From: Supreeth Venkatesh Date: Fri, 13 Jul 2018 15:05:24 +0000 (+0800) Subject: StandaloneMmPkg/MemoryAllocationLib: Add MM memory allocation library. X-Git-Tag: edk2-stable201903~1383 X-Git-Url: https://git.proxmox.com/?p=mirror_edk2.git;a=commitdiff_plain;h=2c868eef731586de781adb96a1ce837de76c0dae;hp=880086a2b59075563cff2cf1af58910a273cd30d StandaloneMmPkg/MemoryAllocationLib: Add MM memory allocation library. This patch implements management mode memory allocation services. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Supreeth Venkatesh Reviewed-by: Achin Gupta Reviewed-by: Jiewen Yao Signed-off-by: Sughosh Ganu --- diff --git a/StandaloneMmPkg/Include/Guid/MmCoreData.h b/StandaloneMmPkg/Include/Guid/MmCoreData.h new file mode 100644 index 0000000000..a1168f95f7 --- /dev/null +++ b/StandaloneMmPkg/Include/Guid/MmCoreData.h @@ -0,0 +1,133 @@ +/** @file + MM Core data. + +Copyright (c) 2015, Intel Corporation. All rights reserved.
+Copyright (c) 2018, ARM Limited. All rights reserved.
+This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + +**/ + +#ifndef __MM_CORE_DATA_H__ +#define __MM_CORE_DATA_H__ + +#define MM_CORE_DATA_HOB_GUID \ + { 0xa160bf99, 0x2aa4, 0x4d7d, { 0x99, 0x93, 0x89, 0x9c, 0xb1, 0x2d, 0xf3, 0x76 }} + +extern EFI_GUID gMmCoreDataHobGuid; + +typedef struct { + // + // Address pointer to MM_CORE_PRIVATE_DATA + // + EFI_PHYSICAL_ADDRESS Address; +} MM_CORE_DATA_HOB_DATA; + + +/// +/// Define values for the communications buffer used when gEfiEventDxeDispatchGuid is +/// event signaled. This event is signaled by the DXE Core each time the DXE Core +/// dispatcher has completed its work. When this event is signaled, the MM Core +/// if notified, so the MM Core can dispatch MM drivers. If COMM_BUFFER_MM_DISPATCH_ERROR +/// is returned in the communication buffer, then an error occurred dispatching MM +/// Drivers. If COMM_BUFFER_MM_DISPATCH_SUCCESS is returned, then the MM Core +/// dispatched all the drivers it could. If COMM_BUFFER_MM_DISPATCH_RESTART is +/// returned, then the MM Core just dispatched the MM Driver that registered +/// the MM Entry Point enabling the use of MM Mode. In this case, the MM Core +/// should be notified again to dispatch more MM Drivers using MM Mode. +/// +#define COMM_BUFFER_MM_DISPATCH_ERROR 0x00 +#define COMM_BUFFER_MM_DISPATCH_SUCCESS 0x01 +#define COMM_BUFFER_MM_DISPATCH_RESTART 0x02 + +/// +/// Signature for the private structure shared between the MM IPL and the MM Core +/// +#define MM_CORE_PRIVATE_DATA_SIGNATURE SIGNATURE_32 ('m', 'm', 'i', 'c') + +/// +/// Private structure that is used to share information between the MM IPL and +/// the MM Core. This structure is allocated from memory of type EfiRuntimeServicesData. +/// Since runtime memory types are converted to available memory when a legacy boot +/// is performed, the MM Core must not access any fields of this structure if a legacy +/// boot is performed. As a result, the MM IPL must create an event notification +/// for the Legacy Boot event and notify the MM Core that a legacy boot is being +/// performed. The MM Core can then use this information to filter accesses to +/// thos structure. +/// +typedef struct { + UINT64 Signature; + + /// + /// The number of MMRAM ranges passed from the MM IPL to the MM Core. The MM + /// Core uses these ranges of MMRAM to initialize the MM Core memory manager. + /// + UINT64 MmramRangeCount; + + /// + /// A table of MMRAM ranges passed from the MM IPL to the MM Core. The MM + /// Core uses these ranges of MMRAM to initialize the MM Core memory manager. + /// + EFI_PHYSICAL_ADDRESS MmramRanges; + + /// + /// The MM Foundation Entry Point. The MM Core fills in this field when the + /// MM Core is initialized. The MM IPL is responsbile for registering this entry + /// point with the MM Configuration Protocol. The MM Configuration Protocol may + /// not be available at the time the MM IPL and MM Core are started, so the MM IPL + /// sets up a protocol notification on the MM Configuration Protocol and registers + /// the MM Foundation Entry Point as soon as the MM Configuration Protocol is + /// available. + /// + EFI_PHYSICAL_ADDRESS MmEntryPoint; + + /// + /// Boolean flag set to TRUE while an MMI is being processed by the MM Core. + /// + BOOLEAN MmEntryPointRegistered; + + /// + /// Boolean flag set to TRUE while an MMI is being processed by the MM Core. + /// + BOOLEAN InMm; + + /// + /// This field is set by the MM Core then the MM Core is initialized. This field is + /// used by the MM Base 2 Protocol and MM Communication Protocol implementations in + /// the MM IPL. + /// + EFI_PHYSICAL_ADDRESS Mmst; + + /// + /// This field is used by the MM Communicatioon Protocol to pass a buffer into + /// a software MMI handler and for the software MMI handler to pass a buffer back to + /// the caller of the MM Communication Protocol. + /// + EFI_PHYSICAL_ADDRESS CommunicationBuffer; + + /// + /// This field is used by the MM Communicatioon Protocol to pass the size of a buffer, + /// in bytes, into a software MMI handler and for the software MMI handler to pass the + /// size, in bytes, of a buffer back to the caller of the MM Communication Protocol. + /// + UINT64 BufferSize; + + /// + /// This field is used by the MM Communication Protocol to pass the return status from + /// a software MMI handler back to the caller of the MM Communication Protocol. + /// + UINT64 ReturnStatus; + + EFI_PHYSICAL_ADDRESS MmCoreImageBase; + UINT64 MmCoreImageSize; + EFI_PHYSICAL_ADDRESS MmCoreEntryPoint; + + EFI_PHYSICAL_ADDRESS StandaloneBfvAddress; +} MM_CORE_PRIVATE_DATA; + +#endif diff --git a/StandaloneMmPkg/Include/Guid/MmramMemoryReserve.h b/StandaloneMmPkg/Include/Guid/MmramMemoryReserve.h new file mode 100644 index 0000000000..15818b5a8a --- /dev/null +++ b/StandaloneMmPkg/Include/Guid/MmramMemoryReserve.h @@ -0,0 +1,62 @@ +/** @file + Definition of GUIDed HOB for reserving MMRAM regions. + + This file defines: + * the GUID used to identify the GUID HOB for reserving MMRAM regions. + * the data structure of MMRAM descriptor to describe MMRAM candidate regions + * values of state of MMRAM candidate regions + * the GUID specific data structure of HOB for reserving MMRAM regions. + This GUIDed HOB can be used to convey the existence of the T-SEG reservation and H-SEG usage + +Copyright (c) 2007 - 2010, Intel Corporation. All rights reserved.
+Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.
+ +This program and the accompanying materials are licensed and made available under +the terms and conditions of the BSD License that accompanies this distribution. +The full text of the license may be found at +http://opensource.org/licenses/bsd-license.php. + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + + @par Revision Reference: + GUIDs defined in MmCis spec version 0.9. + +**/ + +#ifndef _EFI_MM_PEI_MMRAM_MEMORY_RESERVE_H_ +#define _EFI_MM_PEI_MMRAM_MEMORY_RESERVE_H_ + +#define EFI_MM_PEI_MMRAM_MEMORY_RESERVE \ + { \ + 0x0703f912, 0xbf8d, 0x4e2a, {0xbe, 0x07, 0xab, 0x27, 0x25, 0x25, 0xc5, 0x92 } \ + } + +/** +* GUID specific data structure of HOB for reserving MMRAM regions. +* +* Inconsistent with specification here: +* EFI_HOB_MMRAM_DESCRIPTOR_BLOCK has been changed to EFI_MMRAM_HOB_DESCRIPTOR_BLOCK. +* This inconsistency is kept in code in order for backward compatibility. +**/ +typedef struct { + /// + /// Designates the number of possible regions in the system + /// that can be usable for MMRAM. + /// + /// Inconsistent with specification here: + /// In Framework MM CIS 0.91 specification, it defines the field type as UINTN. + /// However, HOBs are supposed to be CPU neutral, so UINT32 should be used instead. + /// + UINT32 NumberOfMmReservedRegions; + /// + /// Used throughout this protocol to describe the candidate + /// regions for MMRAM that are supported by this platform. + /// + EFI_MMRAM_DESCRIPTOR Descriptor[1]; +} EFI_MMRAM_HOB_DESCRIPTOR_BLOCK; + +extern EFI_GUID gEfiMmPeiSmramMemoryReserveGuid; + +#endif + diff --git a/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.c b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.c new file mode 100644 index 0000000000..6ab9859b68 --- /dev/null +++ b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.c @@ -0,0 +1,908 @@ +/** @file + Support routines for memory allocation routines based on Standalone MM Core internal functions. + + Copyright (c) 2015, Intel Corporation. All rights reserved.
+ Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.
+ + This program and the accompanying materials + are licensed and made available under the terms and conditions of the BSD License + which accompanies this distribution. The full text of the license may be found at + http://opensource.org/licenses/bsd-license.php + + THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, + WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + +**/ + +#include + +#include +#include +#include +#include +#include +#include "StandaloneMmCoreMemoryAllocationServices.h" + +EFI_MM_SYSTEM_TABLE *gMmst = NULL; + +/** + Allocates one or more 4KB pages of a certain memory type. + + Allocates the number of 4KB pages of a certain memory type and returns a pointer to the allocated + buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL is returned. + If there is not enough memory remaining to satisfy the request, then NULL is returned. + + @param MemoryType The type of memory to allocate. + @param Pages The number of 4 KB pages to allocate. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +InternalAllocatePages ( + IN EFI_MEMORY_TYPE MemoryType, + IN UINTN Pages + ) +{ + EFI_STATUS Status; + EFI_PHYSICAL_ADDRESS Memory; + + if (Pages == 0) { + return NULL; + } + + Status = gMmst->MmAllocatePages (AllocateAnyPages, MemoryType, Pages, &Memory); + if (EFI_ERROR (Status)) { + return NULL; + } + return (VOID *) (UINTN) Memory; +} + +/** + Allocates one or more 4KB pages of type EfiBootServicesData. + + Allocates the number of 4KB pages of type EfiBootServicesData and returns a pointer to the + allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL + is returned. If there is not enough memory remaining to satisfy the request, then NULL is + returned. + + @param Pages The number of 4 KB pages to allocate. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocatePages ( + IN UINTN Pages + ) +{ + return InternalAllocatePages (EfiRuntimeServicesData, Pages); +} + +/** + Allocates one or more 4KB pages of type EfiRuntimeServicesData. + + Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the + allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL + is returned. If there is not enough memory remaining to satisfy the request, then NULL is + returned. + + @param Pages The number of 4 KB pages to allocate. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateRuntimePages ( + IN UINTN Pages + ) +{ + return InternalAllocatePages (EfiRuntimeServicesData, Pages); +} + +/** + Allocates one or more 4KB pages of type EfiReservedMemoryType. + + Allocates the number of 4KB pages of type EfiReservedMemoryType and returns a pointer to the + allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL + is returned. If there is not enough memory remaining to satisfy the request, then NULL is + returned. + + @param Pages The number of 4 KB pages to allocate. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateReservedPages ( + IN UINTN Pages + ) +{ + return NULL; +} + +/** + Frees one or more 4KB pages that were previously allocated with one of the page allocation + functions in the Memory Allocation Library. + + Frees the number of 4KB pages specified by Pages from the buffer specified by Buffer. Buffer + must have been allocated on a previous call to the page allocation services of the Memory + Allocation Library. If it is not possible to free allocated pages, then this function will + perform no actions. + + If Buffer was not allocated with a page allocation function in the Memory Allocation Library, + then ASSERT(). + If Pages is zero, then ASSERT(). + + @param Buffer Pointer to the buffer of pages to free. + @param Pages The number of 4 KB pages to free. + +**/ +VOID +EFIAPI +FreePages ( + IN VOID *Buffer, + IN UINTN Pages + ) +{ + EFI_STATUS Status; + + ASSERT (Pages != 0); + Status = gMmst->MmFreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) Buffer, Pages); + ASSERT_EFI_ERROR (Status); +} + +/** + Allocates one or more 4KB pages of a certain memory type at a specified alignment. + + Allocates the number of 4KB pages specified by Pages of a certain memory type with an alignment + specified by Alignment. The allocated buffer is returned. If Pages is 0, then NULL is returned. + If there is not enough memory at the specified alignment remaining to satisfy the request, then + NULL is returned. + If Alignment is not a power of two and Alignment is not zero, then ASSERT(). + If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT(). + + @param MemoryType The type of memory to allocate. + @param Pages The number of 4 KB pages to allocate. + @param Alignment The requested alignment of the allocation. Must be a power of two. + If Alignment is zero, then byte alignment is used. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +InternalAllocateAlignedPages ( + IN EFI_MEMORY_TYPE MemoryType, + IN UINTN Pages, + IN UINTN Alignment + ) +{ + EFI_STATUS Status; + EFI_PHYSICAL_ADDRESS Memory; + UINTN AlignedMemory; + UINTN AlignmentMask; + UINTN UnalignedPages; + UINTN RealPages; + + // + // Alignment must be a power of two or zero. + // + ASSERT ((Alignment & (Alignment - 1)) == 0); + + if (Pages == 0) { + return NULL; + } + if (Alignment > EFI_PAGE_SIZE) { + // + // Calculate the total number of pages since alignment is larger than page size. + // + AlignmentMask = Alignment - 1; + RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment); + // + // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow. + // + ASSERT (RealPages > Pages); + + Status = gMmst->MmAllocatePages (AllocateAnyPages, MemoryType, RealPages, &Memory); + if (EFI_ERROR (Status)) { + return NULL; + } + AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask; + UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN) Memory); + if (UnalignedPages > 0) { + // + // Free first unaligned page(s). + // + Status = gMmst->MmFreePages (Memory, UnalignedPages); + ASSERT_EFI_ERROR (Status); + } + Memory = (EFI_PHYSICAL_ADDRESS) (AlignedMemory + EFI_PAGES_TO_SIZE (Pages)); + UnalignedPages = RealPages - Pages - UnalignedPages; + if (UnalignedPages > 0) { + // + // Free last unaligned page(s). + // + Status = gMmst->MmFreePages (Memory, UnalignedPages); + ASSERT_EFI_ERROR (Status); + } + } else { + // + // Do not over-allocate pages in this case. + // + Status = gMmst->MmAllocatePages (AllocateAnyPages, MemoryType, Pages, &Memory); + if (EFI_ERROR (Status)) { + return NULL; + } + AlignedMemory = (UINTN) Memory; + } + return (VOID *) AlignedMemory; +} + +/** + Allocates one or more 4KB pages of type EfiBootServicesData at a specified alignment. + + Allocates the number of 4KB pages specified by Pages of type EfiBootServicesData with an + alignment specified by Alignment. The allocated buffer is returned. If Pages is 0, then NULL is + returned. If there is not enough memory at the specified alignment remaining to satisfy the + request, then NULL is returned. + + If Alignment is not a power of two and Alignment is not zero, then ASSERT(). + If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT(). + + @param Pages The number of 4 KB pages to allocate. + @param Alignment The requested alignment of the allocation. Must be a power of two. + If Alignment is zero, then byte alignment is used. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateAlignedPages ( + IN UINTN Pages, + IN UINTN Alignment + ) +{ + return InternalAllocateAlignedPages (EfiRuntimeServicesData, Pages, Alignment); +} + +/** + Allocates one or more 4KB pages of type EfiRuntimeServicesData at a specified alignment. + + Allocates the number of 4KB pages specified by Pages of type EfiRuntimeServicesData with an + alignment specified by Alignment. The allocated buffer is returned. If Pages is 0, then NULL is + returned. If there is not enough memory at the specified alignment remaining to satisfy the + request, then NULL is returned. + + If Alignment is not a power of two and Alignment is not zero, then ASSERT(). + If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT(). + + @param Pages The number of 4 KB pages to allocate. + @param Alignment The requested alignment of the allocation. Must be a power of two. + If Alignment is zero, then byte alignment is used. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateAlignedRuntimePages ( + IN UINTN Pages, + IN UINTN Alignment + ) +{ + return InternalAllocateAlignedPages (EfiRuntimeServicesData, Pages, Alignment); +} + +/** + Allocates one or more 4KB pages of type EfiReservedMemoryType at a specified alignment. + + Allocates the number of 4KB pages specified by Pages of type EfiReservedMemoryType with an + alignment specified by Alignment. The allocated buffer is returned. If Pages is 0, then NULL is + returned. If there is not enough memory at the specified alignment remaining to satisfy the + request, then NULL is returned. + + If Alignment is not a power of two and Alignment is not zero, then ASSERT(). + If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT(). + + @param Pages The number of 4 KB pages to allocate. + @param Alignment The requested alignment of the allocation. Must be a power of two. + If Alignment is zero, then byte alignment is used. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateAlignedReservedPages ( + IN UINTN Pages, + IN UINTN Alignment + ) +{ + return NULL; +} + +/** + Frees one or more 4KB pages that were previously allocated with one of the aligned page + allocation functions in the Memory Allocation Library. + + Frees the number of 4KB pages specified by Pages from the buffer specified by Buffer. Buffer + must have been allocated on a previous call to the aligned page allocation services of the Memory + Allocation Library. If it is not possible to free allocated pages, then this function will + perform no actions. + + If Buffer was not allocated with an aligned page allocation function in the Memory Allocation + Library, then ASSERT(). + If Pages is zero, then ASSERT(). + + @param Buffer Pointer to the buffer of pages to free. + @param Pages The number of 4 KB pages to free. + +**/ +VOID +EFIAPI +FreeAlignedPages ( + IN VOID *Buffer, + IN UINTN Pages + ) +{ + EFI_STATUS Status; + + ASSERT (Pages != 0); + Status = gMmst->MmFreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) Buffer, Pages); + ASSERT_EFI_ERROR (Status); +} + +/** + Allocates a buffer of a certain pool type. + + Allocates the number bytes specified by AllocationSize of a certain pool type and returns a + pointer to the allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is + returned. If there is not enough memory remaining to satisfy the request, then NULL is returned. + + @param MemoryType The type of memory to allocate. + @param AllocationSize The number of bytes to allocate. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +InternalAllocatePool ( + IN EFI_MEMORY_TYPE MemoryType, + IN UINTN AllocationSize + ) +{ + EFI_STATUS Status; + VOID *Memory; + + Memory = NULL; + + Status = gMmst->MmAllocatePool (MemoryType, AllocationSize, &Memory); + if (EFI_ERROR (Status)) { + Memory = NULL; + } + return Memory; +} + +/** + Allocates a buffer of type EfiBootServicesData. + + Allocates the number bytes specified by AllocationSize of type EfiBootServicesData and returns a + pointer to the allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is + returned. If there is not enough memory remaining to satisfy the request, then NULL is returned. + + @param AllocationSize The number of bytes to allocate. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocatePool ( + IN UINTN AllocationSize + ) +{ + return InternalAllocatePool (EfiRuntimeServicesData, AllocationSize); +} + +/** + Allocates a buffer of type EfiRuntimeServicesData. + + Allocates the number bytes specified by AllocationSize of type EfiRuntimeServicesData and returns + a pointer to the allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is + returned. If there is not enough memory remaining to satisfy the request, then NULL is returned. + + @param AllocationSize The number of bytes to allocate. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateRuntimePool ( + IN UINTN AllocationSize + ) +{ + return InternalAllocatePool (EfiRuntimeServicesData, AllocationSize); +} + +/** + Allocates a buffer of type EfiReservedMemoryType. + + Allocates the number bytes specified by AllocationSize of type EfiReservedMemoryType and returns + a pointer to the allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is + returned. If there is not enough memory remaining to satisfy the request, then NULL is returned. + + @param AllocationSize The number of bytes to allocate. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateReservedPool ( + IN UINTN AllocationSize + ) +{ + return NULL; +} + +/** + Allocates and zeros a buffer of a certain pool type. + + Allocates the number bytes specified by AllocationSize of a certain pool type, clears the buffer + with zeros, and returns a pointer to the allocated buffer. If AllocationSize is 0, then a valid + buffer of 0 size is returned. If there is not enough memory remaining to satisfy the request, + then NULL is returned. + + @param PoolType The type of memory to allocate. + @param AllocationSize The number of bytes to allocate and zero. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +InternalAllocateZeroPool ( + IN EFI_MEMORY_TYPE PoolType, + IN UINTN AllocationSize + ) +{ + VOID *Memory; + + Memory = InternalAllocatePool (PoolType, AllocationSize); + if (Memory != NULL) { + Memory = ZeroMem (Memory, AllocationSize); + } + return Memory; +} + +/** + Allocates and zeros a buffer of type EfiBootServicesData. + + Allocates the number bytes specified by AllocationSize of type EfiBootServicesData, clears the + buffer with zeros, and returns a pointer to the allocated buffer. If AllocationSize is 0, then a + valid buffer of 0 size is returned. If there is not enough memory remaining to satisfy the + request, then NULL is returned. + + @param AllocationSize The number of bytes to allocate and zero. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateZeroPool ( + IN UINTN AllocationSize + ) +{ + return InternalAllocateZeroPool (EfiRuntimeServicesData, AllocationSize); +} + +/** + Allocates and zeros a buffer of type EfiRuntimeServicesData. + + Allocates the number bytes specified by AllocationSize of type EfiRuntimeServicesData, clears the + buffer with zeros, and returns a pointer to the allocated buffer. If AllocationSize is 0, then a + valid buffer of 0 size is returned. If there is not enough memory remaining to satisfy the + request, then NULL is returned. + + @param AllocationSize The number of bytes to allocate and zero. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateRuntimeZeroPool ( + IN UINTN AllocationSize + ) +{ + return InternalAllocateZeroPool (EfiRuntimeServicesData, AllocationSize); +} + +/** + Allocates and zeros a buffer of type EfiReservedMemoryType. + + Allocates the number bytes specified by AllocationSize of type EfiReservedMemoryType, clears the + buffer with zeros, and returns a pointer to the allocated buffer. If AllocationSize is 0, then a + valid buffer of 0 size is returned. If there is not enough memory remaining to satisfy the + request, then NULL is returned. + + @param AllocationSize The number of bytes to allocate and zero. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateReservedZeroPool ( + IN UINTN AllocationSize + ) +{ + return NULL; +} + +/** + Copies a buffer to an allocated buffer of a certain pool type. + + Allocates the number bytes specified by AllocationSize of a certain pool type, copies + AllocationSize bytes from Buffer to the newly allocated buffer, and returns a pointer to the + allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there + is not enough memory remaining to satisfy the request, then NULL is returned. + If Buffer is NULL, then ASSERT(). + If AllocationSize is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param PoolType The type of pool to allocate. + @param AllocationSize The number of bytes to allocate and zero. + @param Buffer The buffer to copy to the allocated buffer. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +InternalAllocateCopyPool ( + IN EFI_MEMORY_TYPE PoolType, + IN UINTN AllocationSize, + IN CONST VOID *Buffer + ) +{ + VOID *Memory; + + ASSERT (Buffer != NULL); + ASSERT (AllocationSize <= (MAX_ADDRESS - (UINTN) Buffer + 1)); + + Memory = InternalAllocatePool (PoolType, AllocationSize); + if (Memory != NULL) { + Memory = CopyMem (Memory, Buffer, AllocationSize); + } + return Memory; +} + +/** + Copies a buffer to an allocated buffer of type EfiBootServicesData. + + Allocates the number bytes specified by AllocationSize of type EfiBootServicesData, copies + AllocationSize bytes from Buffer to the newly allocated buffer, and returns a pointer to the + allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there + is not enough memory remaining to satisfy the request, then NULL is returned. + + If Buffer is NULL, then ASSERT(). + If AllocationSize is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param AllocationSize The number of bytes to allocate and zero. + @param Buffer The buffer to copy to the allocated buffer. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateCopyPool ( + IN UINTN AllocationSize, + IN CONST VOID *Buffer + ) +{ + return InternalAllocateCopyPool (EfiRuntimeServicesData, AllocationSize, Buffer); +} + +/** + Copies a buffer to an allocated buffer of type EfiRuntimeServicesData. + + Allocates the number bytes specified by AllocationSize of type EfiRuntimeServicesData, copies + AllocationSize bytes from Buffer to the newly allocated buffer, and returns a pointer to the + allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there + is not enough memory remaining to satisfy the request, then NULL is returned. + + If Buffer is NULL, then ASSERT(). + If AllocationSize is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param AllocationSize The number of bytes to allocate and zero. + @param Buffer The buffer to copy to the allocated buffer. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateRuntimeCopyPool ( + IN UINTN AllocationSize, + IN CONST VOID *Buffer + ) +{ + return InternalAllocateCopyPool (EfiRuntimeServicesData, AllocationSize, Buffer); +} + +/** + Copies a buffer to an allocated buffer of type EfiReservedMemoryType. + + Allocates the number bytes specified by AllocationSize of type EfiReservedMemoryType, copies + AllocationSize bytes from Buffer to the newly allocated buffer, and returns a pointer to the + allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there + is not enough memory remaining to satisfy the request, then NULL is returned. + + If Buffer is NULL, then ASSERT(). + If AllocationSize is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT(). + + @param AllocationSize The number of bytes to allocate and zero. + @param Buffer The buffer to copy to the allocated buffer. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +AllocateReservedCopyPool ( + IN UINTN AllocationSize, + IN CONST VOID *Buffer + ) +{ + return NULL; +} + +/** + Reallocates a buffer of a specified memory type. + + Allocates and zeros the number bytes specified by NewSize from memory of the type + specified by PoolType. If OldBuffer is not NULL, then the smaller of OldSize and + NewSize bytes are copied from OldBuffer to the newly allocated buffer, and + OldBuffer is freed. A pointer to the newly allocated buffer is returned. + If NewSize is 0, then a valid buffer of 0 size is returned. If there is not + enough memory remaining to satisfy the request, then NULL is returned. + + If the allocation of the new buffer is successful and the smaller of NewSize and OldSize + is greater than (MAX_ADDRESS - OldBuffer + 1), then ASSERT(). + + @param PoolType The type of pool to allocate. + @param OldSize The size, in bytes, of OldBuffer. + @param NewSize The size, in bytes, of the buffer to reallocate. + @param OldBuffer The buffer to copy to the allocated buffer. This is an optional + parameter that may be NULL. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +InternalReallocatePool ( + IN EFI_MEMORY_TYPE PoolType, + IN UINTN OldSize, + IN UINTN NewSize, + IN VOID *OldBuffer OPTIONAL + ) +{ + VOID *NewBuffer; + + NewBuffer = InternalAllocateZeroPool (PoolType, NewSize); + if (NewBuffer != NULL && OldBuffer != NULL) { + CopyMem (NewBuffer, OldBuffer, MIN (OldSize, NewSize)); + FreePool (OldBuffer); + } + return NewBuffer; +} + +/** + Reallocates a buffer of type EfiBootServicesData. + + Allocates and zeros the number bytes specified by NewSize from memory of type + EfiBootServicesData. If OldBuffer is not NULL, then the smaller of OldSize and + NewSize bytes are copied from OldBuffer to the newly allocated buffer, and + OldBuffer is freed. A pointer to the newly allocated buffer is returned. + If NewSize is 0, then a valid buffer of 0 size is returned. If there is not + enough memory remaining to satisfy the request, then NULL is returned. + + If the allocation of the new buffer is successful and the smaller of NewSize and OldSize + is greater than (MAX_ADDRESS - OldBuffer + 1), then ASSERT(). + + @param OldSize The size, in bytes, of OldBuffer. + @param NewSize The size, in bytes, of the buffer to reallocate. + @param OldBuffer The buffer to copy to the allocated buffer. This is an optional + parameter that may be NULL. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +ReallocatePool ( + IN UINTN OldSize, + IN UINTN NewSize, + IN VOID *OldBuffer OPTIONAL + ) +{ + return InternalReallocatePool (EfiRuntimeServicesData, OldSize, NewSize, OldBuffer); +} + +/** + Reallocates a buffer of type EfiRuntimeServicesData. + + Allocates and zeros the number bytes specified by NewSize from memory of type + EfiRuntimeServicesData. If OldBuffer is not NULL, then the smaller of OldSize and + NewSize bytes are copied from OldBuffer to the newly allocated buffer, and + OldBuffer is freed. A pointer to the newly allocated buffer is returned. + If NewSize is 0, then a valid buffer of 0 size is returned. If there is not + enough memory remaining to satisfy the request, then NULL is returned. + + If the allocation of the new buffer is successful and the smaller of NewSize and OldSize + is greater than (MAX_ADDRESS - OldBuffer + 1), then ASSERT(). + + @param OldSize The size, in bytes, of OldBuffer. + @param NewSize The size, in bytes, of the buffer to reallocate. + @param OldBuffer The buffer to copy to the allocated buffer. This is an optional + parameter that may be NULL. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +ReallocateRuntimePool ( + IN UINTN OldSize, + IN UINTN NewSize, + IN VOID *OldBuffer OPTIONAL + ) +{ + return InternalReallocatePool (EfiRuntimeServicesData, OldSize, NewSize, OldBuffer); +} + +/** + Reallocates a buffer of type EfiReservedMemoryType. + + Allocates and zeros the number bytes specified by NewSize from memory of type + EfiReservedMemoryType. If OldBuffer is not NULL, then the smaller of OldSize and + NewSize bytes are copied from OldBuffer to the newly allocated buffer, and + OldBuffer is freed. A pointer to the newly allocated buffer is returned. + If NewSize is 0, then a valid buffer of 0 size is returned. If there is not + enough memory remaining to satisfy the request, then NULL is returned. + + If the allocation of the new buffer is successful and the smaller of NewSize and OldSize + is greater than (MAX_ADDRESS - OldBuffer + 1), then ASSERT(). + + @param OldSize The size, in bytes, of OldBuffer. + @param NewSize The size, in bytes, of the buffer to reallocate. + @param OldBuffer The buffer to copy to the allocated buffer. This is an optional + parameter that may be NULL. + + @return A pointer to the allocated buffer or NULL if allocation fails. + +**/ +VOID * +EFIAPI +ReallocateReservedPool ( + IN UINTN OldSize, + IN UINTN NewSize, + IN VOID *OldBuffer OPTIONAL + ) +{ + return NULL; +} + +/** + Frees a buffer that was previously allocated with one of the pool allocation functions in the + Memory Allocation Library. + + Frees the buffer specified by Buffer. Buffer must have been allocated on a previous call to the + pool allocation services of the Memory Allocation Library. If it is not possible to free pool + resources, then this function will perform no actions. + + If Buffer was not allocated with a pool allocation function in the Memory Allocation Library, + then ASSERT(). + + @param Buffer Pointer to the buffer to free. + +**/ +VOID +EFIAPI +FreePool ( + IN VOID *Buffer + ) +{ + EFI_STATUS Status; + + Status = gMmst->MmFreePool (Buffer); + ASSERT_EFI_ERROR (Status); +} + +/** + The constructor function calls MmInitializeMemoryServices to initialize + memory in MMRAM and caches EFI_MM_SYSTEM_TABLE pointer. + + @param ImageHandle The firmware allocated handle for the EFI image. + @param SystemTable A pointer to the Management mode System Table. + + @retval EFI_SUCCESS The constructor always returns EFI_SUCCESS. + +**/ +EFI_STATUS +EFIAPI +MemoryAllocationLibConstructor ( + IN EFI_HANDLE ImageHandle, + IN EFI_MM_SYSTEM_TABLE *MmSystemTable + ) +{ + MM_CORE_PRIVATE_DATA *MmCorePrivate; + EFI_HOB_GUID_TYPE *GuidHob; + MM_CORE_DATA_HOB_DATA *DataInHob; + VOID *HobStart; + EFI_MMRAM_HOB_DESCRIPTOR_BLOCK *MmramRangesHobData; + EFI_MMRAM_DESCRIPTOR *MmramRanges; + UINT32 MmramRangeCount; + EFI_HOB_GUID_TYPE *MmramRangesHob; + + HobStart = GetHobList (); + DEBUG ((DEBUG_INFO, "StandaloneMmCoreMemoryAllocationLibConstructor - 0x%x\n", HobStart)); + + // + // Extract MM Core Private context from the Hob. If absent search for + // a Hob containing the MMRAM ranges + // + GuidHob = GetNextGuidHob (&gMmCoreDataHobGuid, HobStart); + if (GuidHob == NULL) { + MmramRangesHob = GetNextGuidHob (&gEfiMmPeiMmramMemoryReserveGuid, HobStart); + if (MmramRangesHob == NULL) { + return EFI_UNSUPPORTED; + } + + MmramRangesHobData = GET_GUID_HOB_DATA (MmramRangesHob); + if (MmramRangesHobData == NULL) { + return EFI_UNSUPPORTED; + } + + MmramRanges = MmramRangesHobData->Descriptor; + if (MmramRanges == NULL) { + return EFI_UNSUPPORTED; + } + + MmramRangeCount = MmramRangesHobData->NumberOfMmReservedRegions; + if (MmramRanges == NULL) { + return EFI_UNSUPPORTED; + } + + } else { + DataInHob = GET_GUID_HOB_DATA (GuidHob); + MmCorePrivate = (MM_CORE_PRIVATE_DATA *)(UINTN)DataInHob->Address; + MmramRanges = (EFI_MMRAM_DESCRIPTOR *)(UINTN)MmCorePrivate->MmramRanges; + MmramRangeCount = MmCorePrivate->MmramRangeCount; + } + + { + UINTN Index; + + DEBUG ((DEBUG_INFO, "MmramRangeCount - 0x%x\n", MmramRangeCount)); + for (Index = 0; Index < MmramRangeCount; Index++) { + DEBUG ((DEBUG_INFO, "MmramRanges[%d]: 0x%016lx - 0x%016lx\n", + Index, MmramRanges[Index].CpuStart, MmramRanges[Index].PhysicalSize)); + } + } + + // + // Initialize memory service using free MMRAM + // + DEBUG ((DEBUG_INFO, "MmInitializeMemoryServices\n")); + MmInitializeMemoryServices ((UINTN)MmramRangeCount, (VOID *)(UINTN)MmramRanges); + + // Initialize MM Services Table + gMmst = MmSystemTable; + return EFI_SUCCESS; +} diff --git a/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.inf b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.inf new file mode 100644 index 0000000000..3958655cb4 --- /dev/null +++ b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.inf @@ -0,0 +1,49 @@ +## @file +# Memory Allocation Library instance dedicated to MM Core. +# The implementation borrows the MM Core Memory Allocation services as the primitive +# for memory allocation instead of using MM System Table servces in an indirect way. +# It is assumed that this library instance must be linked with MM Core in this package. +# +# Copyright (c) 2010 - 2015, Intel Corporation. All rights reserved.
+# Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.
+# +# This program and the accompanying materials +# are licensed and made available under the terms and conditions of the BSD License +# which accompanies this distribution. The full text of the license may be found at +# http://opensource.org/licenses/bsd-license.php +# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. +# +## + +[Defines] + INF_VERSION = 0x0001001A + BASE_NAME = MemoryAllocationLib + FILE_GUID = DCDCBE1D-E760-4E1D-85B4-96E3F0439C41 + MODULE_TYPE = MM_CORE_STANDALONE + VERSION_STRING = 1.0 + PI_SPECIFICATION_VERSION = 0x00010032 + LIBRARY_CLASS = MemoryAllocationLib|MM_CORE_STANDALONE + CONSTRUCTOR = MemoryAllocationLibConstructor + +# +# The following information is for reference only and not required by the build tools. +# +# VALID_ARCHITECTURES = IA32 X64 +# + +[Sources] + StandaloneMmCoreMemoryAllocationLib.c + StandaloneMmCoreMemoryAllocationServices.h + +[Packages] + MdePkg/MdePkg.dec + StandaloneMmPkg/StandaloneMmPkg.dec + +[LibraryClasses] + BaseMemoryLib + DebugLib + HobLib + +[Guids] + gEfiMmPeiMmramMemoryReserveGuid diff --git a/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationServices.h b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationServices.h new file mode 100644 index 0000000000..07abaac2a8 --- /dev/null +++ b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationServices.h @@ -0,0 +1,38 @@ +/** @file + Contains function prototypes for Memory Services in the MM Core. + + This header file borrows the StandaloneMmCore Memory Allocation services as the primitive + for memory allocation. + + Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.
+ Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.
+ + This program and the accompanying materials + are licensed and made available under the terms and conditions of the BSD License + which accompanies this distribution. The full text of the license may be found at + http://opensource.org/licenses/bsd-license.php + + THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, + WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. + +**/ + +#ifndef _PI_MM_CORE_MEMORY_ALLOCATION_SERVICES_H_ +#define _PI_MM_CORE_MEMORY_ALLOCATION_SERVICES_H_ + +#include + +/** + Called to initialize the memory service. + + @param MmramRangeCount Number of MMRAM Regions + @param MmramRanges Pointer to MMRAM Descriptors + +**/ +VOID +MmInitializeMemoryServices ( + IN UINTN MmramRangeCount, + IN EFI_MMRAM_DESCRIPTOR *MmramRanges + ); + +#endif