X-Git-Url: https://git.proxmox.com/?p=mirror_edk2.git;a=blobdiff_plain;f=MdePkg%2FInclude%2FUefi%2FUefiSpec.h;h=57cb4e804f703e7e21c1cf6ca1b23b3aa65386ab;hp=ffdfcd6398ea573ef6fd5a16de9f525cf2cad7f0;hb=08855193cafebaa2e071ffb5f083bcb3cb6d4df0;hpb=b92b1209f71519bea2ae237088d586726605882e diff --git a/MdePkg/Include/Uefi/UefiSpec.h b/MdePkg/Include/Uefi/UefiSpec.h index ffdfcd6398..57cb4e804f 100644 --- a/MdePkg/Include/Uefi/UefiSpec.h +++ b/MdePkg/Include/Uefi/UefiSpec.h @@ -1,11 +1,11 @@ /** @file Include file that supports UEFI. - This include file must contain things defined in the UEFI 2.3 specification. - If a code construct is defined in the UEFI 2.3 specification it must be included + This include file must contain things defined in the UEFI 2.6 specification. + If a code construct is defined in the UEFI 2.6 specification it must be included by this include file. -Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.
+Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License that accompanies this distribution. The full text of the license may be found at @@ -63,21 +63,35 @@ typedef enum { // // Memory cacheability attributes // -#define EFI_MEMORY_UC 0x0000000000000001ULL -#define EFI_MEMORY_WC 0x0000000000000002ULL -#define EFI_MEMORY_WT 0x0000000000000004ULL -#define EFI_MEMORY_WB 0x0000000000000008ULL -#define EFI_MEMORY_UCE 0x0000000000000010ULL +#define EFI_MEMORY_UC 0x0000000000000001ULL +#define EFI_MEMORY_WC 0x0000000000000002ULL +#define EFI_MEMORY_WT 0x0000000000000004ULL +#define EFI_MEMORY_WB 0x0000000000000008ULL +#define EFI_MEMORY_UCE 0x0000000000000010ULL // // Physical memory protection attributes // -#define EFI_MEMORY_WP 0x0000000000001000ULL -#define EFI_MEMORY_RP 0x0000000000002000ULL -#define EFI_MEMORY_XP 0x0000000000004000ULL +// Note: UEFI spec 2.5 and following: use EFI_MEMORY_RO as write-protected physical memory +// protection attribute. Also, EFI_MEMORY_WP means cacheability attribute. +// +#define EFI_MEMORY_WP 0x0000000000001000ULL +#define EFI_MEMORY_RP 0x0000000000002000ULL +#define EFI_MEMORY_XP 0x0000000000004000ULL +#define EFI_MEMORY_RO 0x0000000000020000ULL +// +// Physical memory persistence attribute. +// The memory region supports byte-addressable non-volatility. +// +#define EFI_MEMORY_NV 0x0000000000008000ULL +// +// The memory region provides higher reliability relative to other memory in the system. +// If all memory has the same reliability, then this bit is not used. +// +#define EFI_MEMORY_MORE_RELIABLE 0x0000000000010000ULL // // Runtime memory attribute // -#define EFI_MEMORY_RUNTIME 0x8000000000000000ULL +#define EFI_MEMORY_RUNTIME 0x8000000000000000ULL /// /// Memory descriptor version number. @@ -117,18 +131,23 @@ typedef struct { /** Allocates memory pages from the system. - @param Type The type of allocation to perform. - @param MemoryType The type of memory to allocate. - @param Pages The number of contiguous 4 KB pages to allocate. - @param Memory The pointer to a physical address. On input, the way in which the address is - used depends on the value of Type. + @param[in] Type The type of allocation to perform. + @param[in] MemoryType The type of memory to allocate. + MemoryType values in the range 0x70000000..0x7FFFFFFF + are reserved for OEM use. MemoryType values in the range + 0x80000000..0xFFFFFFFF are reserved for use by UEFI OS loaders + that are provided by operating system vendors. + @param[in] Pages The number of contiguous 4 KB pages to allocate. + @param[in, out] Memory The pointer to a physical address. On input, the way in which the address is + used depends on the value of Type. @retval EFI_SUCCESS The requested pages were allocated. @retval EFI_INVALID_PARAMETER 1) Type is not AllocateAnyPages or AllocateMaxAddress or AllocateAddress. 2) MemoryType is in the range + EfiMaxMemoryType..0x6FFFFFFF. 3) Memory is NULL. - EfiMaxMemoryType..0x7FFFFFFF. + 4) MemoryType is EfiPersistentMemory. @retval EFI_OUT_OF_RESOURCES The pages could not be allocated. @retval EFI_NOT_FOUND The requested pages could not be found. @@ -145,8 +164,8 @@ EFI_STATUS /** Frees memory pages. - @param Memory The base physical address of the pages to be freed. - @param Pages The number of contiguous 4 KB pages to free. + @param[in] Memory The base physical address of the pages to be freed. + @param[in] Pages The number of contiguous 4 KB pages to free. @retval EFI_SUCCESS The requested pages were freed. @retval EFI_INVALID_PARAMETER Memory is not a page-aligned address or Pages is invalid. @@ -164,19 +183,19 @@ EFI_STATUS /** Returns the current memory map. - @param MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. - On input, this is the size of the buffer allocated by the caller. - On output, it is the size of the buffer returned by the firmware if - the buffer was large enough, or the size of the buffer needed to contain - the map if the buffer was too small. - @param MemoryMap A pointer to the buffer in which firmware places the current memory - map. - @param MapKey A pointer to the location in which firmware returns the key for the - current memory map. - @param DescriptorSize A pointer to the location in which firmware returns the size, in bytes, of - an individual EFI_MEMORY_DESCRIPTOR. - @param DescriptorVersion A pointer to the location in which firmware returns the version number - associated with the EFI_MEMORY_DESCRIPTOR. + @param[in, out] MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. + On input, this is the size of the buffer allocated by the caller. + On output, it is the size of the buffer returned by the firmware if + the buffer was large enough, or the size of the buffer needed to contain + the map if the buffer was too small. + @param[in, out] MemoryMap A pointer to the buffer in which firmware places the current memory + map. + @param[out] MapKey A pointer to the location in which firmware returns the key for the + current memory map. + @param[out] DescriptorSize A pointer to the location in which firmware returns the size, in bytes, of + an individual EFI_MEMORY_DESCRIPTOR. + @param[out] DescriptorVersion A pointer to the location in which firmware returns the version number + associated with the EFI_MEMORY_DESCRIPTOR. @retval EFI_SUCCESS The memory map was returned in the MemoryMap buffer. @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size @@ -199,14 +218,20 @@ EFI_STATUS /** Allocates pool memory. - @param PoolType The type of pool to allocate. - @param Size The number of bytes to allocate from the pool. - @param Buffer A pointer to a pointer to the allocated buffer if the call succeeds; + @param[in] PoolType The type of pool to allocate. + MemoryType values in the range 0x70000000..0x7FFFFFFF + are reserved for OEM use. MemoryType values in the range + 0x80000000..0xFFFFFFFF are reserved for use by UEFI OS loaders + that are provided by operating system vendors. + @param[in] Size The number of bytes to allocate from the pool. + @param[out] Buffer A pointer to a pointer to the allocated buffer if the call succeeds; undefined otherwise. @retval EFI_SUCCESS The requested number of bytes was allocated. @retval EFI_OUT_OF_RESOURCES The pool requested could not be allocated. - @retval EFI_INVALID_PARAMETER PoolType was invalid or Buffer is NULL. + @retval EFI_INVALID_PARAMETER Buffer is NULL. + PoolType is in the range EfiMaxMemoryType..0x6FFFFFFF. + PoolType is EfiPersistentMemory. **/ typedef @@ -220,7 +245,7 @@ EFI_STATUS /** Returns pool memory to the system. - @param Buffer The pointer to the buffer to free. + @param[in] Buffer The pointer to the buffer to free. @retval EFI_SUCCESS The memory was returned to the system. @retval EFI_INVALID_PARAMETER Buffer was invalid. @@ -235,10 +260,10 @@ EFI_STATUS /** Changes the runtime addressing mode of EFI firmware from physical to virtual. - @param MemoryMapSize The size in bytes of VirtualMap. - @param DescriptorSize The size in bytes of an entry in the VirtualMap. - @param DescriptorVersion The version of the structure entries in VirtualMap. - @param VirtualMap An array of memory descriptors which contain new virtual + @param[in] MemoryMapSize The size in bytes of VirtualMap. + @param[in] DescriptorSize The size in bytes of an entry in the VirtualMap. + @param[in] DescriptorVersion The version of the structure entries in VirtualMap. + @param[in] VirtualMap An array of memory descriptors which contain new virtual address mapping information for all runtime ranges. @retval EFI_SUCCESS The virtual address map has been applied. @@ -263,15 +288,15 @@ EFI_STATUS /** Connects one or more drivers to a controller. - @param ControllerHandle The handle of the controller to which driver(s) are to be connected. - @param DriverImageHandle A pointer to an ordered list handles that support the - EFI_DRIVER_BINDING_PROTOCOL. - @param RemainingDevicePath A pointer to the device path that specifies a child of the - controller specified by ControllerHandle. - @param Recursive If TRUE, then ConnectController() is called recursively - until the entire tree of controllers below the controller specified - by ControllerHandle have been created. If FALSE, then - the tree of controllers is only expanded one level. + @param[in] ControllerHandle The handle of the controller to which driver(s) are to be connected. + @param[in] DriverImageHandle A pointer to an ordered list handles that support the + EFI_DRIVER_BINDING_PROTOCOL. + @param[in] RemainingDevicePath A pointer to the device path that specifies a child of the + controller specified by ControllerHandle. + @param[in] Recursive If TRUE, then ConnectController() is called recursively + until the entire tree of controllers below the controller specified + by ControllerHandle have been created. If FALSE, then + the tree of controllers is only expanded one level. @retval EFI_SUCCESS 1) One or more drivers were connected to ControllerHandle. 2) No drivers were connected to ControllerHandle, but @@ -297,13 +322,13 @@ EFI_STATUS /** Disconnects one or more drivers from a controller. - @param ControllerHandle The handle of the controller from which driver(s) are to be disconnected. - @param DriverImageHandle The driver to disconnect from ControllerHandle. - If DriverImageHandle is NULL, then all the drivers currently managing - ControllerHandle are disconnected from ControllerHandle. - @param ChildHandle The handle of the child to destroy. - If ChildHandle is NULL, then all the children of ControllerHandle are - destroyed before the drivers are disconnected from ControllerHandle. + @param[in] ControllerHandle The handle of the controller from which driver(s) are to be disconnected. + @param[in] DriverImageHandle The driver to disconnect from ControllerHandle. + If DriverImageHandle is NULL, then all the drivers currently managing + ControllerHandle are disconnected from ControllerHandle. + @param[in] ChildHandle The handle of the child to destroy. + If ChildHandle is NULL, then all the children of ControllerHandle are + destroyed before the drivers are disconnected from ControllerHandle. @retval EFI_SUCCESS 1) One or more drivers were disconnected from the controller. 2) On entry, no drivers are managing ControllerHandle. @@ -336,9 +361,9 @@ EFI_STATUS /** Determines the new virtual address that is to be used on subsequent memory accesses. - @param DebugDisposition Supplies type information for the pointer being converted. - @param Address A pointer to a pointer that is to be fixed to be the value needed - for the new virtual address mappings being applied. + @param[in] DebugDisposition Supplies type information for the pointer being converted. + @param[in, out] Address A pointer to a pointer that is to be fixed to be the value needed + for the new virtual address mappings being applied. @retval EFI_SUCCESS The pointer pointed to by Address was modified. @retval EFI_INVALID_PARAMETER 1) Address is NULL. @@ -380,9 +405,9 @@ EFI_STATUS /** Invoke a notification event - @param Event Event whose notification function is being invoked. - @param Context The pointer to the notification function's context, - which is implementation-dependent. + @param[in] Event Event whose notification function is being invoked. + @param[in] Context The pointer to the notification function's context, + which is implementation-dependent. **/ typedef @@ -395,12 +420,12 @@ VOID /** Creates an event. - @param Type The type of event to create and its mode and attributes. - @param NotifyTpl The task priority level of event notifications, if needed. - @param NotifyFunction The pointer to the event's notification function, if any. - @param NotifyContext The pointer to the notification function's context; corresponds to parameter + @param[in] Type The type of event to create and its mode and attributes. + @param[in] NotifyTpl The task priority level of event notifications, if needed. + @param[in] NotifyFunction The pointer to the event's notification function, if any. + @param[in] NotifyContext The pointer to the notification function's context; corresponds to parameter Context in the notification function. - @param Event The pointer to the newly created event if the call succeeds; undefined + @param[out] Event The pointer to the newly created event if the call succeeds; undefined otherwise. @retval EFI_SUCCESS The event structure was created. @@ -421,15 +446,15 @@ EFI_STATUS /** Creates an event in a group. - @param Type The type of event to create and its mode and attributes. - @param NotifyTpl The task priority level of event notifications,if needed. - @param NotifyFunction The pointer to the event's notification function, if any. - @param NotifyContext The pointer to the notification function's context; corresponds to parameter + @param[in] Type The type of event to create and its mode and attributes. + @param[in] NotifyTpl The task priority level of event notifications,if needed. + @param[in] NotifyFunction The pointer to the event's notification function, if any. + @param[in] NotifyContext The pointer to the notification function's context; corresponds to parameter Context in the notification function. - @param EventGroup The pointer to the unique identifier of the group to which this event belongs. + @param[in] EventGroup The pointer to the unique identifier of the group to which this event belongs. If this is NULL, then the function behaves as if the parameters were passed to CreateEvent. - @param Event The pointer to the newly created event if the call succeeds; undefined + @param[out] Event The pointer to the newly created event if the call succeeds; undefined otherwise. @retval EFI_SUCCESS The event structure was created. @@ -457,11 +482,11 @@ typedef enum { /// TimerCancel, /// - /// An event is to be signalled periodically at a specified interval from the current time. + /// An event is to be signaled periodically at a specified interval from the current time. /// TimerPeriodic, /// - /// An event is to be signalled once at a specified interval from the current time. + /// An event is to be signaled once at a specified interval from the current time. /// TimerRelative } EFI_TIMER_DELAY; @@ -469,9 +494,9 @@ typedef enum { /** Sets the type of timer and the trigger time for a timer event. - @param Event The timer event that is to be signaled at the specified time. - @param Type The type of time that is specified in TriggerTime. - @param TriggerTime The number of 100ns units until the timer expires. + @param[in] Event The timer event that is to be signaled at the specified time. + @param[in] Type The type of time that is specified in TriggerTime. + @param[in] TriggerTime The number of 100ns units until the timer expires. A TriggerTime of 0 is legal. If Type is TimerRelative and TriggerTime is 0, then the timer event will be signaled on the next timer tick. @@ -493,7 +518,7 @@ EFI_STATUS /** Signals an event. - @param Event The event to signal. + @param[in] Event The event to signal. @retval EFI_SUCCESS The event has been signaled. @@ -507,9 +532,9 @@ EFI_STATUS /** Stops execution until an event is signaled. - @param NumberOfEvents The number of events in the Event array. - @param Event An array of EFI_EVENT. - @param Index The pointer to the index of the event which satisfied the wait condition. + @param[in] NumberOfEvents The number of events in the Event array. + @param[in] Event An array of EFI_EVENT. + @param[out] Index The pointer to the index of the event which satisfied the wait condition. @retval EFI_SUCCESS The event indicated by Index was signaled. @retval EFI_INVALID_PARAMETER 1) NumberOfEvents is 0. @@ -529,7 +554,7 @@ EFI_STATUS /** Closes an event. - @param Event The event to close. + @param[in] Event The event to close. @retval EFI_SUCCESS The event has been closed. @@ -543,7 +568,7 @@ EFI_STATUS /** Checks whether an event is in the signaled state. - @param Event The event to check. + @param[in] Event The event to check. @retval EFI_SUCCESS The event is in the signaled state. @retval EFI_NOT_READY The event is not in the signaled state. @@ -569,7 +594,7 @@ EFI_STATUS /** Raises a task's priority level and returns its previous level. - @param NewTpl The new task priority level. + @param[in] NewTpl The new task priority level. @return Previous task priority level @@ -583,7 +608,7 @@ EFI_TPL /** Restores a task's priority level to its previous value. - @param OldTpl The previous task priority level to restore. + @param[in] OldTpl The previous task priority level to restore. **/ typedef @@ -595,14 +620,15 @@ VOID /** Returns the value of a variable. - @param VariableName A Null-terminated string that is the name of the vendor's - variable. - @param VendorGuid A unique identifier for the vendor. - @param Attributes If not NULL, a pointer to the memory location to return the - attributes bitmask for the variable. - @param DataSize On input, the size in bytes of the return Data buffer. - On output the size of data returned in Data. - @param Data The buffer to return the contents of the variable. + @param[in] VariableName A Null-terminated string that is the name of the vendor's + variable. + @param[in] VendorGuid A unique identifier for the vendor. + @param[out] Attributes If not NULL, a pointer to the memory location to return the + attributes bitmask for the variable. + @param[in, out] DataSize On input, the size in bytes of the return Data buffer. + On output the size of data returned in Data. + @param[out] Data The buffer to return the contents of the variable. May be NULL + with a zero DataSize in order to determine the size buffer needed. @retval EFI_SUCCESS The function completed successfully. @retval EFI_NOT_FOUND The variable was not found. @@ -622,19 +648,19 @@ EFI_STATUS IN EFI_GUID *VendorGuid, OUT UINT32 *Attributes, OPTIONAL IN OUT UINTN *DataSize, - OUT VOID *Data + OUT VOID *Data OPTIONAL ); /** Enumerates the current variable names. - @param VariableNameSize The size of the VariableName buffer. - @param VariableName On input, supplies the last VariableName that was returned - by GetNextVariableName(). On output, returns the Nullterminated - string of the current variable. - @param VendorGuid On input, supplies the last VendorGuid that was returned by - GetNextVariableName(). On output, returns the - VendorGuid of the current variable. + @param[in, out] VariableNameSize The size of the VariableName buffer. + @param[in, out] VariableName On input, supplies the last VariableName that was returned + by GetNextVariableName(). On output, returns the Nullterminated + string of the current variable. + @param[in, out] VendorGuid On input, supplies the last VendorGuid that was returned by + GetNextVariableName(). On output, returns the + VendorGuid of the current variable. @retval EFI_SUCCESS The function completed successfully. @retval EFI_NOT_FOUND The next variable was not found. @@ -656,28 +682,36 @@ EFI_STATUS /** Sets the value of a variable. - @param VariableName A Null-terminated string that is the name of the vendor's variable. + @param[in] VariableName A Null-terminated string that is the name of the vendor's variable. Each VariableName is unique for each VendorGuid. VariableName must contain 1 or more characters. If VariableName is an empty string, then EFI_INVALID_PARAMETER is returned. - @param VendorGuid A unique identifier for the vendor. - @param Attributes Attributes bitmask to set for the variable. - @param DataSize The size in bytes of the Data buffer. A size of zero causes the - variable to be deleted. - @param Data The contents for the variable. + @param[in] VendorGuid A unique identifier for the vendor. + @param[in] Attributes Attributes bitmask to set for the variable. + @param[in] DataSize The size in bytes of the Data buffer. Unless the EFI_VARIABLE_APPEND_WRITE, + EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, or + EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute is set, a size of zero + causes the variable to be deleted. When the EFI_VARIABLE_APPEND_WRITE attribute is + set, then a SetVariable() call with a DataSize of zero will not cause any change to + the variable value (the timestamp associated with the variable may be updated however + even if no new data value is provided,see the description of the + EFI_VARIABLE_AUTHENTICATION_2 descriptor below. In this case the DataSize will not + be zero since the EFI_VARIABLE_AUTHENTICATION_2 descriptor will be populated). + @param[in] Data The contents for the variable. @retval EFI_SUCCESS The firmware has successfully stored the variable and its data as defined by the Attributes. - @retval EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied, or the + @retval EFI_INVALID_PARAMETER An invalid combination of attribute bits, name, and GUID was supplied, or the DataSize exceeds the maximum allowed. @retval EFI_INVALID_PARAMETER VariableName is an empty string. @retval EFI_OUT_OF_RESOURCES Not enough storage is available to hold the variable and its data. @retval EFI_DEVICE_ERROR The variable could not be retrieved due to a hardware error. @retval EFI_WRITE_PROTECTED The variable in question is read-only. @retval EFI_WRITE_PROTECTED The variable in question cannot be deleted. - @retval EFI_SECURITY_VIOLATION The variable could not be written due to EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS - set but the AuthInfo does NOT pass the validation check carried out - by the firmware. + @retval EFI_SECURITY_VIOLATION The variable could not be written due to EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS + or EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACESS being set, but the AuthInfo + does NOT pass the validation check carried out by the firmware. + @retval EFI_NOT_FOUND The variable trying to be updated or deleted was not found. **/ @@ -725,8 +759,8 @@ typedef struct { Returns the current time and date information, and the time-keeping capabilities of the hardware platform. - @param Time A pointer to storage to receive a snapshot of the current time. - @param Capabilities An optional pointer to a buffer to receive the real time clock + @param[out] Time A pointer to storage to receive a snapshot of the current time. + @param[out] Capabilities An optional pointer to a buffer to receive the real time clock device's capabilities. @retval EFI_SUCCESS The operation completed successfully. @@ -744,7 +778,7 @@ EFI_STATUS /** Sets the current local time and date information. - @param Time A pointer to the current time. + @param[in] Time A pointer to the current time. @retval EFI_SUCCESS The operation completed successfully. @retval EFI_INVALID_PARAMETER A time field is out of range. @@ -760,9 +794,9 @@ EFI_STATUS /** Returns the current wakeup alarm clock setting. - @param Enabled Indicates if the alarm is currently enabled or disabled. - @param Pending Indicates if the alarm signal is pending and requires acknowledgement. - @param Time The current alarm setting. + @param[out] Enabled Indicates if the alarm is currently enabled or disabled. + @param[out] Pending Indicates if the alarm signal is pending and requires acknowledgement. + @param[out] Time The current alarm setting. @retval EFI_SUCCESS The alarm settings were returned. @retval EFI_INVALID_PARAMETER Enabled is NULL. @@ -783,8 +817,8 @@ EFI_STATUS /** Sets the system wakeup alarm clock time. - @param Enabled Enable or disable the wakeup alarm. - @param Time If Enable is TRUE, the time to set the wakeup alarm for. + @param[in] Enable Enable or disable the wakeup alarm. + @param[in] Time If Enable is TRUE, the time to set the wakeup alarm for. If Enable is FALSE, then this parameter is optional, and may be NULL. @retval EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled. If @@ -804,32 +838,32 @@ EFI_STATUS /** Loads an EFI image into memory. - @param BootPolicy If TRUE, indicates that the request originates from the boot - manager, and that the boot manager is attempting to load - FilePath as a boot selection. Ignored if SourceBuffer is - not NULL. - @param ParentImageHandle The caller's image handle. - @param DevicePath The DeviceHandle specific file path from which the image is - loaded. - @param SourceBuffer If not NULL, a pointer to the memory location containing a copy - of the image to be loaded. - @param SourceSize The size in bytes of SourceBuffer. Ignored if SourceBuffer is NULL. - @param ImageHandle The pointer to the returned image handle that is created when the - image is successfully loaded. - - @retval EFI_SUCCESS Image was loaded into memory correctly. - @retval EFI_NOT_FOUND Both SourceBuffer and DevicePath are NULL. - @retval EFI_INVALID_PARAMETER One or more parametes are invalid. - @retval EFI_UNSUPPORTED The image type is not supported. - @retval EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources. - @retval EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not - understood. - @retval EFI_DEVICE_ERROR Image was not loaded because the device returned a read error. - @retval EFI_ACCESS_DENIED Image was not loaded because the platform policy prohibits the - image from being loaded. NULL is returned in *ImageHandle. + @param[in] BootPolicy If TRUE, indicates that the request originates from the boot + manager, and that the boot manager is attempting to load + FilePath as a boot selection. Ignored if SourceBuffer is + not NULL. + @param[in] ParentImageHandle The caller's image handle. + @param[in] DevicePath The DeviceHandle specific file path from which the image is + loaded. + @param[in] SourceBuffer If not NULL, a pointer to the memory location containing a copy + of the image to be loaded. + @param[in] SourceSize The size in bytes of SourceBuffer. Ignored if SourceBuffer is NULL. + @param[out] ImageHandle The pointer to the returned image handle that is created when the + image is successfully loaded. + + @retval EFI_SUCCESS Image was loaded into memory correctly. + @retval EFI_NOT_FOUND Both SourceBuffer and DevicePath are NULL. + @retval EFI_INVALID_PARAMETER One or more parametes are invalid. + @retval EFI_UNSUPPORTED The image type is not supported. + @retval EFI_OUT_OF_RESOURCES Image was not loaded due to insufficient resources. + @retval EFI_LOAD_ERROR Image was not loaded because the image format was corrupt or not + understood. + @retval EFI_DEVICE_ERROR Image was not loaded because the device returned a read error. + @retval EFI_ACCESS_DENIED Image was not loaded because the platform policy prohibits the + image from being loaded. NULL is returned in *ImageHandle. @retval EFI_SECURITY_VIOLATION Image was loaded and an ImageHandle was created with a - valid EFI_LOADED_IMAGE_PROTOCOL. However, the current - platform policy specifies that the image should not be started. + valid EFI_LOADED_IMAGE_PROTOCOL. However, the current + platform policy specifies that the image should not be started. **/ typedef EFI_STATUS @@ -845,10 +879,10 @@ EFI_STATUS /** Transfers control to a loaded image's entry point. - @param ImageHandle Handle of image to be started. - @param ExitDataSize The pointer to the size, in bytes, of ExitData. - @param ExitData The pointer to a pointer to a data buffer that includes a Null-terminated - string, optionally followed by additional binary data. + @param[in] ImageHandle Handle of image to be started. + @param[out] ExitDataSize The pointer to the size, in bytes, of ExitData. + @param[out] ExitData The pointer to a pointer to a data buffer that includes a Null-terminated + string, optionally followed by additional binary data. @retval EFI_INVALID_PARAMETER ImageHandle is either an invalid image handle or the image has already been initialized with StartImage. @@ -867,11 +901,11 @@ EFI_STATUS /** Terminates a loaded EFI image and returns control to boot services. - @param ImageHandle Handle that identifies the image. This parameter is passed to the + @param[in] ImageHandle Handle that identifies the image. This parameter is passed to the image on entry. - @param ExitStatus The image's exit code. - @param ExitDataSize The size, in bytes, of ExitData. Ignored if ExitStatus is EFI_SUCCESS. - @param ExitData The pointer to a data buffer that includes a Null-terminated string, + @param[in] ExitStatus The image's exit code. + @param[in] ExitDataSize The size, in bytes, of ExitData. Ignored if ExitStatus is EFI_SUCCESS. + @param[in] ExitData The pointer to a data buffer that includes a Null-terminated string, optionally followed by additional binary data. The string is a description that the caller may use to further indicate the reason for the image's exit. ExitData is only valid if ExitStatus @@ -896,7 +930,7 @@ EFI_STATUS /** Unloads an image. - @param ImageHandle Handle that identifies the image to be unloaded. + @param[in] ImageHandle Handle that identifies the image to be unloaded. @retval EFI_SUCCESS The image has been unloaded. @retval EFI_INVALID_PARAMETER ImageHandle is not a valid image handle. @@ -911,8 +945,8 @@ EFI_STATUS /** Terminates all boot services. - @param ImageHandle Handle that identifies the exiting image. - @param MapKey Key to the latest memory map. + @param[in] ImageHandle Handle that identifies the exiting image. + @param[in] MapKey Key to the latest memory map. @retval EFI_SUCCESS Boot services have been terminated. @retval EFI_INVALID_PARAMETER MapKey is incorrect. @@ -928,7 +962,7 @@ EFI_STATUS /** Induces a fine-grained stall. - @param Microseconds The number of microseconds to stall execution. + @param[in] Microseconds The number of microseconds to stall execution. @retval EFI_SUCCESS Execution was stalled at least the requested number of Microseconds. @@ -943,10 +977,10 @@ EFI_STATUS /** Sets the system's watchdog timer. - @param Timeout The number of seconds to set the watchdog timer to. - @param WatchdogCode The numeric code to log on a watchdog timer timeout event. - @param DataSize The size, in bytes, of WatchdogData. - @param WatchdogData A data buffer that includes a Null-terminated string, optionally + @param[in] Timeout The number of seconds to set the watchdog timer to. + @param[in] WatchdogCode The numeric code to log on a watchdog timer timeout event. + @param[in] DataSize The size, in bytes, of WatchdogData. + @param[in] WatchdogData A data buffer that includes a Null-terminated string, optionally followed by additional binary data. @retval EFI_SUCCESS The timeout has been set. @@ -965,41 +999,20 @@ EFI_STATUS IN CHAR16 *WatchdogData OPTIONAL ); -/// -/// Enumeration of reset types. -/// -typedef enum { - /// - /// Used to induce a system-wide reset. This sets all circuitry within the - /// system to its initial state. This type of reset is asynchronous to system - /// operation and operates withgout regard to cycle boundaries. EfiColdReset - /// is tantamount to a system power cycle. - /// - EfiResetCold, - /// - /// Used to induce a system-wide initialization. The processors are set to their - /// initial state, and pending cycles are not corrupted. If the system does - /// not support this reset type, then an EfiResetCold must be performed. - /// - EfiResetWarm, - /// - /// Used to induce an entry into a power state equivalent to the ACPI G2/S5 or G3 - /// state. If the system does not support this reset type, then when the system - /// is rebooted, it should exhibit the EfiResetCold attributes. - /// - EfiResetShutdown -} EFI_RESET_TYPE; - /** Resets the entire platform. - @param ResetType The type of reset to perform. - @param ResetStatus The status code for the reset. - @param DataSize The size, in bytes, of WatchdogData. - @param ResetData For a ResetType of EfiResetCold, EfiResetWarm, or + @param[in] ResetType The type of reset to perform. + @param[in] ResetStatus The status code for the reset. + @param[in] DataSize The size, in bytes, of ResetData. + @param[in] ResetData For a ResetType of EfiResetCold, EfiResetWarm, or EfiResetShutdown the data buffer starts with a Null-terminated string, optionally followed by additional binary data. - + The string is a description that the caller may use to further + indicate the reason for the system reset. ResetData is only + valid if ResetStatus is something other than EFI_SUCCESS + unless the ResetType is EfiResetPlatformSpecific + where a minimum amount of ResetData is always required. **/ typedef VOID @@ -1013,7 +1026,7 @@ VOID /** Returns a monotonically increasing count for the platform. - @param Count The pointer to returned value. + @param[out] Count The pointer to returned value. @retval EFI_SUCCESS The next monotonic count was returned. @retval EFI_INVALID_PARAMETER Count is NULL. @@ -1029,7 +1042,7 @@ EFI_STATUS /** Returns the next high 32 bits of the platform's monotonic counter. - @param HighCount The pointer to returned value. + @param[out] HighCount The pointer to returned value. @retval EFI_SUCCESS The next high monotonic count was returned. @retval EFI_INVALID_PARAMETER HighCount is NULL. @@ -1045,9 +1058,9 @@ EFI_STATUS /** Computes and returns a 32-bit CRC for a data buffer. - @param Data A pointer to the buffer on which the 32-bit CRC is to be computed. - @param DataSize The number of bytes in the buffer Data. - @param Crc32 The 32-bit CRC that was computed for the data buffer specified by Data + @param[in] Data A pointer to the buffer on which the 32-bit CRC is to be computed. + @param[in] DataSize The number of bytes in the buffer Data. + @param[out] Crc32 The 32-bit CRC that was computed for the data buffer specified by Data and DataSize. @retval EFI_SUCCESS The 32-bit CRC was computed for the data buffer and returned in @@ -1068,9 +1081,9 @@ EFI_STATUS /** Copies the contents of one buffer to another buffer. - @param Destination The pointer to the destination buffer of the memory copy. - @param Source The pointer to the source buffer of the memory copy. - @param Length Number of bytes to copy from Source to Destination. + @param[in] Destination The pointer to the destination buffer of the memory copy. + @param[in] Source The pointer to the source buffer of the memory copy. + @param[in] Length Number of bytes to copy from Source to Destination. **/ typedef @@ -1084,9 +1097,9 @@ VOID /** The SetMem() function fills a buffer with a specified value. - @param Buffer The pointer to the buffer to fill. - @param Size Number of bytes in Buffer to fill. - @param Value Value to fill Buffer with. + @param[in] Buffer The pointer to the buffer to fill. + @param[in] Size Number of bytes in Buffer to fill. + @param[in] Value Value to fill Buffer with. **/ typedef @@ -1114,10 +1127,10 @@ typedef enum { InstallMultipleProtocolInterfaces() be used in place of InstallProtocolInterface() - @param Handle A pointer to the EFI_HANDLE on which the interface is to be installed. - @param Protocol The numeric ID of the protocol interface. - @param InterfaceType Indicates whether Interface is supplied in native form. - @param Interface A pointer to the protocol interface. + @param[in, out] Handle A pointer to the EFI_HANDLE on which the interface is to be installed. + @param[in] Protocol The numeric ID of the protocol interface. + @param[in] InterfaceType Indicates whether Interface is supplied in native form. + @param[in] Interface A pointer to the protocol interface. @retval EFI_SUCCESS The protocol interface was installed. @retval EFI_OUT_OF_RESOURCES Space for a new handle could not be allocated. @@ -1139,7 +1152,7 @@ EFI_STATUS /** Installs one or more protocol interfaces into the boot services environment. - @param Handle The pointer to a handle to install the new protocol interfaces on, + @param[in, out] Handle The pointer to a handle to install the new protocol interfaces on, or a pointer to NULL if a new handle is to be allocated. @param ... A variable argument list containing pairs of protocol GUIDs and protocol interfaces. @@ -1148,6 +1161,8 @@ EFI_STATUS @retval EFI_OUT_OF_RESOURCES There was not enough memory in pool to install all the protocols. @retval EFI_ALREADY_STARTED A Device Path Protocol instance was passed in that is already present in the handle database. + @retval EFI_INVALID_PARAMETER Handle is NULL. + @retval EFI_INVALID_PARAMETER Protocol is already installed on the handle specified by Handle. **/ typedef @@ -1160,11 +1175,11 @@ EFI_STATUS /** Reinstalls a protocol interface on a device handle. - @param Handle Handle on which the interface is to be reinstalled. - @param Protocol The numeric ID of the interface. - @param OldInterface A pointer to the old interface. NULL can be used if a structure is not + @param[in] Handle Handle on which the interface is to be reinstalled. + @param[in] Protocol The numeric ID of the interface. + @param[in] OldInterface A pointer to the old interface. NULL can be used if a structure is not associated with Protocol. - @param NewInterface A pointer to the new interface. + @param[in] NewInterface A pointer to the new interface. @retval EFI_SUCCESS The protocol interface was reinstalled. @retval EFI_NOT_FOUND The OldInterface on the handle was not found. @@ -1189,9 +1204,9 @@ EFI_STATUS UninstallMultipleProtocolInterfaces() be used in place of UninstallProtocolInterface(). - @param Handle The handle on which the interface was installed. - @param Protocol The numeric ID of the interface. - @param Interface A pointer to the interface. + @param[in] Handle The handle on which the interface was installed. + @param[in] Protocol The numeric ID of the interface. + @param[in] Interface A pointer to the interface. @retval EFI_SUCCESS The interface was removed. @retval EFI_NOT_FOUND The interface was not found. @@ -1212,7 +1227,7 @@ EFI_STATUS /** Removes one or more protocol interfaces into the boot services environment. - @param Handle The handle to remove the protocol interfaces from. + @param[in] Handle The handle to remove the protocol interfaces from. @param ... A variable argument list containing pairs of protocol GUIDs and protocol interfaces. @@ -1230,9 +1245,9 @@ EFI_STATUS /** Queries a handle to determine if it supports a specified protocol. - @param Handle The handle being queried. - @param Protocol The published unique identifier of the protocol. - @param Interface Supplies the address where a pointer to the corresponding Protocol + @param[in] Handle The handle being queried. + @param[in] Protocol The published unique identifier of the protocol. + @param[out] Interface Supplies the address where a pointer to the corresponding Protocol Interface is returned. @retval EFI_SUCCESS The interface information for the specified protocol was returned. @@ -1261,18 +1276,18 @@ EFI_STATUS Queries a handle to determine if it supports a specified protocol. If the protocol is supported by the handle, it opens the protocol on behalf of the calling agent. - @param Handle The handle for the protocol interface that is being opened. - @param Protocol The published unique identifier of the protocol. - @param Interface Supplies the address where a pointer to the corresponding Protocol + @param[in] Handle The handle for the protocol interface that is being opened. + @param[in] Protocol The published unique identifier of the protocol. + @param[out] Interface Supplies the address where a pointer to the corresponding Protocol Interface is returned. - @param AgentHandle The handle of the agent that is opening the protocol interface + @param[in] AgentHandle The handle of the agent that is opening the protocol interface specified by Protocol and Interface. - @param ControllerHandle If the agent that is opening a protocol is a driver that follows the + @param[in] ControllerHandle If the agent that is opening a protocol is a driver that follows the UEFI Driver Model, then this parameter is the controller handle that requires the protocol interface. If the agent does not follow the UEFI Driver Model, then this parameter is optional and may be NULL. - @param Attributes The open mode of the protocol interface specified by Handle + @param[in] Attributes The open mode of the protocol interface specified by Handle and Protocol. @retval EFI_SUCCESS An item was added to the open list for the protocol interface, and the @@ -1299,11 +1314,11 @@ EFI_STATUS /** Closes a protocol on a handle that was opened using OpenProtocol(). - @param Handle The handle for the protocol interface that was previously opened + @param[in] Handle The handle for the protocol interface that was previously opened with OpenProtocol(), and is now being closed. - @param Protocol The published unique identifier of the protocol. - @param AgentHandle The handle of the agent that is closing the protocol interface. - @param ControllerHandle If the agent that opened a protocol is a driver that follows the + @param[in] Protocol The published unique identifier of the protocol. + @param[in] AgentHandle The handle of the agent that is closing the protocol interface. + @param[in] ControllerHandle If the agent that opened a protocol is a driver that follows the UEFI Driver Model, then this parameter is the controller handle that required the protocol interface. @@ -1339,11 +1354,11 @@ typedef struct { /** Retrieves the list of agents that currently have a protocol interface opened. - @param Handle The handle for the protocol interface that is being queried. - @param Protocol The published unique identifier of the protocol. - @param EntryBuffer A pointer to a buffer of open protocol information in the form of + @param[in] Handle The handle for the protocol interface that is being queried. + @param[in] Protocol The published unique identifier of the protocol. + @param[out] EntryBuffer A pointer to a buffer of open protocol information in the form of EFI_OPEN_PROTOCOL_INFORMATION_ENTRY structures. - @param EntryCount A pointer to the number of entries in EntryBuffer. + @param[out] EntryCount A pointer to the number of entries in EntryBuffer. @retval EFI_SUCCESS The open protocol information was returned in EntryBuffer, and the number of entries was returned EntryCount. @@ -1364,12 +1379,12 @@ EFI_STATUS Retrieves the list of protocol interface GUIDs that are installed on a handle in a buffer allocated from pool. - @param Handle The handle from which to retrieve the list of protocol interface - GUIDs. - @param ProtocolBuffer A pointer to the list of protocol interface GUID pointers that are - installed on Handle. - @param ProtocolBufferCount A pointer to the number of GUID pointers present in - ProtocolBuffer. + @param[in] Handle The handle from which to retrieve the list of protocol interface + GUIDs. + @param[out] ProtocolBuffer A pointer to the list of protocol interface GUID pointers that are + installed on Handle. + @param[out] ProtocolBufferCount A pointer to the number of GUID pointers present in + ProtocolBuffer. @retval EFI_SUCCESS The list of protocol interface GUIDs installed on Handle was returned in ProtocolBuffer. The number of protocol interface GUIDs was @@ -1392,10 +1407,10 @@ EFI_STATUS /** Creates an event that is to be signaled whenever an interface is installed for a specified protocol. - @param Protocol The numeric ID of the protocol for which the event is to be registered. - @param Event Event that is to be signaled whenever a protocol interface is registered + @param[in] Protocol The numeric ID of the protocol for which the event is to be registered. + @param[in] Event Event that is to be signaled whenever a protocol interface is registered for Protocol. - @param Registration A pointer to a memory location to receive the registration value. + @param[out] Registration A pointer to a memory location to receive the registration value. @retval EFI_SUCCESS The notification event has been registered. @retval EFI_OUT_OF_RESOURCES Space for the notification event could not be allocated. @@ -1434,14 +1449,14 @@ typedef enum { /** Returns an array of handles that support a specified protocol. - @param SearchType Specifies which handle(s) are to be returned. - @param Protocol Specifies the protocol to search by. - @param SearchKey Specifies the search key. - @param BufferSize On input, the size in bytes of Buffer. On output, the size in bytes of + @param[in] SearchType Specifies which handle(s) are to be returned. + @param[in] Protocol Specifies the protocol to search by. + @param[in] SearchKey Specifies the search key. + @param[in, out] BufferSize On input, the size in bytes of Buffer. On output, the size in bytes of the array returned in Buffer (if the buffer was large enough) or the size, in bytes, of the buffer needed to obtain the array (if the buffer was not large enough). - @param Buffer The buffer in which the array is returned. + @param[out] Buffer The buffer in which the array is returned. @retval EFI_SUCCESS The array of handles was returned. @retval EFI_NOT_FOUND No handles match the search. @@ -1466,11 +1481,11 @@ EFI_STATUS /** Locates the handle to a device on the device path that supports the specified protocol. - @param Protocol Specifies the protocol to search for. - @param DevicePath On input, a pointer to a pointer to the device path. On output, the device + @param[in] Protocol Specifies the protocol to search for. + @param[in, out] DevicePath On input, a pointer to a pointer to the device path. On output, the device path pointer is modified to point to the remaining part of the device path. - @param Device A pointer to the returned device handle. + @param[out] Device A pointer to the returned device handle. @retval EFI_SUCCESS The resulting handle was returned. @retval EFI_NOT_FOUND No handles match the search. @@ -1490,8 +1505,8 @@ EFI_STATUS /** Adds, updates, or removes a configuration table entry from the EFI System Table. - @param Guid A pointer to the GUID for the entry to add, update, or remove. - @param Table A pointer to the configuration table for the entry to add, update, or + @param[in] Guid A pointer to the GUID for the entry to add, update, or remove. + @param[in] Table A pointer to the configuration table for the entry to add, update, or remove. May be NULL. @retval EFI_SUCCESS The (Guid, Table) pair was added, updated, or removed. @@ -1510,12 +1525,12 @@ EFI_STATUS /** Returns an array of handles that support the requested protocol in a buffer allocated from pool. - @param SearchType Specifies which handle(s) are to be returned. - @param Protocol Provides the protocol to search by. + @param[in] SearchType Specifies which handle(s) are to be returned. + @param[in] Protocol Provides the protocol to search by. This parameter is only valid for a SearchType of ByProtocol. - @param SearchKey Supplies the search key depending on the SearchType. - @param NoHandles The number of handles returned in Buffer. - @param Buffer A pointer to the buffer to return the requested array of handles that + @param[in] SearchKey Supplies the search key depending on the SearchType. + @param[in, out] NoHandles The number of handles returned in Buffer. + @param[out] Buffer A pointer to the buffer to return the requested array of handles that support Protocol. @retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of @@ -1539,10 +1554,10 @@ EFI_STATUS /** Returns the first protocol instance that matches the given protocol. - @param Protocol Provides the protocol to search for. - @param Registration Optional registration key returned from + @param[in] Protocol Provides the protocol to search for. + @param[in] Registration Optional registration key returned from RegisterProtocolNotify(). - @param Interface On return, a pointer to the first interface that matches Protocol and + @param[out] Interface On return, a pointer to the first interface that matches Protocol and Registration. @retval EFI_SUCCESS A protocol instance matching Protocol was found and returned in @@ -1637,13 +1652,13 @@ typedef struct { be passed into ResetSystem() and will cause the capsule to be processed by the firmware as part of the reset process. - @param CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules - being passed into update capsule. - @param CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in - CaspuleHeaderArray. - @param ScatterGatherList Physical pointer to a set of - EFI_CAPSULE_BLOCK_DESCRIPTOR that describes the - location in physical memory of a set of capsules. + @param[in] CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules + being passed into update capsule. + @param[in] CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in + CaspuleHeaderArray. + @param[in] ScatterGatherList Physical pointer to a set of + EFI_CAPSULE_BLOCK_DESCRIPTOR that describes the + location in physical memory of a set of capsules. @retval EFI_SUCCESS Valid capsule was passed. If CAPSULE_FLAGS_PERSIT_ACROSS_RESET is not set, the @@ -1653,7 +1668,11 @@ typedef struct { @retval EFI_INVALID_PARAMETER CapsuleCount is 0. @retval EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error. @retval EFI_UNSUPPORTED The capsule type is not supported on this platform. - @retval EFI_OUT_OF_RESOURCES There were insufficient resources to process the capsule. + @retval EFI_OUT_OF_RESOURCES When ExitBootServices() has been previously called this error indicates the capsule + is compatible with this platform but is not capable of being submitted or processed + in runtime. The caller may resubmit the capsule prior to ExitBootServices(). + @retval EFI_OUT_OF_RESOURCES When ExitBootServices() has not been previously called then this error indicates + the capsule is compatible with this platform but there are insufficient resources to process. **/ typedef @@ -1667,20 +1686,24 @@ EFI_STATUS /** Returns if the capsule can be supported via UpdateCapsule(). - @param CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules - being passed into update capsule. - @param CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in - CaspuleHeaderArray. - @param MaxiumCapsuleSize On output the maximum size that UpdateCapsule() can - support as an argument to UpdateCapsule() via - CapsuleHeaderArray and ScatterGatherList. - @param ResetType Returns the type of reset required for the capsule update. + @param[in] CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules + being passed into update capsule. + @param[in] CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in + CaspuleHeaderArray. + @param[out] MaxiumCapsuleSize On output the maximum size that UpdateCapsule() can + support as an argument to UpdateCapsule() via + CapsuleHeaderArray and ScatterGatherList. + @param[out] ResetType Returns the type of reset required for the capsule update. @retval EFI_SUCCESS Valid answer returned. @retval EFI_UNSUPPORTED The capsule type is not supported on this platform, and MaximumCapsuleSize and ResetType are undefined. @retval EFI_INVALID_PARAMETER MaximumCapsuleSize is NULL. - @retval EFI_OUT_OF_RESOURCES There were insufficient resources to process the query request. + @retval EFI_OUT_OF_RESOURCES When ExitBootServices() has been previously called this error indicates the capsule + is compatible with this platform but is not capable of being submitted or processed + in runtime. The caller may resubmit the capsule prior to ExitBootServices(). + @retval EFI_OUT_OF_RESOURCES When ExitBootServices() has not been previously called then this error indicates + the capsule is compatible with this platform but there are insufficient resources to process. **/ typedef @@ -1695,16 +1718,16 @@ EFI_STATUS /** Returns information about the EFI variables. - @param Attributes Attributes bitmask to specify the type of variables on - which to return information. - @param MaximumVariableStorageSize On output the maximum size of the storage space - available for the EFI variables associated with the - attributes specified. - @param RemainingVariableStorageSize Returns the remaining size of the storage space - available for the EFI variables associated with the - attributes specified. - @param MaximumVariableSize Returns the maximum size of the individual EFI - variables associated with the attributes specified. + @param[in] Attributes Attributes bitmask to specify the type of variables on + which to return information. + @param[out] MaximumVariableStorageSize On output the maximum size of the storage space + available for the EFI variables associated with the + attributes specified. + @param[out] RemainingVariableStorageSize Returns the remaining size of the storage space + available for the EFI variables associated with the + attributes specified. + @param[out] MaximumVariableSize Returns the maximum size of the individual EFI + variables associated with the attributes specified. @retval EFI_SUCCESS Valid answer returned. @retval EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied @@ -1726,12 +1749,20 @@ EFI_STATUS // // Firmware should stop at a firmware user interface on next boot // -#define EFI_OS_INDICATIONS_BOOT_TO_FW_UI 0x0000000000000001 +#define EFI_OS_INDICATIONS_BOOT_TO_FW_UI 0x0000000000000001 +#define EFI_OS_INDICATIONS_TIMESTAMP_REVOCATION 0x0000000000000002 +#define EFI_OS_INDICATIONS_FILE_CAPSULE_DELIVERY_SUPPORTED 0x0000000000000004 +#define EFI_OS_INDICATIONS_FMP_CAPSULE_SUPPORTED 0x0000000000000008 +#define EFI_OS_INDICATIONS_CAPSULE_RESULT_VAR_SUPPORTED 0x0000000000000010 +#define EFI_OS_INDICATIONS_START_PLATFORM_RECOVERY 0x0000000000000040 // // EFI Runtime Services Table // #define EFI_SYSTEM_TABLE_SIGNATURE SIGNATURE_64 ('I','B','I',' ','S','Y','S','T') +#define EFI_2_60_SYSTEM_TABLE_REVISION ((2 << 16) | (60)) +#define EFI_2_50_SYSTEM_TABLE_REVISION ((2 << 16) | (50)) +#define EFI_2_40_SYSTEM_TABLE_REVISION ((2 << 16) | (40)) #define EFI_2_31_SYSTEM_TABLE_REVISION ((2 << 16) | (31)) #define EFI_2_30_SYSTEM_TABLE_REVISION ((2 << 16) | (30)) #define EFI_2_20_SYSTEM_TABLE_REVISION ((2 << 16) | (20)) @@ -1739,10 +1770,11 @@ EFI_STATUS #define EFI_2_00_SYSTEM_TABLE_REVISION ((2 << 16) | (00)) #define EFI_1_10_SYSTEM_TABLE_REVISION ((1 << 16) | (10)) #define EFI_1_02_SYSTEM_TABLE_REVISION ((1 << 16) | (02)) -#define EFI_SYSTEM_TABLE_REVISION EFI_2_31_SYSTEM_TABLE_REVISION +#define EFI_SYSTEM_TABLE_REVISION EFI_2_60_SYSTEM_TABLE_REVISION +#define EFI_SPECIFICATION_VERSION EFI_SYSTEM_TABLE_REVISION #define EFI_RUNTIME_SERVICES_SIGNATURE SIGNATURE_64 ('R','U','N','T','S','E','R','V') -#define EFI_RUNTIME_SERVICES_REVISION EFI_2_31_SYSTEM_TABLE_REVISION +#define EFI_RUNTIME_SERVICES_REVISION EFI_SPECIFICATION_VERSION /// /// EFI Runtime Services Table. @@ -1794,7 +1826,7 @@ typedef struct { #define EFI_BOOT_SERVICES_SIGNATURE SIGNATURE_64 ('B','O','O','T','S','E','R','V') -#define EFI_BOOT_SERVICES_REVISION EFI_2_31_SYSTEM_TABLE_REVISION +#define EFI_BOOT_SERVICES_REVISION EFI_SPECIFICATION_VERSION /// /// EFI Boot Services Table. @@ -1980,8 +2012,8 @@ typedef struct { the same for UEFI Applications, UEFI OS Loaders, and UEFI Drivers including both device drivers and bus drivers. - @param ImageHandle The firmware allocated handle for the UEFI image. - @param SystemTable A pointer to the EFI System Table. + @param[in] ImageHandle The firmware allocated handle for the UEFI image. + @param[in] SystemTable A pointer to the EFI System Table. @retval EFI_SUCCESS The operation completed successfully. @retval Others An unexpected error occurred. @@ -1993,20 +2025,70 @@ EFI_STATUS IN EFI_SYSTEM_TABLE *SystemTable ); +// +// EFI Load Option. This data structure describes format of UEFI boot option variables. +// +// NOTE: EFI Load Option is a byte packed buffer of variable length fields. +// The first two fields have fixed length. They are declared as members of the +// EFI_LOAD_OPTION structure. All the other fields are variable length fields. +// They are listed in the comment block below for reference purposes. +// +#pragma pack(1) +typedef struct _EFI_LOAD_OPTION { + /// + /// The attributes for this load option entry. All unused bits must be zero + /// and are reserved by the UEFI specification for future growth. + /// + UINT32 Attributes; + /// + /// Length in bytes of the FilePathList. OptionalData starts at offset + /// sizeof(UINT32) + sizeof(UINT16) + StrSize(Description) + FilePathListLength + /// of the EFI_LOAD_OPTION descriptor. + /// + UINT16 FilePathListLength; + /// + /// The user readable description for the load option. + /// This field ends with a Null character. + /// + // CHAR16 Description[]; + /// + /// A packed array of UEFI device paths. The first element of the array is a + /// device path that describes the device and location of the Image for this + /// load option. The FilePathList[0] is specific to the device type. Other + /// device paths may optionally exist in the FilePathList, but their usage is + /// OSV specific. Each element in the array is variable length, and ends at + /// the device path end structure. Because the size of Description is + /// arbitrary, this data structure is not guaranteed to be aligned on a + /// natural boundary. This data structure may have to be copied to an aligned + /// natural boundary before it is used. + /// + // EFI_DEVICE_PATH_PROTOCOL FilePathList[]; + /// + /// The remaining bytes in the load option descriptor are a binary data buffer + /// that is passed to the loaded image. If the field is zero bytes long, a + /// NULL pointer is passed to the loaded image. The number of bytes in + /// OptionalData can be computed by subtracting the starting offset of + /// OptionalData from total size in bytes of the EFI_LOAD_OPTION. + /// + // UINT8 OptionalData[]; +} EFI_LOAD_OPTION; +#pragma pack() + // // EFI Load Options Attributes // -#define LOAD_OPTION_ACTIVE 0x00000001 -#define LOAD_OPTION_FORCE_RECONNECT 0x00000002 -#define LOAD_OPTION_HIDDEN 0x00000008 -#define LOAD_OPTION_CATEGORY 0x00001F00 +#define LOAD_OPTION_ACTIVE 0x00000001 +#define LOAD_OPTION_FORCE_RECONNECT 0x00000002 +#define LOAD_OPTION_HIDDEN 0x00000008 +#define LOAD_OPTION_CATEGORY 0x00001F00 -#define LOAD_OPTION_CATEGORY_BOOT 0x00000000 -#define LOAD_OPTION_CATEGORY_APP 0x00000100 +#define LOAD_OPTION_CATEGORY_BOOT 0x00000000 +#define LOAD_OPTION_CATEGORY_APP 0x00000100 -#define EFI_BOOT_OPTION_SUPPORT_KEY 0x00000001 -#define EFI_BOOT_OPTION_SUPPORT_APP 0x00000002 -#define EFI_BOOT_OPTION_SUPPORT_COUNT 0x00000300 +#define EFI_BOOT_OPTION_SUPPORT_KEY 0x00000001 +#define EFI_BOOT_OPTION_SUPPORT_APP 0x00000002 +#define EFI_BOOT_OPTION_SUPPORT_SYSPREP 0x00000010 +#define EFI_BOOT_OPTION_SUPPORT_COUNT 0x00000300 /// /// EFI Boot Key Data @@ -2055,6 +2137,7 @@ typedef union { /// /// EFI Key Option. /// +#pragma pack(1) typedef struct { /// /// Specifies options about how the key will be processed. @@ -2078,6 +2161,7 @@ typedef struct { /// //EFI_INPUT_KEY Keys[]; } EFI_KEY_OPTION; +#pragma pack() // // EFI File location to boot from on removable media devices @@ -2086,6 +2170,7 @@ typedef struct { #define EFI_REMOVABLE_MEDIA_FILE_NAME_IA64 L"\\EFI\\BOOT\\BOOTIA64.EFI" #define EFI_REMOVABLE_MEDIA_FILE_NAME_X64 L"\\EFI\\BOOT\\BOOTX64.EFI" #define EFI_REMOVABLE_MEDIA_FILE_NAME_ARM L"\\EFI\\BOOT\\BOOTARM.EFI" +#define EFI_REMOVABLE_MEDIA_FILE_NAME_AARCH64 L"\\EFI\\BOOT\\BOOTAA64.EFI" #if defined (MDE_CPU_IA32) #define EFI_REMOVABLE_MEDIA_FILE_NAME EFI_REMOVABLE_MEDIA_FILE_NAME_IA32 @@ -2096,6 +2181,8 @@ typedef struct { #elif defined (MDE_CPU_EBC) #elif defined (MDE_CPU_ARM) #define EFI_REMOVABLE_MEDIA_FILE_NAME EFI_REMOVABLE_MEDIA_FILE_NAME_ARM +#elif defined (MDE_CPU_AARCH64) + #define EFI_REMOVABLE_MEDIA_FILE_NAME EFI_REMOVABLE_MEDIA_FILE_NAME_AARCH64 #else #error Unknown Processor Type #endif