X-Git-Url: https://git.proxmox.com/?p=mirror_edk2.git;a=blobdiff_plain;f=UefiCpuPkg%2FLibrary%2FMpInitLib%2FMpLib.c;h=742f0c1f5e7b5b7b89e000e3c2695ae5ccbcf096;hp=3a266e9607d4884ded4dc86bd28123a0f50b393c;hb=bafa76ef5bf21d70f5b709154f6ecaaea11fb759;hpb=e37109bcc75b3242fccb223979f954c162ee103f diff --git a/UefiCpuPkg/Library/MpInitLib/MpLib.c b/UefiCpuPkg/Library/MpInitLib/MpLib.c index 3a266e9607..742f0c1f5e 100644 --- a/UefiCpuPkg/Library/MpInitLib/MpLib.c +++ b/UefiCpuPkg/Library/MpInitLib/MpLib.c @@ -1,7 +1,7 @@ /** @file CPU MP Initialize Library common functions. - Copyright (c) 2016, Intel Corporation. All rights reserved.
+ Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at @@ -18,8 +18,11 @@ EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID; /** The function will check if BSP Execute Disable is enabled. - DxeIpl may have enabled Execute Disable for BSP, - APs need to get the status and sync up the settings. + + DxeIpl may have enabled Execute Disable for BSP, APs need to + get the status and sync up the settings. + If BSP's CR0.Paging is not set, BSP execute Disble feature is + not working actually. @retval TRUE BSP Execute Disable is enabled. @retval FALSE BSP Execute Disable is not enabled. @@ -33,23 +36,30 @@ IsBspExecuteDisableEnabled ( CPUID_EXTENDED_CPU_SIG_EDX Edx; MSR_IA32_EFER_REGISTER EferMsr; BOOLEAN Enabled; + IA32_CR0 Cr0; Enabled = FALSE; - AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL); - if (Eax >= CPUID_EXTENDED_CPU_SIG) { - AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32); + Cr0.UintN = AsmReadCr0 (); + if (Cr0.Bits.PG != 0) { // - // CPUID 0x80000001 - // Bit 20: Execute Disable Bit available. + // If CR0 Paging bit is set // - if (Edx.Bits.NX != 0) { - EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER); + AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL); + if (Eax >= CPUID_EXTENDED_CPU_SIG) { + AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32); // - // MSR 0xC0000080 - // Bit 11: Execute Disable Bit enable. + // CPUID 0x80000001 + // Bit 20: Execute Disable Bit available. // - if (EferMsr.Bits.NXE != 0) { - Enabled = TRUE; + if (Edx.Bits.NX != 0) { + EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER); + // + // MSR 0xC0000080 + // Bit 11: Execute Disable Bit enable. + // + if (EferMsr.Bits.NXE != 0) { + Enabled = TRUE; + } } } } @@ -57,132 +67,6 @@ IsBspExecuteDisableEnabled ( return Enabled; } -/** - Get CPU Package/Core/Thread location information. - - @param[in] InitialApicId CPU APIC ID - @param[out] Location Pointer to CPU location information -**/ -VOID -ExtractProcessorLocation ( - IN UINT32 InitialApicId, - OUT EFI_CPU_PHYSICAL_LOCATION *Location - ) -{ - BOOLEAN TopologyLeafSupported; - UINTN ThreadBits; - UINTN CoreBits; - CPUID_VERSION_INFO_EBX VersionInfoEbx; - CPUID_VERSION_INFO_EDX VersionInfoEdx; - CPUID_CACHE_PARAMS_EAX CacheParamsEax; - CPUID_EXTENDED_TOPOLOGY_EAX ExtendedTopologyEax; - CPUID_EXTENDED_TOPOLOGY_EBX ExtendedTopologyEbx; - CPUID_EXTENDED_TOPOLOGY_ECX ExtendedTopologyEcx; - UINT32 MaxCpuIdIndex; - UINT32 SubIndex; - UINTN LevelType; - UINT32 MaxLogicProcessorsPerPackage; - UINT32 MaxCoresPerPackage; - - // - // Check if the processor is capable of supporting more than one logical processor. - // - AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32); - if (VersionInfoEdx.Bits.HTT == 0) { - Location->Thread = 0; - Location->Core = 0; - Location->Package = 0; - return; - } - - ThreadBits = 0; - CoreBits = 0; - - // - // Assume three-level mapping of APIC ID: Package:Core:SMT. - // - - TopologyLeafSupported = FALSE; - // - // Get the max index of basic CPUID - // - AsmCpuid (CPUID_SIGNATURE, &MaxCpuIdIndex, NULL, NULL, NULL); - - // - // If the extended topology enumeration leaf is available, it - // is the preferred mechanism for enumerating topology. - // - if (MaxCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) { - AsmCpuidEx ( - CPUID_EXTENDED_TOPOLOGY, - 0, - &ExtendedTopologyEax.Uint32, - &ExtendedTopologyEbx.Uint32, - &ExtendedTopologyEcx.Uint32, - NULL - ); - // - // If CPUID.(EAX=0BH, ECX=0H):EBX returns zero and maximum input value for - // basic CPUID information is greater than 0BH, then CPUID.0BH leaf is not - // supported on that processor. - // - if (ExtendedTopologyEbx.Uint32 != 0) { - TopologyLeafSupported = TRUE; - - // - // Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract - // the SMT sub-field of x2APIC ID. - // - LevelType = ExtendedTopologyEcx.Bits.LevelType; - ASSERT (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT); - ThreadBits = ExtendedTopologyEax.Bits.ApicIdShift; - - // - // Software must not assume any "level type" encoding - // value to be related to any sub-leaf index, except sub-leaf 0. - // - SubIndex = 1; - do { - AsmCpuidEx ( - CPUID_EXTENDED_TOPOLOGY, - SubIndex, - &ExtendedTopologyEax.Uint32, - NULL, - &ExtendedTopologyEcx.Uint32, - NULL - ); - LevelType = ExtendedTopologyEcx.Bits.LevelType; - if (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_CORE) { - CoreBits = ExtendedTopologyEax.Bits.ApicIdShift - ThreadBits; - break; - } - SubIndex++; - } while (LevelType != CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID); - } - } - - if (!TopologyLeafSupported) { - AsmCpuid (CPUID_VERSION_INFO, NULL, &VersionInfoEbx.Uint32, NULL, NULL); - MaxLogicProcessorsPerPackage = VersionInfoEbx.Bits.MaximumAddressableIdsForLogicalProcessors; - if (MaxCpuIdIndex >= CPUID_CACHE_PARAMS) { - AsmCpuidEx (CPUID_CACHE_PARAMS, 0, &CacheParamsEax.Uint32, NULL, NULL, NULL); - MaxCoresPerPackage = CacheParamsEax.Bits.MaximumAddressableIdsForLogicalProcessors + 1; - } else { - // - // Must be a single-core processor. - // - MaxCoresPerPackage = 1; - } - - ThreadBits = (UINTN) (HighBitSet32 (MaxLogicProcessorsPerPackage / MaxCoresPerPackage - 1) + 1); - CoreBits = (UINTN) (HighBitSet32 (MaxCoresPerPackage - 1) + 1); - } - - Location->Thread = InitialApicId & ((1 << ThreadBits) - 1); - Location->Core = (InitialApicId >> ThreadBits) & ((1 << CoreBits) - 1); - Location->Package = (InitialApicId >> (ThreadBits + CoreBits)); -} - /** Worker function for SwitchBSP(). @@ -235,6 +119,53 @@ SetApState ( ReleaseSpinLock (&CpuData->ApLock); } +/** + Save BSP's local APIC timer setting. + + @param[in] CpuMpData Pointer to CPU MP Data +**/ +VOID +SaveLocalApicTimerSetting ( + IN CPU_MP_DATA *CpuMpData + ) +{ + // + // Record the current local APIC timer setting of BSP + // + GetApicTimerState ( + &CpuMpData->DivideValue, + &CpuMpData->PeriodicMode, + &CpuMpData->Vector + ); + CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount (); + CpuMpData->TimerInterruptState = GetApicTimerInterruptState (); +} + +/** + Sync local APIC timer setting from BSP to AP. + + @param[in] CpuMpData Pointer to CPU MP Data +**/ +VOID +SyncLocalApicTimerSetting ( + IN CPU_MP_DATA *CpuMpData + ) +{ + // + // Sync local APIC timer setting from BSP to AP + // + InitializeApicTimer ( + CpuMpData->DivideValue, + CpuMpData->CurrentTimerCount, + CpuMpData->PeriodicMode, + CpuMpData->Vector + ); + // + // Disable AP's local APIC timer interrupt + // + DisableApicTimerInterrupt (); +} + /** Save the volatile registers required to be restored following INIT IPI. @@ -264,6 +195,10 @@ SaveVolatileRegisters ( VolatileRegisters->Dr6 = AsmReadDr6 (); VolatileRegisters->Dr7 = AsmReadDr7 (); } + + AsmReadGdtr (&VolatileRegisters->Gdtr); + AsmReadIdtr (&VolatileRegisters->Idtr); + VolatileRegisters->Tr = AsmReadTr (); } /** @@ -280,6 +215,7 @@ RestoreVolatileRegisters ( ) { CPUID_VERSION_INFO_EDX VersionInfoEdx; + IA32_TSS_DESCRIPTOR *Tss; AsmWriteCr0 (VolatileRegisters->Cr0); AsmWriteCr3 (VolatileRegisters->Cr3); @@ -300,6 +236,18 @@ RestoreVolatileRegisters ( AsmWriteDr7 (VolatileRegisters->Dr7); } } + + AsmWriteGdtr (&VolatileRegisters->Gdtr); + AsmWriteIdtr (&VolatileRegisters->Idtr); + if (VolatileRegisters->Tr != 0 && + VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) { + Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base + + VolatileRegisters->Tr); + if (Tss->Bits.P == 1) { + Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case + AsmWriteTr (VolatileRegisters->Tr); + } + } } /** @@ -379,33 +327,42 @@ SortApicId ( UINTN Index2; UINTN Index3; UINT32 ApicId; - CPU_AP_DATA CpuData; + CPU_INFO_IN_HOB CpuInfo; UINT32 ApCount; CPU_INFO_IN_HOB *CpuInfoInHob; + volatile UINT32 *StartupApSignal; ApCount = CpuMpData->CpuCount - 1; - + CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; if (ApCount != 0) { for (Index1 = 0; Index1 < ApCount; Index1++) { Index3 = Index1; // // Sort key is the hardware default APIC ID // - ApicId = CpuMpData->CpuData[Index1].ApicId; + ApicId = CpuInfoInHob[Index1].ApicId; for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) { - if (ApicId > CpuMpData->CpuData[Index2].ApicId) { + if (ApicId > CpuInfoInHob[Index2].ApicId) { Index3 = Index2; - ApicId = CpuMpData->CpuData[Index2].ApicId; + ApicId = CpuInfoInHob[Index2].ApicId; } } if (Index3 != Index1) { - CopyMem (&CpuData, &CpuMpData->CpuData[Index3], sizeof (CPU_AP_DATA)); + CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB)); CopyMem ( - &CpuMpData->CpuData[Index3], - &CpuMpData->CpuData[Index1], - sizeof (CPU_AP_DATA) + &CpuInfoInHob[Index3], + &CpuInfoInHob[Index1], + sizeof (CPU_INFO_IN_HOB) ); - CopyMem (&CpuMpData->CpuData[Index1], &CpuData, sizeof (CPU_AP_DATA)); + CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB)); + + // + // Also exchange the StartupApSignal. + // + StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal; + CpuMpData->CpuData[Index3].StartupApSignal = + CpuMpData->CpuData[Index1].StartupApSignal; + CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal; } } @@ -414,18 +371,11 @@ SortApicId ( // ApicId = GetInitialApicId (); for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) { - if (CpuMpData->CpuData[Index1].ApicId == ApicId) { + if (CpuInfoInHob[Index1].ApicId == ApicId) { CpuMpData->BspNumber = (UINT32) Index1; break; } } - - CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; - for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) { - CpuInfoInHob[Index1].InitialApicId = CpuMpData->CpuData[Index1].InitialApicId; - CpuInfoInHob[Index1].ApicId = CpuMpData->CpuData[Index1].ApicId; - CpuInfoInHob[Index1].Health = CpuMpData->CpuData[Index1].Health; - } } } @@ -458,20 +408,20 @@ ApInitializeSync ( CpuMpData = (CPU_MP_DATA *) Buffer; // - // Sync BSP's MTRR table to AP - // - MtrrSetAllMtrrs (&CpuMpData->MtrrTable); - // // Load microcode on AP // MicrocodeDetect (CpuMpData); + // + // Sync BSP's MTRR table to AP + // + MtrrSetAllMtrrs (&CpuMpData->MtrrTable); } /** Find the current Processor number by APIC ID. - @param[in] CpuMpData Pointer to PEI CPU MP Data - @param[in] ProcessorNumber Return the pocessor number found + @param[in] CpuMpData Pointer to PEI CPU MP Data + @param[out] ProcessorNumber Return the pocessor number found @retval EFI_SUCCESS ProcessorNumber is found and returned. @retval EFI_NOT_FOUND ProcessorNumber is not found. @@ -484,10 +434,13 @@ GetProcessorNumber ( { UINTN TotalProcessorNumber; UINTN Index; + CPU_INFO_IN_HOB *CpuInfoInHob; + + CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; TotalProcessorNumber = CpuMpData->CpuCount; for (Index = 0; Index < TotalProcessorNumber; Index ++) { - if (CpuMpData->CpuData[Index].ApicId == GetApicId ()) { + if (CpuInfoInHob[Index].ApicId == GetApicId ()) { *ProcessorNumber = Index; return EFI_SUCCESS; } @@ -507,16 +460,14 @@ CollectProcessorCount ( IN CPU_MP_DATA *CpuMpData ) { + UINTN Index; + // // Send 1st broadcast IPI to APs to wakeup APs // CpuMpData->InitFlag = ApInitConfig; CpuMpData->X2ApicEnable = FALSE; WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL); - // - // Wait for AP task to complete and then exit. - // - MicroSecondDelay (PcdGet32(PcdCpuApInitTimeOutInMicroSeconds)); CpuMpData->InitFlag = ApInitDone; ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber)); // @@ -526,6 +477,12 @@ CollectProcessorCount ( CpuPause (); } + if (CpuMpData->CpuCount > 255) { + // + // If there are more than 255 processor found, force to enable X2APIC + // + CpuMpData->X2ApicEnable = TRUE; + } if (CpuMpData->X2ApicEnable) { DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n")); // @@ -542,6 +499,12 @@ CollectProcessorCount ( // Enable x2APIC on BSP // SetApicMode (LOCAL_APIC_MODE_X2APIC); + // + // Set BSP/Aps state to IDLE + // + for (Index = 0; Index < CpuMpData->CpuCount; Index++) { + SetApState (&CpuMpData->CpuData[Index], CpuStateIdle); + } } DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ())); // @@ -554,27 +517,34 @@ CollectProcessorCount ( return CpuMpData->CpuCount; } -/* +/** Initialize CPU AP Data when AP is wakeup at the first time. @param[in, out] CpuMpData Pointer to PEI CPU MP Data @param[in] ProcessorNumber The handle number of processor @param[in] BistData Processor BIST data + @param[in] ApTopOfStack Top of AP stack **/ VOID InitializeApData ( IN OUT CPU_MP_DATA *CpuMpData, IN UINTN ProcessorNumber, - IN UINT32 BistData + IN UINT32 BistData, + IN UINT64 ApTopOfStack ) { + CPU_INFO_IN_HOB *CpuInfoInHob; + + CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; + CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId (); + CpuInfoInHob[ProcessorNumber].ApicId = GetApicId (); + CpuInfoInHob[ProcessorNumber].Health = BistData; + CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack; + CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE; - CpuMpData->CpuData[ProcessorNumber].Health = BistData; CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE; - CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId (); - CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId (); - if (CpuMpData->CpuData[ProcessorNumber].InitialApicId >= 0xFF) { + if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) { // // Set x2APIC mode if there are any logical processor reporting // an Initial APIC ID of 255 or greater. @@ -592,13 +562,13 @@ InitializeApData ( This function will be called from AP reset code if BSP uses WakeUpAP. @param[in] ExchangeInfo Pointer to the MP exchange info buffer - @param[in] NumApsExecuting Number of current executing AP + @param[in] ApIndex Number of current executing AP **/ VOID EFIAPI ApWakeupFunction ( IN MP_CPU_EXCHANGE_INFO *ExchangeInfo, - IN UINTN NumApsExecuting + IN UINTN ApIndex ) { CPU_MP_DATA *CpuMpData; @@ -607,25 +577,39 @@ ApWakeupFunction ( VOID *Parameter; UINT32 BistData; volatile UINT32 *ApStartupSignalBuffer; + CPU_INFO_IN_HOB *CpuInfoInHob; + UINT64 ApTopOfStack; + UINTN CurrentApicMode; // // AP finished assembly code and begin to execute C code // CpuMpData = ExchangeInfo->CpuMpData; - ProgramVirtualWireMode (); + // + // AP's local APIC settings will be lost after received INIT IPI + // We need to re-initialize them at here + // + ProgramVirtualWireMode (); + // + // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler. + // + DisableLvtInterrupts (); + SyncLocalApicTimerSetting (CpuMpData); + CurrentApicMode = GetApicMode (); while (TRUE) { if (CpuMpData->InitFlag == ApInitConfig) { // // Add CPU number // InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount); - ProcessorNumber = NumApsExecuting; + ProcessorNumber = ApIndex; // // This is first time AP wakeup, get BIST information from AP stack // - BistData = *(UINT32 *) (CpuMpData->Buffer + ProcessorNumber * CpuMpData->CpuApStackSize - sizeof (UINTN)); + ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize; + BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN)); // // Do some AP initialize sync // @@ -634,7 +618,7 @@ ApWakeupFunction ( // Sync BSP's Control registers to APs // RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE); - InitializeApData (CpuMpData, ProcessorNumber, BistData); + InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack); ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal; } else { // @@ -663,9 +647,14 @@ ApWakeupFunction ( if (Procedure != NULL) { SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy); // + // Enable source debugging on AP function + // + EnableDebugAgent (); + // // Invoke AP function here // Procedure (Parameter); + CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; if (CpuMpData->SwitchBspFlag) { // // Re-get the processor number due to BSP/AP maybe exchange in AP function @@ -673,12 +662,26 @@ ApWakeupFunction ( GetProcessorNumber (CpuMpData, &ProcessorNumber); CpuMpData->CpuData[ProcessorNumber].ApFunction = 0; CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0; + ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal; + CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack; } else { - // - // Re-get the CPU APICID and Initial APICID - // - CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId (); - CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId (); + if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () || + CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) { + if (CurrentApicMode != GetApicMode ()) { + // + // If APIC mode change happened during AP function execution, + // we do not support APIC ID value changed. + // + ASSERT (FALSE); + CpuDeadLoop (); + } else { + // + // Re-get the CPU APICID and Initial APICID if they are changed + // + CpuInfoInHob[ProcessorNumber].ApicId = GetApicId (); + CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId (); + } + } } } SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished); @@ -689,6 +692,7 @@ ApWakeupFunction ( // AP finished executing C code // InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount); + InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting); // // Place AP is specified loop mode @@ -777,6 +781,8 @@ FillExchangeInfoData ( ) { volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo; + UINTN Size; + IA32_SEGMENT_DESCRIPTOR *Selector; ExchangeInfo = CpuMpData->MpCpuExchangeInfo; ExchangeInfo->Lock = 0; @@ -791,16 +797,154 @@ FillExchangeInfoData ( ExchangeInfo->Cr3 = AsmReadCr3 (); ExchangeInfo->CFunction = (UINTN) ApWakeupFunction; + ExchangeInfo->ApIndex = 0; ExchangeInfo->NumApsExecuting = 0; + ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag; + ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; ExchangeInfo->CpuMpData = CpuMpData; ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled (); + ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits; + // // Get the BSP's data of GDT and IDT // AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile); AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile); + + // + // Find a 32-bit code segment + // + Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base; + Size = ExchangeInfo->GdtrProfile.Limit + 1; + while (Size > 0) { + if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) { + ExchangeInfo->ModeTransitionSegment = + (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base); + break; + } + Selector += 1; + Size -= sizeof (IA32_SEGMENT_DESCRIPTOR); + } + + // + // Copy all 32-bit code and 64-bit code into memory with type of + // EfiBootServicesCode to avoid page fault if NX memory protection is enabled. + // + if (CpuMpData->WakeupBufferHigh != 0) { + Size = CpuMpData->AddressMap.RendezvousFunnelSize - + CpuMpData->AddressMap.ModeTransitionOffset; + CopyMem ( + (VOID *)CpuMpData->WakeupBufferHigh, + CpuMpData->AddressMap.RendezvousFunnelAddress + + CpuMpData->AddressMap.ModeTransitionOffset, + Size + ); + + ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh; + ExchangeInfo->ModeHighMemory = (UINT32)CpuMpData->WakeupBufferHigh + + (UINT32)ExchangeInfo->ModeOffset - + (UINT32)CpuMpData->AddressMap.ModeTransitionOffset; + ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment; + } else { + ExchangeInfo->ModeTransitionMemory = (UINT32) + (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset); + } +} + +/** + Helper function that waits until the finished AP count reaches the specified + limit, or the specified timeout elapses (whichever comes first). + + @param[in] CpuMpData Pointer to CPU MP Data. + @param[in] FinishedApLimit The number of finished APs to wait for. + @param[in] TimeLimit The number of microseconds to wait for. +**/ +VOID +TimedWaitForApFinish ( + IN CPU_MP_DATA *CpuMpData, + IN UINT32 FinishedApLimit, + IN UINT32 TimeLimit + ); + +/** + Get available system memory below 1MB by specified size. + + @param[in] CpuMpData The pointer to CPU MP Data structure. +**/ +VOID +BackupAndPrepareWakeupBuffer( + IN CPU_MP_DATA *CpuMpData + ) +{ + CopyMem ( + (VOID *) CpuMpData->BackupBuffer, + (VOID *) CpuMpData->WakeupBuffer, + CpuMpData->BackupBufferSize + ); + CopyMem ( + (VOID *) CpuMpData->WakeupBuffer, + (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress, + CpuMpData->AddressMap.RendezvousFunnelSize + ); +} + +/** + Restore wakeup buffer data. + + @param[in] CpuMpData The pointer to CPU MP Data structure. +**/ +VOID +RestoreWakeupBuffer( + IN CPU_MP_DATA *CpuMpData + ) +{ + CopyMem ( + (VOID *) CpuMpData->WakeupBuffer, + (VOID *) CpuMpData->BackupBuffer, + CpuMpData->BackupBufferSize + ); +} + +/** + Allocate reset vector buffer. + + @param[in, out] CpuMpData The pointer to CPU MP Data structure. +**/ +VOID +AllocateResetVector ( + IN OUT CPU_MP_DATA *CpuMpData + ) +{ + UINTN ApResetVectorSize; + + if (CpuMpData->WakeupBuffer == (UINTN) -1) { + ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize + + sizeof (MP_CPU_EXCHANGE_INFO); + + CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize); + CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) + (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize); + CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer ( + CpuMpData->AddressMap.RendezvousFunnelSize - + CpuMpData->AddressMap.ModeTransitionOffset + ); + } + BackupAndPrepareWakeupBuffer (CpuMpData); +} + +/** + Free AP reset vector buffer. + + @param[in] CpuMpData The pointer to CPU MP Data structure. +**/ +VOID +FreeResetVector ( + IN CPU_MP_DATA *CpuMpData + ) +{ + RestoreWakeupBuffer (CpuMpData); } /** @@ -826,6 +970,7 @@ WakeUpAP ( UINTN Index; CPU_AP_DATA *CpuData; BOOLEAN ResetVectorRequired; + CPU_INFO_IN_HOB *CpuInfoInHob; CpuMpData->FinishedCount = 0; ResetVectorRequired = FALSE; @@ -835,6 +980,7 @@ WakeUpAP ( ResetVectorRequired = TRUE; AllocateResetVector (CpuMpData); FillExchangeInfoData (CpuMpData); + SaveLocalApicTimerSetting (CpuMpData); } else if (CpuMpData->ApLoopMode == ApInMwaitLoop) { // // Get AP target C-state each time when waking up AP, @@ -863,7 +1009,27 @@ WakeUpAP ( // SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart); } - if (CpuMpData->InitFlag != ApInitConfig) { + if (CpuMpData->InitFlag == ApInitConfig) { + // + // Here support two methods to collect AP count through adjust + // PcdCpuApInitTimeOutInMicroSeconds values. + // + // one way is set a value to just let the first AP to start the + // initialization, then through the later while loop to wait all Aps + // finsh the initialization. + // The other way is set a value to let all APs finished the initialzation. + // In this case, the later while loop is useless. + // + TimedWaitForApFinish ( + CpuMpData, + PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1, + PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds) + ); + + while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) { + CpuPause(); + } + } else { // // Wait all APs waken up if this is not the 1st broadcast of SIPI // @@ -885,8 +1051,9 @@ WakeUpAP ( ASSERT (CpuMpData->InitFlag != ApInitConfig); *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL; if (ResetVectorRequired) { + CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; SendInitSipiSipi ( - CpuData->ApicId, + CpuInfoInHob[ProcessorNumber].ApicId, (UINT32) ExchangeInfo->BufferStart ); } @@ -902,99 +1069,507 @@ WakeUpAP ( } /** - MP Initialize Library initialization. + Calculate timeout value and return the current performance counter value. - This service will allocate AP reset vector and wakeup all APs to do APs - initialization. + Calculate the number of performance counter ticks required for a timeout. + If TimeoutInMicroseconds is 0, return value is also 0, which is recognized + as infinity. - This service must be invoked before all other MP Initialize Library - service are invoked. + @param[in] TimeoutInMicroseconds Timeout value in microseconds. + @param[out] CurrentTime Returns the current value of the performance counter. - @retval EFI_SUCCESS MP initialization succeeds. - @retval Others MP initialization fails. + @return Expected time stamp counter for timeout. + If TimeoutInMicroseconds is 0, return value is also 0, which is recognized + as infinity. **/ -EFI_STATUS -EFIAPI -MpInitLibInitialize ( - VOID +UINT64 +CalculateTimeout ( + IN UINTN TimeoutInMicroseconds, + OUT UINT64 *CurrentTime ) { - CPU_MP_DATA *OldCpuMpData; - CPU_INFO_IN_HOB *CpuInfoInHob; - UINT32 MaxLogicalProcessorNumber; - UINT32 ApStackSize; - MP_ASSEMBLY_ADDRESS_MAP AddressMap; - UINTN BufferSize; - UINT32 MonitorFilterSize; - VOID *MpBuffer; - UINTN Buffer; - CPU_MP_DATA *CpuMpData; - UINT8 ApLoopMode; - UINT8 *MonitorBuffer; - UINTN Index; - UINTN ApResetVectorSize; - UINTN BackupBufferAddr; - - OldCpuMpData = GetCpuMpDataFromGuidedHob (); - if (OldCpuMpData == NULL) { - MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber); - } else { - MaxLogicalProcessorNumber = OldCpuMpData->CpuCount; - } - - AsmGetAddressMap (&AddressMap); - ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO); - ApStackSize = PcdGet32(PcdCpuApStackSize); - ApLoopMode = GetApLoopMode (&MonitorFilterSize); - - BufferSize = ApStackSize * MaxLogicalProcessorNumber; - BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber; - BufferSize += sizeof (CPU_MP_DATA); - BufferSize += ApResetVectorSize; - BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber; - MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize)); - ASSERT (MpBuffer != NULL); - ZeroMem (MpBuffer, BufferSize); - Buffer = (UINTN) MpBuffer; + UINT64 TimeoutInSeconds; + UINT64 TimestampCounterFreq; - MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber); - BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber; - CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize); - CpuMpData->Buffer = Buffer; - CpuMpData->CpuApStackSize = ApStackSize; - CpuMpData->BackupBuffer = BackupBufferAddr; - CpuMpData->BackupBufferSize = ApResetVectorSize; - CpuMpData->EndOfPeiFlag = FALSE; - CpuMpData->WakeupBuffer = (UINTN) -1; - CpuMpData->CpuCount = 1; - CpuMpData->BspNumber = 0; - CpuMpData->WaitEvent = NULL; - CpuMpData->SwitchBspFlag = FALSE; - CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1); - CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber); - InitializeSpinLock(&CpuMpData->MpLock); // - // Save BSP's Control registers to APs - // - SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters); - // - // Set BSP basic information + // Read the current value of the performance counter // - InitializeApData (CpuMpData, 0, 0); + *CurrentTime = GetPerformanceCounter (); + // - // Save assembly code information + // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized + // as infinity. // - CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP)); + if (TimeoutInMicroseconds == 0) { + return 0; + } + // - // Finally set AP loop mode + // GetPerformanceCounterProperties () returns the timestamp counter's frequency + // in Hz. // - CpuMpData->ApLoopMode = ApLoopMode; - DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode)); + TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL); + // - // Set up APs wakeup signal buffer + // Check the potential overflow before calculate the number of ticks for the timeout value. // - for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) { + if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) { + // + // Convert microseconds into seconds if direct multiplication overflows + // + TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000); + // + // Assertion if the final tick count exceeds MAX_UINT64 + // + ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq); + return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds); + } else { + // + // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide + // it by 1,000,000, to get the number of ticks for the timeout value. + // + return DivU64x32 ( + MultU64x64 ( + TimestampCounterFreq, + TimeoutInMicroseconds + ), + 1000000 + ); + } +} + +/** + Checks whether timeout expires. + + Check whether the number of elapsed performance counter ticks required for + a timeout condition has been reached. + If Timeout is zero, which means infinity, return value is always FALSE. + + @param[in, out] PreviousTime On input, the value of the performance counter + when it was last read. + On output, the current value of the performance + counter + @param[in] TotalTime The total amount of elapsed time in performance + counter ticks. + @param[in] Timeout The number of performance counter ticks required + to reach a timeout condition. + + @retval TRUE A timeout condition has been reached. + @retval FALSE A timeout condition has not been reached. + +**/ +BOOLEAN +CheckTimeout ( + IN OUT UINT64 *PreviousTime, + IN UINT64 *TotalTime, + IN UINT64 Timeout + ) +{ + UINT64 Start; + UINT64 End; + UINT64 CurrentTime; + INT64 Delta; + INT64 Cycle; + + if (Timeout == 0) { + return FALSE; + } + GetPerformanceCounterProperties (&Start, &End); + Cycle = End - Start; + if (Cycle < 0) { + Cycle = -Cycle; + } + Cycle++; + CurrentTime = GetPerformanceCounter(); + Delta = (INT64) (CurrentTime - *PreviousTime); + if (Start > End) { + Delta = -Delta; + } + if (Delta < 0) { + Delta += Cycle; + } + *TotalTime += Delta; + *PreviousTime = CurrentTime; + if (*TotalTime > Timeout) { + return TRUE; + } + return FALSE; +} + +/** + Helper function that waits until the finished AP count reaches the specified + limit, or the specified timeout elapses (whichever comes first). + + @param[in] CpuMpData Pointer to CPU MP Data. + @param[in] FinishedApLimit The number of finished APs to wait for. + @param[in] TimeLimit The number of microseconds to wait for. +**/ +VOID +TimedWaitForApFinish ( + IN CPU_MP_DATA *CpuMpData, + IN UINT32 FinishedApLimit, + IN UINT32 TimeLimit + ) +{ + // + // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0 + // "infinity", so check for (TimeLimit == 0) explicitly. + // + if (TimeLimit == 0) { + return; + } + + CpuMpData->TotalTime = 0; + CpuMpData->ExpectedTime = CalculateTimeout ( + TimeLimit, + &CpuMpData->CurrentTime + ); + while (CpuMpData->FinishedCount < FinishedApLimit && + !CheckTimeout ( + &CpuMpData->CurrentTime, + &CpuMpData->TotalTime, + CpuMpData->ExpectedTime + )) { + CpuPause (); + } + + if (CpuMpData->FinishedCount >= FinishedApLimit) { + DEBUG (( + DEBUG_VERBOSE, + "%a: reached FinishedApLimit=%u in %Lu microseconds\n", + __FUNCTION__, + FinishedApLimit, + DivU64x64Remainder ( + MultU64x32 (CpuMpData->TotalTime, 1000000), + GetPerformanceCounterProperties (NULL, NULL), + NULL + ) + )); + } +} + +/** + Reset an AP to Idle state. + + Any task being executed by the AP will be aborted and the AP + will be waiting for a new task in Wait-For-SIPI state. + + @param[in] ProcessorNumber The handle number of processor. +**/ +VOID +ResetProcessorToIdleState ( + IN UINTN ProcessorNumber + ) +{ + CPU_MP_DATA *CpuMpData; + + CpuMpData = GetCpuMpData (); + + CpuMpData->InitFlag = ApInitReconfig; + WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL); + while (CpuMpData->FinishedCount < 1) { + CpuPause (); + } + CpuMpData->InitFlag = ApInitDone; + + SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle); +} + +/** + Searches for the next waiting AP. + + Search for the next AP that is put in waiting state by single-threaded StartupAllAPs(). + + @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP. + + @retval EFI_SUCCESS The next waiting AP has been found. + @retval EFI_NOT_FOUND No waiting AP exists. + +**/ +EFI_STATUS +GetNextWaitingProcessorNumber ( + OUT UINTN *NextProcessorNumber + ) +{ + UINTN ProcessorNumber; + CPU_MP_DATA *CpuMpData; + + CpuMpData = GetCpuMpData (); + + for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) { + if (CpuMpData->CpuData[ProcessorNumber].Waiting) { + *NextProcessorNumber = ProcessorNumber; + return EFI_SUCCESS; + } + } + + return EFI_NOT_FOUND; +} + +/** Checks status of specified AP. + + This function checks whether the specified AP has finished the task assigned + by StartupThisAP(), and whether timeout expires. + + @param[in] ProcessorNumber The handle number of processor. + + @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs(). + @retval EFI_TIMEOUT The timeout expires. + @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired. +**/ +EFI_STATUS +CheckThisAP ( + IN UINTN ProcessorNumber + ) +{ + CPU_MP_DATA *CpuMpData; + CPU_AP_DATA *CpuData; + + CpuMpData = GetCpuMpData (); + CpuData = &CpuMpData->CpuData[ProcessorNumber]; + + // + // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task. + // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the + // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value. + // + // + // If the AP finishes for StartupThisAP(), return EFI_SUCCESS. + // + if (GetApState(CpuData) == CpuStateFinished) { + if (CpuData->Finished != NULL) { + *(CpuData->Finished) = TRUE; + } + SetApState (CpuData, CpuStateIdle); + return EFI_SUCCESS; + } else { + // + // If timeout expires for StartupThisAP(), report timeout. + // + if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) { + if (CpuData->Finished != NULL) { + *(CpuData->Finished) = FALSE; + } + // + // Reset failed AP to idle state + // + ResetProcessorToIdleState (ProcessorNumber); + + return EFI_TIMEOUT; + } + } + return EFI_NOT_READY; +} + +/** + Checks status of all APs. + + This function checks whether all APs have finished task assigned by StartupAllAPs(), + and whether timeout expires. + + @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs(). + @retval EFI_TIMEOUT The timeout expires. + @retval EFI_NOT_READY APs have not finished task and timeout has not expired. +**/ +EFI_STATUS +CheckAllAPs ( + VOID + ) +{ + UINTN ProcessorNumber; + UINTN NextProcessorNumber; + UINTN ListIndex; + EFI_STATUS Status; + CPU_MP_DATA *CpuMpData; + CPU_AP_DATA *CpuData; + + CpuMpData = GetCpuMpData (); + + NextProcessorNumber = 0; + + // + // Go through all APs that are responsible for the StartupAllAPs(). + // + for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) { + if (!CpuMpData->CpuData[ProcessorNumber].Waiting) { + continue; + } + + CpuData = &CpuMpData->CpuData[ProcessorNumber]; + // + // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task. + // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the + // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value. + // + if (GetApState(CpuData) == CpuStateFinished) { + CpuMpData->RunningCount ++; + CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE; + SetApState(CpuData, CpuStateIdle); + + // + // If in Single Thread mode, then search for the next waiting AP for execution. + // + if (CpuMpData->SingleThread) { + Status = GetNextWaitingProcessorNumber (&NextProcessorNumber); + + if (!EFI_ERROR (Status)) { + WakeUpAP ( + CpuMpData, + FALSE, + (UINT32) NextProcessorNumber, + CpuMpData->Procedure, + CpuMpData->ProcArguments + ); + } + } + } + } + + // + // If all APs finish, return EFI_SUCCESS. + // + if (CpuMpData->RunningCount == CpuMpData->StartCount) { + return EFI_SUCCESS; + } + + // + // If timeout expires, report timeout. + // + if (CheckTimeout ( + &CpuMpData->CurrentTime, + &CpuMpData->TotalTime, + CpuMpData->ExpectedTime) + ) { + // + // If FailedCpuList is not NULL, record all failed APs in it. + // + if (CpuMpData->FailedCpuList != NULL) { + *CpuMpData->FailedCpuList = + AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN)); + ASSERT (*CpuMpData->FailedCpuList != NULL); + } + ListIndex = 0; + + for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) { + // + // Check whether this processor is responsible for StartupAllAPs(). + // + if (CpuMpData->CpuData[ProcessorNumber].Waiting) { + // + // Reset failed APs to idle state + // + ResetProcessorToIdleState (ProcessorNumber); + CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE; + if (CpuMpData->FailedCpuList != NULL) { + (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber; + } + } + } + if (CpuMpData->FailedCpuList != NULL) { + (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST; + } + return EFI_TIMEOUT; + } + return EFI_NOT_READY; +} + +/** + MP Initialize Library initialization. + + This service will allocate AP reset vector and wakeup all APs to do APs + initialization. + + This service must be invoked before all other MP Initialize Library + service are invoked. + + @retval EFI_SUCCESS MP initialization succeeds. + @retval Others MP initialization fails. + +**/ +EFI_STATUS +EFIAPI +MpInitLibInitialize ( + VOID + ) +{ + CPU_MP_DATA *OldCpuMpData; + CPU_INFO_IN_HOB *CpuInfoInHob; + UINT32 MaxLogicalProcessorNumber; + UINT32 ApStackSize; + MP_ASSEMBLY_ADDRESS_MAP AddressMap; + UINTN BufferSize; + UINT32 MonitorFilterSize; + VOID *MpBuffer; + UINTN Buffer; + CPU_MP_DATA *CpuMpData; + UINT8 ApLoopMode; + UINT8 *MonitorBuffer; + UINTN Index; + UINTN ApResetVectorSize; + UINTN BackupBufferAddr; + + OldCpuMpData = GetCpuMpDataFromGuidedHob (); + if (OldCpuMpData == NULL) { + MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber); + } else { + MaxLogicalProcessorNumber = OldCpuMpData->CpuCount; + } + ASSERT (MaxLogicalProcessorNumber != 0); + + AsmGetAddressMap (&AddressMap); + ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO); + ApStackSize = PcdGet32(PcdCpuApStackSize); + ApLoopMode = GetApLoopMode (&MonitorFilterSize); + + BufferSize = ApStackSize * MaxLogicalProcessorNumber; + BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber; + BufferSize += sizeof (CPU_MP_DATA); + BufferSize += ApResetVectorSize; + BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber; + MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize)); + ASSERT (MpBuffer != NULL); + ZeroMem (MpBuffer, BufferSize); + Buffer = (UINTN) MpBuffer; + + MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber); + BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber; + CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize); + CpuMpData->Buffer = Buffer; + CpuMpData->CpuApStackSize = ApStackSize; + CpuMpData->BackupBuffer = BackupBufferAddr; + CpuMpData->BackupBufferSize = ApResetVectorSize; + CpuMpData->WakeupBuffer = (UINTN) -1; + CpuMpData->CpuCount = 1; + CpuMpData->BspNumber = 0; + CpuMpData->WaitEvent = NULL; + CpuMpData->SwitchBspFlag = FALSE; + CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1); + CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber); + CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress); + CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize); + InitializeSpinLock(&CpuMpData->MpLock); + // + // Save BSP's Control registers to APs + // + SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters); + // + // Set BSP basic information + // + InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize); + // + // Save assembly code information + // + CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP)); + // + // Finally set AP loop mode + // + CpuMpData->ApLoopMode = ApLoopMode; + DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode)); + // + // Set up APs wakeup signal buffer + // + for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) { CpuMpData->CpuData[Index].StartupApSignal = (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index); } @@ -1006,12 +1581,18 @@ MpInitLibInitialize ( // Store BSP's MTRR setting // MtrrGetAllMtrrs (&CpuMpData->MtrrTable); + // + // Enable the local APIC for Virtual Wire Mode. + // + ProgramVirtualWireMode (); if (OldCpuMpData == NULL) { - // - // Wakeup all APs and calculate the processor count in system - // - CollectProcessorCount (CpuMpData); + if (MaxLogicalProcessorNumber > 1) { + // + // Wakeup all APs and calculate the processor count in system + // + CollectProcessorCount (CpuMpData); + } } else { // // APs have been wakeup before, just get the CPU Information @@ -1020,16 +1601,14 @@ MpInitLibInitialize ( CpuMpData->CpuCount = OldCpuMpData->CpuCount; CpuMpData->BspNumber = OldCpuMpData->BspNumber; CpuMpData->InitFlag = ApInitReconfig; - CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) OldCpuMpData->CpuInfoInHob; + CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob; + CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; for (Index = 0; Index < CpuMpData->CpuCount; Index++) { InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock); - CpuMpData->CpuData[Index].ApicId = CpuInfoInHob[Index].ApicId; - CpuMpData->CpuData[Index].InitialApicId = CpuInfoInHob[Index].InitialApicId; - if (CpuMpData->CpuData[Index].InitialApicId >= 255) { + if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) { CpuMpData->X2ApicEnable = TRUE; } - CpuMpData->CpuData[Index].Health = CpuInfoInHob[Index].Health; - CpuMpData->CpuData[Index].CpuHealthy = (CpuMpData->CpuData[Index].Health == 0)? TRUE:FALSE; + CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE; CpuMpData->CpuData[Index].ApFunction = 0; CopyMem ( &CpuMpData->CpuData[Index].VolatileRegisters, @@ -1037,19 +1616,21 @@ MpInitLibInitialize ( sizeof (CPU_VOLATILE_REGISTERS) ); } - // - // Wakeup APs to do some AP initialize sync - // - WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData); - // - // Wait for all APs finished initialization - // - while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) { - CpuPause (); - } - CpuMpData->InitFlag = ApInitDone; - for (Index = 0; Index < CpuMpData->CpuCount; Index++) { - SetApState (&CpuMpData->CpuData[Index], CpuStateIdle); + if (MaxLogicalProcessorNumber > 1) { + // + // Wakeup APs to do some AP initialize sync + // + WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData); + // + // Wait for all APs finished initialization + // + while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) { + CpuPause (); + } + CpuMpData->InitFlag = ApInitDone; + for (Index = 0; Index < CpuMpData->CpuCount; Index++) { + SetApState (&CpuMpData->CpuData[Index], CpuStateIdle); + } } } @@ -1088,8 +1669,10 @@ MpInitLibGetProcessorInfo ( { CPU_MP_DATA *CpuMpData; UINTN CallerNumber; + CPU_INFO_IN_HOB *CpuInfoInHob; CpuMpData = GetCpuMpData (); + CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob; // // Check whether caller processor is BSP @@ -1107,7 +1690,7 @@ MpInitLibGetProcessorInfo ( return EFI_NOT_FOUND; } - ProcessorInfoBuffer->ProcessorId = (UINT64) CpuMpData->CpuData[ProcessorNumber].ApicId; + ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId; ProcessorInfoBuffer->StatusFlag = 0; if (ProcessorNumber == CpuMpData->BspNumber) { ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT; @@ -1124,10 +1707,15 @@ MpInitLibGetProcessorInfo ( // // Get processor location information // - ExtractProcessorLocation (CpuMpData->CpuData[ProcessorNumber].ApicId, &ProcessorInfoBuffer->Location); + GetProcessorLocationByApicId ( + CpuInfoInHob[ProcessorNumber].ApicId, + &ProcessorInfoBuffer->Location.Package, + &ProcessorInfoBuffer->Location.Core, + &ProcessorInfoBuffer->Location.Thread + ); if (HealthData != NULL) { - HealthData->Uint32 = CpuMpData->CpuData[ProcessorNumber].Health; + HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health; } return EFI_SUCCESS; @@ -1154,6 +1742,27 @@ SwitchBSPWorker ( UINTN CallerNumber; CPU_STATE State; MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr; + BOOLEAN OldInterruptState; + BOOLEAN OldTimerInterruptState; + + // + // Save and Disable Local APIC timer interrupt + // + OldTimerInterruptState = GetApicTimerInterruptState (); + DisableApicTimerInterrupt (); + // + // Before send both BSP and AP to a procedure to exchange their roles, + // interrupt must be disabled. This is because during the exchange role + // process, 2 CPU may use 1 stack. If interrupt happens, the stack will + // be corrupted, since interrupt return address will be pushed to stack + // by hardware. + // + OldInterruptState = SaveAndDisableInterrupts (); + + // + // Mask LINT0 & LINT1 for the old BSP + // + DisableLvtInterrupts (); CpuMpData = GetCpuMpData (); @@ -1162,7 +1771,7 @@ SwitchBSPWorker ( // MpInitLibWhoAmI (&CallerNumber); if (CallerNumber != CpuMpData->BspNumber) { - return EFI_SUCCESS; + return EFI_DEVICE_ERROR; } if (ProcessorNumber >= CpuMpData->CpuCount) { @@ -1194,6 +1803,7 @@ SwitchBSPWorker ( CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE; CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE; CpuMpData->SwitchBspFlag = TRUE; + CpuMpData->NewBspNumber = ProcessorNumber; // // Clear the BSP bit of MSR_IA32_APIC_BASE @@ -1215,6 +1825,7 @@ SwitchBSPWorker ( ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE); ApicBaseMsr.Bits.BSP = 1; AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64); + ProgramVirtualWireMode (); // // Wait for old BSP finished AP task @@ -1229,12 +1840,23 @@ SwitchBSPWorker ( // if (!EnableOldBSP) { SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled); + } else { + SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle); } // // Save new BSP number // CpuMpData->BspNumber = (UINT32) ProcessorNumber; + // + // Restore interrupt state. + // + SetInterruptState (OldInterruptState); + + if (OldTimerInterruptState) { + EnableApicTimerInterrupt (); + } + return EFI_SUCCESS; } @@ -1283,7 +1905,7 @@ EnableDisableApWorker ( if (!EnableAP) { SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled); } else { - SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle); + ResetProcessorToIdleState (ProcessorNumber); } if (HealthFlag != NULL) { @@ -1393,6 +2015,276 @@ MpInitLibGetNumberOfProcessors ( } +/** + Worker function to execute a caller provided function on all enabled APs. + + @param[in] Procedure A pointer to the function to be run on + enabled APs of the system. + @param[in] SingleThread If TRUE, then all the enabled APs execute + the function specified by Procedure one by + one, in ascending order of processor handle + number. If FALSE, then all the enabled APs + execute the function specified by Procedure + simultaneously. + @param[in] WaitEvent The event created by the caller with CreateEvent() + service. + @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for + APs to return from Procedure, either for + blocking or non-blocking mode. + @param[in] ProcedureArgument The parameter passed into Procedure for + all APs. + @param[out] FailedCpuList If all APs finish successfully, then its + content is set to NULL. If not all APs + finish before timeout expires, then its + content is set to address of the buffer + holding handle numbers of the failed APs. + + @retval EFI_SUCCESS In blocking mode, all APs have finished before + the timeout expired. + @retval EFI_SUCCESS In non-blocking mode, function has been dispatched + to all enabled APs. + @retval others Failed to Startup all APs. + +**/ +EFI_STATUS +StartupAllAPsWorker ( + IN EFI_AP_PROCEDURE Procedure, + IN BOOLEAN SingleThread, + IN EFI_EVENT WaitEvent OPTIONAL, + IN UINTN TimeoutInMicroseconds, + IN VOID *ProcedureArgument OPTIONAL, + OUT UINTN **FailedCpuList OPTIONAL + ) +{ + EFI_STATUS Status; + CPU_MP_DATA *CpuMpData; + UINTN ProcessorCount; + UINTN ProcessorNumber; + UINTN CallerNumber; + CPU_AP_DATA *CpuData; + BOOLEAN HasEnabledAp; + CPU_STATE ApState; + + CpuMpData = GetCpuMpData (); + + if (FailedCpuList != NULL) { + *FailedCpuList = NULL; + } + + if (CpuMpData->CpuCount == 1) { + return EFI_NOT_STARTED; + } + + if (Procedure == NULL) { + return EFI_INVALID_PARAMETER; + } + + // + // Check whether caller processor is BSP + // + MpInitLibWhoAmI (&CallerNumber); + if (CallerNumber != CpuMpData->BspNumber) { + return EFI_DEVICE_ERROR; + } + + // + // Update AP state + // + CheckAndUpdateApsStatus (); + + ProcessorCount = CpuMpData->CpuCount; + HasEnabledAp = FALSE; + // + // Check whether all enabled APs are idle. + // If any enabled AP is not idle, return EFI_NOT_READY. + // + for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) { + CpuData = &CpuMpData->CpuData[ProcessorNumber]; + if (ProcessorNumber != CpuMpData->BspNumber) { + ApState = GetApState (CpuData); + if (ApState != CpuStateDisabled) { + HasEnabledAp = TRUE; + if (ApState != CpuStateIdle) { + // + // If any enabled APs are busy, return EFI_NOT_READY. + // + return EFI_NOT_READY; + } + } + } + } + + if (!HasEnabledAp) { + // + // If no enabled AP exists, return EFI_NOT_STARTED. + // + return EFI_NOT_STARTED; + } + + CpuMpData->StartCount = 0; + for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) { + CpuData = &CpuMpData->CpuData[ProcessorNumber]; + CpuData->Waiting = FALSE; + if (ProcessorNumber != CpuMpData->BspNumber) { + if (CpuData->State == CpuStateIdle) { + // + // Mark this processor as responsible for current calling. + // + CpuData->Waiting = TRUE; + CpuMpData->StartCount++; + } + } + } + + CpuMpData->Procedure = Procedure; + CpuMpData->ProcArguments = ProcedureArgument; + CpuMpData->SingleThread = SingleThread; + CpuMpData->FinishedCount = 0; + CpuMpData->RunningCount = 0; + CpuMpData->FailedCpuList = FailedCpuList; + CpuMpData->ExpectedTime = CalculateTimeout ( + TimeoutInMicroseconds, + &CpuMpData->CurrentTime + ); + CpuMpData->TotalTime = 0; + CpuMpData->WaitEvent = WaitEvent; + + if (!SingleThread) { + WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument); + } else { + for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) { + if (ProcessorNumber == CallerNumber) { + continue; + } + if (CpuMpData->CpuData[ProcessorNumber].Waiting) { + WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument); + break; + } + } + } + + Status = EFI_SUCCESS; + if (WaitEvent == NULL) { + do { + Status = CheckAllAPs (); + } while (Status == EFI_NOT_READY); + } + + return Status; +} + +/** + Worker function to let the caller get one enabled AP to execute a caller-provided + function. + + @param[in] Procedure A pointer to the function to be run on + enabled APs of the system. + @param[in] ProcessorNumber The handle number of the AP. + @param[in] WaitEvent The event created by the caller with CreateEvent() + service. + @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for + APs to return from Procedure, either for + blocking or non-blocking mode. + @param[in] ProcedureArgument The parameter passed into Procedure for + all APs. + @param[out] Finished If AP returns from Procedure before the + timeout expires, its content is set to TRUE. + Otherwise, the value is set to FALSE. + + @retval EFI_SUCCESS In blocking mode, specified AP finished before + the timeout expires. + @retval others Failed to Startup AP. + +**/ +EFI_STATUS +StartupThisAPWorker ( + IN EFI_AP_PROCEDURE Procedure, + IN UINTN ProcessorNumber, + IN EFI_EVENT WaitEvent OPTIONAL, + IN UINTN TimeoutInMicroseconds, + IN VOID *ProcedureArgument OPTIONAL, + OUT BOOLEAN *Finished OPTIONAL + ) +{ + EFI_STATUS Status; + CPU_MP_DATA *CpuMpData; + CPU_AP_DATA *CpuData; + UINTN CallerNumber; + + CpuMpData = GetCpuMpData (); + + if (Finished != NULL) { + *Finished = FALSE; + } + + // + // Check whether caller processor is BSP + // + MpInitLibWhoAmI (&CallerNumber); + if (CallerNumber != CpuMpData->BspNumber) { + return EFI_DEVICE_ERROR; + } + + // + // Check whether processor with the handle specified by ProcessorNumber exists + // + if (ProcessorNumber >= CpuMpData->CpuCount) { + return EFI_NOT_FOUND; + } + + // + // Check whether specified processor is BSP + // + if (ProcessorNumber == CpuMpData->BspNumber) { + return EFI_INVALID_PARAMETER; + } + + // + // Check parameter Procedure + // + if (Procedure == NULL) { + return EFI_INVALID_PARAMETER; + } + + // + // Update AP state + // + CheckAndUpdateApsStatus (); + + // + // Check whether specified AP is disabled + // + if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) { + return EFI_INVALID_PARAMETER; + } + + // + // If WaitEvent is not NULL, execute in non-blocking mode. + // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS. + // CheckAPsStatus() will check completion and timeout periodically. + // + CpuData = &CpuMpData->CpuData[ProcessorNumber]; + CpuData->WaitEvent = WaitEvent; + CpuData->Finished = Finished; + CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime); + CpuData->TotalTime = 0; + + WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument); + + // + // If WaitEvent is NULL, execute in blocking mode. + // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires. + // + Status = EFI_SUCCESS; + if (WaitEvent == NULL) { + do { + Status = CheckThisAP (ProcessorNumber); + } while (Status == EFI_NOT_READY); + } + + return Status; +} + /** Get pointer to CPU MP Data structure from GUIDed HOB. @@ -1415,3 +2307,4 @@ GetCpuMpDataFromGuidedHob ( } return CpuMpData; } +