X-Git-Url: https://git.proxmox.com/?p=mirror_edk2.git;a=blobdiff_plain;f=StdLib%2FLibC%2Fgdtoa%2Fgdtoaimp.h;fp=StdLib%2FLibC%2Fgdtoa%2Fgdtoaimp.h;h=0000000000000000000000000000000000000000;hp=a5eaa72f4120aca83bd5ca9d66b3c642c9ec4c05;hb=964f432b9b0afe103c41c7613fade3e699118afe;hpb=e2d3a25f1a3135221a9c8061e1b8f90245d727eb diff --git a/StdLib/LibC/gdtoa/gdtoaimp.h b/StdLib/LibC/gdtoa/gdtoaimp.h deleted file mode 100644 index a5eaa72f41..0000000000 --- a/StdLib/LibC/gdtoa/gdtoaimp.h +++ /dev/null @@ -1,634 +0,0 @@ -/** @file - This is a variation on dtoa.c that converts arbitary binary - floating-point formats to and from decimal notation. It uses - double-precision arithmetic internally, so there are still - various #ifdefs that adapt the calculations to the native - IEEE double-precision arithmetic. - - Copyright (c) 2010 - 2014, Intel Corporation. All rights reserved.
- This program and the accompanying materials are licensed and made available under - the terms and conditions of the BSD License that accompanies this distribution. - The full text of the license may be found at - http://opensource.org/licenses/bsd-license. - - THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, - WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. - - ***************************************************************** - - The author of this software is David M. Gay. - - Copyright (C) 1998-2000 by Lucent Technologies - All Rights Reserved - - Permission to use, copy, modify, and distribute this software and - its documentation for any purpose and without fee is hereby - granted, provided that the above copyright notice appear in all - copies and that both that the copyright notice and this - permission notice and warranty disclaimer appear in supporting - documentation, and that the name of Lucent or any of its entities - not be used in advertising or publicity pertaining to - distribution of the software without specific, written prior - permission. - - LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, - INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. - IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY - SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER - IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, - ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF - THIS SOFTWARE. - - Please send bug reports to David M. Gay (dmg at acm dot org, - with " at " changed at "@" and " dot " changed to "."). - - ***************************************************************** - - NetBSD: gdtoaimp.h,v 1.5.4.1 2007/05/07 19:49:06 pavel Exp -**/ - -/* On a machine with IEEE extended-precision registers, it is - * necessary to specify double-precision (53-bit) rounding precision - * before invoking strtod or dtoa. If the machine uses (the equivalent - * of) Intel 80x87 arithmetic, the call - * _control87(PC_53, MCW_PC); - * does this with many compilers. Whether this or another call is - * appropriate depends on the compiler; for this to work, it may be - * necessary to #include "float.h" or another system-dependent header - * file. - */ - -/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. - * - * This strtod returns a nearest machine number to the input decimal - * string (or sets errno to ERANGE). With IEEE arithmetic, ties are - * broken by the IEEE round-even rule. Otherwise ties are broken by - * biased rounding (add half and chop). - * - * Inspired loosely by William D. Clinger's paper "How to Read Floating - * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. - * - * Modifications: - * - * 1. We only require IEEE, IBM, or VAX double-precision - * arithmetic (not IEEE double-extended). - * 2. We get by with floating-point arithmetic in a case that - * Clinger missed -- when we're computing d * 10^n - * for a small integer d and the integer n is not too - * much larger than 22 (the maximum integer k for which - * we can represent 10^k exactly), we may be able to - * compute (d*10^k) * 10^(e-k) with just one roundoff. - * 3. Rather than a bit-at-a-time adjustment of the binary - * result in the hard case, we use floating-point - * arithmetic to determine the adjustment to within - * one bit; only in really hard cases do we need to - * compute a second residual. - * 4. Because of 3., we don't need a large table of powers of 10 - * for ten-to-e (just some small tables, e.g. of 10^k - * for 0 <= k <= 22). - */ - -/* - * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least - * significant byte has the lowest address. - * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most - * significant byte has the lowest address. - * #define Long int on machines with 32-bit ints and 64-bit longs. - * #define Sudden_Underflow for IEEE-format machines without gradual - * underflow (i.e., that flush to zero on underflow). - * #define No_leftright to omit left-right logic in fast floating-point - * computation of dtoa. - * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. - * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines - * that use extended-precision instructions to compute rounded - * products and quotients) with IBM. - * #define ROUND_BIASED for IEEE-format with biased rounding. - * #define Inaccurate_Divide for IEEE-format with correctly rounded - * products but inaccurate quotients, e.g., for Intel i860. - * #define NO_LONG_LONG on machines that do not have a "long long" - * integer type (of >= 64 bits). On such machines, you can - * #define Just_16 to store 16 bits per 32-bit Long when doing - * high-precision integer arithmetic. Whether this speeds things - * up or slows things down depends on the machine and the number - * being converted. If long long is available and the name is - * something other than "long long", #define Llong to be the name, - * and if "unsigned Llong" does not work as an unsigned version of - * Llong, #define #ULLong to be the corresponding unsigned type. - * #define Bad_float_h if your system lacks a float.h or if it does not - * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, - * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. - * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) - * if memory is available and otherwise does something you deem - * appropriate. If MALLOC is undefined, malloc will be invoked - * directly -- and assumed always to succeed. - * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making - * memory allocations from a private pool of memory when possible. - * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, - * unless #defined to be a different length. This default length - * suffices to get rid of MALLOC calls except for unusual cases, - * such as decimal-to-binary conversion of a very long string of - * digits. When converting IEEE double precision values, the - * longest string gdtoa can return is about 751 bytes long. For - * conversions by strtod of strings of 800 digits and all gdtoa - * conversions of IEEE doubles in single-threaded executions with - * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with - * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. - * #define INFNAN_CHECK on IEEE systems to cause strtod to check for - * Infinity and NaN (case insensitively). - * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, - * strtodg also accepts (case insensitively) strings of the form - * NaN(x), where x is a string of hexadecimal digits and spaces; - * if there is only one string of hexadecimal digits, it is taken - * for the fraction bits of the resulting NaN; if there are two or - * more strings of hexadecimal digits, each string is assigned - * to the next available sequence of 32-bit words of fractions - * bits (starting with the most significant), right-aligned in - * each sequence. - * #define MULTIPLE_THREADS if the system offers preemptively scheduled - * multiple threads. In this case, you must provide (or suitably - * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed - * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed - * in pow5mult, ensures lazy evaluation of only one copy of high - * powers of 5; omitting this lock would introduce a small - * probability of wasting memory, but would otherwise be harmless.) - * You must also invoke freedtoa(s) to free the value s returned by - * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. - * #define IMPRECISE_INEXACT if you do not care about the setting of - * the STRTOG_Inexact bits in the special case of doing IEEE double - * precision conversions (which could also be done by the strtog in - * dtoa.c). - * #define NO_HEX_FP to disable recognition of C9x's hexadecimal - * floating-point constants. - * #define -DNO_ERRNO to suppress setting errno (in strtod.c and - * strtodg.c). - * #define NO_STRING_H to use private versions of memcpy. - * On some K&R systems, it may also be necessary to - * #define DECLARE_SIZE_T in this case. - * #define YES_ALIAS to permit aliasing certain double values with - * arrays of ULongs. This leads to slightly better code with - * some compilers and was always used prior to 19990916, but it - * is not strictly legal and can cause trouble with aggressively - * optimizing compilers (e.g., gcc 2.95.1 under -O2). - * #define USE_LOCALE to use the current locale's decimal_point value. - */ - -/* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */ -#include - -#include -#define Short int16_t -#define UShort uint16_t -#define Long int32_t -#define ULong uint32_t -#define LLong int64_t -#define ULLong uint64_t - -#define INFNAN_CHECK -#ifdef _REENTRANT -#define MULTIPLE_THREADS -#endif -#define USE_LOCALE - -#ifndef GDTOAIMP_H_INCLUDED -#define GDTOAIMP_H_INCLUDED -#include "gdtoa.h" -#include "gd_qnan.h" - -#ifdef DEBUG -#include "stdio.h" -#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} -#endif - -#include "stdlib.h" -#include "string.h" - -#define Char void - -#ifdef MALLOC -extern Char *MALLOC ANSI((size_t)); -#else -#define MALLOC malloc -#endif - -#undef IEEE_Arith -#undef Avoid_Underflow -#ifdef IEEE_BIG_ENDIAN -#define IEEE_Arith -#endif -#ifdef IEEE_LITTLE_ENDIAN -#define IEEE_Arith -#endif - -#include "errno.h" -#ifdef Bad_float_h - -#ifdef IEEE_Arith -#define DBL_DIG 15 -#define DBL_MAX_10_EXP 308 -#define DBL_MAX_EXP 1024 -#define FLT_RADIX 2 -#define DBL_MAX 1.7976931348623157e+308 -#endif - -#ifndef LONG_MAX -#define LONG_MAX 2147483647 -#endif - -#else /* ifndef Bad_float_h */ -#include "float.h" -#endif /* Bad_float_h */ - -#ifdef IEEE_Arith -#define Scale_Bit 0x10 -#define n_bigtens 5 -#endif - -#include "math.h" - -#ifdef __cplusplus -extern "C" { -#endif - -#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) != 1 -Exactly one of IEEE_LITTLE_ENDIAN or IEEE_BIG_ENDIAN should be defined. -#endif - -/* This union assumes that: - sizeof(double) == 8 - sizeof(UINT32) == 4 - - If this is not the case, the type and dimension of the L member will - have to be modified. -*/ -typedef union { double d; UINT32 L[2]; } U; - -#ifdef YES_ALIAS -#define dval(x) x -#ifdef IEEE_LITTLE_ENDIAN -#define word0(x) ((ULong *)&x)[1] -#define word1(x) ((ULong *)&x)[0] -#else -#define word0(x) ((ULong *)&x)[0] -#define word1(x) ((ULong *)&x)[1] -#endif -#else /* !YES_ALIAS */ -#ifdef IEEE_LITTLE_ENDIAN -#define word0(x) ( /* LINTED */ (U*)&x)->L[1] -#define word1(x) ( /* LINTED */ (U*)&x)->L[0] -#else -#define word0(x) ( /* LINTED */ (U*)&x)->L[0] -#define word1(x) ( /* LINTED */ (U*)&x)->L[1] -#endif -#define dval(x) ( /* LINTED */ (U*)&x)->d -#endif /* YES_ALIAS */ - -/* The following definition of Storeinc is appropriate for MIPS processors. - * An alternative that might be better on some machines is - * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) - */ -#if defined(IEEE_LITTLE_ENDIAN) -#define Storeinc(a,b,c) \ - (((unsigned short *)(void *)a)[1] = (unsigned short)b, \ - ((unsigned short *)(void *)a)[0] = (unsigned short)c, \ - a++) -#else -#define Storeinc(a,b,c) \ - (((unsigned short *)(void *)a)[0] = (unsigned short)b, \ - ((unsigned short *)(void *)a)[1] = (unsigned short)c, \ - a++) -#endif - -/* #define P DBL_MANT_DIG */ -/* Ten_pmax = floor(P*log(2)/log(5)) */ -/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ -/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ -/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ - -#ifdef IEEE_Arith -#define Exp_shift 20 -#define Exp_shift1 20 -#define Exp_msk1 0x100000 -#define Exp_msk11 0x100000 -#define Exp_mask 0x7ff00000 -#define P 53 -#define Bias 1023 -#define Emin (-1022) -#define Exp_1 0x3ff00000 -#define Exp_11 0x3ff00000 -#define Ebits 11 -#define Frac_mask 0xfffffU -#define Frac_mask1 0xfffffU -#define Ten_pmax 22 -#define Bletch 0x10 -#define Bndry_mask 0xfffffU -#define Bndry_mask1 0xfffffU -#define LSB 1 -#define Sign_bit 0x80000000 -#define Log2P 1 -#define Tiny0 0 -#define Tiny1 1 -#define Quick_max 14 -#define Int_max 14 - -#ifndef Flt_Rounds -#ifdef FLT_ROUNDS -#define Flt_Rounds FLT_ROUNDS -#else -#define Flt_Rounds 1 -#endif -#endif /*Flt_Rounds*/ - -#else /* ifndef IEEE_Arith */ -#undef Sudden_Underflow -#define Sudden_Underflow -#ifdef IBM -#undef Flt_Rounds -#define Flt_Rounds 0 -#define Exp_shift 24 -#define Exp_shift1 24 -#define Exp_msk1 0x1000000 -#define Exp_msk11 0x1000000 -#define Exp_mask 0x7f000000 -#define P 14 -#define Bias 65 -#define Exp_1 0x41000000 -#define Exp_11 0x41000000 -#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ -#define Frac_mask 0xffffff -#define Frac_mask1 0xffffff -#define Bletch 4 -#define Ten_pmax 22 -#define Bndry_mask 0xefffff -#define Bndry_mask1 0xffffff -#define LSB 1 -#define Sign_bit 0x80000000 -#define Log2P 4 -#define Tiny0 0x100000 -#define Tiny1 0 -#define Quick_max 14 -#define Int_max 15 -#else /* VAX */ -#undef Flt_Rounds -#define Flt_Rounds 1 -#define Exp_shift 23 -#define Exp_shift1 7 -#define Exp_msk1 0x80 -#define Exp_msk11 0x800000 -#define Exp_mask 0x7f80 -#define P 56 -#define Bias 129 -#define Exp_1 0x40800000 -#define Exp_11 0x4080 -#define Ebits 8 -#define Frac_mask 0x7fffff -#define Frac_mask1 0xffff007f -#define Ten_pmax 24 -#define Bletch 2 -#define Bndry_mask 0xffff007f -#define Bndry_mask1 0xffff007f -#define LSB 0x10000 -#define Sign_bit 0x8000 -#define Log2P 1 -#define Tiny0 0x80 -#define Tiny1 0 -#define Quick_max 15 -#define Int_max 15 -#endif /* IBM, VAX */ -#endif /* IEEE_Arith */ - -#ifndef IEEE_Arith -#define ROUND_BIASED -#endif - -#ifdef RND_PRODQUOT -#define rounded_product(a,b) a = rnd_prod(a, b) -#define rounded_quotient(a,b) a = rnd_quot(a, b) -extern double rnd_prod(double, double), rnd_quot(double, double); -#else -#define rounded_product(a,b) a *= b -#define rounded_quotient(a,b) a /= b -#endif - -#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) -#define Big1 0xffffffffU - -#undef Pack_16 -#ifndef Pack_32 -#define Pack_32 -#endif - -#ifdef NO_LONG_LONG -#undef ULLong -#ifdef Just_16 -#undef Pack_32 -#define Pack_16 -/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. - * This makes some inner loops simpler and sometimes saves work - * during multiplications, but it often seems to make things slightly - * slower. Hence the default is now to store 32 bits per Long. - */ -#endif -#else /* long long available */ -#ifndef Llong -#define Llong long long -#endif -#ifndef ULLong -#define ULLong unsigned Llong -#endif -#endif /* NO_LONG_LONG */ - -#ifdef Pack_32 -#define ULbits 32 -#define kshift 5 -#define kmask 31 -#define ALL_ON 0xffffffff -#else -#define ULbits 16 -#define kshift 4 -#define kmask 15 -#define ALL_ON 0xffff -#endif - -#ifndef MULTIPLE_THREADS -#define ACQUIRE_DTOA_LOCK(n) /*nothing*/ -#define FREE_DTOA_LOCK(n) /*nothing*/ -#else -#include "reentrant.h" - -extern mutex_t __gdtoa_locks[2]; - -#define ACQUIRE_DTOA_LOCK(n) \ - do { \ - if (__isthreaded) \ - mutex_lock(&__gdtoa_locks[n]); \ - } while (/* CONSTCOND */ 0) -#define FREE_DTOA_LOCK(n) \ - do { \ - if (__isthreaded) \ - mutex_unlock(&__gdtoa_locks[n]); \ - } while (/* CONSTCOND */ 0) -#endif - -#define Kmax (sizeof(size_t) << 3) - - struct -Bigint { - struct Bigint *next; - int k, maxwds, sign, wds; - ULong x[1]; - }; - - typedef struct Bigint Bigint; - -#ifdef NO_STRING_H -#ifdef DECLARE_SIZE_T -typedef unsigned int size_t; -#endif -extern void memcpy_D2A ANSI((void*, const void*, size_t)); -#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) -#else /* !NO_STRING_H */ -#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) -#endif /* NO_STRING_H */ - -#define Balloc __Balloc_D2A -#define Bfree __Bfree_D2A -#define ULtoQ __ULtoQ_D2A -#define ULtof __ULtof_D2A -#define ULtod __ULtod_D2A -#define ULtodd __ULtodd_D2A -#define ULtox __ULtox_D2A -#define ULtoxL __ULtoxL_D2A -#define any_on __any_on_D2A -#define b2d __b2d_D2A -#define bigtens __bigtens_D2A -#define cmp __cmp_D2A -#define copybits __copybits_D2A -#define d2b __d2b_D2A -#define decrement __decrement_D2A -#define diff __diff_D2A -#define dtoa_result __dtoa_result_D2A -#define g__fmt __g__fmt_D2A -#define gethex __gethex_D2A -#define hexdig __hexdig_D2A -#define hexdig_init_D2A __hexdig_init_D2A -#define hexnan __hexnan_D2A -#define hi0bits __hi0bits_D2A -#define hi0bits_D2A __hi0bits_D2A -#define i2b __i2b_D2A -#define increment __increment_D2A -#define lo0bits __lo0bits_D2A -#define lshift __lshift_D2A -#define match __match_D2A -#define mult __mult_D2A -#define multadd __multadd_D2A -#define nrv_alloc __nrv_alloc_D2A -#define pow5mult __pow5mult_D2A -#define quorem __quorem_D2A -#define ratio __ratio_D2A -#define rshift __rshift_D2A -#define rv_alloc __rv_alloc_D2A -#define s2b __s2b_D2A -#define set_ones __set_ones_D2A -#define strcp __strcp_D2A -#define strcp_D2A __strcp_D2A -#define strtoIg __strtoIg_D2A -#define sum __sum_D2A -#define tens __tens_D2A -#define tinytens __tinytens_D2A -#define tinytens __tinytens_D2A -#define trailz __trailz_D2A -#define ulp __ulp_D2A - -extern char *dtoa_result; -extern CONST double bigtens[], tens[], tinytens[]; -extern unsigned char hexdig[]; - -extern Bigint *Balloc (int); -extern void Bfree (Bigint*); -extern void ULtof (ULong*, ULong*, Long, int); -extern void ULtod (ULong*, ULong*, Long, int); -extern void ULtodd (ULong*, ULong*, Long, int); -extern void ULtoQ (ULong*, ULong*, Long, int); -extern void ULtox (UShort*, ULong*, Long, int); -extern void ULtoxL (ULong*, ULong*, Long, int); -extern ULong any_on (Bigint*, int); -extern double b2d (Bigint*, int*); -extern int cmp (Bigint*, Bigint*); -extern void copybits (ULong*, int, Bigint*); -extern Bigint *d2b (double, int*, int*); -extern int decrement (Bigint*); -extern Bigint *diff (Bigint*, Bigint*); -extern char *dtoa (double d, int mode, int ndigits, - int *decpt, int *sign, char **rve); -extern char *g__fmt (char*, char*, char*, int, ULong); -extern int gethex (CONST char**, CONST FPI*, Long*, Bigint**, int); -extern void hexdig_init_D2A(Void); -extern int hexnan (CONST char**, CONST FPI*, ULong*); -extern int hi0bits_D2A (ULong); -extern Bigint *i2b (int); -extern Bigint *increment (Bigint*); -extern int lo0bits (ULong*); -extern Bigint *lshift (Bigint*, int); -extern int match (CONST char**, CONST char*); -extern Bigint *mult (Bigint*, Bigint*); -extern Bigint *multadd (Bigint*, int, int); -extern char *nrv_alloc (CONST char*, char **, size_t); -extern Bigint *pow5mult (Bigint*, int); -extern int quorem (Bigint*, Bigint*); -extern double ratio (Bigint*, Bigint*); -extern void rshift (Bigint*, int); -extern char *rv_alloc (size_t); -extern Bigint *s2b (CONST char*, int, int, ULong); -extern Bigint *set_ones (Bigint*, int); -extern char *strcp (char*, const char*); -extern int strtoIg (CONST char*, char**, FPI*, Long*, Bigint**, int*); -extern double strtod (const char *s00, char **se); -extern Bigint *sum (Bigint*, Bigint*); -extern int trailz (CONST Bigint*); -extern double ulp (double); - -#ifdef __cplusplus -} -#endif -/* - * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to - * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, - * respectively), but now are determined by compiling and running - * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. - * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... - * and -DNAN_WORD1=... values if necessary. This should still work. - * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) - */ -#ifdef IEEE_Arith -#ifdef IEEE_BIG_ENDIAN -#define _0 0 -#define _1 1 -#ifndef NAN_WORD0 -#define NAN_WORD0 d_QNAN0 -#endif -#ifndef NAN_WORD1 -#define NAN_WORD1 d_QNAN1 -#endif -#else -#define _0 1 -#define _1 0 -#ifndef NAN_WORD0 -#define NAN_WORD0 d_QNAN1 -#endif -#ifndef NAN_WORD1 -#define NAN_WORD1 d_QNAN0 -#endif -#endif -#else -#undef INFNAN_CHECK -#endif - -#undef SI -#ifdef Sudden_Underflow -#define SI 1 -#else -#define SI 0 -#endif - -#endif /* GDTOAIMP_H_INCLUDED */