. All rights reserved.<BR>\r
+  Copyright (c) 2016 - 2017, Intel Corporation. All rights reserved.<BR>\r
   This program and the accompanying materials\r
   are licensed and made available under the terms and conditions of the BSD License\r
   which accompanies this distribution.  The full text of the license may be found at\r
@@ -18,8 +18,11 @@ EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
 \r
 /**\r
   The function will check if BSP Execute Disable is enabled.\r
-  DxeIpl may have enabled Execute Disable for BSP,\r
-  APs need to get the status and sync up the settings.\r
+\r
+  DxeIpl may have enabled Execute Disable for BSP, APs need to\r
+  get the status and sync up the settings.\r
+  If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
+  not working actually.\r
 \r
   @retval TRUE      BSP Execute Disable is enabled.\r
   @retval FALSE     BSP Execute Disable is not enabled.\r
@@ -33,23 +36,30 @@ IsBspExecuteDisableEnabled (
   CPUID_EXTENDED_CPU_SIG_EDX  Edx;\r
   MSR_IA32_EFER_REGISTER      EferMsr;\r
   BOOLEAN                     Enabled;\r
+  IA32_CR0                    Cr0;\r
 \r
   Enabled = FALSE;\r
-  AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
-  if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
-    AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
+  Cr0.UintN = AsmReadCr0 ();\r
+  if (Cr0.Bits.PG != 0) {\r
     //\r
-    // CPUID 0x80000001\r
-    // Bit 20: Execute Disable Bit available.\r
+    // If CR0 Paging bit is set\r
     //\r
-    if (Edx.Bits.NX != 0) {\r
-      EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
+    AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
+    if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
+      AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
       //\r
-      // MSR 0xC0000080\r
-      // Bit 11: Execute Disable Bit enable.\r
+      // CPUID 0x80000001\r
+      // Bit 20: Execute Disable Bit available.\r
       //\r
-      if (EferMsr.Bits.NXE != 0) {\r
-        Enabled = TRUE;\r
+      if (Edx.Bits.NX != 0) {\r
+        EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
+        //\r
+        // MSR 0xC0000080\r
+        // Bit 11: Execute Disable Bit enable.\r
+        //\r
+        if (EferMsr.Bits.NXE != 0) {\r
+          Enabled = TRUE;\r
+        }\r
       }\r
     }\r
   }\r
@@ -57,132 +67,6 @@ IsBspExecuteDisableEnabled (
   return Enabled;\r
 }\r
 \r
-/**\r
-  Get CPU Package/Core/Thread location information.\r
-\r
-  @param[in]  InitialApicId     CPU APIC ID\r
-  @param[out] Location          Pointer to CPU location information\r
-**/\r
-VOID\r
-ExtractProcessorLocation (\r
-  IN  UINT32                     InitialApicId,\r
-  OUT EFI_CPU_PHYSICAL_LOCATION  *Location\r
-  )\r
-{\r
-  BOOLEAN                        TopologyLeafSupported;\r
-  UINTN                          ThreadBits;\r
-  UINTN                          CoreBits;\r
-  CPUID_VERSION_INFO_EBX         VersionInfoEbx;\r
-  CPUID_VERSION_INFO_EDX         VersionInfoEdx;\r
-  CPUID_CACHE_PARAMS_EAX         CacheParamsEax;\r
-  CPUID_EXTENDED_TOPOLOGY_EAX    ExtendedTopologyEax;\r
-  CPUID_EXTENDED_TOPOLOGY_EBX    ExtendedTopologyEbx;\r
-  CPUID_EXTENDED_TOPOLOGY_ECX    ExtendedTopologyEcx;\r
-  UINT32                         MaxCpuIdIndex;\r
-  UINT32                         SubIndex;\r
-  UINTN                          LevelType;\r
-  UINT32                         MaxLogicProcessorsPerPackage;\r
-  UINT32                         MaxCoresPerPackage;\r
-\r
-  //\r
-  // Check if the processor is capable of supporting more than one logical processor.\r
-  //\r
-  AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
-  if (VersionInfoEdx.Bits.HTT == 0) {\r
-    Location->Thread  = 0;\r
-    Location->Core    = 0;\r
-    Location->Package = 0;\r
-    return;\r
-  }\r
-\r
-  ThreadBits = 0;\r
-  CoreBits = 0;\r
-\r
-  //\r
-  // Assume three-level mapping of APIC ID: Package:Core:SMT.\r
-  //\r
-\r
-  TopologyLeafSupported = FALSE;\r
-  //\r
-  // Get the max index of basic CPUID\r
-  //\r
-  AsmCpuid (CPUID_SIGNATURE, &MaxCpuIdIndex, NULL, NULL, NULL);\r
-\r
-  //\r
-  // If the extended topology enumeration leaf is available, it\r
-  // is the preferred mechanism for enumerating topology.\r
-  //\r
-  if (MaxCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) {\r
-    AsmCpuidEx (\r
-      CPUID_EXTENDED_TOPOLOGY,\r
-      0,\r
-      &ExtendedTopologyEax.Uint32,\r
-      &ExtendedTopologyEbx.Uint32,\r
-      &ExtendedTopologyEcx.Uint32,\r
-      NULL\r
-      );\r
-    //\r
-    // If CPUID.(EAX=0BH, ECX=0H):EBX returns zero and maximum input value for\r
-    // basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not\r
-    // supported on that processor.\r
-    //\r
-    if (ExtendedTopologyEbx.Uint32 != 0) {\r
-      TopologyLeafSupported = TRUE;\r
-\r
-      //\r
-      // Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract\r
-      // the SMT sub-field of x2APIC ID.\r
-      //\r
-      LevelType = ExtendedTopologyEcx.Bits.LevelType;\r
-      ASSERT (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT);\r
-      ThreadBits = ExtendedTopologyEax.Bits.ApicIdShift;\r
-\r
-      //\r
-      // Software must not assume any "level type" encoding\r
-      // value to be related to any sub-leaf index, except sub-leaf 0.\r
-      //\r
-      SubIndex = 1;\r
-      do {\r
-        AsmCpuidEx (\r
-          CPUID_EXTENDED_TOPOLOGY,\r
-          SubIndex,\r
-          &ExtendedTopologyEax.Uint32,\r
-          NULL,\r
-          &ExtendedTopologyEcx.Uint32,\r
-          NULL\r
-          );\r
-        LevelType = ExtendedTopologyEcx.Bits.LevelType;\r
-        if (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_CORE) {\r
-          CoreBits = ExtendedTopologyEax.Bits.ApicIdShift - ThreadBits;\r
-          break;\r
-        }\r
-        SubIndex++;\r
-      } while (LevelType != CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID);\r
-    }\r
-  }\r
-\r
-  if (!TopologyLeafSupported) {\r
-    AsmCpuid (CPUID_VERSION_INFO, NULL, &VersionInfoEbx.Uint32, NULL, NULL);\r
-    MaxLogicProcessorsPerPackage = VersionInfoEbx.Bits.MaximumAddressableIdsForLogicalProcessors;\r
-    if (MaxCpuIdIndex >= CPUID_CACHE_PARAMS) {\r
-      AsmCpuidEx (CPUID_CACHE_PARAMS, 0, &CacheParamsEax.Uint32, NULL, NULL, NULL);\r
-      MaxCoresPerPackage = CacheParamsEax.Bits.MaximumAddressableIdsForLogicalProcessors + 1;\r
-    } else {\r
-      //\r
-      // Must be a single-core processor.\r
-      //\r
-      MaxCoresPerPackage = 1;\r
-    }\r
-\r
-    ThreadBits = (UINTN) (HighBitSet32 (MaxLogicProcessorsPerPackage / MaxCoresPerPackage - 1) + 1);\r
-    CoreBits = (UINTN) (HighBitSet32 (MaxCoresPerPackage - 1) + 1);\r
-  }\r
-\r
-  Location->Thread  = InitialApicId & ((1 << ThreadBits) - 1);\r
-  Location->Core    = (InitialApicId >> ThreadBits) & ((1 << CoreBits) - 1);\r
-  Location->Package = (InitialApicId >> (ThreadBits + CoreBits));\r
-}\r
-\r
 /**\r
   Worker function for SwitchBSP().\r
 \r
@@ -235,6 +119,53 @@ SetApState (
   ReleaseSpinLock (&CpuData->ApLock);\r
 }\r
 \r
+/**\r
+  Save BSP's local APIC timer setting.\r
+\r
+  @param[in] CpuMpData          Pointer to CPU MP Data\r
+**/\r
+VOID\r
+SaveLocalApicTimerSetting (\r
+  IN CPU_MP_DATA   *CpuMpData\r
+  )\r
+{\r
+  //\r
+  // Record the current local APIC timer setting of BSP\r
+  //\r
+  GetApicTimerState (\r
+    &CpuMpData->DivideValue,\r
+    &CpuMpData->PeriodicMode,\r
+    &CpuMpData->Vector\r
+    );\r
+  CpuMpData->CurrentTimerCount   = GetApicTimerCurrentCount ();\r
+  CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
+}\r
+\r
+/**\r
+  Sync local APIC timer setting from BSP to AP.\r
+\r
+  @param[in] CpuMpData          Pointer to CPU MP Data\r
+**/\r
+VOID\r
+SyncLocalApicTimerSetting (\r
+  IN CPU_MP_DATA   *CpuMpData\r
+  )\r
+{\r
+  //\r
+  // Sync local APIC timer setting from BSP to AP\r
+  //\r
+  InitializeApicTimer (\r
+    CpuMpData->DivideValue,\r
+    CpuMpData->CurrentTimerCount,\r
+    CpuMpData->PeriodicMode,\r
+    CpuMpData->Vector\r
+    );\r
+  //\r
+  // Disable AP's local APIC timer interrupt\r
+  //\r
+  DisableApicTimerInterrupt ();\r
+}\r
+\r
 /**\r
   Save the volatile registers required to be restored following INIT IPI.\r
 \r
@@ -264,6 +195,10 @@ SaveVolatileRegisters (
     VolatileRegisters->Dr6 = AsmReadDr6 ();\r
     VolatileRegisters->Dr7 = AsmReadDr7 ();\r
   }\r
+\r
+  AsmReadGdtr (&VolatileRegisters->Gdtr);\r
+  AsmReadIdtr (&VolatileRegisters->Idtr);\r
+  VolatileRegisters->Tr = AsmReadTr ();\r
 }\r
 \r
 /**\r
@@ -280,6 +215,7 @@ RestoreVolatileRegisters (
   )\r
 {\r
   CPUID_VERSION_INFO_EDX        VersionInfoEdx;\r
+  IA32_TSS_DESCRIPTOR           *Tss;\r
 \r
   AsmWriteCr0 (VolatileRegisters->Cr0);\r
   AsmWriteCr3 (VolatileRegisters->Cr3);\r
@@ -300,6 +236,18 @@ RestoreVolatileRegisters (
       AsmWriteDr7 (VolatileRegisters->Dr7);\r
     }\r
   }\r
+\r
+  AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
+  AsmWriteIdtr (&VolatileRegisters->Idtr);\r
+  if (VolatileRegisters->Tr != 0 &&\r
+      VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
+    Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
+                                  VolatileRegisters->Tr);\r
+    if (Tss->Bits.P == 1) {\r
+      Tss->Bits.Type &= 0xD;  // 1101 - Clear busy bit just in case\r
+      AsmWriteTr (VolatileRegisters->Tr);\r
+    }\r
+  }\r
 }\r
 \r
 /**\r
@@ -379,33 +327,33 @@ SortApicId (
   UINTN             Index2;\r
   UINTN             Index3;\r
   UINT32            ApicId;\r
-  CPU_AP_DATA       CpuData;\r
+  CPU_INFO_IN_HOB   CpuInfo;\r
   UINT32            ApCount;\r
   CPU_INFO_IN_HOB   *CpuInfoInHob;\r
 \r
   ApCount = CpuMpData->CpuCount - 1;\r
-\r
+  CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
   if (ApCount != 0) {\r
     for (Index1 = 0; Index1 < ApCount; Index1++) {\r
       Index3 = Index1;\r
       //\r
       // Sort key is the hardware default APIC ID\r
       //\r
-      ApicId = CpuMpData->CpuData[Index1].ApicId;\r
+      ApicId = CpuInfoInHob[Index1].ApicId;\r
       for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
-        if (ApicId > CpuMpData->CpuData[Index2].ApicId) {\r
+        if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
           Index3 = Index2;\r
-          ApicId = CpuMpData->CpuData[Index2].ApicId;\r
+          ApicId = CpuInfoInHob[Index2].ApicId;\r
         }\r
       }\r
       if (Index3 != Index1) {\r
-        CopyMem (&CpuData, &CpuMpData->CpuData[Index3], sizeof (CPU_AP_DATA));\r
+        CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
         CopyMem (\r
-          &CpuMpData->CpuData[Index3],\r
-          &CpuMpData->CpuData[Index1],\r
-          sizeof (CPU_AP_DATA)\r
+          &CpuInfoInHob[Index3],\r
+          &CpuInfoInHob[Index1],\r
+          sizeof (CPU_INFO_IN_HOB)\r
           );\r
-        CopyMem (&CpuMpData->CpuData[Index1], &CpuData, sizeof (CPU_AP_DATA));\r
+        CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
       }\r
     }\r
 \r
@@ -414,18 +362,11 @@ SortApicId (
     //\r
     ApicId = GetInitialApicId ();\r
     for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
-      if (CpuMpData->CpuData[Index1].ApicId == ApicId) {\r
+      if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
         CpuMpData->BspNumber = (UINT32) Index1;\r
         break;\r
       }\r
     }\r
-\r
-    CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
-    for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
-      CpuInfoInHob[Index1].InitialApicId = CpuMpData->CpuData[Index1].InitialApicId;\r
-      CpuInfoInHob[Index1].ApicId        = CpuMpData->CpuData[Index1].ApicId;\r
-      CpuInfoInHob[Index1].Health        = CpuMpData->CpuData[Index1].Health;\r
-    }\r
   }\r
 }\r
 \r
@@ -458,20 +399,20 @@ ApInitializeSync (
 \r
   CpuMpData = (CPU_MP_DATA *) Buffer;\r
   //\r
-  // Sync BSP's MTRR table to AP\r
-  //\r
-  MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
-  //\r
   // Load microcode on AP\r
   //\r
   MicrocodeDetect (CpuMpData);\r
+  //\r
+  // Sync BSP's MTRR table to AP\r
+  //\r
+  MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
 }\r
 \r
 /**\r
   Find the current Processor number by APIC ID.\r
 \r
-  @param[in] CpuMpData         Pointer to PEI CPU MP Data\r
-  @param[in] ProcessorNumber   Return the pocessor number found\r
+  @param[in]  CpuMpData         Pointer to PEI CPU MP Data\r
+  @param[out] ProcessorNumber   Return the pocessor number found\r
 \r
   @retval EFI_SUCCESS          ProcessorNumber is found and returned.\r
   @retval EFI_NOT_FOUND        ProcessorNumber is not found.\r
@@ -484,10 +425,13 @@ GetProcessorNumber (
 {\r
   UINTN                   TotalProcessorNumber;\r
   UINTN                   Index;\r
+  CPU_INFO_IN_HOB         *CpuInfoInHob;\r
+\r
+  CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
 \r
   TotalProcessorNumber = CpuMpData->CpuCount;\r
   for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
-    if (CpuMpData->CpuData[Index].ApicId == GetApicId ()) {\r
+    if (CpuInfoInHob[Index].ApicId == GetApicId ()) {\r
       *ProcessorNumber = Index;\r
       return EFI_SUCCESS;\r
     }\r
@@ -507,16 +451,14 @@ CollectProcessorCount (
   IN CPU_MP_DATA         *CpuMpData\r
   )\r
 {\r
+  UINTN                  Index;\r
+\r
   //\r
   // Send 1st broadcast IPI to APs to wakeup APs\r
   //\r
   CpuMpData->InitFlag     = ApInitConfig;\r
   CpuMpData->X2ApicEnable = FALSE;\r
   WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);\r
-  //\r
-  // Wait for AP task to complete and then exit.\r
-  //\r
-  MicroSecondDelay (PcdGet32(PcdCpuApInitTimeOutInMicroSeconds));\r
   CpuMpData->InitFlag = ApInitDone;\r
   ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
   //\r
@@ -526,6 +468,12 @@ CollectProcessorCount (
     CpuPause ();\r
   }\r
 \r
+  if (CpuMpData->CpuCount > 255) {\r
+    //\r
+    // If there are more than 255 processor found, force to enable X2APIC\r
+    //\r
+    CpuMpData->X2ApicEnable = TRUE;\r
+  }\r
   if (CpuMpData->X2ApicEnable) {\r
     DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
     //\r
@@ -542,6 +490,12 @@ CollectProcessorCount (
     // Enable x2APIC on BSP\r
     //\r
     SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
+    //\r
+    // Set BSP/Aps state to IDLE\r
+    //\r
+    for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
+      SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
+    }\r
   }\r
   DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
   //\r
@@ -554,27 +508,34 @@ CollectProcessorCount (
   return CpuMpData->CpuCount;\r
 }\r
 \r
-/*\r
+/**\r
   Initialize CPU AP Data when AP is wakeup at the first time.\r
 \r
   @param[in, out] CpuMpData        Pointer to PEI CPU MP Data\r
   @param[in]      ProcessorNumber  The handle number of processor\r
   @param[in]      BistData         Processor BIST data\r
+  @param[in]      ApTopOfStack     Top of AP stack\r
 \r
 **/\r
 VOID\r
 InitializeApData (\r
   IN OUT CPU_MP_DATA      *CpuMpData,\r
   IN     UINTN            ProcessorNumber,\r
-  IN     UINT32           BistData\r
+  IN     UINT32           BistData,\r
+  IN     UINT64           ApTopOfStack\r
   )\r
 {\r
+  CPU_INFO_IN_HOB          *CpuInfoInHob;\r
+\r
+  CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
+  CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
+  CpuInfoInHob[ProcessorNumber].ApicId        = GetApicId ();\r
+  CpuInfoInHob[ProcessorNumber].Health        = BistData;\r
+  CpuInfoInHob[ProcessorNumber].ApTopOfStack  = ApTopOfStack;\r
+\r
   CpuMpData->CpuData[ProcessorNumber].Waiting    = FALSE;\r
-  CpuMpData->CpuData[ProcessorNumber].Health     = BistData;\r
   CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
-  CpuMpData->CpuData[ProcessorNumber].ApicId     = GetApicId ();\r
-  CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
-  if (CpuMpData->CpuData[ProcessorNumber].InitialApicId >= 0xFF) {\r
+  if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
     //\r
     // Set x2APIC mode if there are any logical processor reporting\r
     // an Initial APIC ID of 255 or greater.\r
@@ -592,13 +553,13 @@ InitializeApData (
   This function will be called from AP reset code if BSP uses WakeUpAP.\r
 \r
   @param[in] ExchangeInfo     Pointer to the MP exchange info buffer\r
-  @param[in] NumApsExecuting  Number of current executing AP\r
+  @param[in] ApIndex          Number of current executing AP\r
 **/\r
 VOID\r
 EFIAPI\r
 ApWakeupFunction (\r
   IN MP_CPU_EXCHANGE_INFO      *ExchangeInfo,\r
-  IN UINTN                     NumApsExecuting\r
+  IN UINTN                     ApIndex\r
   )\r
 {\r
   CPU_MP_DATA                *CpuMpData;\r
@@ -607,25 +568,35 @@ ApWakeupFunction (
   VOID                       *Parameter;\r
   UINT32                     BistData;\r
   volatile UINT32            *ApStartupSignalBuffer;\r
+  CPU_INFO_IN_HOB            *CpuInfoInHob;\r
+  UINT64                     ApTopOfStack;\r
+  UINTN                      CurrentApicMode;\r
 \r
   //\r
   // AP finished assembly code and begin to execute C code\r
   //\r
   CpuMpData = ExchangeInfo->CpuMpData;\r
 \r
-  ProgramVirtualWireMode (); \r
+  //\r
+  // AP's local APIC settings will be lost after received INIT IPI\r
+  // We need to re-initialize them at here\r
+  //\r
+  ProgramVirtualWireMode ();\r
+  SyncLocalApicTimerSetting (CpuMpData);\r
 \r
+  CurrentApicMode = GetApicMode ();\r
   while (TRUE) {\r
     if (CpuMpData->InitFlag == ApInitConfig) {\r
       //\r
       // Add CPU number\r
       //\r
       InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
-      ProcessorNumber = NumApsExecuting;\r
+      ProcessorNumber = ApIndex;\r
       //\r
       // This is first time AP wakeup, get BIST information from AP stack\r
       //\r
-      BistData = *(UINT32 *) (CpuMpData->Buffer + ProcessorNumber * CpuMpData->CpuApStackSize - sizeof (UINTN));\r
+      ApTopOfStack  = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
+      BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
       //\r
       // Do some AP initialize sync\r
       //\r
@@ -634,7 +605,7 @@ ApWakeupFunction (
       // Sync BSP's Control registers to APs\r
       //\r
       RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
-      InitializeApData (CpuMpData, ProcessorNumber, BistData);\r
+      InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
       ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
     } else {\r
       //\r
@@ -663,9 +634,14 @@ ApWakeupFunction (
         if (Procedure != NULL) {\r
           SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
           //\r
+          // Enable source debugging on AP function\r
+          //         \r
+          EnableDebugAgent ();\r
+          //\r
           // Invoke AP function here\r
           //\r
           Procedure (Parameter);\r
+          CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
           if (CpuMpData->SwitchBspFlag) {\r
             //\r
             // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
@@ -673,12 +649,26 @@ ApWakeupFunction (
             GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
             CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
             CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
+            ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
+            CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
           } else {\r
-            //\r
-            // Re-get the CPU APICID and Initial APICID\r
-            //\r
-            CpuMpData->CpuData[ProcessorNumber].ApicId        = GetApicId ();\r
-            CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
+            if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
+                CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
+              if (CurrentApicMode != GetApicMode ()) {\r
+                //\r
+                // If APIC mode change happened during AP function execution,\r
+                // we do not support APIC ID value changed.\r
+                //\r
+                ASSERT (FALSE);\r
+                CpuDeadLoop ();\r
+              } else {\r
+                //\r
+                // Re-get the CPU APICID and Initial APICID if they are changed\r
+                //\r
+                CpuInfoInHob[ProcessorNumber].ApicId        = GetApicId ();\r
+                CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
+              }\r
+            }\r
           }\r
         }\r
         SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
@@ -689,6 +679,7 @@ ApWakeupFunction (
     // AP finished executing C code\r
     //\r
     InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
+    InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
 \r
     //\r
     // Place AP is specified loop mode\r
@@ -791,11 +782,16 @@ FillExchangeInfoData (
   ExchangeInfo->Cr3             = AsmReadCr3 ();\r
 \r
   ExchangeInfo->CFunction       = (UINTN) ApWakeupFunction;\r
+  ExchangeInfo->ApIndex         = 0;\r
   ExchangeInfo->NumApsExecuting = 0;\r
+  ExchangeInfo->InitFlag        = (UINTN) CpuMpData->InitFlag;\r
+  ExchangeInfo->CpuInfo         = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
   ExchangeInfo->CpuMpData       = CpuMpData;\r
 \r
   ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
 \r
+  ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
+\r
   //\r
   // Get the BSP's data of GDT and IDT\r
   //\r
@@ -803,6 +799,96 @@ FillExchangeInfoData (
   AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
 }\r
 \r
+/**\r
+  Helper function that waits until the finished AP count reaches the specified\r
+  limit, or the specified timeout elapses (whichever comes first).\r
+\r
+  @param[in] CpuMpData        Pointer to CPU MP Data.\r
+  @param[in] FinishedApLimit  The number of finished APs to wait for.\r
+  @param[in] TimeLimit        The number of microseconds to wait for.\r
+**/\r
+VOID\r
+TimedWaitForApFinish (\r
+  IN CPU_MP_DATA               *CpuMpData,\r
+  IN UINT32                    FinishedApLimit,\r
+  IN UINT32                    TimeLimit\r
+  );\r
+\r
+/**\r
+  Get available system memory below 1MB by specified size.\r
+\r
+  @param[in]  CpuMpData  The pointer to CPU MP Data structure.\r
+**/\r
+VOID\r
+BackupAndPrepareWakeupBuffer(\r
+  IN CPU_MP_DATA              *CpuMpData\r
+  )\r
+{\r
+  CopyMem (\r
+    (VOID *) CpuMpData->BackupBuffer,\r
+    (VOID *) CpuMpData->WakeupBuffer,\r
+    CpuMpData->BackupBufferSize\r
+    );\r
+  CopyMem (\r
+    (VOID *) CpuMpData->WakeupBuffer,\r
+    (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
+    CpuMpData->AddressMap.RendezvousFunnelSize\r
+    );\r
+}\r
+\r
+/**\r
+  Restore wakeup buffer data.\r
+\r
+  @param[in]  CpuMpData  The pointer to CPU MP Data structure.\r
+**/\r
+VOID\r
+RestoreWakeupBuffer(\r
+  IN CPU_MP_DATA              *CpuMpData\r
+  )\r
+{\r
+  CopyMem (\r
+    (VOID *) CpuMpData->WakeupBuffer,\r
+    (VOID *) CpuMpData->BackupBuffer,\r
+    CpuMpData->BackupBufferSize\r
+    );\r
+}\r
+\r
+/**\r
+  Allocate reset vector buffer.\r
+\r
+  @param[in, out]  CpuMpData  The pointer to CPU MP Data structure.\r
+**/\r
+VOID\r
+AllocateResetVector (\r
+  IN OUT CPU_MP_DATA          *CpuMpData\r
+  )\r
+{\r
+  UINTN           ApResetVectorSize;\r
+\r
+  if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
+    ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
+                          sizeof (MP_CPU_EXCHANGE_INFO);\r
+\r
+    CpuMpData->WakeupBuffer      = GetWakeupBuffer (ApResetVectorSize);\r
+    CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
+                    (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
+  }\r
+  BackupAndPrepareWakeupBuffer (CpuMpData);\r
+}\r
+\r
+/**\r
+  Free AP reset vector buffer.\r
+\r
+  @param[in]  CpuMpData  The pointer to CPU MP Data structure.\r
+**/\r
+VOID\r
+FreeResetVector (\r
+  IN CPU_MP_DATA              *CpuMpData\r
+  )\r
+{\r
+  RestoreWakeupBuffer (CpuMpData);\r
+}\r
+\r
 /**\r
   This function will be called by BSP to wakeup AP.\r
 \r
@@ -826,6 +912,7 @@ WakeUpAP (
   UINTN                            Index;\r
   CPU_AP_DATA                      *CpuData;\r
   BOOLEAN                          ResetVectorRequired;\r
+  CPU_INFO_IN_HOB                  *CpuInfoInHob;\r
 \r
   CpuMpData->FinishedCount = 0;\r
   ResetVectorRequired = FALSE;\r
@@ -835,6 +922,7 @@ WakeUpAP (
     ResetVectorRequired = TRUE;\r
     AllocateResetVector (CpuMpData);\r
     FillExchangeInfoData (CpuMpData);\r
+    SaveLocalApicTimerSetting (CpuMpData);\r
   } else if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
     //\r
     // Get AP target C-state each time when waking up AP,\r
@@ -863,7 +951,27 @@ WakeUpAP (
       //\r
       SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
     }\r
-    if (CpuMpData->InitFlag != ApInitConfig) {\r
+    if (CpuMpData->InitFlag == ApInitConfig) {\r
+      //\r
+      // Here support two methods to collect AP count through adjust\r
+      // PcdCpuApInitTimeOutInMicroSeconds values.\r
+      //\r
+      // one way is set a value to just let the first AP to start the\r
+      // initialization, then through the later while loop to wait all Aps\r
+      // finsh the initialization.\r
+      // The other way is set a value to let all APs finished the initialzation.\r
+      // In this case, the later while loop is useless.\r
+      //\r
+      TimedWaitForApFinish (\r
+        CpuMpData,\r
+        PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
+        PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
+        );\r
+\r
+      while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
+        CpuPause();\r
+      }\r
+    } else {\r
       //\r
       // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
       //\r
@@ -885,8 +993,9 @@ WakeUpAP (
     ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
     *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
     if (ResetVectorRequired) {\r
+      CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
       SendInitSipiSipi (\r
-        CpuData->ApicId,\r
+        CpuInfoInHob[ProcessorNumber].ApicId,\r
         (UINT32) ExchangeInfo->BufferStart\r
         );\r
     }\r
@@ -901,6 +1010,412 @@ WakeUpAP (
   }\r
 }\r
 \r
+/**\r
+  Calculate timeout value and return the current performance counter value.\r
+\r
+  Calculate the number of performance counter ticks required for a timeout.\r
+  If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
+  as infinity.\r
+\r
+  @param[in]  TimeoutInMicroseconds   Timeout value in microseconds.\r
+  @param[out] CurrentTime             Returns the current value of the performance counter.\r
+\r
+  @return Expected time stamp counter for timeout.\r
+          If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
+          as infinity.\r
+\r
+**/\r
+UINT64\r
+CalculateTimeout (\r
+  IN  UINTN   TimeoutInMicroseconds,\r
+  OUT UINT64  *CurrentTime\r
+  )\r
+{\r
+  UINT64 TimeoutInSeconds;\r
+  UINT64 TimestampCounterFreq;\r
+\r
+  //\r
+  // Read the current value of the performance counter\r
+  //\r
+  *CurrentTime = GetPerformanceCounter ();\r
+\r
+  //\r
+  // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
+  // as infinity.\r
+  //\r
+  if (TimeoutInMicroseconds == 0) {\r
+    return 0;\r
+  }\r
+\r
+  //\r
+  // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
+  // in Hz. \r
+  //\r
+  TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
+\r
+  //\r
+  // Check the potential overflow before calculate the number of ticks for the timeout value.\r
+  //\r
+  if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
+    //\r
+    // Convert microseconds into seconds if direct multiplication overflows\r
+    //\r
+    TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
+    //\r
+    // Assertion if the final tick count exceeds MAX_UINT64\r
+    //\r
+    ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
+    return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
+  } else {\r
+    //\r
+    // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
+    // it by 1,000,000, to get the number of ticks for the timeout value.\r
+    //\r
+    return DivU64x32 (\r
+             MultU64x64 (\r
+               TimestampCounterFreq,\r
+               TimeoutInMicroseconds\r
+               ),\r
+             1000000\r
+             );\r
+  }\r
+}\r
+\r
+/**\r
+  Checks whether timeout expires.\r
+\r
+  Check whether the number of elapsed performance counter ticks required for\r
+  a timeout condition has been reached.\r
+  If Timeout is zero, which means infinity, return value is always FALSE.\r
+\r
+  @param[in, out]  PreviousTime   On input,  the value of the performance counter\r
+                                  when it was last read.\r
+                                  On output, the current value of the performance\r
+                                  counter\r
+  @param[in]       TotalTime      The total amount of elapsed time in performance\r
+                                  counter ticks.\r
+  @param[in]       Timeout        The number of performance counter ticks required\r
+                                  to reach a timeout condition.\r
+\r
+  @retval TRUE                    A timeout condition has been reached.\r
+  @retval FALSE                   A timeout condition has not been reached.\r
+\r
+**/\r
+BOOLEAN\r
+CheckTimeout (\r
+  IN OUT UINT64  *PreviousTime,\r
+  IN     UINT64  *TotalTime,\r
+  IN     UINT64  Timeout\r
+  )\r
+{\r
+  UINT64  Start;\r
+  UINT64  End;\r
+  UINT64  CurrentTime;\r
+  INT64   Delta;\r
+  INT64   Cycle;\r
+\r
+  if (Timeout == 0) {\r
+    return FALSE;\r
+  }\r
+  GetPerformanceCounterProperties (&Start, &End);\r
+  Cycle = End - Start;\r
+  if (Cycle < 0) {\r
+    Cycle = -Cycle;\r
+  }\r
+  Cycle++;\r
+  CurrentTime = GetPerformanceCounter();\r
+  Delta = (INT64) (CurrentTime - *PreviousTime);\r
+  if (Start > End) {\r
+    Delta = -Delta;\r
+  }\r
+  if (Delta < 0) {\r
+    Delta += Cycle;\r
+  }\r
+  *TotalTime += Delta;\r
+  *PreviousTime = CurrentTime;\r
+  if (*TotalTime > Timeout) {\r
+    return TRUE;\r
+  }\r
+  return FALSE;\r
+}\r
+\r
+/**\r
+  Helper function that waits until the finished AP count reaches the specified\r
+  limit, or the specified timeout elapses (whichever comes first).\r
+\r
+  @param[in] CpuMpData        Pointer to CPU MP Data.\r
+  @param[in] FinishedApLimit  The number of finished APs to wait for.\r
+  @param[in] TimeLimit        The number of microseconds to wait for.\r
+**/\r
+VOID\r
+TimedWaitForApFinish (\r
+  IN CPU_MP_DATA               *CpuMpData,\r
+  IN UINT32                    FinishedApLimit,\r
+  IN UINT32                    TimeLimit\r
+  )\r
+{\r
+  //\r
+  // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
+  // "infinity", so check for (TimeLimit == 0) explicitly.\r
+  //\r
+  if (TimeLimit == 0) {\r
+    return;\r
+  }\r
+\r
+  CpuMpData->TotalTime = 0;\r
+  CpuMpData->ExpectedTime = CalculateTimeout (\r
+                              TimeLimit,\r
+                              &CpuMpData->CurrentTime\r
+                              );\r
+  while (CpuMpData->FinishedCount < FinishedApLimit &&\r
+         !CheckTimeout (\r
+            &CpuMpData->CurrentTime,\r
+            &CpuMpData->TotalTime,\r
+            CpuMpData->ExpectedTime\r
+            )) {\r
+    CpuPause ();\r
+  }\r
+\r
+  if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
+    DEBUG ((\r
+      DEBUG_VERBOSE,\r
+      "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
+      __FUNCTION__,\r
+      FinishedApLimit,\r
+      DivU64x64Remainder (\r
+        MultU64x32 (CpuMpData->TotalTime, 1000000),\r
+        GetPerformanceCounterProperties (NULL, NULL),\r
+        NULL\r
+        )\r
+      ));\r
+  }\r
+}\r
+\r
+/**\r
+  Reset an AP to Idle state.\r
+\r
+  Any task being executed by the AP will be aborted and the AP\r
+  will be waiting for a new task in Wait-For-SIPI state.\r
+\r
+  @param[in] ProcessorNumber  The handle number of processor.\r
+**/\r
+VOID\r
+ResetProcessorToIdleState (\r
+  IN UINTN                     ProcessorNumber\r
+  )\r
+{\r
+  CPU_MP_DATA           *CpuMpData;\r
+\r
+  CpuMpData = GetCpuMpData ();\r
+\r
+  CpuMpData->InitFlag = ApInitReconfig;\r
+  WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);\r
+  while (CpuMpData->FinishedCount < 1) {\r
+    CpuPause ();\r
+  }\r
+  CpuMpData->InitFlag = ApInitDone;\r
+\r
+  SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
+}\r
+\r
+/**\r
+  Searches for the next waiting AP.\r
+\r
+  Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
+\r
+  @param[out]  NextProcessorNumber  Pointer to the processor number of the next waiting AP.\r
+\r
+  @retval EFI_SUCCESS          The next waiting AP has been found.\r
+  @retval EFI_NOT_FOUND        No waiting AP exists.\r
+\r
+**/\r
+EFI_STATUS\r
+GetNextWaitingProcessorNumber (\r
+  OUT UINTN                    *NextProcessorNumber\r
+  )\r
+{\r
+  UINTN           ProcessorNumber;\r
+  CPU_MP_DATA     *CpuMpData;\r
+\r
+  CpuMpData = GetCpuMpData ();\r
+\r
+  for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
+    if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
+      *NextProcessorNumber = ProcessorNumber;\r
+      return EFI_SUCCESS;\r
+    }\r
+  }\r
+\r
+  return EFI_NOT_FOUND;\r
+}\r
+\r
+/** Checks status of specified AP.\r
+\r
+  This function checks whether the specified AP has finished the task assigned\r
+  by StartupThisAP(), and whether timeout expires.\r
+\r
+  @param[in]  ProcessorNumber       The handle number of processor.\r
+\r
+  @retval EFI_SUCCESS           Specified AP has finished task assigned by StartupThisAPs().\r
+  @retval EFI_TIMEOUT           The timeout expires.\r
+  @retval EFI_NOT_READY         Specified AP has not finished task and timeout has not expired.\r
+**/\r
+EFI_STATUS\r
+CheckThisAP (\r
+  IN UINTN        ProcessorNumber\r
+  )\r
+{\r
+  CPU_MP_DATA     *CpuMpData;\r
+  CPU_AP_DATA     *CpuData;\r
+\r
+  CpuMpData = GetCpuMpData ();\r
+  CpuData   = &CpuMpData->CpuData[ProcessorNumber];\r
+\r
+  //\r
+  //  Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
+  //  Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
+  //  value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
+  //\r
+  //\r
+  // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
+  //\r
+  if (GetApState(CpuData) == CpuStateFinished) {\r
+    if (CpuData->Finished != NULL) {\r
+      *(CpuData->Finished) = TRUE;\r
+    }\r
+    SetApState (CpuData, CpuStateIdle);\r
+    return EFI_SUCCESS;\r
+  } else {\r
+    //\r
+    // If timeout expires for StartupThisAP(), report timeout.\r
+    //\r
+    if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
+      if (CpuData->Finished != NULL) {\r
+        *(CpuData->Finished) = FALSE;\r
+      }\r
+      //\r
+      // Reset failed AP to idle state\r
+      //\r
+      ResetProcessorToIdleState (ProcessorNumber);\r
+\r
+      return EFI_TIMEOUT;\r
+    }\r
+  }\r
+  return EFI_NOT_READY;\r
+}\r
+\r
+/**\r
+  Checks status of all APs.\r
+\r
+  This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
+  and whether timeout expires.\r
+\r
+  @retval EFI_SUCCESS           All APs have finished task assigned by StartupAllAPs().\r
+  @retval EFI_TIMEOUT           The timeout expires.\r
+  @retval EFI_NOT_READY         APs have not finished task and timeout has not expired.\r
+**/\r
+EFI_STATUS\r
+CheckAllAPs (\r
+  VOID\r
+  )\r
+{\r
+  UINTN           ProcessorNumber;\r
+  UINTN           NextProcessorNumber;\r
+  UINTN           ListIndex;\r
+  EFI_STATUS      Status;\r
+  CPU_MP_DATA     *CpuMpData;\r
+  CPU_AP_DATA     *CpuData;\r
+\r
+  CpuMpData = GetCpuMpData ();\r
+\r
+  NextProcessorNumber = 0;\r
+\r
+  //\r
+  // Go through all APs that are responsible for the StartupAllAPs().\r
+  //\r
+  for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
+    if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
+      continue;\r
+    }\r
+\r
+    CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
+    //\r
+    // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.\r
+    // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
+    // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.\r
+    //\r
+    if (GetApState(CpuData) == CpuStateFinished) {\r
+      CpuMpData->RunningCount ++;\r
+      CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
+      SetApState(CpuData, CpuStateIdle);\r
+\r
+      //\r
+      // If in Single Thread mode, then search for the next waiting AP for execution.\r
+      //\r
+      if (CpuMpData->SingleThread) {\r
+        Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
+\r
+        if (!EFI_ERROR (Status)) {\r
+          WakeUpAP (\r
+            CpuMpData,\r
+            FALSE,\r
+            (UINT32) NextProcessorNumber,\r
+            CpuMpData->Procedure,\r
+            CpuMpData->ProcArguments\r
+            );\r
+         }\r
+      }\r
+    }\r
+  }\r
+\r
+  //\r
+  // If all APs finish, return EFI_SUCCESS.\r
+  //\r
+  if (CpuMpData->RunningCount == CpuMpData->StartCount) {\r
+    return EFI_SUCCESS;\r
+  }\r
+\r
+  //\r
+  // If timeout expires, report timeout.\r
+  //\r
+  if (CheckTimeout (\r
+       &CpuMpData->CurrentTime,\r
+       &CpuMpData->TotalTime,\r
+       CpuMpData->ExpectedTime)\r
+       ) {\r
+    //\r
+    // If FailedCpuList is not NULL, record all failed APs in it.\r
+    //\r
+    if (CpuMpData->FailedCpuList != NULL) {\r
+      *CpuMpData->FailedCpuList =\r
+         AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));\r
+      ASSERT (*CpuMpData->FailedCpuList != NULL);\r
+    }\r
+    ListIndex = 0;\r
+\r
+    for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
+      //\r
+      // Check whether this processor is responsible for StartupAllAPs().\r
+      //\r
+      if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
+        //\r
+        // Reset failed APs to idle state\r
+        //\r
+        ResetProcessorToIdleState (ProcessorNumber);\r
+        CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
+        if (CpuMpData->FailedCpuList != NULL) {\r
+          (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
+        }\r
+      }\r
+    }\r
+    if (CpuMpData->FailedCpuList != NULL) {\r
+      (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
+    }\r
+    return EFI_TIMEOUT;\r
+  }\r
+  return EFI_NOT_READY;\r
+}\r
+\r
 /**\r
   MP Initialize Library initialization.\r
 \r
@@ -942,6 +1457,7 @@ MpInitLibInitialize (
   } else {\r
     MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
   }\r
+  ASSERT (MaxLogicalProcessorNumber != 0);\r
 \r
   AsmGetAddressMap (&AddressMap);\r
   ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
@@ -965,7 +1481,6 @@ MpInitLibInitialize (
   CpuMpData->CpuApStackSize   = ApStackSize;\r
   CpuMpData->BackupBuffer     = BackupBufferAddr;\r
   CpuMpData->BackupBufferSize = ApResetVectorSize;\r
-  CpuMpData->EndOfPeiFlag     = FALSE;\r
   CpuMpData->WakeupBuffer     = (UINTN) -1;\r
   CpuMpData->CpuCount         = 1;\r
   CpuMpData->BspNumber        = 0;\r
@@ -973,6 +1488,8 @@ MpInitLibInitialize (
   CpuMpData->SwitchBspFlag    = FALSE;\r
   CpuMpData->CpuData          = (CPU_AP_DATA *) (CpuMpData + 1);\r
   CpuMpData->CpuInfoInHob     = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
+  CpuMpData->MicrocodePatchAddress    = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
+  CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
   InitializeSpinLock(&CpuMpData->MpLock);\r
   //\r
   // Save BSP's Control registers to APs\r
@@ -981,7 +1498,7 @@ MpInitLibInitialize (
   //\r
   // Set BSP basic information\r
   //\r
-  InitializeApData (CpuMpData, 0, 0);\r
+  InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer);\r
   //\r
   // Save assembly code information\r
   //\r
@@ -1006,12 +1523,18 @@ MpInitLibInitialize (
   // Store BSP's MTRR setting\r
   //\r
   MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
+  //\r
+  // Enable the local APIC for Virtual Wire Mode.\r
+  //\r
+  ProgramVirtualWireMode ();\r
 \r
   if (OldCpuMpData == NULL) {\r
-    //\r
-    // Wakeup all APs and calculate the processor count in system\r
-    //\r
-    CollectProcessorCount (CpuMpData);\r
+    if (MaxLogicalProcessorNumber > 1) {\r
+      //\r
+      // Wakeup all APs and calculate the processor count in system\r
+      //\r
+      CollectProcessorCount (CpuMpData);\r
+    }\r
   } else {\r
     //\r
     // APs have been wakeup before, just get the CPU Information\r
@@ -1020,16 +1543,14 @@ MpInitLibInitialize (
     CpuMpData->CpuCount  = OldCpuMpData->CpuCount;\r
     CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
     CpuMpData->InitFlag  = ApInitReconfig;\r
-    CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) OldCpuMpData->CpuInfoInHob;\r
+    CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
+    CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
     for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
       InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
-      CpuMpData->CpuData[Index].ApicId        = CpuInfoInHob[Index].ApicId;\r
-      CpuMpData->CpuData[Index].InitialApicId = CpuInfoInHob[Index].InitialApicId;\r
-      if (CpuMpData->CpuData[Index].InitialApicId >= 255) {\r
+      if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
         CpuMpData->X2ApicEnable = TRUE;\r
       }\r
-      CpuMpData->CpuData[Index].Health     = CpuInfoInHob[Index].Health;\r
-      CpuMpData->CpuData[Index].CpuHealthy = (CpuMpData->CpuData[Index].Health == 0)? TRUE:FALSE;\r
+      CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
       CpuMpData->CpuData[Index].ApFunction = 0;\r
       CopyMem (\r
         &CpuMpData->CpuData[Index].VolatileRegisters,\r
@@ -1037,19 +1558,21 @@ MpInitLibInitialize (
         sizeof (CPU_VOLATILE_REGISTERS)\r
         );\r
     }\r
-    //\r
-    // Wakeup APs to do some AP initialize sync\r
-    //\r
-    WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);\r
-    //\r
-    // Wait for all APs finished initialization\r
-    //\r
-    while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
-      CpuPause ();\r
-    }\r
-    CpuMpData->InitFlag = ApInitDone;\r
-    for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
-      SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
+    if (MaxLogicalProcessorNumber > 1) {\r
+      //\r
+      // Wakeup APs to do some AP initialize sync\r
+      //\r
+      WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);\r
+      //\r
+      // Wait for all APs finished initialization\r
+      //\r
+      while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
+        CpuPause ();\r
+      }\r
+      CpuMpData->InitFlag = ApInitDone;\r
+      for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
+        SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
+      }\r
     }\r
   }\r
 \r
@@ -1088,8 +1611,10 @@ MpInitLibGetProcessorInfo (
 {\r
   CPU_MP_DATA            *CpuMpData;\r
   UINTN                  CallerNumber;\r
+  CPU_INFO_IN_HOB        *CpuInfoInHob;\r
 \r
   CpuMpData = GetCpuMpData ();\r
+  CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
 \r
   //\r
   // Check whether caller processor is BSP\r
@@ -1107,7 +1632,7 @@ MpInitLibGetProcessorInfo (
     return EFI_NOT_FOUND;\r
   }\r
 \r
-  ProcessorInfoBuffer->ProcessorId = (UINT64) CpuMpData->CpuData[ProcessorNumber].ApicId;\r
+  ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
   ProcessorInfoBuffer->StatusFlag  = 0;\r
   if (ProcessorNumber == CpuMpData->BspNumber) {\r
     ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
@@ -1124,10 +1649,15 @@ MpInitLibGetProcessorInfo (
   //\r
   // Get processor location information\r
   //\r
-  ExtractProcessorLocation (CpuMpData->CpuData[ProcessorNumber].ApicId, &ProcessorInfoBuffer->Location);\r
+  GetProcessorLocationByApicId (\r
+    CpuInfoInHob[ProcessorNumber].ApicId,\r
+    &ProcessorInfoBuffer->Location.Package,\r
+    &ProcessorInfoBuffer->Location.Core,\r
+    &ProcessorInfoBuffer->Location.Thread\r
+    );\r
 \r
   if (HealthData != NULL) {\r
-    HealthData->Uint32 = CpuMpData->CpuData[ProcessorNumber].Health;\r
+    HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
   }\r
 \r
   return EFI_SUCCESS;\r
@@ -1154,6 +1684,27 @@ SwitchBSPWorker (
   UINTN                        CallerNumber;\r
   CPU_STATE                    State;\r
   MSR_IA32_APIC_BASE_REGISTER  ApicBaseMsr;\r
+  BOOLEAN                      OldInterruptState;\r
+  BOOLEAN                      OldTimerInterruptState;\r
+\r
+  //\r
+  // Save and Disable Local APIC timer interrupt\r
+  //\r
+  OldTimerInterruptState = GetApicTimerInterruptState ();\r
+  DisableApicTimerInterrupt ();\r
+  //\r
+  // Before send both BSP and AP to a procedure to exchange their roles,\r
+  // interrupt must be disabled. This is because during the exchange role\r
+  // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
+  // be corrupted, since interrupt return address will be pushed to stack\r
+  // by hardware.\r
+  //\r
+  OldInterruptState = SaveAndDisableInterrupts ();\r
+\r
+  //\r
+  // Mask LINT0 & LINT1 for the old BSP\r
+  //\r
+  DisableLvtInterrupts ();\r
 \r
   CpuMpData = GetCpuMpData ();\r
 \r
@@ -1162,7 +1713,7 @@ SwitchBSPWorker (
   //\r
   MpInitLibWhoAmI (&CallerNumber);\r
   if (CallerNumber != CpuMpData->BspNumber) {\r
-    return EFI_SUCCESS;\r
+    return EFI_DEVICE_ERROR;\r
   }\r
 \r
   if (ProcessorNumber >= CpuMpData->CpuCount) {\r
@@ -1194,6 +1745,7 @@ SwitchBSPWorker (
   CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
   CpuMpData->APInfo.State  = CPU_SWITCH_STATE_IDLE;\r
   CpuMpData->SwitchBspFlag = TRUE;\r
+  CpuMpData->NewBspNumber  = ProcessorNumber;\r
 \r
   //\r
   // Clear the BSP bit of MSR_IA32_APIC_BASE\r
@@ -1229,12 +1781,23 @@ SwitchBSPWorker (
   //\r
   if (!EnableOldBSP) {\r
     SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
+  } else {\r
+    SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
   }\r
   //\r
   // Save new BSP number\r
   //\r
   CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
 \r
+  //\r
+  // Restore interrupt state.\r
+  //\r
+  SetInterruptState (OldInterruptState);\r
+\r
+  if (OldTimerInterruptState) {\r
+    EnableApicTimerInterrupt ();\r
+  }\r
+\r
   return EFI_SUCCESS;\r
 }\r
 \r
@@ -1283,7 +1846,7 @@ EnableDisableApWorker (
   if (!EnableAP) {\r
     SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
   } else {\r
-    SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
+    ResetProcessorToIdleState (ProcessorNumber);\r
   }\r
 \r
   if (HealthFlag != NULL) {\r
@@ -1393,6 +1956,276 @@ MpInitLibGetNumberOfProcessors (
 }\r
 \r
 \r
+/**\r
+  Worker function to execute a caller provided function on all enabled APs.\r
+\r
+  @param[in]  Procedure               A pointer to the function to be run on\r
+                                      enabled APs of the system.\r
+  @param[in]  SingleThread            If TRUE, then all the enabled APs execute\r
+                                      the function specified by Procedure one by\r
+                                      one, in ascending order of processor handle\r
+                                      number.  If FALSE, then all the enabled APs\r
+                                      execute the function specified by Procedure\r
+                                      simultaneously.\r
+  @param[in]  WaitEvent               The event created by the caller with CreateEvent()\r
+                                      service.\r
+  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for\r
+                                      APs to return from Procedure, either for\r
+                                      blocking or non-blocking mode.\r
+  @param[in]  ProcedureArgument       The parameter passed into Procedure for\r
+                                      all APs.\r
+  @param[out] FailedCpuList           If all APs finish successfully, then its\r
+                                      content is set to NULL. If not all APs\r
+                                      finish before timeout expires, then its\r
+                                      content is set to address of the buffer\r
+                                      holding handle numbers of the failed APs.\r
+\r
+  @retval EFI_SUCCESS             In blocking mode, all APs have finished before\r
+                                  the timeout expired.\r
+  @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched\r
+                                  to all enabled APs.\r
+  @retval others                  Failed to Startup all APs.\r
+\r
+**/\r
+EFI_STATUS\r
+StartupAllAPsWorker (\r
+  IN  EFI_AP_PROCEDURE          Procedure,\r
+  IN  BOOLEAN                   SingleThread,\r
+  IN  EFI_EVENT                 WaitEvent               OPTIONAL,\r
+  IN  UINTN                     TimeoutInMicroseconds,\r
+  IN  VOID                      *ProcedureArgument      OPTIONAL,\r
+  OUT UINTN                     **FailedCpuList         OPTIONAL\r
+  )\r
+{\r
+  EFI_STATUS              Status;\r
+  CPU_MP_DATA             *CpuMpData;\r
+  UINTN                   ProcessorCount;\r
+  UINTN                   ProcessorNumber;\r
+  UINTN                   CallerNumber;\r
+  CPU_AP_DATA             *CpuData;\r
+  BOOLEAN                 HasEnabledAp;\r
+  CPU_STATE               ApState;\r
+\r
+  CpuMpData = GetCpuMpData ();\r
+\r
+  if (FailedCpuList != NULL) {\r
+    *FailedCpuList = NULL;\r
+  }\r
+\r
+  if (CpuMpData->CpuCount == 1) {\r
+    return EFI_NOT_STARTED;\r
+  }\r
+\r
+  if (Procedure == NULL) {\r
+    return EFI_INVALID_PARAMETER;\r
+  }\r
+\r
+  //\r
+  // Check whether caller processor is BSP\r
+  //\r
+  MpInitLibWhoAmI (&CallerNumber);\r
+  if (CallerNumber != CpuMpData->BspNumber) {\r
+    return EFI_DEVICE_ERROR;\r
+  }\r
+\r
+  //\r
+  // Update AP state\r
+  //\r
+  CheckAndUpdateApsStatus ();\r
+\r
+  ProcessorCount = CpuMpData->CpuCount;\r
+  HasEnabledAp   = FALSE;\r
+  //\r
+  // Check whether all enabled APs are idle.\r
+  // If any enabled AP is not idle, return EFI_NOT_READY.\r
+  //\r
+  for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
+    CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
+    if (ProcessorNumber != CpuMpData->BspNumber) {\r
+      ApState = GetApState (CpuData);\r
+      if (ApState != CpuStateDisabled) {\r
+        HasEnabledAp = TRUE;\r
+        if (ApState != CpuStateIdle) {\r
+          //\r
+          // If any enabled APs are busy, return EFI_NOT_READY.\r
+          //\r
+          return EFI_NOT_READY;\r
+        }\r
+      }\r
+    }\r
+  }\r
+\r
+  if (!HasEnabledAp) {\r
+    //\r
+    // If no enabled AP exists, return EFI_NOT_STARTED.\r
+    //\r
+    return EFI_NOT_STARTED;\r
+  }\r
+\r
+  CpuMpData->StartCount = 0;\r
+  for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
+    CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
+    CpuData->Waiting = FALSE;\r
+    if (ProcessorNumber != CpuMpData->BspNumber) {\r
+      if (CpuData->State == CpuStateIdle) {\r
+        //\r
+        // Mark this processor as responsible for current calling.\r
+        //\r
+        CpuData->Waiting = TRUE;\r
+        CpuMpData->StartCount++;\r
+      }\r
+    }\r
+  }\r
+\r
+  CpuMpData->Procedure     = Procedure;\r
+  CpuMpData->ProcArguments = ProcedureArgument;\r
+  CpuMpData->SingleThread  = SingleThread;\r
+  CpuMpData->FinishedCount = 0;\r
+  CpuMpData->RunningCount  = 0;\r
+  CpuMpData->FailedCpuList = FailedCpuList;\r
+  CpuMpData->ExpectedTime  = CalculateTimeout (\r
+                               TimeoutInMicroseconds,\r
+                               &CpuMpData->CurrentTime\r
+                               );\r
+  CpuMpData->TotalTime     = 0;\r
+  CpuMpData->WaitEvent     = WaitEvent;\r
+\r
+  if (!SingleThread) {\r
+    WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);\r
+  } else {\r
+    for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
+      if (ProcessorNumber == CallerNumber) {\r
+        continue;\r
+      }\r
+      if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
+        WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
+        break;\r
+      }\r
+    }\r
+  }\r
+\r
+  Status = EFI_SUCCESS;\r
+  if (WaitEvent == NULL) {\r
+    do {\r
+      Status = CheckAllAPs ();\r
+    } while (Status == EFI_NOT_READY);\r
+  }\r
+\r
+  return Status;\r
+}\r
+\r
+/**\r
+  Worker function to let the caller get one enabled AP to execute a caller-provided\r
+  function.\r
+\r
+  @param[in]  Procedure               A pointer to the function to be run on\r
+                                      enabled APs of the system.\r
+  @param[in]  ProcessorNumber         The handle number of the AP.\r
+  @param[in]  WaitEvent               The event created by the caller with CreateEvent()\r
+                                      service.\r
+  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for\r
+                                      APs to return from Procedure, either for\r
+                                      blocking or non-blocking mode.\r
+  @param[in]  ProcedureArgument       The parameter passed into Procedure for\r
+                                      all APs.\r
+  @param[out] Finished                If AP returns from Procedure before the\r
+                                      timeout expires, its content is set to TRUE.\r
+                                      Otherwise, the value is set to FALSE.\r
+\r
+  @retval EFI_SUCCESS             In blocking mode, specified AP finished before\r
+                                  the timeout expires.\r
+  @retval others                  Failed to Startup AP.\r
+\r
+**/\r
+EFI_STATUS\r
+StartupThisAPWorker (\r
+  IN  EFI_AP_PROCEDURE          Procedure,\r
+  IN  UINTN                     ProcessorNumber,\r
+  IN  EFI_EVENT                 WaitEvent               OPTIONAL,\r
+  IN  UINTN                     TimeoutInMicroseconds,\r
+  IN  VOID                      *ProcedureArgument      OPTIONAL,\r
+  OUT BOOLEAN                   *Finished               OPTIONAL\r
+  )\r
+{\r
+  EFI_STATUS              Status;\r
+  CPU_MP_DATA             *CpuMpData;\r
+  CPU_AP_DATA             *CpuData;\r
+  UINTN                   CallerNumber;\r
+\r
+  CpuMpData = GetCpuMpData ();\r
+\r
+  if (Finished != NULL) {\r
+    *Finished = FALSE;\r
+  }\r
+\r
+  //\r
+  // Check whether caller processor is BSP\r
+  //\r
+  MpInitLibWhoAmI (&CallerNumber);\r
+  if (CallerNumber != CpuMpData->BspNumber) {\r
+    return EFI_DEVICE_ERROR;\r
+  }\r
+\r
+  //\r
+  // Check whether processor with the handle specified by ProcessorNumber exists\r
+  //\r
+  if (ProcessorNumber >= CpuMpData->CpuCount) {\r
+    return EFI_NOT_FOUND;\r
+  }\r
+\r
+  //\r
+  // Check whether specified processor is BSP\r
+  //\r
+  if (ProcessorNumber == CpuMpData->BspNumber) {\r
+    return EFI_INVALID_PARAMETER;\r
+  }\r
+\r
+  //\r
+  // Check parameter Procedure\r
+  //\r
+  if (Procedure == NULL) {\r
+    return EFI_INVALID_PARAMETER;\r
+  }\r
+\r
+  //\r
+  // Update AP state\r
+  //\r
+  CheckAndUpdateApsStatus ();\r
+\r
+  //\r
+  // Check whether specified AP is disabled\r
+  //\r
+  if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
+    return EFI_INVALID_PARAMETER;\r
+  }\r
+\r
+  //\r
+  // If WaitEvent is not NULL, execute in non-blocking mode.\r
+  // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
+  // CheckAPsStatus() will check completion and timeout periodically.\r
+  //\r
+  CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
+  CpuData->WaitEvent    = WaitEvent;\r
+  CpuData->Finished     = Finished;\r
+  CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
+  CpuData->TotalTime    = 0;\r
+\r
+  WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);\r
+\r
+  //\r
+  // If WaitEvent is NULL, execute in blocking mode.\r
+  // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
+  //\r
+  Status = EFI_SUCCESS;\r
+  if (WaitEvent == NULL) {\r
+    do {\r
+      Status = CheckThisAP (ProcessorNumber);\r
+    } while (Status == EFI_NOT_READY);\r
+  }\r
+\r
+  return Status;\r
+}\r
+\r
 /**\r
   Get pointer to CPU MP Data structure from GUIDed HOB.\r
 \r
@@ -1415,3 +2248,4 @@ GetCpuMpDataFromGuidedHob (
   }\r
   return CpuMpData;\r
 }\r
+\r