]> git.proxmox.com Git - efi-boot-shim.git/blame - Cryptlib/OpenSSL/crypto/bn/bn_gcd.c
New upstream version 15.3
[efi-boot-shim.git] / Cryptlib / OpenSSL / crypto / bn / bn_gcd.c
CommitLineData
031e5cce
SM
1/* crypto/bn/bn_gcd.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
3e575651
SL
109 *
110 */
111
031e5cce 112#include "cryptlib.h"
3e575651
SL
113#include "bn_lcl.h"
114
115static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116
117int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
d3819813
MTL
118{
119 BIGNUM *a, *b, *t;
120 int ret = 0;
121
122 bn_check_top(in_a);
123 bn_check_top(in_b);
124
125 BN_CTX_start(ctx);
126 a = BN_CTX_get(ctx);
127 b = BN_CTX_get(ctx);
128 if (a == NULL || b == NULL)
129 goto err;
130
131 if (BN_copy(a, in_a) == NULL)
132 goto err;
133 if (BN_copy(b, in_b) == NULL)
134 goto err;
135 a->neg = 0;
136 b->neg = 0;
137
138 if (BN_cmp(a, b) < 0) {
139 t = a;
140 a = b;
141 b = t;
142 }
143 t = euclid(a, b);
144 if (t == NULL)
145 goto err;
146
147 if (BN_copy(r, t) == NULL)
148 goto err;
149 ret = 1;
150 err:
151 BN_CTX_end(ctx);
152 bn_check_top(r);
153 return (ret);
154}
3e575651
SL
155
156static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
d3819813
MTL
157{
158 BIGNUM *t;
159 int shifts = 0;
160
161 bn_check_top(a);
162 bn_check_top(b);
163
164 /* 0 <= b <= a */
165 while (!BN_is_zero(b)) {
166 /* 0 < b <= a */
167
168 if (BN_is_odd(a)) {
169 if (BN_is_odd(b)) {
170 if (!BN_sub(a, a, b))
171 goto err;
172 if (!BN_rshift1(a, a))
173 goto err;
174 if (BN_cmp(a, b) < 0) {
175 t = a;
176 a = b;
177 b = t;
178 }
179 } else { /* a odd - b even */
180
181 if (!BN_rshift1(b, b))
182 goto err;
183 if (BN_cmp(a, b) < 0) {
184 t = a;
185 a = b;
186 b = t;
187 }
188 }
189 } else { /* a is even */
190
191 if (BN_is_odd(b)) {
192 if (!BN_rshift1(a, a))
193 goto err;
194 if (BN_cmp(a, b) < 0) {
195 t = a;
196 a = b;
197 b = t;
198 }
199 } else { /* a even - b even */
200
201 if (!BN_rshift1(a, a))
202 goto err;
203 if (!BN_rshift1(b, b))
204 goto err;
205 shifts++;
206 }
207 }
208 /* 0 <= b <= a */
209 }
210
211 if (shifts) {
212 if (!BN_lshift(a, a, shifts))
213 goto err;
214 }
215 bn_check_top(a);
216 return (a);
217 err:
218 return (NULL);
219}
3e575651
SL
220
221/* solves ax == 1 (mod n) */
222static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
d3819813
MTL
223 const BIGNUM *a, const BIGNUM *n,
224 BN_CTX *ctx);
225
3e575651 226BIGNUM *BN_mod_inverse(BIGNUM *in,
d3819813
MTL
227 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
228{
229 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
230 BIGNUM *ret = NULL;
231 int sign;
232
233 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
234 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
235 return BN_mod_inverse_no_branch(in, a, n, ctx);
236 }
237
238 bn_check_top(a);
239 bn_check_top(n);
240
241 BN_CTX_start(ctx);
242 A = BN_CTX_get(ctx);
243 B = BN_CTX_get(ctx);
244 X = BN_CTX_get(ctx);
245 D = BN_CTX_get(ctx);
246 M = BN_CTX_get(ctx);
247 Y = BN_CTX_get(ctx);
248 T = BN_CTX_get(ctx);
249 if (T == NULL)
250 goto err;
251
252 if (in == NULL)
253 R = BN_new();
254 else
255 R = in;
256 if (R == NULL)
257 goto err;
258
259 BN_one(X);
260 BN_zero(Y);
261 if (BN_copy(B, a) == NULL)
262 goto err;
263 if (BN_copy(A, n) == NULL)
264 goto err;
265 A->neg = 0;
266 if (B->neg || (BN_ucmp(B, A) >= 0)) {
267 if (!BN_nnmod(B, B, A, ctx))
268 goto err;
269 }
270 sign = -1;
271 /*-
272 * From B = a mod |n|, A = |n| it follows that
273 *
274 * 0 <= B < A,
275 * -sign*X*a == B (mod |n|),
276 * sign*Y*a == A (mod |n|).
277 */
278
031e5cce 279 if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) {
d3819813
MTL
280 /*
281 * Binary inversion algorithm; requires odd modulus. This is faster
282 * than the general algorithm if the modulus is sufficiently small
031e5cce 283 * (about 400 .. 500 bits on 32-bit sytems, but much more on 64-bit
d3819813
MTL
284 * systems)
285 */
286 int shift;
287
288 while (!BN_is_zero(B)) {
289 /*-
290 * 0 < B < |n|,
291 * 0 < A <= |n|,
292 * (1) -sign*X*a == B (mod |n|),
293 * (2) sign*Y*a == A (mod |n|)
294 */
295
296 /*
297 * Now divide B by the maximum possible power of two in the
298 * integers, and divide X by the same value mod |n|. When we're
299 * done, (1) still holds.
300 */
301 shift = 0;
302 while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
303 shift++;
304
305 if (BN_is_odd(X)) {
306 if (!BN_uadd(X, X, n))
307 goto err;
308 }
309 /*
310 * now X is even, so we can easily divide it by two
311 */
312 if (!BN_rshift1(X, X))
313 goto err;
314 }
315 if (shift > 0) {
316 if (!BN_rshift(B, B, shift))
317 goto err;
318 }
319
320 /*
321 * Same for A and Y. Afterwards, (2) still holds.
322 */
323 shift = 0;
324 while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
325 shift++;
326
327 if (BN_is_odd(Y)) {
328 if (!BN_uadd(Y, Y, n))
329 goto err;
330 }
331 /* now Y is even */
332 if (!BN_rshift1(Y, Y))
333 goto err;
334 }
335 if (shift > 0) {
336 if (!BN_rshift(A, A, shift))
337 goto err;
338 }
339
340 /*-
341 * We still have (1) and (2).
342 * Both A and B are odd.
343 * The following computations ensure that
344 *
345 * 0 <= B < |n|,
346 * 0 < A < |n|,
347 * (1) -sign*X*a == B (mod |n|),
348 * (2) sign*Y*a == A (mod |n|),
349 *
350 * and that either A or B is even in the next iteration.
351 */
352 if (BN_ucmp(B, A) >= 0) {
353 /* -sign*(X + Y)*a == B - A (mod |n|) */
354 if (!BN_uadd(X, X, Y))
355 goto err;
356 /*
357 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
358 * actually makes the algorithm slower
359 */
360 if (!BN_usub(B, B, A))
361 goto err;
362 } else {
363 /* sign*(X + Y)*a == A - B (mod |n|) */
364 if (!BN_uadd(Y, Y, X))
365 goto err;
366 /*
367 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things
368 * down
369 */
370 if (!BN_usub(A, A, B))
371 goto err;
372 }
373 }
374 } else {
375 /* general inversion algorithm */
376
377 while (!BN_is_zero(B)) {
378 BIGNUM *tmp;
379
380 /*-
381 * 0 < B < A,
382 * (*) -sign*X*a == B (mod |n|),
383 * sign*Y*a == A (mod |n|)
384 */
385
386 /* (D, M) := (A/B, A%B) ... */
387 if (BN_num_bits(A) == BN_num_bits(B)) {
388 if (!BN_one(D))
389 goto err;
390 if (!BN_sub(M, A, B))
391 goto err;
392 } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
393 /* A/B is 1, 2, or 3 */
394 if (!BN_lshift1(T, B))
395 goto err;
396 if (BN_ucmp(A, T) < 0) {
397 /* A < 2*B, so D=1 */
398 if (!BN_one(D))
399 goto err;
400 if (!BN_sub(M, A, B))
401 goto err;
402 } else {
403 /* A >= 2*B, so D=2 or D=3 */
404 if (!BN_sub(M, A, T))
405 goto err;
406 if (!BN_add(D, T, B))
407 goto err; /* use D (:= 3*B) as temp */
408 if (BN_ucmp(A, D) < 0) {
409 /* A < 3*B, so D=2 */
410 if (!BN_set_word(D, 2))
411 goto err;
412 /*
413 * M (= A - 2*B) already has the correct value
414 */
415 } else {
416 /* only D=3 remains */
417 if (!BN_set_word(D, 3))
418 goto err;
419 /*
420 * currently M = A - 2*B, but we need M = A - 3*B
421 */
422 if (!BN_sub(M, M, B))
423 goto err;
424 }
425 }
426 } else {
427 if (!BN_div(D, M, A, B, ctx))
428 goto err;
429 }
430
431 /*-
432 * Now
433 * A = D*B + M;
434 * thus we have
435 * (**) sign*Y*a == D*B + M (mod |n|).
436 */
437
438 tmp = A; /* keep the BIGNUM object, the value does not
439 * matter */
440
441 /* (A, B) := (B, A mod B) ... */
442 A = B;
443 B = M;
444 /* ... so we have 0 <= B < A again */
445
446 /*-
447 * Since the former M is now B and the former B is now A,
448 * (**) translates into
449 * sign*Y*a == D*A + B (mod |n|),
450 * i.e.
451 * sign*Y*a - D*A == B (mod |n|).
452 * Similarly, (*) translates into
453 * -sign*X*a == A (mod |n|).
454 *
455 * Thus,
456 * sign*Y*a + D*sign*X*a == B (mod |n|),
457 * i.e.
458 * sign*(Y + D*X)*a == B (mod |n|).
459 *
031e5cce 460 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
d3819813
MTL
461 * -sign*X*a == B (mod |n|),
462 * sign*Y*a == A (mod |n|).
463 * Note that X and Y stay non-negative all the time.
464 */
465
466 /*
467 * most of the time D is very small, so we can optimize tmp :=
468 * D*X+Y
469 */
470 if (BN_is_one(D)) {
471 if (!BN_add(tmp, X, Y))
472 goto err;
473 } else {
474 if (BN_is_word(D, 2)) {
475 if (!BN_lshift1(tmp, X))
476 goto err;
477 } else if (BN_is_word(D, 4)) {
478 if (!BN_lshift(tmp, X, 2))
479 goto err;
480 } else if (D->top == 1) {
481 if (!BN_copy(tmp, X))
482 goto err;
483 if (!BN_mul_word(tmp, D->d[0]))
484 goto err;
485 } else {
486 if (!BN_mul(tmp, D, X, ctx))
487 goto err;
488 }
489 if (!BN_add(tmp, tmp, Y))
490 goto err;
491 }
492
493 M = Y; /* keep the BIGNUM object, the value does not
494 * matter */
495 Y = X;
496 X = tmp;
497 sign = -sign;
498 }
499 }
500
501 /*-
502 * The while loop (Euclid's algorithm) ends when
503 * A == gcd(a,n);
504 * we have
505 * sign*Y*a == A (mod |n|),
506 * where Y is non-negative.
507 */
508
509 if (sign < 0) {
510 if (!BN_sub(Y, n, Y))
511 goto err;
512 }
513 /* Now Y*a == A (mod |n|). */
514
515 if (BN_is_one(A)) {
516 /* Y*a == 1 (mod |n|) */
517 if (!Y->neg && BN_ucmp(Y, n) < 0) {
518 if (!BN_copy(R, Y))
519 goto err;
520 } else {
521 if (!BN_nnmod(R, Y, n, ctx))
522 goto err;
523 }
524 } else {
031e5cce 525 BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
d3819813
MTL
526 goto err;
527 }
528 ret = R;
529 err:
530 if ((ret == NULL) && (in == NULL))
531 BN_free(R);
532 BN_CTX_end(ctx);
533 bn_check_top(ret);
534 return (ret);
535}
536
537/*
538 * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
539 * not contain branches that may leak sensitive information.
3e575651
SL
540 */
541static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
d3819813
MTL
542 const BIGNUM *a, const BIGNUM *n,
543 BN_CTX *ctx)
544{
545 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
031e5cce
SM
546 BIGNUM local_A, local_B;
547 BIGNUM *pA, *pB;
d3819813
MTL
548 BIGNUM *ret = NULL;
549 int sign;
550
551 bn_check_top(a);
552 bn_check_top(n);
553
554 BN_CTX_start(ctx);
555 A = BN_CTX_get(ctx);
556 B = BN_CTX_get(ctx);
557 X = BN_CTX_get(ctx);
558 D = BN_CTX_get(ctx);
559 M = BN_CTX_get(ctx);
560 Y = BN_CTX_get(ctx);
561 T = BN_CTX_get(ctx);
562 if (T == NULL)
563 goto err;
564
565 if (in == NULL)
566 R = BN_new();
567 else
568 R = in;
569 if (R == NULL)
570 goto err;
571
572 BN_one(X);
573 BN_zero(Y);
574 if (BN_copy(B, a) == NULL)
575 goto err;
576 if (BN_copy(A, n) == NULL)
577 goto err;
578 A->neg = 0;
579
580 if (B->neg || (BN_ucmp(B, A) >= 0)) {
581 /*
582 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
583 * BN_div_no_branch will be called eventually.
584 */
031e5cce
SM
585 pB = &local_B;
586 local_B.flags = 0;
587 BN_with_flags(pB, B, BN_FLG_CONSTTIME);
588 if (!BN_nnmod(B, pB, A, ctx))
589 goto err;
d3819813
MTL
590 }
591 sign = -1;
592 /*-
593 * From B = a mod |n|, A = |n| it follows that
594 *
595 * 0 <= B < A,
596 * -sign*X*a == B (mod |n|),
597 * sign*Y*a == A (mod |n|).
598 */
599
600 while (!BN_is_zero(B)) {
601 BIGNUM *tmp;
602
603 /*-
604 * 0 < B < A,
605 * (*) -sign*X*a == B (mod |n|),
606 * sign*Y*a == A (mod |n|)
607 */
608
609 /*
610 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
611 * BN_div_no_branch will be called eventually.
612 */
031e5cce
SM
613 pA = &local_A;
614 local_A.flags = 0;
615 BN_with_flags(pA, A, BN_FLG_CONSTTIME);
d3819813 616
031e5cce
SM
617 /* (D, M) := (A/B, A%B) ... */
618 if (!BN_div(D, M, pA, B, ctx))
619 goto err;
d3819813
MTL
620
621 /*-
622 * Now
623 * A = D*B + M;
624 * thus we have
625 * (**) sign*Y*a == D*B + M (mod |n|).
626 */
627
628 tmp = A; /* keep the BIGNUM object, the value does not
629 * matter */
630
631 /* (A, B) := (B, A mod B) ... */
632 A = B;
633 B = M;
634 /* ... so we have 0 <= B < A again */
635
636 /*-
637 * Since the former M is now B and the former B is now A,
638 * (**) translates into
639 * sign*Y*a == D*A + B (mod |n|),
640 * i.e.
641 * sign*Y*a - D*A == B (mod |n|).
642 * Similarly, (*) translates into
643 * -sign*X*a == A (mod |n|).
644 *
645 * Thus,
646 * sign*Y*a + D*sign*X*a == B (mod |n|),
647 * i.e.
648 * sign*(Y + D*X)*a == B (mod |n|).
649 *
031e5cce 650 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
d3819813
MTL
651 * -sign*X*a == B (mod |n|),
652 * sign*Y*a == A (mod |n|).
653 * Note that X and Y stay non-negative all the time.
654 */
655
656 if (!BN_mul(tmp, D, X, ctx))
657 goto err;
658 if (!BN_add(tmp, tmp, Y))
659 goto err;
660
661 M = Y; /* keep the BIGNUM object, the value does not
662 * matter */
663 Y = X;
664 X = tmp;
665 sign = -sign;
666 }
667
668 /*-
669 * The while loop (Euclid's algorithm) ends when
670 * A == gcd(a,n);
671 * we have
672 * sign*Y*a == A (mod |n|),
673 * where Y is non-negative.
674 */
675
676 if (sign < 0) {
677 if (!BN_sub(Y, n, Y))
678 goto err;
679 }
680 /* Now Y*a == A (mod |n|). */
681
682 if (BN_is_one(A)) {
683 /* Y*a == 1 (mod |n|) */
684 if (!Y->neg && BN_ucmp(Y, n) < 0) {
685 if (!BN_copy(R, Y))
686 goto err;
687 } else {
688 if (!BN_nnmod(R, Y, n, ctx))
689 goto err;
690 }
691 } else {
692 BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
693 goto err;
694 }
695 ret = R;
696 err:
697 if ((ret == NULL) && (in == NULL))
698 BN_free(R);
699 BN_CTX_end(ctx);
700 bn_check_top(ret);
701 return (ret);
702}