X-Git-Url: https://git.proxmox.com/?p=mirror_edk2.git;a=blobdiff_plain;f=UefiCpuPkg%2FLibrary%2FMpInitLib%2FMpLib.c;h=33374888922a85d80fbe4f4735f1f24446b03926;hp=0495b0f8a4bda8a27273cb7eb078a0c33fbdfd1d;hb=0acd869796ded1266e69487dff717cd69d6031f9;hpb=367284e7735478b0c4ad37d8f6bf17d3c4a473d0 diff --git a/UefiCpuPkg/Library/MpInitLib/MpLib.c b/UefiCpuPkg/Library/MpInitLib/MpLib.c index 0495b0f8a4..3337488892 100644 --- a/UefiCpuPkg/Library/MpInitLib/MpLib.c +++ b/UefiCpuPkg/Library/MpInitLib/MpLib.c @@ -1,14 +1,8 @@ /** @file CPU MP Initialize Library common functions. - Copyright (c) 2016, Intel Corporation. All rights reserved.
- This program and the accompanying materials - are licensed and made available under the terms and conditions of the BSD License - which accompanies this distribution. The full text of the license may be found at - http://opensource.org/licenses/bsd-license.php - - THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, - WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.
+ SPDX-License-Identifier: BSD-2-Clause-Patent **/ @@ -18,8 +12,11 @@ EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID; /** The function will check if BSP Execute Disable is enabled. - DxeIpl may have enabled Execute Disable for BSP, - APs need to get the status and sync up the settings. + + DxeIpl may have enabled Execute Disable for BSP, APs need to + get the status and sync up the settings. + If BSP's CR0.Paging is not set, BSP execute Disble feature is + not working actually. @retval TRUE BSP Execute Disable is enabled. @retval FALSE BSP Execute Disable is not enabled. @@ -33,23 +30,30 @@ IsBspExecuteDisableEnabled ( CPUID_EXTENDED_CPU_SIG_EDX Edx; MSR_IA32_EFER_REGISTER EferMsr; BOOLEAN Enabled; + IA32_CR0 Cr0; Enabled = FALSE; - AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL); - if (Eax >= CPUID_EXTENDED_CPU_SIG) { - AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32); + Cr0.UintN = AsmReadCr0 (); + if (Cr0.Bits.PG != 0) { // - // CPUID 0x80000001 - // Bit 20: Execute Disable Bit available. + // If CR0 Paging bit is set // - if (Edx.Bits.NX != 0) { - EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER); + AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL); + if (Eax >= CPUID_EXTENDED_CPU_SIG) { + AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32); // - // MSR 0xC0000080 - // Bit 11: Execute Disable Bit enable. + // CPUID 0x80000001 + // Bit 20: Execute Disable Bit available. // - if (EferMsr.Bits.NXE != 0) { - Enabled = TRUE; + if (Edx.Bits.NX != 0) { + EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER); + // + // MSR 0xC0000080 + // Bit 11: Execute Disable Bit enable. + // + if (EferMsr.Bits.NXE != 0) { + Enabled = TRUE; + } } } } @@ -109,6 +113,53 @@ SetApState ( ReleaseSpinLock (&CpuData->ApLock); } +/** + Save BSP's local APIC timer setting. + + @param[in] CpuMpData Pointer to CPU MP Data +**/ +VOID +SaveLocalApicTimerSetting ( + IN CPU_MP_DATA *CpuMpData + ) +{ + // + // Record the current local APIC timer setting of BSP + // + GetApicTimerState ( + &CpuMpData->DivideValue, + &CpuMpData->PeriodicMode, + &CpuMpData->Vector + ); + CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount (); + CpuMpData->TimerInterruptState = GetApicTimerInterruptState (); +} + +/** + Sync local APIC timer setting from BSP to AP. + + @param[in] CpuMpData Pointer to CPU MP Data +**/ +VOID +SyncLocalApicTimerSetting ( + IN CPU_MP_DATA *CpuMpData + ) +{ + // + // Sync local APIC timer setting from BSP to AP + // + InitializeApicTimer ( + CpuMpData->DivideValue, + CpuMpData->CurrentTimerCount, + CpuMpData->PeriodicMode, + CpuMpData->Vector + ); + // + // Disable AP's local APIC timer interrupt + // + DisableApicTimerInterrupt (); +} + /** Save the volatile registers required to be restored following INIT IPI. @@ -138,6 +189,10 @@ SaveVolatileRegisters ( VolatileRegisters->Dr6 = AsmReadDr6 (); VolatileRegisters->Dr7 = AsmReadDr7 (); } + + AsmReadGdtr (&VolatileRegisters->Gdtr); + AsmReadIdtr (&VolatileRegisters->Idtr); + VolatileRegisters->Tr = AsmReadTr (); } /** @@ -154,10 +209,11 @@ RestoreVolatileRegisters ( ) { CPUID_VERSION_INFO_EDX VersionInfoEdx; + IA32_TSS_DESCRIPTOR *Tss; - AsmWriteCr0 (VolatileRegisters->Cr0); AsmWriteCr3 (VolatileRegisters->Cr3); AsmWriteCr4 (VolatileRegisters->Cr4); + AsmWriteCr0 (VolatileRegisters->Cr0); if (IsRestoreDr) { AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32); @@ -174,6 +230,18 @@ RestoreVolatileRegisters ( AsmWriteDr7 (VolatileRegisters->Dr7); } } + + AsmWriteGdtr (&VolatileRegisters->Gdtr); + AsmWriteIdtr (&VolatileRegisters->Idtr); + if (VolatileRegisters->Tr != 0 && + VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) { + Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base + + VolatileRegisters->Tr); + if (Tss->Bits.P == 1) { + Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case + AsmWriteTr (VolatileRegisters->Tr); + } + } } /** @@ -256,6 +324,7 @@ SortApicId ( CPU_INFO_IN_HOB CpuInfo; UINT32 ApCount; CPU_INFO_IN_HOB *CpuInfoInHob; + volatile UINT32 *StartupApSignal; ApCount = CpuMpData->CpuCount - 1; CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; @@ -280,6 +349,14 @@ SortApicId ( sizeof (CPU_INFO_IN_HOB) ); CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB)); + + // + // Also exchange the StartupApSignal. + // + StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal; + CpuMpData->CpuData[Index3].StartupApSignal = + CpuMpData->CpuData[Index1].StartupApSignal; + CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal; } } @@ -325,13 +402,13 @@ ApInitializeSync ( CpuMpData = (CPU_MP_DATA *) Buffer; // - // Sync BSP's MTRR table to AP + // Load microcode on AP // - MtrrSetAllMtrrs (&CpuMpData->MtrrTable); + MicrocodeDetect (CpuMpData, FALSE); // - // Load microcode on AP + // Sync BSP's MTRR table to AP // - MicrocodeDetect (CpuMpData); + MtrrSetAllMtrrs (&CpuMpData->MtrrTable); } /** @@ -352,16 +429,19 @@ GetProcessorNumber ( UINTN TotalProcessorNumber; UINTN Index; CPU_INFO_IN_HOB *CpuInfoInHob; + UINT32 CurrentApicId; CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; TotalProcessorNumber = CpuMpData->CpuCount; + CurrentApicId = GetApicId (); for (Index = 0; Index < TotalProcessorNumber; Index ++) { - if (CpuInfoInHob[Index].ApicId == GetApicId ()) { + if (CpuInfoInHob[Index].ApicId == CurrentApicId) { *ProcessorNumber = Index; return EFI_SUCCESS; } } + return EFI_NOT_FOUND; } @@ -377,12 +457,14 @@ CollectProcessorCount ( IN CPU_MP_DATA *CpuMpData ) { + UINTN Index; + // // Send 1st broadcast IPI to APs to wakeup APs // CpuMpData->InitFlag = ApInitConfig; CpuMpData->X2ApicEnable = FALSE; - WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL); + WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE); CpuMpData->InitFlag = ApInitDone; ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber)); // @@ -392,12 +474,18 @@ CollectProcessorCount ( CpuPause (); } + if (CpuMpData->CpuCount > 255) { + // + // If there are more than 255 processor found, force to enable X2APIC + // + CpuMpData->X2ApicEnable = TRUE; + } if (CpuMpData->X2ApicEnable) { DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n")); // // Wakeup all APs to enable x2APIC mode // - WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL); + WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE); // // Wait for all known APs finished // @@ -408,6 +496,12 @@ CollectProcessorCount ( // Enable x2APIC on BSP // SetApicMode (LOCAL_APIC_MODE_X2APIC); + // + // Set BSP/Aps state to IDLE + // + for (Index = 0; Index < CpuMpData->CpuCount; Index++) { + SetApState (&CpuMpData->CpuData[Index], CpuStateIdle); + } } DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ())); // @@ -465,13 +559,13 @@ InitializeApData ( This function will be called from AP reset code if BSP uses WakeUpAP. @param[in] ExchangeInfo Pointer to the MP exchange info buffer - @param[in] NumApsExecuting Number of current executing AP + @param[in] ApIndex Number of current executing AP **/ VOID EFIAPI ApWakeupFunction ( IN MP_CPU_EXCHANGE_INFO *ExchangeInfo, - IN UINTN NumApsExecuting + IN UINTN ApIndex ) { CPU_MP_DATA *CpuMpData; @@ -482,21 +576,32 @@ ApWakeupFunction ( volatile UINT32 *ApStartupSignalBuffer; CPU_INFO_IN_HOB *CpuInfoInHob; UINT64 ApTopOfStack; + UINTN CurrentApicMode; // // AP finished assembly code and begin to execute C code // CpuMpData = ExchangeInfo->CpuMpData; - ProgramVirtualWireMode (); + // + // AP's local APIC settings will be lost after received INIT IPI + // We need to re-initialize them at here + // + ProgramVirtualWireMode (); + // + // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler. + // + DisableLvtInterrupts (); + SyncLocalApicTimerSetting (CpuMpData); + CurrentApicMode = GetApicMode (); while (TRUE) { if (CpuMpData->InitFlag == ApInitConfig) { // // Add CPU number // InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount); - ProcessorNumber = NumApsExecuting; + ProcessorNumber = ApIndex; // // This is first time AP wakeup, get BIST information from AP stack // @@ -507,7 +612,9 @@ ApWakeupFunction ( // ApInitializeSync (CpuMpData); // - // Sync BSP's Control registers to APs + // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment, + // to initialize AP in InitConfig path. + // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs. // RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE); InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack); @@ -531,6 +638,13 @@ ApWakeupFunction ( // Restore AP's volatile registers saved // RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE); + } else { + // + // The CPU driver might not flush TLB for APs on spot after updating + // page attributes. AP in mwait loop mode needs to take care of it when + // woken up. + // + CpuFlushTlb (); } if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) { @@ -539,6 +653,10 @@ ApWakeupFunction ( if (Procedure != NULL) { SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy); // + // Enable source debugging on AP function + // + EnableDebugAgent (); + // // Invoke AP function here // Procedure (Parameter); @@ -553,11 +671,23 @@ ApWakeupFunction ( ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal; CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack; } else { - // - // Re-get the CPU APICID and Initial APICID - // - CpuInfoInHob[ProcessorNumber].ApicId = GetApicId (); - CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId (); + if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () || + CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) { + if (CurrentApicMode != GetApicMode ()) { + // + // If APIC mode change happened during AP function execution, + // we do not support APIC ID value changed. + // + ASSERT (FALSE); + CpuDeadLoop (); + } else { + // + // Re-get the CPU APICID and Initial APICID if they are changed + // + CpuInfoInHob[ProcessorNumber].ApicId = GetApicId (); + CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId (); + } + } } } SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished); @@ -568,6 +698,7 @@ ApWakeupFunction ( // AP finished executing C code // InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount); + InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting); // // Place AP is specified loop mode @@ -656,6 +787,8 @@ FillExchangeInfoData ( ) { volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo; + UINTN Size; + IA32_SEGMENT_DESCRIPTOR *Selector; ExchangeInfo = CpuMpData->MpCpuExchangeInfo; ExchangeInfo->Lock = 0; @@ -670,6 +803,7 @@ FillExchangeInfoData ( ExchangeInfo->Cr3 = AsmReadCr3 (); ExchangeInfo->CFunction = (UINTN) ApWakeupFunction; + ExchangeInfo->ApIndex = 0; ExchangeInfo->NumApsExecuting = 0; ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag; ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; @@ -677,11 +811,53 @@ FillExchangeInfoData ( ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled (); + ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits; + // // Get the BSP's data of GDT and IDT // AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile); AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile); + + // + // Find a 32-bit code segment + // + Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base; + Size = ExchangeInfo->GdtrProfile.Limit + 1; + while (Size > 0) { + if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) { + ExchangeInfo->ModeTransitionSegment = + (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base); + break; + } + Selector += 1; + Size -= sizeof (IA32_SEGMENT_DESCRIPTOR); + } + + // + // Copy all 32-bit code and 64-bit code into memory with type of + // EfiBootServicesCode to avoid page fault if NX memory protection is enabled. + // + if (CpuMpData->WakeupBufferHigh != 0) { + Size = CpuMpData->AddressMap.RendezvousFunnelSize - + CpuMpData->AddressMap.ModeTransitionOffset; + CopyMem ( + (VOID *)CpuMpData->WakeupBufferHigh, + CpuMpData->AddressMap.RendezvousFunnelAddress + + CpuMpData->AddressMap.ModeTransitionOffset, + Size + ); + + ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh; + } else { + ExchangeInfo->ModeTransitionMemory = (UINT32) + (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset); + } + + ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory + + (UINT32)ExchangeInfo->ModeOffset - + (UINT32)CpuMpData->AddressMap.ModeTransitionOffset; + ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment; } /** @@ -699,6 +875,85 @@ TimedWaitForApFinish ( IN UINT32 TimeLimit ); +/** + Get available system memory below 1MB by specified size. + + @param[in] CpuMpData The pointer to CPU MP Data structure. +**/ +VOID +BackupAndPrepareWakeupBuffer( + IN CPU_MP_DATA *CpuMpData + ) +{ + CopyMem ( + (VOID *) CpuMpData->BackupBuffer, + (VOID *) CpuMpData->WakeupBuffer, + CpuMpData->BackupBufferSize + ); + CopyMem ( + (VOID *) CpuMpData->WakeupBuffer, + (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress, + CpuMpData->AddressMap.RendezvousFunnelSize + ); +} + +/** + Restore wakeup buffer data. + + @param[in] CpuMpData The pointer to CPU MP Data structure. +**/ +VOID +RestoreWakeupBuffer( + IN CPU_MP_DATA *CpuMpData + ) +{ + CopyMem ( + (VOID *) CpuMpData->WakeupBuffer, + (VOID *) CpuMpData->BackupBuffer, + CpuMpData->BackupBufferSize + ); +} + +/** + Allocate reset vector buffer. + + @param[in, out] CpuMpData The pointer to CPU MP Data structure. +**/ +VOID +AllocateResetVector ( + IN OUT CPU_MP_DATA *CpuMpData + ) +{ + UINTN ApResetVectorSize; + + if (CpuMpData->WakeupBuffer == (UINTN) -1) { + ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize + + sizeof (MP_CPU_EXCHANGE_INFO); + + CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize); + CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) + (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize); + CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer ( + CpuMpData->AddressMap.RendezvousFunnelSize - + CpuMpData->AddressMap.ModeTransitionOffset + ); + } + BackupAndPrepareWakeupBuffer (CpuMpData); +} + +/** + Free AP reset vector buffer. + + @param[in] CpuMpData The pointer to CPU MP Data structure. +**/ +VOID +FreeResetVector ( + IN CPU_MP_DATA *CpuMpData + ) +{ + RestoreWakeupBuffer (CpuMpData); +} + /** This function will be called by BSP to wakeup AP. @@ -708,6 +963,7 @@ TimedWaitForApFinish ( @param[in] ProcessorNumber The handle number of specified processor @param[in] Procedure The function to be invoked by AP @param[in] ProcedureArgument The argument to be passed into AP function + @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode. **/ VOID WakeUpAP ( @@ -715,7 +971,8 @@ WakeUpAP ( IN BOOLEAN Broadcast, IN UINTN ProcessorNumber, IN EFI_AP_PROCEDURE Procedure, OPTIONAL - IN VOID *ProcedureArgument OPTIONAL + IN VOID *ProcedureArgument, OPTIONAL + IN BOOLEAN WakeUpDisabledAps ) { volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo; @@ -727,12 +984,15 @@ WakeUpAP ( CpuMpData->FinishedCount = 0; ResetVectorRequired = FALSE; - if (CpuMpData->ApLoopMode == ApInHltLoop || + if (CpuMpData->WakeUpByInitSipiSipi || CpuMpData->InitFlag != ApInitDone) { ResetVectorRequired = TRUE; AllocateResetVector (CpuMpData); FillExchangeInfoData (CpuMpData); - } else if (CpuMpData->ApLoopMode == ApInMwaitLoop) { + SaveLocalApicTimerSetting (CpuMpData); + } + + if (CpuMpData->ApLoopMode == ApInMwaitLoop) { // // Get AP target C-state each time when waking up AP, // for it maybe updated by platform again @@ -746,6 +1006,15 @@ WakeUpAP ( for (Index = 0; Index < CpuMpData->CpuCount; Index++) { if (Index != CpuMpData->BspNumber) { CpuData = &CpuMpData->CpuData[Index]; + // + // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but + // the AP procedure will be skipped for disabled AP because AP state + // is not CpuStateReady. + // + if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) { + continue; + } + CpuData->ApFunction = (UINTN) Procedure; CpuData->ApFunctionArgument = (UINTN) ProcedureArgument; SetApState (CpuData, CpuStateReady); @@ -762,13 +1031,24 @@ WakeUpAP ( } if (CpuMpData->InitFlag == ApInitConfig) { // - // Wait for all potential APs waken up in one specified period + // Here support two methods to collect AP count through adjust + // PcdCpuApInitTimeOutInMicroSeconds values. + // + // one way is set a value to just let the first AP to start the + // initialization, then through the later while loop to wait all Aps + // finsh the initialization. + // The other way is set a value to let all APs finished the initialzation. + // In this case, the later while loop is useless. // TimedWaitForApFinish ( CpuMpData, PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1, PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds) ); + + while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) { + CpuPause(); + } } else { // // Wait all APs waken up if this is not the 1st broadcast of SIPI @@ -806,6 +1086,13 @@ WakeUpAP ( if (ResetVectorRequired) { FreeResetVector (CpuMpData); } + + // + // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with + // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by + // S3SmmInitDone Ppi. + // + CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop); } /** @@ -829,6 +1116,9 @@ CalculateTimeout ( OUT UINT64 *CurrentTime ) { + UINT64 TimeoutInSeconds; + UINT64 TimestampCounterFreq; + // // Read the current value of the performance counter // @@ -844,16 +1134,36 @@ CalculateTimeout ( // // GetPerformanceCounterProperties () returns the timestamp counter's frequency - // in Hz. So multiply the return value with TimeoutInMicroseconds and then divide - // it by 1,000,000, to get the number of ticks for the timeout value. - // - return DivU64x32 ( - MultU64x64 ( - GetPerformanceCounterProperties (NULL, NULL), - TimeoutInMicroseconds - ), - 1000000 - ); + // in Hz. + // + TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL); + + // + // Check the potential overflow before calculate the number of ticks for the timeout value. + // + if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) { + // + // Convert microseconds into seconds if direct multiplication overflows + // + TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000); + // + // Assertion if the final tick count exceeds MAX_UINT64 + // + ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq); + return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds); + } else { + // + // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide + // it by 1,000,000, to get the number of ticks for the timeout value. + // + return DivU64x32 ( + MultU64x64 ( + TimestampCounterFreq, + TimeoutInMicroseconds + ), + 1000000 + ); + } } /** @@ -984,7 +1294,7 @@ ResetProcessorToIdleState ( CpuMpData = GetCpuMpData (); CpuMpData->InitFlag = ApInitReconfig; - WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL); + WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE); while (CpuMpData->FinishedCount < 1) { CpuPause (); } @@ -1047,9 +1357,9 @@ CheckThisAP ( CpuData = &CpuMpData->CpuData[ProcessorNumber]; // - // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task. + // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task. // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the - // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value. + // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value. // // // If the AP finishes for StartupThisAP(), return EFI_SUCCESS. @@ -1115,12 +1425,12 @@ CheckAllAPs ( CpuData = &CpuMpData->CpuData[ProcessorNumber]; // - // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task. + // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task. // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the - // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value. + // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value. // if (GetApState(CpuData) == CpuStateFinished) { - CpuMpData->RunningCount ++; + CpuMpData->RunningCount --; CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE; SetApState(CpuData, CpuStateIdle); @@ -1136,7 +1446,8 @@ CheckAllAPs ( FALSE, (UINT32) NextProcessorNumber, CpuMpData->Procedure, - CpuMpData->ProcArguments + CpuMpData->ProcArguments, + TRUE ); } } @@ -1146,7 +1457,7 @@ CheckAllAPs ( // // If all APs finish, return EFI_SUCCESS. // - if (CpuMpData->RunningCount == CpuMpData->StartCount) { + if (CpuMpData->RunningCount == 0) { return EFI_SUCCESS; } @@ -1163,7 +1474,7 @@ CheckAllAPs ( // if (CpuMpData->FailedCpuList != NULL) { *CpuMpData->FailedCpuList = - AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN)); + AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN)); ASSERT (*CpuMpData->FailedCpuList != NULL); } ListIndex = 0; @@ -1215,6 +1526,7 @@ MpInitLibInitialize ( UINT32 MaxLogicalProcessorNumber; UINT32 ApStackSize; MP_ASSEMBLY_ADDRESS_MAP AddressMap; + CPU_VOLATILE_REGISTERS VolatileRegisters; UINTN BufferSize; UINT32 MonitorFilterSize; VOID *MpBuffer; @@ -1225,6 +1537,8 @@ MpInitLibInitialize ( UINTN Index; UINTN ApResetVectorSize; UINTN BackupBufferAddr; + UINTN ApIdtBase; + VOID *MicrocodePatchInRam; OldCpuMpData = GetCpuMpDataFromGuidedHob (); if (OldCpuMpData == NULL) { @@ -1239,24 +1553,52 @@ MpInitLibInitialize ( ApStackSize = PcdGet32(PcdCpuApStackSize); ApLoopMode = GetApLoopMode (&MonitorFilterSize); + // + // Save BSP's Control registers for APs. + // + SaveVolatileRegisters (&VolatileRegisters); + BufferSize = ApStackSize * MaxLogicalProcessorNumber; BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber; - BufferSize += sizeof (CPU_MP_DATA); BufferSize += ApResetVectorSize; + BufferSize = ALIGN_VALUE (BufferSize, 8); + BufferSize += VolatileRegisters.Idtr.Limit + 1; + BufferSize += sizeof (CPU_MP_DATA); BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber; MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize)); ASSERT (MpBuffer != NULL); ZeroMem (MpBuffer, BufferSize); Buffer = (UINTN) MpBuffer; + // + // The layout of the Buffer is as below: + // + // +--------------------+ <-- Buffer + // AP Stacks (N) + // +--------------------+ <-- MonitorBuffer + // AP Monitor Filters (N) + // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer) + // Backup Buffer + // +--------------------+ + // Padding + // +--------------------+ <-- ApIdtBase (8-byte boundary) + // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base. + // +--------------------+ <-- CpuMpData + // CPU_MP_DATA + // +--------------------+ <-- CpuMpData->CpuData + // CPU_AP_DATA (N) + // +--------------------+ <-- CpuMpData->CpuInfoInHob + // CPU_INFO_IN_HOB (N) + // +--------------------+ + // MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber); BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber; - CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize); + ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8); + CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1); CpuMpData->Buffer = Buffer; CpuMpData->CpuApStackSize = ApStackSize; CpuMpData->BackupBuffer = BackupBufferAddr; CpuMpData->BackupBufferSize = ApResetVectorSize; - CpuMpData->SaveRestoreFlag = FALSE; CpuMpData->WakeupBuffer = (UINTN) -1; CpuMpData->CpuCount = 1; CpuMpData->BspNumber = 0; @@ -1264,15 +1606,61 @@ MpInitLibInitialize ( CpuMpData->SwitchBspFlag = FALSE; CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1); CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber); + CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize); + // + // If platform has more than one CPU, relocate microcode to memory to reduce + // loading microcode time. + // + MicrocodePatchInRam = NULL; + if (MaxLogicalProcessorNumber > 1) { + MicrocodePatchInRam = AllocatePages ( + EFI_SIZE_TO_PAGES ( + (UINTN)CpuMpData->MicrocodePatchRegionSize + ) + ); + } + if (MicrocodePatchInRam == NULL) { + // + // there is only one processor, or no microcode patch is available, or + // memory allocation failed + // + CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress); + } else { + // + // there are multiple processors, and a microcode patch is available, and + // memory allocation succeeded + // + CopyMem ( + MicrocodePatchInRam, + (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress), + (UINTN)CpuMpData->MicrocodePatchRegionSize + ); + CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam; + } + InitializeSpinLock(&CpuMpData->MpLock); + + // + // Make sure no memory usage outside of the allocated buffer. + // + ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) == + Buffer + BufferSize); + + // + // Duplicate BSP's IDT to APs. + // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1 // - // Save BSP's Control registers to APs + CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1); + VolatileRegisters.Idtr.Base = ApIdtBase; // - SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters); + // Don't pass BSP's TR to APs to avoid AP init failure. + // + VolatileRegisters.Tr = 0; + CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters)); // // Set BSP basic information // - InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer); + InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize); // // Save assembly code information // @@ -1282,6 +1670,9 @@ MpInitLibInitialize ( // CpuMpData->ApLoopMode = ApLoopMode; DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode)); + + CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop); + // // Set up APs wakeup signal buffer // @@ -1292,11 +1683,15 @@ MpInitLibInitialize ( // // Load Microcode on BSP // - MicrocodeDetect (CpuMpData); + MicrocodeDetect (CpuMpData, TRUE); // // Store BSP's MTRR setting // MtrrGetAllMtrrs (&CpuMpData->MtrrTable); + // + // Enable the local APIC for Virtual Wire Mode. + // + ProgramVirtualWireMode (); if (OldCpuMpData == NULL) { if (MaxLogicalProcessorNumber > 1) { @@ -1317,22 +1712,18 @@ MpInitLibInitialize ( CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; for (Index = 0; Index < CpuMpData->CpuCount; Index++) { InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock); - if (CpuInfoInHob[Index].InitialApicId >= 255) { + if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) { CpuMpData->X2ApicEnable = TRUE; } CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE; CpuMpData->CpuData[Index].ApFunction = 0; - CopyMem ( - &CpuMpData->CpuData[Index].VolatileRegisters, - &CpuMpData->CpuData[0].VolatileRegisters, - sizeof (CPU_VOLATILE_REGISTERS) - ); + CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS)); } if (MaxLogicalProcessorNumber > 1) { // // Wakeup APs to do some AP initialize sync // - WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData); + WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE); // // Wait for all APs finished initialization // @@ -1441,7 +1832,7 @@ MpInitLibGetProcessorInfo ( enabled AP. Otherwise, it will be disabled. @retval EFI_SUCCESS BSP successfully switched. - @retval others Failed to switch BSP. + @retval others Failed to switch BSP. **/ EFI_STATUS @@ -1454,6 +1845,27 @@ SwitchBSPWorker ( UINTN CallerNumber; CPU_STATE State; MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr; + BOOLEAN OldInterruptState; + BOOLEAN OldTimerInterruptState; + + // + // Save and Disable Local APIC timer interrupt + // + OldTimerInterruptState = GetApicTimerInterruptState (); + DisableApicTimerInterrupt (); + // + // Before send both BSP and AP to a procedure to exchange their roles, + // interrupt must be disabled. This is because during the exchange role + // process, 2 CPU may use 1 stack. If interrupt happens, the stack will + // be corrupted, since interrupt return address will be pushed to stack + // by hardware. + // + OldInterruptState = SaveAndDisableInterrupts (); + + // + // Mask LINT0 & LINT1 for the old BSP + // + DisableLvtInterrupts (); CpuMpData = GetCpuMpData (); @@ -1462,7 +1874,7 @@ SwitchBSPWorker ( // MpInitLibWhoAmI (&CallerNumber); if (CallerNumber != CpuMpData->BspNumber) { - return EFI_SUCCESS; + return EFI_DEVICE_ERROR; } if (ProcessorNumber >= CpuMpData->CpuCount) { @@ -1506,7 +1918,7 @@ SwitchBSPWorker ( // // Need to wakeUp AP (future BSP). // - WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData); + WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE); AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo); @@ -1516,6 +1928,7 @@ SwitchBSPWorker ( ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE); ApicBaseMsr.Bits.BSP = 1; AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64); + ProgramVirtualWireMode (); // // Wait for old BSP finished AP task @@ -1530,12 +1943,23 @@ SwitchBSPWorker ( // if (!EnableOldBSP) { SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled); + } else { + SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle); } // // Save new BSP number // CpuMpData->BspNumber = (UINT32) ProcessorNumber; + // + // Restore interrupt state. + // + SetInterruptState (OldInterruptState); + + if (OldTimerInterruptState) { + EnableApicTimerInterrupt (); + } + return EFI_SUCCESS; } @@ -1584,7 +2008,7 @@ EnableDisableApWorker ( if (!EnableAP) { SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled); } else { - SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle); + ResetProcessorToIdleState (ProcessorNumber); } if (HealthFlag != NULL) { @@ -1800,7 +2224,7 @@ StartupAllAPsWorker ( return EFI_NOT_STARTED; } - CpuMpData->StartCount = 0; + CpuMpData->RunningCount = 0; for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) { CpuData = &CpuMpData->CpuData[ProcessorNumber]; CpuData->Waiting = FALSE; @@ -1810,7 +2234,7 @@ StartupAllAPsWorker ( // Mark this processor as responsible for current calling. // CpuData->Waiting = TRUE; - CpuMpData->StartCount++; + CpuMpData->RunningCount++; } } } @@ -1819,7 +2243,6 @@ StartupAllAPsWorker ( CpuMpData->ProcArguments = ProcedureArgument; CpuMpData->SingleThread = SingleThread; CpuMpData->FinishedCount = 0; - CpuMpData->RunningCount = 0; CpuMpData->FailedCpuList = FailedCpuList; CpuMpData->ExpectedTime = CalculateTimeout ( TimeoutInMicroseconds, @@ -1829,14 +2252,14 @@ StartupAllAPsWorker ( CpuMpData->WaitEvent = WaitEvent; if (!SingleThread) { - WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument); + WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE); } else { for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) { if (ProcessorNumber == CallerNumber) { continue; } if (CpuMpData->CpuData[ProcessorNumber].Waiting) { - WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument); + WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE); break; } } @@ -1948,7 +2371,7 @@ StartupThisAPWorker ( CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime); CpuData->TotalTime = 0; - WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument); + WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE); // // If WaitEvent is NULL, execute in blocking mode. @@ -1987,41 +2410,3 @@ GetCpuMpDataFromGuidedHob ( return CpuMpData; } -/** - Get available system memory below 1MB by specified size. - - @param[in] CpuMpData The pointer to CPU MP Data structure. -**/ -VOID -BackupAndPrepareWakeupBuffer( - IN CPU_MP_DATA *CpuMpData - ) -{ - CopyMem ( - (VOID *) CpuMpData->BackupBuffer, - (VOID *) CpuMpData->WakeupBuffer, - CpuMpData->BackupBufferSize - ); - CopyMem ( - (VOID *) CpuMpData->WakeupBuffer, - (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress, - CpuMpData->AddressMap.RendezvousFunnelSize - ); -} - -/** - Restore wakeup buffer data. - - @param[in] CpuMpData The pointer to CPU MP Data structure. -**/ -VOID -RestoreWakeupBuffer( - IN CPU_MP_DATA *CpuMpData - ) -{ - CopyMem ( - (VOID *) CpuMpData->WakeupBuffer, - (VOID *) CpuMpData->BackupBuffer, - CpuMpData->BackupBufferSize - ); -}