]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - Documentation/DocBook/drm.tmpl
drm/dp: add a hw mutex around the transfer functions. (v2)
[mirror_ubuntu-artful-kernel.git] / Documentation / DocBook / drm.tmpl
CommitLineData
2d2ef822
JB
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="drmDevelopersGuide">
6 <bookinfo>
7 <title>Linux DRM Developer's Guide</title>
8
9cad9c95
LP
9 <authorgroup>
10 <author>
11 <firstname>Jesse</firstname>
12 <surname>Barnes</surname>
13 <contrib>Initial version</contrib>
14 <affiliation>
15 <orgname>Intel Corporation</orgname>
16 <address>
17 <email>jesse.barnes@intel.com</email>
18 </address>
19 </affiliation>
20 </author>
21 <author>
22 <firstname>Laurent</firstname>
23 <surname>Pinchart</surname>
24 <contrib>Driver internals</contrib>
25 <affiliation>
26 <orgname>Ideas on board SPRL</orgname>
27 <address>
28 <email>laurent.pinchart@ideasonboard.com</email>
29 </address>
30 </affiliation>
31 </author>
3a05700d
DV
32 <author>
33 <firstname>Daniel</firstname>
34 <surname>Vetter</surname>
35 <contrib>Contributions all over the place</contrib>
36 <affiliation>
37 <orgname>Intel Corporation</orgname>
38 <address>
39 <email>daniel.vetter@ffwll.ch</email>
40 </address>
41 </affiliation>
42 </author>
9cad9c95
LP
43 </authorgroup>
44
2d2ef822
JB
45 <copyright>
46 <year>2008-2009</year>
3a05700d 47 <year>2013-2014</year>
9cad9c95 48 <holder>Intel Corporation</holder>
3a05700d
DV
49 </copyright>
50 <copyright>
51 <year>2012</year>
9cad9c95 52 <holder>Laurent Pinchart</holder>
2d2ef822
JB
53 </copyright>
54
55 <legalnotice>
56 <para>
57 The contents of this file may be used under the terms of the GNU
58 General Public License version 2 (the "GPL") as distributed in
59 the kernel source COPYING file.
60 </para>
61 </legalnotice>
9cad9c95
LP
62
63 <revhistory>
64 <!-- Put document revisions here, newest first. -->
65 <revision>
66 <revnumber>1.0</revnumber>
67 <date>2012-07-13</date>
68 <authorinitials>LP</authorinitials>
69 <revremark>Added extensive documentation about driver internals.
70 </revremark>
71 </revision>
72 </revhistory>
2d2ef822
JB
73 </bookinfo>
74
75<toc></toc>
76
3519f70e
DV
77<part id="drmCore">
78 <title>DRM Core</title>
79 <partintro>
80 <para>
81 This first part of the DRM Developer's Guide documents core DRM code,
9a6594fc 82 helper libraries for writing drivers and generic userspace interfaces
3519f70e
DV
83 exposed by DRM drivers.
84 </para>
85 </partintro>
2d2ef822
JB
86
87 <chapter id="drmIntroduction">
88 <title>Introduction</title>
89 <para>
90 The Linux DRM layer contains code intended to support the needs
91 of complex graphics devices, usually containing programmable
92 pipelines well suited to 3D graphics acceleration. Graphics
f11aca04 93 drivers in the kernel may make use of DRM functions to make
2d2ef822
JB
94 tasks like memory management, interrupt handling and DMA easier,
95 and provide a uniform interface to applications.
96 </para>
97 <para>
98 A note on versions: this guide covers features found in the DRM
99 tree, including the TTM memory manager, output configuration and
100 mode setting, and the new vblank internals, in addition to all
101 the regular features found in current kernels.
102 </para>
103 <para>
104 [Insert diagram of typical DRM stack here]
105 </para>
106 </chapter>
107
108 <!-- Internals -->
109
110 <chapter id="drmInternals">
111 <title>DRM Internals</title>
112 <para>
113 This chapter documents DRM internals relevant to driver authors
114 and developers working to add support for the latest features to
115 existing drivers.
116 </para>
117 <para>
a78f6787 118 First, we go over some typical driver initialization
2d2ef822
JB
119 requirements, like setting up command buffers, creating an
120 initial output configuration, and initializing core services.
a78f6787 121 Subsequent sections cover core internals in more detail,
2d2ef822
JB
122 providing implementation notes and examples.
123 </para>
124 <para>
125 The DRM layer provides several services to graphics drivers,
126 many of them driven by the application interfaces it provides
127 through libdrm, the library that wraps most of the DRM ioctls.
128 These include vblank event handling, memory
129 management, output management, framebuffer management, command
130 submission &amp; fencing, suspend/resume support, and DMA
131 services.
132 </para>
2d2ef822
JB
133
134 <!-- Internals: driver init -->
135
136 <sect1>
9cad9c95
LP
137 <title>Driver Initialization</title>
138 <para>
139 At the core of every DRM driver is a <structname>drm_driver</structname>
140 structure. Drivers typically statically initialize a drm_driver structure,
141 and then pass it to one of the <function>drm_*_init()</function> functions
142 to register it with the DRM subsystem.
2d2ef822 143 </para>
9cad9c95
LP
144 <para>
145 The <structname>drm_driver</structname> structure contains static
146 information that describes the driver and features it supports, and
147 pointers to methods that the DRM core will call to implement the DRM API.
148 We will first go through the <structname>drm_driver</structname> static
149 information fields, and will then describe individual operations in
150 details as they get used in later sections.
2d2ef822 151 </para>
2d2ef822 152 <sect2>
9cad9c95
LP
153 <title>Driver Information</title>
154 <sect3>
155 <title>Driver Features</title>
156 <para>
157 Drivers inform the DRM core about their requirements and supported
158 features by setting appropriate flags in the
159 <structfield>driver_features</structfield> field. Since those flags
160 influence the DRM core behaviour since registration time, most of them
161 must be set to registering the <structname>drm_driver</structname>
162 instance.
163 </para>
164 <synopsis>u32 driver_features;</synopsis>
165 <variablelist>
166 <title>Driver Feature Flags</title>
167 <varlistentry>
168 <term>DRIVER_USE_AGP</term>
169 <listitem><para>
170 Driver uses AGP interface, the DRM core will manage AGP resources.
171 </para></listitem>
172 </varlistentry>
173 <varlistentry>
174 <term>DRIVER_REQUIRE_AGP</term>
175 <listitem><para>
176 Driver needs AGP interface to function. AGP initialization failure
177 will become a fatal error.
178 </para></listitem>
179 </varlistentry>
9cad9c95
LP
180 <varlistentry>
181 <term>DRIVER_PCI_DMA</term>
182 <listitem><para>
183 Driver is capable of PCI DMA, mapping of PCI DMA buffers to
184 userspace will be enabled. Deprecated.
185 </para></listitem>
186 </varlistentry>
187 <varlistentry>
188 <term>DRIVER_SG</term>
189 <listitem><para>
190 Driver can perform scatter/gather DMA, allocation and mapping of
191 scatter/gather buffers will be enabled. Deprecated.
192 </para></listitem>
193 </varlistentry>
194 <varlistentry>
195 <term>DRIVER_HAVE_DMA</term>
196 <listitem><para>
197 Driver supports DMA, the userspace DMA API will be supported.
198 Deprecated.
199 </para></listitem>
200 </varlistentry>
201 <varlistentry>
202 <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
203 <listitem><para>
02b62985
LP
204 DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
205 managed by the DRM Core. The core will support simple IRQ handler
206 installation when the flag is set. The installation process is
207 described in <xref linkend="drm-irq-registration"/>.</para>
208 <para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler
209 support shared IRQs (note that this is required of PCI drivers).
9cad9c95
LP
210 </para></listitem>
211 </varlistentry>
9cad9c95
LP
212 <varlistentry>
213 <term>DRIVER_GEM</term>
214 <listitem><para>
215 Driver use the GEM memory manager.
216 </para></listitem>
217 </varlistentry>
218 <varlistentry>
219 <term>DRIVER_MODESET</term>
220 <listitem><para>
221 Driver supports mode setting interfaces (KMS).
222 </para></listitem>
223 </varlistentry>
224 <varlistentry>
225 <term>DRIVER_PRIME</term>
226 <listitem><para>
227 Driver implements DRM PRIME buffer sharing.
228 </para></listitem>
229 </varlistentry>
1793126f
DH
230 <varlistentry>
231 <term>DRIVER_RENDER</term>
232 <listitem><para>
233 Driver supports dedicated render nodes.
234 </para></listitem>
235 </varlistentry>
9cad9c95
LP
236 </variablelist>
237 </sect3>
238 <sect3>
239 <title>Major, Minor and Patchlevel</title>
240 <synopsis>int major;
241int minor;
242int patchlevel;</synopsis>
243 <para>
244 The DRM core identifies driver versions by a major, minor and patch
245 level triplet. The information is printed to the kernel log at
246 initialization time and passed to userspace through the
247 DRM_IOCTL_VERSION ioctl.
248 </para>
249 <para>
250 The major and minor numbers are also used to verify the requested driver
251 API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
252 between minor versions, applications can call DRM_IOCTL_SET_VERSION to
253 select a specific version of the API. If the requested major isn't equal
254 to the driver major, or the requested minor is larger than the driver
255 minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
256 the driver's set_version() method will be called with the requested
257 version.
258 </para>
259 </sect3>
260 <sect3>
261 <title>Name, Description and Date</title>
262 <synopsis>char *name;
263char *desc;
264char *date;</synopsis>
265 <para>
266 The driver name is printed to the kernel log at initialization time,
267 used for IRQ registration and passed to userspace through
268 DRM_IOCTL_VERSION.
269 </para>
270 <para>
271 The driver description is a purely informative string passed to
272 userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
273 the kernel.
274 </para>
275 <para>
276 The driver date, formatted as YYYYMMDD, is meant to identify the date of
277 the latest modification to the driver. However, as most drivers fail to
278 update it, its value is mostly useless. The DRM core prints it to the
279 kernel log at initialization time and passes it to userspace through the
280 DRM_IOCTL_VERSION ioctl.
281 </para>
282 </sect3>
283 </sect2>
284 <sect2>
285 <title>Driver Load</title>
2d2ef822 286 <para>
9cad9c95
LP
287 The <methodname>load</methodname> method is the driver and device
288 initialization entry point. The method is responsible for allocating and
e1f8ebdc
DV
289 initializing driver private data, performing resource allocation and
290 mapping (e.g. acquiring
9cad9c95
LP
291 clocks, mapping registers or allocating command buffers), initializing
292 the memory manager (<xref linkend="drm-memory-management"/>), installing
293 the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up
294 vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode
295 setting (<xref linkend="drm-mode-setting"/>) and initial output
296 configuration (<xref linkend="drm-kms-init"/>).
2d2ef822 297 </para>
9cad9c95
LP
298 <note><para>
299 If compatibility is a concern (e.g. with drivers converted over from
300 User Mode Setting to Kernel Mode Setting), care must be taken to prevent
301 device initialization and control that is incompatible with currently
302 active userspace drivers. For instance, if user level mode setting
303 drivers are in use, it would be problematic to perform output discovery
304 &amp; configuration at load time. Likewise, if user-level drivers
305 unaware of memory management are in use, memory management and command
306 buffer setup may need to be omitted. These requirements are
307 driver-specific, and care needs to be taken to keep both old and new
308 applications and libraries working.
309 </para></note>
310 <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis>
2d2ef822 311 <para>
9cad9c95
LP
312 The method takes two arguments, a pointer to the newly created
313 <structname>drm_device</structname> and flags. The flags are used to
314 pass the <structfield>driver_data</structfield> field of the device id
315 corresponding to the device passed to <function>drm_*_init()</function>.
316 Only PCI devices currently use this, USB and platform DRM drivers have
317 their <methodname>load</methodname> method called with flags to 0.
2d2ef822 318 </para>
9cad9c95 319 <sect3>
e1f8ebdc 320 <title>Driver Private Data</title>
9cad9c95
LP
321 <para>
322 The driver private hangs off the main
323 <structname>drm_device</structname> structure and can be used for
324 tracking various device-specific bits of information, like register
325 offsets, command buffer status, register state for suspend/resume, etc.
326 At load time, a driver may simply allocate one and set
327 <structname>drm_device</structname>.<structfield>dev_priv</structfield>
328 appropriately; it should be freed and
329 <structname>drm_device</structname>.<structfield>dev_priv</structfield>
330 set to NULL when the driver is unloaded.
331 </para>
9cad9c95
LP
332 </sect3>
333 <sect3 id="drm-irq-registration">
334 <title>IRQ Registration</title>
335 <para>
336 The DRM core tries to facilitate IRQ handler registration and
337 unregistration by providing <function>drm_irq_install</function> and
338 <function>drm_irq_uninstall</function> functions. Those functions only
02b62985
LP
339 support a single interrupt per device, devices that use more than one
340 IRQs need to be handled manually.
9cad9c95 341 </para>
02b62985
LP
342 <sect4>
343 <title>Managed IRQ Registration</title>
02b62985
LP
344 <para>
345 <function>drm_irq_install</function> starts by calling the
346 <methodname>irq_preinstall</methodname> driver operation. The operation
347 is optional and must make sure that the interrupt will not get fired by
348 clearing all pending interrupt flags or disabling the interrupt.
349 </para>
350 <para>
bb0f1b5c 351 The passed-in IRQ will then be requested by a call to
02b62985
LP
352 <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
353 feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
354 requested.
355 </para>
356 <para>
357 The IRQ handler function must be provided as the mandatory irq_handler
358 driver operation. It will get passed directly to
359 <function>request_irq</function> and thus has the same prototype as all
360 IRQ handlers. It will get called with a pointer to the DRM device as the
361 second argument.
362 </para>
363 <para>
364 Finally the function calls the optional
365 <methodname>irq_postinstall</methodname> driver operation. The operation
366 usually enables interrupts (excluding the vblank interrupt, which is
367 enabled separately), but drivers may choose to enable/disable interrupts
368 at a different time.
369 </para>
370 <para>
371 <function>drm_irq_uninstall</function> is similarly used to uninstall an
372 IRQ handler. It starts by waking up all processes waiting on a vblank
373 interrupt to make sure they don't hang, and then calls the optional
374 <methodname>irq_uninstall</methodname> driver operation. The operation
375 must disable all hardware interrupts. Finally the function frees the IRQ
376 by calling <function>free_irq</function>.
377 </para>
378 </sect4>
379 <sect4>
380 <title>Manual IRQ Registration</title>
381 <para>
382 Drivers that require multiple interrupt handlers can't use the managed
383 IRQ registration functions. In that case IRQs must be registered and
384 unregistered manually (usually with the <function>request_irq</function>
385 and <function>free_irq</function> functions, or their devm_* equivalent).
386 </para>
387 <para>
388 When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ
389 driver feature flag, and must not provide the
390 <methodname>irq_handler</methodname> driver operation. They must set the
391 <structname>drm_device</structname> <structfield>irq_enabled</structfield>
392 field to 1 upon registration of the IRQs, and clear it to 0 after
393 unregistering the IRQs.
394 </para>
395 </sect4>
9cad9c95
LP
396 </sect3>
397 <sect3>
398 <title>Memory Manager Initialization</title>
399 <para>
400 Every DRM driver requires a memory manager which must be initialized at
401 load time. DRM currently contains two memory managers, the Translation
402 Table Manager (TTM) and the Graphics Execution Manager (GEM).
403 This document describes the use of the GEM memory manager only. See
404 <xref linkend="drm-memory-management"/> for details.
405 </para>
406 </sect3>
407 <sect3>
408 <title>Miscellaneous Device Configuration</title>
409 <para>
410 Another task that may be necessary for PCI devices during configuration
411 is mapping the video BIOS. On many devices, the VBIOS describes device
412 configuration, LCD panel timings (if any), and contains flags indicating
413 device state. Mapping the BIOS can be done using the pci_map_rom() call,
414 a convenience function that takes care of mapping the actual ROM,
415 whether it has been shadowed into memory (typically at address 0xc0000)
416 or exists on the PCI device in the ROM BAR. Note that after the ROM has
417 been mapped and any necessary information has been extracted, it should
418 be unmapped; on many devices, the ROM address decoder is shared with
419 other BARs, so leaving it mapped could cause undesired behaviour like
420 hangs or memory corruption.
421 <!--!Fdrivers/pci/rom.c pci_map_rom-->
422 </para>
423 </sect3>
2d2ef822 424 </sect2>
9cad9c95 425 </sect1>
2d2ef822 426
9cad9c95 427 <!-- Internals: memory management -->
2d2ef822 428
9cad9c95
LP
429 <sect1 id="drm-memory-management">
430 <title>Memory management</title>
431 <para>
432 Modern Linux systems require large amount of graphics memory to store
433 frame buffers, textures, vertices and other graphics-related data. Given
434 the very dynamic nature of many of that data, managing graphics memory
435 efficiently is thus crucial for the graphics stack and plays a central
436 role in the DRM infrastructure.
437 </para>
438 <para>
439 The DRM core includes two memory managers, namely Translation Table Maps
440 (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
441 manager to be developed and tried to be a one-size-fits-them all
f884ab15 442 solution. It provides a single userspace API to accommodate the need of
9cad9c95
LP
443 all hardware, supporting both Unified Memory Architecture (UMA) devices
444 and devices with dedicated video RAM (i.e. most discrete video cards).
445 This resulted in a large, complex piece of code that turned out to be
446 hard to use for driver development.
447 </para>
448 <para>
449 GEM started as an Intel-sponsored project in reaction to TTM's
450 complexity. Its design philosophy is completely different: instead of
451 providing a solution to every graphics memory-related problems, GEM
452 identified common code between drivers and created a support library to
453 share it. GEM has simpler initialization and execution requirements than
9a6594fc 454 TTM, but has no video RAM management capabilities and is thus limited to
9cad9c95
LP
455 UMA devices.
456 </para>
2d2ef822 457 <sect2>
9cad9c95 458 <title>The Translation Table Manager (TTM)</title>
2d2ef822 459 <para>
9cad9c95 460 TTM design background and information belongs here.
2d2ef822
JB
461 </para>
462 <sect3>
463 <title>TTM initialization</title>
9cad9c95
LP
464 <warning><para>This section is outdated.</para></warning>
465 <para>
466 Drivers wishing to support TTM must fill out a drm_bo_driver
467 structure. The structure contains several fields with function
468 pointers for initializing the TTM, allocating and freeing memory,
469 waiting for command completion and fence synchronization, and memory
470 migration. See the radeon_ttm.c file for an example of usage.
2d2ef822
JB
471 </para>
472 <para>
473 The ttm_global_reference structure is made up of several fields:
474 </para>
475 <programlisting>
476 struct ttm_global_reference {
477 enum ttm_global_types global_type;
478 size_t size;
479 void *object;
480 int (*init) (struct ttm_global_reference *);
481 void (*release) (struct ttm_global_reference *);
482 };
483 </programlisting>
484 <para>
485 There should be one global reference structure for your memory
486 manager as a whole, and there will be others for each object
487 created by the memory manager at runtime. Your global TTM should
488 have a type of TTM_GLOBAL_TTM_MEM. The size field for the global
489 object should be sizeof(struct ttm_mem_global), and the init and
a5294e01 490 release hooks should point at your driver-specific init and
a78f6787 491 release routines, which probably eventually call
005d7f4a 492 ttm_mem_global_init and ttm_mem_global_release, respectively.
2d2ef822
JB
493 </para>
494 <para>
495 Once your global TTM accounting structure is set up and initialized
ae63d793 496 by calling ttm_global_item_ref() on it,
1c86de22 497 you need to create a buffer object TTM to
2d2ef822
JB
498 provide a pool for buffer object allocation by clients and the
499 kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO,
500 and its size should be sizeof(struct ttm_bo_global). Again,
a5294e01 501 driver-specific init and release functions may be provided,
ae63d793
MW
502 likely eventually calling ttm_bo_global_init() and
503 ttm_bo_global_release(), respectively. Also, like the previous
504 object, ttm_global_item_ref() is used to create an initial reference
ce04cc08 505 count for the TTM, which will call your initialization function.
2d2ef822
JB
506 </para>
507 </sect3>
9cad9c95
LP
508 </sect2>
509 <sect2 id="drm-gem">
510 <title>The Graphics Execution Manager (GEM)</title>
511 <para>
512 The GEM design approach has resulted in a memory manager that doesn't
513 provide full coverage of all (or even all common) use cases in its
514 userspace or kernel API. GEM exposes a set of standard memory-related
515 operations to userspace and a set of helper functions to drivers, and let
516 drivers implement hardware-specific operations with their own private API.
517 </para>
518 <para>
519 The GEM userspace API is described in the
520 <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
521 Execution Manager</citetitle></ulink> article on LWN. While slightly
522 outdated, the document provides a good overview of the GEM API principles.
523 Buffer allocation and read and write operations, described as part of the
524 common GEM API, are currently implemented using driver-specific ioctls.
525 </para>
526 <para>
527 GEM is data-agnostic. It manages abstract buffer objects without knowing
528 what individual buffers contain. APIs that require knowledge of buffer
529 contents or purpose, such as buffer allocation or synchronization
530 primitives, are thus outside of the scope of GEM and must be implemented
531 using driver-specific ioctls.
532 </para>
533 <para>
534 On a fundamental level, GEM involves several operations:
535 <itemizedlist>
536 <listitem>Memory allocation and freeing</listitem>
537 <listitem>Command execution</listitem>
538 <listitem>Aperture management at command execution time</listitem>
539 </itemizedlist>
540 Buffer object allocation is relatively straightforward and largely
541 provided by Linux's shmem layer, which provides memory to back each
542 object.
543 </para>
544 <para>
545 Device-specific operations, such as command execution, pinning, buffer
546 read &amp; write, mapping, and domain ownership transfers are left to
547 driver-specific ioctls.
548 </para>
549 <sect3>
550 <title>GEM Initialization</title>
551 <para>
552 Drivers that use GEM must set the DRIVER_GEM bit in the struct
553 <structname>drm_driver</structname>
554 <structfield>driver_features</structfield> field. The DRM core will
555 then automatically initialize the GEM core before calling the
556 <methodname>load</methodname> operation. Behind the scene, this will
557 create a DRM Memory Manager object which provides an address space
558 pool for object allocation.
559 </para>
560 <para>
561 In a KMS configuration, drivers need to allocate and initialize a
562 command ring buffer following core GEM initialization if required by
563 the hardware. UMA devices usually have what is called a "stolen"
564 memory region, which provides space for the initial framebuffer and
565 large, contiguous memory regions required by the device. This space is
566 typically not managed by GEM, and must be initialized separately into
567 its own DRM MM object.
568 </para>
569 </sect3>
2d2ef822 570 <sect3>
9cad9c95
LP
571 <title>GEM Objects Creation</title>
572 <para>
573 GEM splits creation of GEM objects and allocation of the memory that
574 backs them in two distinct operations.
575 </para>
576 <para>
577 GEM objects are represented by an instance of struct
578 <structname>drm_gem_object</structname>. Drivers usually need to extend
579 GEM objects with private information and thus create a driver-specific
580 GEM object structure type that embeds an instance of struct
581 <structname>drm_gem_object</structname>.
582 </para>
583 <para>
584 To create a GEM object, a driver allocates memory for an instance of its
585 specific GEM object type and initializes the embedded struct
586 <structname>drm_gem_object</structname> with a call to
587 <function>drm_gem_object_init</function>. The function takes a pointer to
588 the DRM device, a pointer to the GEM object and the buffer object size
589 in bytes.
590 </para>
591 <para>
592 GEM uses shmem to allocate anonymous pageable memory.
593 <function>drm_gem_object_init</function> will create an shmfs file of
594 the requested size and store it into the struct
595 <structname>drm_gem_object</structname> <structfield>filp</structfield>
596 field. The memory is used as either main storage for the object when the
597 graphics hardware uses system memory directly or as a backing store
598 otherwise.
599 </para>
600 <para>
601 Drivers are responsible for the actual physical pages allocation by
602 calling <function>shmem_read_mapping_page_gfp</function> for each page.
603 Note that they can decide to allocate pages when initializing the GEM
604 object, or to delay allocation until the memory is needed (for instance
605 when a page fault occurs as a result of a userspace memory access or
606 when the driver needs to start a DMA transfer involving the memory).
607 </para>
608 <para>
609 Anonymous pageable memory allocation is not always desired, for instance
610 when the hardware requires physically contiguous system memory as is
611 often the case in embedded devices. Drivers can create GEM objects with
612 no shmfs backing (called private GEM objects) by initializing them with
613 a call to <function>drm_gem_private_object_init</function> instead of
614 <function>drm_gem_object_init</function>. Storage for private GEM
615 objects must be managed by drivers.
616 </para>
617 <para>
618 Drivers that do not need to extend GEM objects with private information
619 can call the <function>drm_gem_object_alloc</function> function to
620 allocate and initialize a struct <structname>drm_gem_object</structname>
621 instance. The GEM core will call the optional driver
622 <methodname>gem_init_object</methodname> operation after initializing
623 the GEM object with <function>drm_gem_object_init</function>.
624 <synopsis>int (*gem_init_object) (struct drm_gem_object *obj);</synopsis>
625 </para>
626 <para>
627 No alloc-and-init function exists for private GEM objects.
628 </para>
629 </sect3>
630 <sect3>
631 <title>GEM Objects Lifetime</title>
632 <para>
633 All GEM objects are reference-counted by the GEM core. References can be
634 acquired and release by <function>calling drm_gem_object_reference</function>
635 and <function>drm_gem_object_unreference</function> respectively. The
636 caller must hold the <structname>drm_device</structname>
637 <structfield>struct_mutex</structfield> lock. As a convenience, GEM
638 provides the <function>drm_gem_object_reference_unlocked</function> and
639 <function>drm_gem_object_unreference_unlocked</function> functions that
640 can be called without holding the lock.
641 </para>
642 <para>
643 When the last reference to a GEM object is released the GEM core calls
644 the <structname>drm_driver</structname>
645 <methodname>gem_free_object</methodname> operation. That operation is
646 mandatory for GEM-enabled drivers and must free the GEM object and all
647 associated resources.
648 </para>
649 <para>
650 <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
651 Drivers are responsible for freeing all GEM object resources, including
652 the resources created by the GEM core. If an mmap offset has been
653 created for the object (in which case
654 <structname>drm_gem_object</structname>::<structfield>map_list</structfield>::<structfield>map</structfield>
655 is not NULL) it must be freed by a call to
656 <function>drm_gem_free_mmap_offset</function>. The shmfs backing store
657 must be released by calling <function>drm_gem_object_release</function>
658 (that function can safely be called if no shmfs backing store has been
659 created).
660 </para>
661 </sect3>
662 <sect3>
663 <title>GEM Objects Naming</title>
664 <para>
665 Communication between userspace and the kernel refers to GEM objects
666 using local handles, global names or, more recently, file descriptors.
667 All of those are 32-bit integer values; the usual Linux kernel limits
668 apply to the file descriptors.
669 </para>
670 <para>
671 GEM handles are local to a DRM file. Applications get a handle to a GEM
672 object through a driver-specific ioctl, and can use that handle to refer
673 to the GEM object in other standard or driver-specific ioctls. Closing a
674 DRM file handle frees all its GEM handles and dereferences the
675 associated GEM objects.
676 </para>
677 <para>
678 To create a handle for a GEM object drivers call
679 <function>drm_gem_handle_create</function>. The function takes a pointer
680 to the DRM file and the GEM object and returns a locally unique handle.
681 When the handle is no longer needed drivers delete it with a call to
682 <function>drm_gem_handle_delete</function>. Finally the GEM object
683 associated with a handle can be retrieved by a call to
684 <function>drm_gem_object_lookup</function>.
685 </para>
686 <para>
687 Handles don't take ownership of GEM objects, they only take a reference
688 to the object that will be dropped when the handle is destroyed. To
689 avoid leaking GEM objects, drivers must make sure they drop the
690 reference(s) they own (such as the initial reference taken at object
691 creation time) as appropriate, without any special consideration for the
692 handle. For example, in the particular case of combined GEM object and
693 handle creation in the implementation of the
694 <methodname>dumb_create</methodname> operation, drivers must drop the
695 initial reference to the GEM object before returning the handle.
696 </para>
697 <para>
698 GEM names are similar in purpose to handles but are not local to DRM
699 files. They can be passed between processes to reference a GEM object
700 globally. Names can't be used directly to refer to objects in the DRM
701 API, applications must convert handles to names and names to handles
702 using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
703 respectively. The conversion is handled by the DRM core without any
704 driver-specific support.
705 </para>
251261db
DV
706 <para>
707 GEM also supports buffer sharing with dma-buf file descriptors through
708 PRIME. GEM-based drivers must use the provided helpers functions to
709 implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
710 Since sharing file descriptors is inherently more secure than the
711 easily guessable and global GEM names it is the preferred buffer
712 sharing mechanism. Sharing buffers through GEM names is only supported
713 for legacy userspace. Furthermore PRIME also allows cross-device
714 buffer sharing since it is based on dma-bufs.
715 </para>
9cad9c95
LP
716 </sect3>
717 <sect3 id="drm-gem-objects-mapping">
718 <title>GEM Objects Mapping</title>
719 <para>
720 Because mapping operations are fairly heavyweight GEM favours
721 read/write-like access to buffers, implemented through driver-specific
722 ioctls, over mapping buffers to userspace. However, when random access
723 to the buffer is needed (to perform software rendering for instance),
724 direct access to the object can be more efficient.
725 </para>
726 <para>
727 The mmap system call can't be used directly to map GEM objects, as they
728 don't have their own file handle. Two alternative methods currently
729 co-exist to map GEM objects to userspace. The first method uses a
730 driver-specific ioctl to perform the mapping operation, calling
731 <function>do_mmap</function> under the hood. This is often considered
732 dubious, seems to be discouraged for new GEM-enabled drivers, and will
733 thus not be described here.
734 </para>
735 <para>
736 The second method uses the mmap system call on the DRM file handle.
737 <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
738 off_t offset);</synopsis>
739 DRM identifies the GEM object to be mapped by a fake offset passed
740 through the mmap offset argument. Prior to being mapped, a GEM object
741 must thus be associated with a fake offset. To do so, drivers must call
742 <function>drm_gem_create_mmap_offset</function> on the object. The
743 function allocates a fake offset range from a pool and stores the
744 offset divided by PAGE_SIZE in
745 <literal>obj-&gt;map_list.hash.key</literal>. Care must be taken not to
746 call <function>drm_gem_create_mmap_offset</function> if a fake offset
747 has already been allocated for the object. This can be tested by
748 <literal>obj-&gt;map_list.map</literal> being non-NULL.
749 </para>
750 <para>
751 Once allocated, the fake offset value
752 (<literal>obj-&gt;map_list.hash.key &lt;&lt; PAGE_SHIFT</literal>)
753 must be passed to the application in a driver-specific way and can then
754 be used as the mmap offset argument.
755 </para>
756 <para>
757 The GEM core provides a helper method <function>drm_gem_mmap</function>
758 to handle object mapping. The method can be set directly as the mmap
759 file operation handler. It will look up the GEM object based on the
760 offset value and set the VMA operations to the
761 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
762 field. Note that <function>drm_gem_mmap</function> doesn't map memory to
763 userspace, but relies on the driver-provided fault handler to map pages
764 individually.
765 </para>
766 <para>
767 To use <function>drm_gem_mmap</function>, drivers must fill the struct
768 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
769 field with a pointer to VM operations.
770 </para>
771 <para>
772 <synopsis>struct vm_operations_struct *gem_vm_ops
773
774 struct vm_operations_struct {
775 void (*open)(struct vm_area_struct * area);
776 void (*close)(struct vm_area_struct * area);
777 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
778 };</synopsis>
779 </para>
780 <para>
781 The <methodname>open</methodname> and <methodname>close</methodname>
782 operations must update the GEM object reference count. Drivers can use
783 the <function>drm_gem_vm_open</function> and
784 <function>drm_gem_vm_close</function> helper functions directly as open
785 and close handlers.
786 </para>
787 <para>
788 The fault operation handler is responsible for mapping individual pages
789 to userspace when a page fault occurs. Depending on the memory
790 allocation scheme, drivers can allocate pages at fault time, or can
791 decide to allocate memory for the GEM object at the time the object is
792 created.
793 </para>
794 <para>
795 Drivers that want to map the GEM object upfront instead of handling page
796 faults can implement their own mmap file operation handler.
797 </para>
798 </sect3>
9cad9c95
LP
799 <sect3>
800 <title>Memory Coherency</title>
801 <para>
802 When mapped to the device or used in a command buffer, backing pages
803 for an object are flushed to memory and marked write combined so as to
804 be coherent with the GPU. Likewise, if the CPU accesses an object
805 after the GPU has finished rendering to the object, then the object
806 must be made coherent with the CPU's view of memory, usually involving
807 GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU
808 coherency management is provided by a device-specific ioctl, which
809 evaluates an object's current domain and performs any necessary
810 flushing or synchronization to put the object into the desired
811 coherency domain (note that the object may be busy, i.e. an active
812 render target; in that case, setting the domain blocks the client and
813 waits for rendering to complete before performing any necessary
814 flushing operations).
815 </para>
816 </sect3>
817 <sect3>
818 <title>Command Execution</title>
819 <para>
820 Perhaps the most important GEM function for GPU devices is providing a
821 command execution interface to clients. Client programs construct
822 command buffers containing references to previously allocated memory
823 objects, and then submit them to GEM. At that point, GEM takes care to
824 bind all the objects into the GTT, execute the buffer, and provide
825 necessary synchronization between clients accessing the same buffers.
826 This often involves evicting some objects from the GTT and re-binding
827 others (a fairly expensive operation), and providing relocation
828 support which hides fixed GTT offsets from clients. Clients must take
829 care not to submit command buffers that reference more objects than
830 can fit in the GTT; otherwise, GEM will reject them and no rendering
831 will occur. Similarly, if several objects in the buffer require fence
832 registers to be allocated for correct rendering (e.g. 2D blits on
833 pre-965 chips), care must be taken not to require more fence registers
834 than are available to the client. Such resource management should be
835 abstracted from the client in libdrm.
836 </para>
2d2ef822 837 </sect3>
251261db 838 <sect3>
89d61fc0
DV
839 <title>GEM Function Reference</title>
840!Edrivers/gpu/drm/drm_gem.c
251261db 841 </sect3>
89d61fc0 842 </sect2>
4c5acf3c
DV
843 <sect2>
844 <title>VMA Offset Manager</title>
845!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
846!Edrivers/gpu/drm/drm_vma_manager.c
847!Iinclude/drm/drm_vma_manager.h
848 </sect2>
251261db
DV
849 <sect2 id="drm-prime-support">
850 <title>PRIME Buffer Sharing</title>
851 <para>
852 PRIME is the cross device buffer sharing framework in drm, originally
853 created for the OPTIMUS range of multi-gpu platforms. To userspace
854 PRIME buffers are dma-buf based file descriptors.
855 </para>
856 <sect3>
857 <title>Overview and Driver Interface</title>
858 <para>
859 Similar to GEM global names, PRIME file descriptors are
860 also used to share buffer objects across processes. They offer
861 additional security: as file descriptors must be explicitly sent over
862 UNIX domain sockets to be shared between applications, they can't be
863 guessed like the globally unique GEM names.
864 </para>
865 <para>
866 Drivers that support the PRIME
867 API must set the DRIVER_PRIME bit in the struct
868 <structname>drm_driver</structname>
869 <structfield>driver_features</structfield> field, and implement the
870 <methodname>prime_handle_to_fd</methodname> and
871 <methodname>prime_fd_to_handle</methodname> operations.
872 </para>
873 <para>
874 <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
875 struct drm_file *file_priv, uint32_t handle,
876 uint32_t flags, int *prime_fd);
877int (*prime_fd_to_handle)(struct drm_device *dev,
878 struct drm_file *file_priv, int prime_fd,
879 uint32_t *handle);</synopsis>
880 Those two operations convert a handle to a PRIME file descriptor and
881 vice versa. Drivers must use the kernel dma-buf buffer sharing framework
882 to manage the PRIME file descriptors. Similar to the mode setting
883 API PRIME is agnostic to the underlying buffer object manager, as
9a6594fc 884 long as handles are 32bit unsigned integers.
251261db
DV
885 </para>
886 <para>
887 While non-GEM drivers must implement the operations themselves, GEM
888 drivers must use the <function>drm_gem_prime_handle_to_fd</function>
889 and <function>drm_gem_prime_fd_to_handle</function> helper functions.
890 Those helpers rely on the driver
891 <methodname>gem_prime_export</methodname> and
892 <methodname>gem_prime_import</methodname> operations to create a dma-buf
893 instance from a GEM object (dma-buf exporter role) and to create a GEM
894 object from a dma-buf instance (dma-buf importer role).
895 </para>
896 <para>
897 <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
898 struct drm_gem_object *obj,
899 int flags);
900struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
901 struct dma_buf *dma_buf);</synopsis>
902 These two operations are mandatory for GEM drivers that support
903 PRIME.
904 </para>
905 </sect3>
906 <sect3>
39cc344a 907 <title>PRIME Helper Functions</title>
251261db
DV
908!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
909 </sect3>
910 </sect2>
39cc344a
DV
911 <sect2>
912 <title>PRIME Function References</title>
913!Edrivers/gpu/drm/drm_prime.c
914 </sect2>
93110be6
DV
915 <sect2>
916 <title>DRM MM Range Allocator</title>
917 <sect3>
918 <title>Overview</title>
919!Pdrivers/gpu/drm/drm_mm.c Overview
920 </sect3>
921 <sect3>
922 <title>LRU Scan/Eviction Support</title>
923!Pdrivers/gpu/drm/drm_mm.c lru scan roaster
924 </sect3>
925 </sect2>
e18c0412
DV
926 <sect2>
927 <title>DRM MM Range Allocator Function References</title>
928!Edrivers/gpu/drm/drm_mm.c
929!Iinclude/drm/drm_mm.h
930 </sect2>
9cad9c95
LP
931 </sect1>
932
933 <!-- Internals: mode setting -->
2d2ef822 934
9cad9c95
LP
935 <sect1 id="drm-mode-setting">
936 <title>Mode Setting</title>
937 <para>
938 Drivers must initialize the mode setting core by calling
939 <function>drm_mode_config_init</function> on the DRM device. The function
940 initializes the <structname>drm_device</structname>
941 <structfield>mode_config</structfield> field and never fails. Once done,
942 mode configuration must be setup by initializing the following fields.
943 </para>
944 <itemizedlist>
945 <listitem>
946 <synopsis>int min_width, min_height;
947int max_width, max_height;</synopsis>
948 <para>
949 Minimum and maximum width and height of the frame buffers in pixel
950 units.
951 </para>
952 </listitem>
953 <listitem>
954 <synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
955 <para>Mode setting functions.</para>
956 </listitem>
957 </itemizedlist>
3ec0db81
DV
958 <sect2>
959 <title>Display Modes Function Reference</title>
f5aabb97 960!Iinclude/drm/drm_modes.h
3ec0db81
DV
961!Edrivers/gpu/drm/drm_modes.c
962 </sect2>
2d2ef822 963 <sect2>
9cad9c95
LP
964 <title>Frame Buffer Creation</title>
965 <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
966 struct drm_file *file_priv,
967 struct drm_mode_fb_cmd2 *mode_cmd);</synopsis>
2d2ef822 968 <para>
9cad9c95
LP
969 Frame buffers are abstract memory objects that provide a source of
970 pixels to scanout to a CRTC. Applications explicitly request the
971 creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
972 receive an opaque handle that can be passed to the KMS CRTC control,
973 plane configuration and page flip functions.
974 </para>
975 <para>
976 Frame buffers rely on the underneath memory manager for low-level memory
977 operations. When creating a frame buffer applications pass a memory
978 handle (or a list of memory handles for multi-planar formats) through
065a5027
DV
979 the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
980 GEM as their userspace buffer management interface this would be a GEM
981 handle. Drivers are however free to use their own backing storage object
982 handles, e.g. vmwgfx directly exposes special TTM handles to userspace
983 and so expects TTM handles in the create ioctl and not GEM handles.
9cad9c95
LP
984 </para>
985 <para>
986 Drivers must first validate the requested frame buffer parameters passed
987 through the mode_cmd argument. In particular this is where invalid
988 sizes, pixel formats or pitches can be caught.
989 </para>
990 <para>
991 If the parameters are deemed valid, drivers then create, initialize and
992 return an instance of struct <structname>drm_framebuffer</structname>.
993 If desired the instance can be embedded in a larger driver-specific
5d7a9515
DV
994 structure. Drivers must fill its <structfield>width</structfield>,
995 <structfield>height</structfield>, <structfield>pitches</structfield>,
996 <structfield>offsets</structfield>, <structfield>depth</structfield>,
997 <structfield>bits_per_pixel</structfield> and
998 <structfield>pixel_format</structfield> fields from the values passed
999 through the <parameter>drm_mode_fb_cmd2</parameter> argument. They
1000 should call the <function>drm_helper_mode_fill_fb_struct</function>
1001 helper function to do so.
1002 </para>
1003
1004 <para>
065a5027 1005 The initialization of the new framebuffer instance is finalized with a
5d7a9515
DV
1006 call to <function>drm_framebuffer_init</function> which takes a pointer
1007 to DRM frame buffer operations (struct
1008 <structname>drm_framebuffer_funcs</structname>). Note that this function
1009 publishes the framebuffer and so from this point on it can be accessed
1010 concurrently from other threads. Hence it must be the last step in the
1011 driver's framebuffer initialization sequence. Frame buffer operations
1012 are
9cad9c95
LP
1013 <itemizedlist>
1014 <listitem>
1015 <synopsis>int (*create_handle)(struct drm_framebuffer *fb,
1016 struct drm_file *file_priv, unsigned int *handle);</synopsis>
1017 <para>
1018 Create a handle to the frame buffer underlying memory object. If
1019 the frame buffer uses a multi-plane format, the handle will
1020 reference the memory object associated with the first plane.
1021 </para>
1022 <para>
1023 Drivers call <function>drm_gem_handle_create</function> to create
1024 the handle.
1025 </para>
1026 </listitem>
1027 <listitem>
1028 <synopsis>void (*destroy)(struct drm_framebuffer *framebuffer);</synopsis>
1029 <para>
1030 Destroy the frame buffer object and frees all associated
1031 resources. Drivers must call
1032 <function>drm_framebuffer_cleanup</function> to free resources
1033 allocated by the DRM core for the frame buffer object, and must
1034 make sure to unreference all memory objects associated with the
1035 frame buffer. Handles created by the
1036 <methodname>create_handle</methodname> operation are released by
1037 the DRM core.
1038 </para>
1039 </listitem>
1040 <listitem>
1041 <synopsis>int (*dirty)(struct drm_framebuffer *framebuffer,
1042 struct drm_file *file_priv, unsigned flags, unsigned color,
1043 struct drm_clip_rect *clips, unsigned num_clips);</synopsis>
1044 <para>
1045 This optional operation notifies the driver that a region of the
1046 frame buffer has changed in response to a DRM_IOCTL_MODE_DIRTYFB
1047 ioctl call.
1048 </para>
1049 </listitem>
1050 </itemizedlist>
1051 </para>
1052 <para>
5d7a9515
DV
1053 The lifetime of a drm framebuffer is controlled with a reference count,
1054 drivers can grab additional references with
9ee984a5 1055 <function>drm_framebuffer_reference</function>and drop them
5d7a9515
DV
1056 again with <function>drm_framebuffer_unreference</function>. For
1057 driver-private framebuffers for which the last reference is never
1058 dropped (e.g. for the fbdev framebuffer when the struct
1059 <structname>drm_framebuffer</structname> is embedded into the fbdev
1060 helper struct) drivers can manually clean up a framebuffer at module
1061 unload time with
1062 <function>drm_framebuffer_unregister_private</function>.
9ee984a5 1063 </para>
9cad9c95 1064 </sect2>
065a5027
DV
1065 <sect2>
1066 <title>Dumb Buffer Objects</title>
1067 <para>
1068 The KMS API doesn't standardize backing storage object creation and
1069 leaves it to driver-specific ioctls. Furthermore actually creating a
1070 buffer object even for GEM-based drivers is done through a
1071 driver-specific ioctl - GEM only has a common userspace interface for
1072 sharing and destroying objects. While not an issue for full-fledged
1073 graphics stacks that include device-specific userspace components (in
1074 libdrm for instance), this limit makes DRM-based early boot graphics
1075 unnecessarily complex.
1076 </para>
1077 <para>
1078 Dumb objects partly alleviate the problem by providing a standard
1079 API to create dumb buffers suitable for scanout, which can then be used
1080 to create KMS frame buffers.
1081 </para>
1082 <para>
1083 To support dumb objects drivers must implement the
1084 <methodname>dumb_create</methodname>,
1085 <methodname>dumb_destroy</methodname> and
1086 <methodname>dumb_map_offset</methodname> operations.
1087 </para>
1088 <itemizedlist>
1089 <listitem>
1090 <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
1091 struct drm_mode_create_dumb *args);</synopsis>
1092 <para>
1093 The <methodname>dumb_create</methodname> operation creates a driver
1094 object (GEM or TTM handle) suitable for scanout based on the
1095 width, height and depth from the struct
1096 <structname>drm_mode_create_dumb</structname> argument. It fills the
1097 argument's <structfield>handle</structfield>,
1098 <structfield>pitch</structfield> and <structfield>size</structfield>
1099 fields with a handle for the newly created object and its line
1100 pitch and size in bytes.
1101 </para>
1102 </listitem>
1103 <listitem>
1104 <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
1105 uint32_t handle);</synopsis>
1106 <para>
1107 The <methodname>dumb_destroy</methodname> operation destroys a dumb
1108 object created by <methodname>dumb_create</methodname>.
1109 </para>
1110 </listitem>
1111 <listitem>
1112 <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
1113 uint32_t handle, uint64_t *offset);</synopsis>
1114 <para>
1115 The <methodname>dumb_map_offset</methodname> operation associates an
1116 mmap fake offset with the object given by the handle and returns
1117 it. Drivers must use the
1118 <function>drm_gem_create_mmap_offset</function> function to
1119 associate the fake offset as described in
1120 <xref linkend="drm-gem-objects-mapping"/>.
1121 </para>
1122 </listitem>
1123 </itemizedlist>
1124 <para>
1125 Note that dumb objects may not be used for gpu acceleration, as has been
1126 attempted on some ARM embedded platforms. Such drivers really must have
1127 a hardware-specific ioctl to allocate suitable buffer objects.
1128 </para>
1129 </sect2>
9cad9c95
LP
1130 <sect2>
1131 <title>Output Polling</title>
1132 <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
1133 <para>
1134 This operation notifies the driver that the status of one or more
1135 connectors has changed. Drivers that use the fb helper can just call the
1136 <function>drm_fb_helper_hotplug_event</function> function to handle this
1137 operation.
1138 </para>
1139 </sect2>
5d7a9515
DV
1140 <sect2>
1141 <title>Locking</title>
1142 <para>
1143 Beside some lookup structures with their own locking (which is hidden
1144 behind the interface functions) most of the modeset state is protected
1145 by the <code>dev-&lt;mode_config.lock</code> mutex and additionally
1146 per-crtc locks to allow cursor updates, pageflips and similar operations
1147 to occur concurrently with background tasks like output detection.
1148 Operations which cross domains like a full modeset always grab all
1149 locks. Drivers there need to protect resources shared between crtcs with
1150 additional locking. They also need to be careful to always grab the
1151 relevant crtc locks if a modset functions touches crtc state, e.g. for
1152 load detection (which does only grab the <code>mode_config.lock</code>
1153 to allow concurrent screen updates on live crtcs).
1154 </para>
1155 </sect2>
9cad9c95
LP
1156 </sect1>
1157
1158 <!-- Internals: kms initialization and cleanup -->
1159
1160 <sect1 id="drm-kms-init">
1161 <title>KMS Initialization and Cleanup</title>
1162 <para>
1163 A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
1164 and connectors. KMS drivers must thus create and initialize all those
1165 objects at load time after initializing mode setting.
1166 </para>
1167 <sect2>
1168 <title>CRTCs (struct <structname>drm_crtc</structname>)</title>
1169 <para>
1170 A CRTC is an abstraction representing a part of the chip that contains a
1171 pointer to a scanout buffer. Therefore, the number of CRTCs available
1172 determines how many independent scanout buffers can be active at any
1173 given time. The CRTC structure contains several fields to support this:
1174 a pointer to some video memory (abstracted as a frame buffer object), a
1175 display mode, and an (x, y) offset into the video memory to support
1176 panning or configurations where one piece of video memory spans multiple
1177 CRTCs.
2d2ef822
JB
1178 </para>
1179 <sect3>
9cad9c95
LP
1180 <title>CRTC Initialization</title>
1181 <para>
1182 A KMS device must create and register at least one struct
1183 <structname>drm_crtc</structname> instance. The instance is allocated
1184 and zeroed by the driver, possibly as part of a larger structure, and
1185 registered with a call to <function>drm_crtc_init</function> with a
1186 pointer to CRTC functions.
1187 </para>
1188 </sect3>
6efa1f2f 1189 <sect3 id="drm-kms-crtcops">
9cad9c95
LP
1190 <title>CRTC Operations</title>
1191 <sect4>
1192 <title>Set Configuration</title>
1193 <synopsis>int (*set_config)(struct drm_mode_set *set);</synopsis>
1194 <para>
1195 Apply a new CRTC configuration to the device. The configuration
1196 specifies a CRTC, a frame buffer to scan out from, a (x,y) position in
1197 the frame buffer, a display mode and an array of connectors to drive
1198 with the CRTC if possible.
1199 </para>
1200 <para>
1201 If the frame buffer specified in the configuration is NULL, the driver
1202 must detach all encoders connected to the CRTC and all connectors
1203 attached to those encoders and disable them.
1204 </para>
1205 <para>
1206 This operation is called with the mode config lock held.
1207 </para>
1208 <note><para>
aa4cd910
DV
1209 Note that the drm core has no notion of restoring the mode setting
1210 state after resume, since all resume handling is in the full
1211 responsibility of the driver. The common mode setting helper library
1212 though provides a helper which can be used for this:
1213 <function>drm_helper_resume_force_mode</function>.
9cad9c95
LP
1214 </para></note>
1215 </sect4>
1216 <sect4>
1217 <title>Page Flipping</title>
1218 <synopsis>int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1219 struct drm_pending_vblank_event *event);</synopsis>
1220 <para>
1221 Schedule a page flip to the given frame buffer for the CRTC. This
1222 operation is called with the mode config mutex held.
1223 </para>
1224 <para>
1225 Page flipping is a synchronization mechanism that replaces the frame
1226 buffer being scanned out by the CRTC with a new frame buffer during
1227 vertical blanking, avoiding tearing. When an application requests a page
1228 flip the DRM core verifies that the new frame buffer is large enough to
1229 be scanned out by the CRTC in the currently configured mode and then
1230 calls the CRTC <methodname>page_flip</methodname> operation with a
1231 pointer to the new frame buffer.
1232 </para>
1233 <para>
1234 The <methodname>page_flip</methodname> operation schedules a page flip.
f884ab15 1235 Once any pending rendering targeting the new frame buffer has
9cad9c95
LP
1236 completed, the CRTC will be reprogrammed to display that frame buffer
1237 after the next vertical refresh. The operation must return immediately
1238 without waiting for rendering or page flip to complete and must block
1239 any new rendering to the frame buffer until the page flip completes.
1240 </para>
8cf1e981
TR
1241 <para>
1242 If a page flip can be successfully scheduled the driver must set the
1243 <code>drm_crtc-&lt;fb</code> field to the new framebuffer pointed to
1244 by <code>fb</code>. This is important so that the reference counting
1245 on framebuffers stays balanced.
1246 </para>
9cad9c95
LP
1247 <para>
1248 If a page flip is already pending, the
1249 <methodname>page_flip</methodname> operation must return
1250 -<errorname>EBUSY</errorname>.
1251 </para>
1252 <para>
1253 To synchronize page flip to vertical blanking the driver will likely
1254 need to enable vertical blanking interrupts. It should call
1255 <function>drm_vblank_get</function> for that purpose, and call
1256 <function>drm_vblank_put</function> after the page flip completes.
1257 </para>
1258 <para>
1259 If the application has requested to be notified when page flip completes
1260 the <methodname>page_flip</methodname> operation will be called with a
1261 non-NULL <parameter>event</parameter> argument pointing to a
1262 <structname>drm_pending_vblank_event</structname> instance. Upon page
c6eefa17
RC
1263 flip completion the driver must call <methodname>drm_send_vblank_event</methodname>
1264 to fill in the event and send to wake up any waiting processes.
1265 This can be performed with
9cad9c95 1266 <programlisting><![CDATA[
9cad9c95 1267 spin_lock_irqsave(&dev->event_lock, flags);
c6eefa17
RC
1268 ...
1269 drm_send_vblank_event(dev, pipe, event);
9cad9c95
LP
1270 spin_unlock_irqrestore(&dev->event_lock, flags);
1271 ]]></programlisting>
1272 </para>
1273 <note><para>
1274 FIXME: Could drivers that don't need to wait for rendering to complete
1275 just add the event to <literal>dev-&gt;vblank_event_list</literal> and
1276 let the DRM core handle everything, as for "normal" vertical blanking
1277 events?
1278 </para></note>
1279 <para>
1280 While waiting for the page flip to complete, the
1281 <literal>event-&gt;base.link</literal> list head can be used freely by
1282 the driver to store the pending event in a driver-specific list.
1283 </para>
1284 <para>
1285 If the file handle is closed before the event is signaled, drivers must
1286 take care to destroy the event in their
1287 <methodname>preclose</methodname> operation (and, if needed, call
1288 <function>drm_vblank_put</function>).
1289 </para>
1290 </sect4>
1291 <sect4>
1292 <title>Miscellaneous</title>
1293 <itemizedlist>
421cda3e
LP
1294 <listitem>
1295 <synopsis>void (*set_property)(struct drm_crtc *crtc,
1296 struct drm_property *property, uint64_t value);</synopsis>
1297 <para>
1298 Set the value of the given CRTC property to
1299 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1300 for more information about properties.
1301 </para>
1302 </listitem>
9cad9c95
LP
1303 <listitem>
1304 <synopsis>void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1305 uint32_t start, uint32_t size);</synopsis>
1306 <para>
1307 Apply a gamma table to the device. The operation is optional.
1308 </para>
1309 </listitem>
1310 <listitem>
1311 <synopsis>void (*destroy)(struct drm_crtc *crtc);</synopsis>
1312 <para>
1313 Destroy the CRTC when not needed anymore. See
1314 <xref linkend="drm-kms-init"/>.
1315 </para>
1316 </listitem>
1317 </itemizedlist>
1318 </sect4>
1319 </sect3>
1320 </sect2>
1321 <sect2>
1322 <title>Planes (struct <structname>drm_plane</structname>)</title>
1323 <para>
1324 A plane represents an image source that can be blended with or overlayed
1325 on top of a CRTC during the scanout process. Planes are associated with
1326 a frame buffer to crop a portion of the image memory (source) and
1327 optionally scale it to a destination size. The result is then blended
1328 with or overlayed on top of a CRTC.
1329 </para>
6efa1f2f
MR
1330 <para>
1331 The DRM core recognizes three types of planes:
1332 <itemizedlist>
1333 <listitem>
1334 DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary
1335 planes are the planes operated upon by by CRTC modesetting and flipping
1336 operations described in <xref linkend="drm-kms-crtcops"/>.
1337 </listitem>
1338 <listitem>
1339 DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor
1340 planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and
1341 DRM_IOCTL_MODE_CURSOR2 ioctls.
1342 </listitem>
1343 <listitem>
1344 DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes.
1345 Some drivers refer to these types of planes as "sprites" internally.
1346 </listitem>
1347 </itemizedlist>
1348 For compatibility with legacy userspace, only overlay planes are made
1349 available to userspace by default. Userspace clients may set the
1350 DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that
1351 they wish to receive a universal plane list containing all plane types.
1352 </para>
9cad9c95
LP
1353 <sect3>
1354 <title>Plane Initialization</title>
1355 <para>
6efa1f2f 1356 To create a plane, a KMS drivers allocates and
9cad9c95
LP
1357 zeroes an instances of struct <structname>drm_plane</structname>
1358 (possibly as part of a larger structure) and registers it with a call
6efa1f2f 1359 to <function>drm_universal_plane_init</function>. The function takes a bitmask
9cad9c95 1360 of the CRTCs that can be associated with the plane, a pointer to the
6efa1f2f
MR
1361 plane functions, a list of format supported formats, and the type of
1362 plane (primary, cursor, or overlay) being initialized.
1363 </para>
1364 <para>
1365 Cursor and overlay planes are optional. All drivers should provide
1366 one primary plane per CRTC (although this requirement may change in
1367 the future); drivers that do not wish to provide special handling for
1368 primary planes may make use of the helper functions described in
1369 <xref linkend="drm-kms-planehelpers"/> to create and register a
1370 primary plane with standard capabilities.
9cad9c95
LP
1371 </para>
1372 </sect3>
1373 <sect3>
1374 <title>Plane Operations</title>
1375 <itemizedlist>
1376 <listitem>
1377 <synopsis>int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc,
1378 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
1379 unsigned int crtc_w, unsigned int crtc_h,
1380 uint32_t src_x, uint32_t src_y,
1381 uint32_t src_w, uint32_t src_h);</synopsis>
1382 <para>
1383 Enable and configure the plane to use the given CRTC and frame buffer.
1384 </para>
1385 <para>
1386 The source rectangle in frame buffer memory coordinates is given by
1387 the <parameter>src_x</parameter>, <parameter>src_y</parameter>,
1388 <parameter>src_w</parameter> and <parameter>src_h</parameter>
1389 parameters (as 16.16 fixed point values). Devices that don't support
1390 subpixel plane coordinates can ignore the fractional part.
1391 </para>
1392 <para>
1393 The destination rectangle in CRTC coordinates is given by the
1394 <parameter>crtc_x</parameter>, <parameter>crtc_y</parameter>,
1395 <parameter>crtc_w</parameter> and <parameter>crtc_h</parameter>
1396 parameters (as integer values). Devices scale the source rectangle to
1397 the destination rectangle. If scaling is not supported, and the source
1398 rectangle size doesn't match the destination rectangle size, the
1399 driver must return a -<errorname>EINVAL</errorname> error.
1400 </para>
1401 </listitem>
1402 <listitem>
1403 <synopsis>int (*disable_plane)(struct drm_plane *plane);</synopsis>
1404 <para>
1405 Disable the plane. The DRM core calls this method in response to a
1406 DRM_IOCTL_MODE_SETPLANE ioctl call with the frame buffer ID set to 0.
1407 Disabled planes must not be processed by the CRTC.
1408 </para>
1409 </listitem>
1410 <listitem>
1411 <synopsis>void (*destroy)(struct drm_plane *plane);</synopsis>
1412 <para>
1413 Destroy the plane when not needed anymore. See
1414 <xref linkend="drm-kms-init"/>.
1415 </para>
1416 </listitem>
1417 </itemizedlist>
1418 </sect3>
1419 </sect2>
1420 <sect2>
1421 <title>Encoders (struct <structname>drm_encoder</structname>)</title>
1422 <para>
1423 An encoder takes pixel data from a CRTC and converts it to a format
1424 suitable for any attached connectors. On some devices, it may be
1425 possible to have a CRTC send data to more than one encoder. In that
1426 case, both encoders would receive data from the same scanout buffer,
1427 resulting in a "cloned" display configuration across the connectors
1428 attached to each encoder.
1429 </para>
1430 <sect3>
1431 <title>Encoder Initialization</title>
1432 <para>
1433 As for CRTCs, a KMS driver must create, initialize and register at
1434 least one struct <structname>drm_encoder</structname> instance. The
1435 instance is allocated and zeroed by the driver, possibly as part of a
1436 larger structure.
1437 </para>
1438 <para>
1439 Drivers must initialize the struct <structname>drm_encoder</structname>
1440 <structfield>possible_crtcs</structfield> and
1441 <structfield>possible_clones</structfield> fields before registering the
1442 encoder. Both fields are bitmasks of respectively the CRTCs that the
1443 encoder can be connected to, and sibling encoders candidate for cloning.
1444 </para>
1445 <para>
1446 After being initialized, the encoder must be registered with a call to
1447 <function>drm_encoder_init</function>. The function takes a pointer to
1448 the encoder functions and an encoder type. Supported types are
1449 <itemizedlist>
1450 <listitem>
1451 DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
1452 </listitem>
1453 <listitem>
1454 DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
1455 </listitem>
1456 <listitem>
1457 DRM_MODE_ENCODER_LVDS for display panels
1458 </listitem>
1459 <listitem>
1460 DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
1461 SCART)
1462 </listitem>
1463 <listitem>
1464 DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
1465 </listitem>
1466 </itemizedlist>
1467 </para>
1468 <para>
1469 Encoders must be attached to a CRTC to be used. DRM drivers leave
1470 encoders unattached at initialization time. Applications (or the fbdev
1471 compatibility layer when implemented) are responsible for attaching the
1472 encoders they want to use to a CRTC.
1473 </para>
1474 </sect3>
1475 <sect3>
1476 <title>Encoder Operations</title>
1477 <itemizedlist>
1478 <listitem>
1479 <synopsis>void (*destroy)(struct drm_encoder *encoder);</synopsis>
1480 <para>
1481 Called to destroy the encoder when not needed anymore. See
1482 <xref linkend="drm-kms-init"/>.
1483 </para>
1484 </listitem>
421cda3e
LP
1485 <listitem>
1486 <synopsis>void (*set_property)(struct drm_plane *plane,
1487 struct drm_property *property, uint64_t value);</synopsis>
1488 <para>
1489 Set the value of the given plane property to
1490 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1491 for more information about properties.
1492 </para>
1493 </listitem>
9cad9c95
LP
1494 </itemizedlist>
1495 </sect3>
1496 </sect2>
1497 <sect2>
1498 <title>Connectors (struct <structname>drm_connector</structname>)</title>
1499 <para>
1500 A connector is the final destination for pixel data on a device, and
1501 usually connects directly to an external display device like a monitor
1502 or laptop panel. A connector can only be attached to one encoder at a
1503 time. The connector is also the structure where information about the
1504 attached display is kept, so it contains fields for display data, EDID
1505 data, DPMS &amp; connection status, and information about modes
1506 supported on the attached displays.
1507 </para>
1508 <sect3>
1509 <title>Connector Initialization</title>
1510 <para>
1511 Finally a KMS driver must create, initialize, register and attach at
1512 least one struct <structname>drm_connector</structname> instance. The
1513 instance is created as other KMS objects and initialized by setting the
1514 following fields.
1515 </para>
1516 <variablelist>
1517 <varlistentry>
1518 <term><structfield>interlace_allowed</structfield></term>
1519 <listitem><para>
1520 Whether the connector can handle interlaced modes.
1521 </para></listitem>
1522 </varlistentry>
1523 <varlistentry>
1524 <term><structfield>doublescan_allowed</structfield></term>
1525 <listitem><para>
1526 Whether the connector can handle doublescan.
1527 </para></listitem>
1528 </varlistentry>
1529 <varlistentry>
1530 <term><structfield>display_info
1531 </structfield></term>
1532 <listitem><para>
1533 Display information is filled from EDID information when a display
1534 is detected. For non hot-pluggable displays such as flat panels in
1535 embedded systems, the driver should initialize the
1536 <structfield>display_info</structfield>.<structfield>width_mm</structfield>
1537 and
1538 <structfield>display_info</structfield>.<structfield>height_mm</structfield>
1539 fields with the physical size of the display.
1540 </para></listitem>
1541 </varlistentry>
1542 <varlistentry>
1543 <term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
1544 <listitem><para>
1545 Connector polling mode, a combination of
1546 <variablelist>
1547 <varlistentry>
1548 <term>DRM_CONNECTOR_POLL_HPD</term>
1549 <listitem><para>
1550 The connector generates hotplug events and doesn't need to be
1551 periodically polled. The CONNECT and DISCONNECT flags must not
1552 be set together with the HPD flag.
1553 </para></listitem>
1554 </varlistentry>
1555 <varlistentry>
1556 <term>DRM_CONNECTOR_POLL_CONNECT</term>
1557 <listitem><para>
1558 Periodically poll the connector for connection.
1559 </para></listitem>
1560 </varlistentry>
1561 <varlistentry>
1562 <term>DRM_CONNECTOR_POLL_DISCONNECT</term>
1563 <listitem><para>
1564 Periodically poll the connector for disconnection.
1565 </para></listitem>
1566 </varlistentry>
1567 </variablelist>
1568 Set to 0 for connectors that don't support connection status
1569 discovery.
1570 </para></listitem>
1571 </varlistentry>
1572 </variablelist>
1573 <para>
1574 The connector is then registered with a call to
1575 <function>drm_connector_init</function> with a pointer to the connector
1576 functions and a connector type, and exposed through sysfs with a call to
1577 <function>drm_sysfs_connector_add</function>.
1578 </para>
1579 <para>
1580 Supported connector types are
1581 <itemizedlist>
1582 <listitem>DRM_MODE_CONNECTOR_VGA</listitem>
1583 <listitem>DRM_MODE_CONNECTOR_DVII</listitem>
1584 <listitem>DRM_MODE_CONNECTOR_DVID</listitem>
1585 <listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
1586 <listitem>DRM_MODE_CONNECTOR_Composite</listitem>
1587 <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
1588 <listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
1589 <listitem>DRM_MODE_CONNECTOR_Component</listitem>
1590 <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
1591 <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
1592 <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
1593 <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
1594 <listitem>DRM_MODE_CONNECTOR_TV</listitem>
1595 <listitem>DRM_MODE_CONNECTOR_eDP</listitem>
1596 <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
1597 </itemizedlist>
1598 </para>
1599 <para>
1600 Connectors must be attached to an encoder to be used. For devices that
1601 map connectors to encoders 1:1, the connector should be attached at
1602 initialization time with a call to
1603 <function>drm_mode_connector_attach_encoder</function>. The driver must
1604 also set the <structname>drm_connector</structname>
1605 <structfield>encoder</structfield> field to point to the attached
1606 encoder.
1607 </para>
1608 <para>
1609 Finally, drivers must initialize the connectors state change detection
1610 with a call to <function>drm_kms_helper_poll_init</function>. If at
1611 least one connector is pollable but can't generate hotplug interrupts
1612 (indicated by the DRM_CONNECTOR_POLL_CONNECT and
1613 DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
1614 automatically be queued to periodically poll for changes. Connectors
1615 that can generate hotplug interrupts must be marked with the
1616 DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
1617 call <function>drm_helper_hpd_irq_event</function>. The function will
1618 queue a delayed work to check the state of all connectors, but no
1619 periodic polling will be done.
1620 </para>
1621 </sect3>
1622 <sect3>
1623 <title>Connector Operations</title>
1624 <note><para>
1625 Unless otherwise state, all operations are mandatory.
1626 </para></note>
1627 <sect4>
1628 <title>DPMS</title>
1629 <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
1630 <para>
1631 The DPMS operation sets the power state of a connector. The mode
1632 argument is one of
1633 <itemizedlist>
1634 <listitem><para>DRM_MODE_DPMS_ON</para></listitem>
1635 <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
1636 <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
1637 <listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
1638 </itemizedlist>
1639 </para>
1640 <para>
1641 In all but DPMS_ON mode the encoder to which the connector is attached
1642 should put the display in low-power mode by driving its signals
1643 appropriately. If more than one connector is attached to the encoder
1644 care should be taken not to change the power state of other displays as
1645 a side effect. Low-power mode should be propagated to the encoders and
1646 CRTCs when all related connectors are put in low-power mode.
1647 </para>
1648 </sect4>
1649 <sect4>
1650 <title>Modes</title>
1651 <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
1652 uint32_t max_height);</synopsis>
1653 <para>
1654 Fill the mode list with all supported modes for the connector. If the
1655 <parameter>max_width</parameter> and <parameter>max_height</parameter>
1656 arguments are non-zero, the implementation must ignore all modes wider
1657 than <parameter>max_width</parameter> or higher than
1658 <parameter>max_height</parameter>.
1659 </para>
1660 <para>
1661 The connector must also fill in this operation its
1662 <structfield>display_info</structfield>
1663 <structfield>width_mm</structfield> and
1664 <structfield>height_mm</structfield> fields with the connected display
1665 physical size in millimeters. The fields should be set to 0 if the value
1666 isn't known or is not applicable (for instance for projector devices).
1667 </para>
1668 </sect4>
1669 <sect4>
1670 <title>Connection Status</title>
1671 <para>
1672 The connection status is updated through polling or hotplug events when
1673 supported (see <xref linkend="drm-kms-connector-polled"/>). The status
1674 value is reported to userspace through ioctls and must not be used
1675 inside the driver, as it only gets initialized by a call to
1676 <function>drm_mode_getconnector</function> from userspace.
1677 </para>
1678 <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
1679 bool force);</synopsis>
1680 <para>
1681 Check to see if anything is attached to the connector. The
1682 <parameter>force</parameter> parameter is set to false whilst polling or
1683 to true when checking the connector due to user request.
1684 <parameter>force</parameter> can be used by the driver to avoid
1685 expensive, destructive operations during automated probing.
1686 </para>
1687 <para>
1688 Return connector_status_connected if something is connected to the
1689 connector, connector_status_disconnected if nothing is connected and
1690 connector_status_unknown if the connection state isn't known.
1691 </para>
1692 <para>
1693 Drivers should only return connector_status_connected if the connection
1694 status has really been probed as connected. Connectors that can't detect
1695 the connection status, or failed connection status probes, should return
1696 connector_status_unknown.
1697 </para>
1698 </sect4>
1699 <sect4>
1700 <title>Miscellaneous</title>
1701 <itemizedlist>
421cda3e
LP
1702 <listitem>
1703 <synopsis>void (*set_property)(struct drm_connector *connector,
1704 struct drm_property *property, uint64_t value);</synopsis>
1705 <para>
1706 Set the value of the given connector property to
1707 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1708 for more information about properties.
1709 </para>
1710 </listitem>
9cad9c95
LP
1711 <listitem>
1712 <synopsis>void (*destroy)(struct drm_connector *connector);</synopsis>
1713 <para>
1714 Destroy the connector when not needed anymore. See
1715 <xref linkend="drm-kms-init"/>.
1716 </para>
1717 </listitem>
1718 </itemizedlist>
1719 </sect4>
1720 </sect3>
1721 </sect2>
1722 <sect2>
1723 <title>Cleanup</title>
1724 <para>
1725 The DRM core manages its objects' lifetime. When an object is not needed
1726 anymore the core calls its destroy function, which must clean up and
1727 free every resource allocated for the object. Every
1728 <function>drm_*_init</function> call must be matched with a
1729 corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
1730 (<function>drm_crtc_cleanup</function>), planes
1731 (<function>drm_plane_cleanup</function>), encoders
1732 (<function>drm_encoder_cleanup</function>) and connectors
1733 (<function>drm_connector_cleanup</function>). Furthermore, connectors
1734 that have been added to sysfs must be removed by a call to
1735 <function>drm_sysfs_connector_remove</function> before calling
1736 <function>drm_connector_cleanup</function>.
1737 </para>
1738 <para>
1739 Connectors state change detection must be cleanup up with a call to
1740 <function>drm_kms_helper_poll_fini</function>.
1741 </para>
1742 </sect2>
1743 <sect2>
1744 <title>Output discovery and initialization example</title>
1745 <programlisting><![CDATA[
2d2ef822
JB
1746void intel_crt_init(struct drm_device *dev)
1747{
1748 struct drm_connector *connector;
1749 struct intel_output *intel_output;
1750
1751 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
1752 if (!intel_output)
1753 return;
1754
1755 connector = &intel_output->base;
1756 drm_connector_init(dev, &intel_output->base,
1757 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1758
1759 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
1760 DRM_MODE_ENCODER_DAC);
1761
1762 drm_mode_connector_attach_encoder(&intel_output->base,
1763 &intel_output->enc);
1764
1765 /* Set up the DDC bus. */
1766 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
1767 if (!intel_output->ddc_bus) {
1768 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
1769 "failed.\n");
1770 return;
1771 }
1772
1773 intel_output->type = INTEL_OUTPUT_ANALOG;
1774 connector->interlace_allowed = 0;
1775 connector->doublescan_allowed = 0;
1776
1777 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
1778 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
1779
1780 drm_sysfs_connector_add(connector);
9cad9c95
LP
1781}]]></programlisting>
1782 <para>
1783 In the example above (taken from the i915 driver), a CRTC, connector and
1784 encoder combination is created. A device-specific i2c bus is also
1785 created for fetching EDID data and performing monitor detection. Once
1786 the process is complete, the new connector is registered with sysfs to
1787 make its properties available to applications.
1788 </para>
2d2ef822 1789 </sect2>
065a50ed
DV
1790 <sect2>
1791 <title>KMS API Functions</title>
1792!Edrivers/gpu/drm/drm_crtc.c
1793 </sect2>
2d2ef822
JB
1794 </sect1>
1795
e4949f29 1796 <!-- Internals: kms helper functions -->
2d2ef822
JB
1797
1798 <sect1>
e4949f29 1799 <title>Mode Setting Helper Functions</title>
2d2ef822 1800 <para>
6efa1f2f 1801 The plane, CRTC, encoder and connector functions provided by the drivers
9cad9c95
LP
1802 implement the DRM API. They're called by the DRM core and ioctl handlers
1803 to handle device state changes and configuration request. As implementing
1804 those functions often requires logic not specific to drivers, mid-layer
1805 helper functions are available to avoid duplicating boilerplate code.
1806 </para>
1807 <para>
1808 The DRM core contains one mid-layer implementation. The mid-layer provides
6efa1f2f
MR
1809 implementations of several plane, CRTC, encoder and connector functions
1810 (called from the top of the mid-layer) that pre-process requests and call
9cad9c95
LP
1811 lower-level functions provided by the driver (at the bottom of the
1812 mid-layer). For instance, the
1813 <function>drm_crtc_helper_set_config</function> function can be used to
1814 fill the struct <structname>drm_crtc_funcs</structname>
1815 <structfield>set_config</structfield> field. When called, it will split
1816 the <methodname>set_config</methodname> operation in smaller, simpler
1817 operations and call the driver to handle them.
2d2ef822 1818 </para>
2d2ef822 1819 <para>
9cad9c95
LP
1820 To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
1821 <function>drm_encoder_helper_add</function> and
1822 <function>drm_connector_helper_add</function> functions to install their
1823 mid-layer bottom operations handlers, and fill the
1824 <structname>drm_crtc_funcs</structname>,
1825 <structname>drm_encoder_funcs</structname> and
1826 <structname>drm_connector_funcs</structname> structures with pointers to
1827 the mid-layer top API functions. Installing the mid-layer bottom operation
1828 handlers is best done right after registering the corresponding KMS object.
2d2ef822
JB
1829 </para>
1830 <para>
9cad9c95
LP
1831 The mid-layer is not split between CRTC, encoder and connector operations.
1832 To use it, a driver must provide bottom functions for all of the three KMS
1833 entities.
2d2ef822 1834 </para>
9cad9c95
LP
1835 <sect2>
1836 <title>Helper Functions</title>
1837 <itemizedlist>
1838 <listitem>
1839 <synopsis>int drm_crtc_helper_set_config(struct drm_mode_set *set);</synopsis>
1840 <para>
1841 The <function>drm_crtc_helper_set_config</function> helper function
1842 is a CRTC <methodname>set_config</methodname> implementation. It
1843 first tries to locate the best encoder for each connector by calling
1844 the connector <methodname>best_encoder</methodname> helper
1845 operation.
1846 </para>
1847 <para>
1848 After locating the appropriate encoders, the helper function will
1849 call the <methodname>mode_fixup</methodname> encoder and CRTC helper
1850 operations to adjust the requested mode, or reject it completely in
1851 which case an error will be returned to the application. If the new
1852 configuration after mode adjustment is identical to the current
1853 configuration the helper function will return without performing any
1854 other operation.
1855 </para>
1856 <para>
1857 If the adjusted mode is identical to the current mode but changes to
1858 the frame buffer need to be applied, the
1859 <function>drm_crtc_helper_set_config</function> function will call
1860 the CRTC <methodname>mode_set_base</methodname> helper operation. If
1861 the adjusted mode differs from the current mode, or if the
1862 <methodname>mode_set_base</methodname> helper operation is not
1863 provided, the helper function performs a full mode set sequence by
1864 calling the <methodname>prepare</methodname>,
1865 <methodname>mode_set</methodname> and
1866 <methodname>commit</methodname> CRTC and encoder helper operations,
1867 in that order.
1868 </para>
1869 </listitem>
1870 <listitem>
1871 <synopsis>void drm_helper_connector_dpms(struct drm_connector *connector, int mode);</synopsis>
1872 <para>
1873 The <function>drm_helper_connector_dpms</function> helper function
1874 is a connector <methodname>dpms</methodname> implementation that
1875 tracks power state of connectors. To use the function, drivers must
1876 provide <methodname>dpms</methodname> helper operations for CRTCs
1877 and encoders to apply the DPMS state to the device.
1878 </para>
1879 <para>
1880 The mid-layer doesn't track the power state of CRTCs and encoders.
1881 The <methodname>dpms</methodname> helper operations can thus be
1882 called with a mode identical to the currently active mode.
1883 </para>
1884 </listitem>
1885 <listitem>
1886 <synopsis>int drm_helper_probe_single_connector_modes(struct drm_connector *connector,
1887 uint32_t maxX, uint32_t maxY);</synopsis>
1888 <para>
1889 The <function>drm_helper_probe_single_connector_modes</function> helper
1890 function is a connector <methodname>fill_modes</methodname>
1891 implementation that updates the connection status for the connector
1892 and then retrieves a list of modes by calling the connector
1893 <methodname>get_modes</methodname> helper operation.
1894 </para>
1895 <para>
1896 The function filters out modes larger than
1897 <parameter>max_width</parameter> and <parameter>max_height</parameter>
f9b0e251
AH
1898 if specified. It then calls the optional connector
1899 <methodname>mode_valid</methodname> helper operation for each mode in
9cad9c95
LP
1900 the probed list to check whether the mode is valid for the connector.
1901 </para>
1902 </listitem>
1903 </itemizedlist>
1904 </sect2>
1905 <sect2>
1906 <title>CRTC Helper Operations</title>
1907 <itemizedlist>
1908 <listitem id="drm-helper-crtc-mode-fixup">
1909 <synopsis>bool (*mode_fixup)(struct drm_crtc *crtc,
1910 const struct drm_display_mode *mode,
1911 struct drm_display_mode *adjusted_mode);</synopsis>
1912 <para>
1913 Let CRTCs adjust the requested mode or reject it completely. This
1914 operation returns true if the mode is accepted (possibly after being
1915 adjusted) or false if it is rejected.
1916 </para>
1917 <para>
1918 The <methodname>mode_fixup</methodname> operation should reject the
1919 mode if it can't reasonably use it. The definition of "reasonable"
1920 is currently fuzzy in this context. One possible behaviour would be
1921 to set the adjusted mode to the panel timings when a fixed-mode
1922 panel is used with hardware capable of scaling. Another behaviour
1923 would be to accept any input mode and adjust it to the closest mode
1924 supported by the hardware (FIXME: This needs to be clarified).
1925 </para>
1926 </listitem>
1927 <listitem>
1928 <synopsis>int (*mode_set_base)(struct drm_crtc *crtc, int x, int y,
1929 struct drm_framebuffer *old_fb)</synopsis>
1930 <para>
1931 Move the CRTC on the current frame buffer (stored in
1932 <literal>crtc-&gt;fb</literal>) to position (x,y). Any of the frame
1933 buffer, x position or y position may have been modified.
1934 </para>
1935 <para>
1936 This helper operation is optional. If not provided, the
1937 <function>drm_crtc_helper_set_config</function> function will fall
1938 back to the <methodname>mode_set</methodname> helper operation.
1939 </para>
1940 <note><para>
1941 FIXME: Why are x and y passed as arguments, as they can be accessed
1942 through <literal>crtc-&gt;x</literal> and
1943 <literal>crtc-&gt;y</literal>?
1944 </para></note>
1945 </listitem>
1946 <listitem>
1947 <synopsis>void (*prepare)(struct drm_crtc *crtc);</synopsis>
1948 <para>
1949 Prepare the CRTC for mode setting. This operation is called after
1950 validating the requested mode. Drivers use it to perform
1951 device-specific operations required before setting the new mode.
1952 </para>
1953 </listitem>
1954 <listitem>
1955 <synopsis>int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode,
1956 struct drm_display_mode *adjusted_mode, int x, int y,
1957 struct drm_framebuffer *old_fb);</synopsis>
1958 <para>
1959 Set a new mode, position and frame buffer. Depending on the device
1960 requirements, the mode can be stored internally by the driver and
1961 applied in the <methodname>commit</methodname> operation, or
1962 programmed to the hardware immediately.
1963 </para>
1964 <para>
1965 The <methodname>mode_set</methodname> operation returns 0 on success
1966 or a negative error code if an error occurs.
1967 </para>
1968 </listitem>
1969 <listitem>
1970 <synopsis>void (*commit)(struct drm_crtc *crtc);</synopsis>
1971 <para>
1972 Commit a mode. This operation is called after setting the new mode.
1973 Upon return the device must use the new mode and be fully
1974 operational.
1975 </para>
1976 </listitem>
1977 </itemizedlist>
1978 </sect2>
1979 <sect2>
1980 <title>Encoder Helper Operations</title>
1981 <itemizedlist>
1982 <listitem>
1983 <synopsis>bool (*mode_fixup)(struct drm_encoder *encoder,
1984 const struct drm_display_mode *mode,
1985 struct drm_display_mode *adjusted_mode);</synopsis>
9cad9c95
LP
1986 <para>
1987 Let encoders adjust the requested mode or reject it completely. This
1988 operation returns true if the mode is accepted (possibly after being
1989 adjusted) or false if it is rejected. See the
1990 <link linkend="drm-helper-crtc-mode-fixup">mode_fixup CRTC helper
1991 operation</link> for an explanation of the allowed adjustments.
1992 </para>
1993 </listitem>
1994 <listitem>
1995 <synopsis>void (*prepare)(struct drm_encoder *encoder);</synopsis>
1996 <para>
1997 Prepare the encoder for mode setting. This operation is called after
1998 validating the requested mode. Drivers use it to perform
1999 device-specific operations required before setting the new mode.
2000 </para>
2001 </listitem>
2002 <listitem>
2003 <synopsis>void (*mode_set)(struct drm_encoder *encoder,
2004 struct drm_display_mode *mode,
2005 struct drm_display_mode *adjusted_mode);</synopsis>
2006 <para>
2007 Set a new mode. Depending on the device requirements, the mode can
2008 be stored internally by the driver and applied in the
2009 <methodname>commit</methodname> operation, or programmed to the
2010 hardware immediately.
2011 </para>
2012 </listitem>
2013 <listitem>
2014 <synopsis>void (*commit)(struct drm_encoder *encoder);</synopsis>
2015 <para>
2016 Commit a mode. This operation is called after setting the new mode.
2017 Upon return the device must use the new mode and be fully
2018 operational.
2019 </para>
2020 </listitem>
2021 </itemizedlist>
2022 </sect2>
2023 <sect2>
2024 <title>Connector Helper Operations</title>
2025 <itemizedlist>
2026 <listitem>
2027 <synopsis>struct drm_encoder *(*best_encoder)(struct drm_connector *connector);</synopsis>
2028 <para>
2029 Return a pointer to the best encoder for the connecter. Device that
2030 map connectors to encoders 1:1 simply return the pointer to the
2031 associated encoder. This operation is mandatory.
2032 </para>
2033 </listitem>
2034 <listitem>
2035 <synopsis>int (*get_modes)(struct drm_connector *connector);</synopsis>
2036 <para>
2037 Fill the connector's <structfield>probed_modes</structfield> list
2038 by parsing EDID data with <function>drm_add_edid_modes</function> or
2039 calling <function>drm_mode_probed_add</function> directly for every
2040 supported mode and return the number of modes it has detected. This
2041 operation is mandatory.
2042 </para>
2043 <para>
2044 When adding modes manually the driver creates each mode with a call to
2045 <function>drm_mode_create</function> and must fill the following fields.
2046 <itemizedlist>
2047 <listitem>
2048 <synopsis>__u32 type;</synopsis>
2049 <para>
2050 Mode type bitmask, a combination of
2051 <variablelist>
2052 <varlistentry>
2053 <term>DRM_MODE_TYPE_BUILTIN</term>
2054 <listitem><para>not used?</para></listitem>
2055 </varlistentry>
2056 <varlistentry>
2057 <term>DRM_MODE_TYPE_CLOCK_C</term>
2058 <listitem><para>not used?</para></listitem>
2059 </varlistentry>
2060 <varlistentry>
2061 <term>DRM_MODE_TYPE_CRTC_C</term>
2062 <listitem><para>not used?</para></listitem>
2063 </varlistentry>
2064 <varlistentry>
2065 <term>
2066 DRM_MODE_TYPE_PREFERRED - The preferred mode for the connector
2067 </term>
2068 <listitem>
2069 <para>not used?</para>
2070 </listitem>
2071 </varlistentry>
2072 <varlistentry>
2073 <term>DRM_MODE_TYPE_DEFAULT</term>
2074 <listitem><para>not used?</para></listitem>
2075 </varlistentry>
2076 <varlistentry>
2077 <term>DRM_MODE_TYPE_USERDEF</term>
2078 <listitem><para>not used?</para></listitem>
2079 </varlistentry>
2080 <varlistentry>
2081 <term>DRM_MODE_TYPE_DRIVER</term>
2082 <listitem>
2083 <para>
2084 The mode has been created by the driver (as opposed to
2085 to user-created modes).
2086 </para>
2087 </listitem>
2088 </varlistentry>
2089 </variablelist>
2090 Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they
2091 create, and set the DRM_MODE_TYPE_PREFERRED bit for the preferred
2092 mode.
2093 </para>
2094 </listitem>
2095 <listitem>
2096 <synopsis>__u32 clock;</synopsis>
2097 <para>Pixel clock frequency in kHz unit</para>
2098 </listitem>
2099 <listitem>
2100 <synopsis>__u16 hdisplay, hsync_start, hsync_end, htotal;
2101 __u16 vdisplay, vsync_start, vsync_end, vtotal;</synopsis>
2102 <para>Horizontal and vertical timing information</para>
2103 <screen><![CDATA[
2104 Active Front Sync Back
2105 Region Porch Porch
2106 <-----------------------><----------------><-------------><-------------->
2107
2108 //////////////////////|
2109 ////////////////////// |
2110 ////////////////////// |.................. ................
2111 _______________
2112
2113 <----- [hv]display ----->
2114 <------------- [hv]sync_start ------------>
2115 <--------------------- [hv]sync_end --------------------->
2116 <-------------------------------- [hv]total ----------------------------->
2117]]></screen>
2118 </listitem>
2119 <listitem>
2120 <synopsis>__u16 hskew;
2121 __u16 vscan;</synopsis>
2122 <para>Unknown</para>
2123 </listitem>
2124 <listitem>
2125 <synopsis>__u32 flags;</synopsis>
2126 <para>
2127 Mode flags, a combination of
2128 <variablelist>
2129 <varlistentry>
2130 <term>DRM_MODE_FLAG_PHSYNC</term>
2131 <listitem><para>
2132 Horizontal sync is active high
2133 </para></listitem>
2134 </varlistentry>
2135 <varlistentry>
2136 <term>DRM_MODE_FLAG_NHSYNC</term>
2137 <listitem><para>
2138 Horizontal sync is active low
2139 </para></listitem>
2140 </varlistentry>
2141 <varlistentry>
2142 <term>DRM_MODE_FLAG_PVSYNC</term>
2143 <listitem><para>
2144 Vertical sync is active high
2145 </para></listitem>
2146 </varlistentry>
2147 <varlistentry>
2148 <term>DRM_MODE_FLAG_NVSYNC</term>
2149 <listitem><para>
2150 Vertical sync is active low
2151 </para></listitem>
2152 </varlistentry>
2153 <varlistentry>
2154 <term>DRM_MODE_FLAG_INTERLACE</term>
2155 <listitem><para>
2156 Mode is interlaced
2157 </para></listitem>
2158 </varlistentry>
2159 <varlistentry>
2160 <term>DRM_MODE_FLAG_DBLSCAN</term>
2161 <listitem><para>
2162 Mode uses doublescan
2163 </para></listitem>
2164 </varlistentry>
2165 <varlistentry>
2166 <term>DRM_MODE_FLAG_CSYNC</term>
2167 <listitem><para>
2168 Mode uses composite sync
2169 </para></listitem>
2170 </varlistentry>
2171 <varlistentry>
2172 <term>DRM_MODE_FLAG_PCSYNC</term>
2173 <listitem><para>
2174 Composite sync is active high
2175 </para></listitem>
2176 </varlistentry>
2177 <varlistentry>
2178 <term>DRM_MODE_FLAG_NCSYNC</term>
2179 <listitem><para>
2180 Composite sync is active low
2181 </para></listitem>
2182 </varlistentry>
2183 <varlistentry>
2184 <term>DRM_MODE_FLAG_HSKEW</term>
2185 <listitem><para>
2186 hskew provided (not used?)
2187 </para></listitem>
2188 </varlistentry>
2189 <varlistentry>
2190 <term>DRM_MODE_FLAG_BCAST</term>
2191 <listitem><para>
2192 not used?
2193 </para></listitem>
2194 </varlistentry>
2195 <varlistentry>
2196 <term>DRM_MODE_FLAG_PIXMUX</term>
2197 <listitem><para>
2198 not used?
2199 </para></listitem>
2200 </varlistentry>
2201 <varlistentry>
2202 <term>DRM_MODE_FLAG_DBLCLK</term>
2203 <listitem><para>
2204 not used?
2205 </para></listitem>
2206 </varlistentry>
2207 <varlistentry>
2208 <term>DRM_MODE_FLAG_CLKDIV2</term>
2209 <listitem><para>
2210 ?
2211 </para></listitem>
2212 </varlistentry>
2213 </variablelist>
2214 </para>
2215 <para>
2216 Note that modes marked with the INTERLACE or DBLSCAN flags will be
2217 filtered out by
2218 <function>drm_helper_probe_single_connector_modes</function> if
2219 the connector's <structfield>interlace_allowed</structfield> or
2220 <structfield>doublescan_allowed</structfield> field is set to 0.
2221 </para>
2222 </listitem>
2223 <listitem>
2224 <synopsis>char name[DRM_DISPLAY_MODE_LEN];</synopsis>
2225 <para>
2226 Mode name. The driver must call
2227 <function>drm_mode_set_name</function> to fill the mode name from
2228 <structfield>hdisplay</structfield>,
2229 <structfield>vdisplay</structfield> and interlace flag after
2230 filling the corresponding fields.
2231 </para>
2232 </listitem>
2233 </itemizedlist>
2234 </para>
2235 <para>
2236 The <structfield>vrefresh</structfield> value is computed by
2237 <function>drm_helper_probe_single_connector_modes</function>.
2238 </para>
2239 <para>
2240 When parsing EDID data, <function>drm_add_edid_modes</function> fill the
2241 connector <structfield>display_info</structfield>
2242 <structfield>width_mm</structfield> and
2243 <structfield>height_mm</structfield> fields. When creating modes
2244 manually the <methodname>get_modes</methodname> helper operation must
2245 set the <structfield>display_info</structfield>
2246 <structfield>width_mm</structfield> and
2247 <structfield>height_mm</structfield> fields if they haven't been set
065a5027 2248 already (for instance at initialization time when a fixed-size panel is
9cad9c95
LP
2249 attached to the connector). The mode <structfield>width_mm</structfield>
2250 and <structfield>height_mm</structfield> fields are only used internally
2251 during EDID parsing and should not be set when creating modes manually.
2252 </para>
2253 </listitem>
2254 <listitem>
2255 <synopsis>int (*mode_valid)(struct drm_connector *connector,
2256 struct drm_display_mode *mode);</synopsis>
2257 <para>
2258 Verify whether a mode is valid for the connector. Return MODE_OK for
2259 supported modes and one of the enum drm_mode_status values (MODE_*)
f9b0e251 2260 for unsupported modes. This operation is optional.
9cad9c95
LP
2261 </para>
2262 <para>
2263 As the mode rejection reason is currently not used beside for
2264 immediately removing the unsupported mode, an implementation can
2265 return MODE_BAD regardless of the exact reason why the mode is not
2266 valid.
2267 </para>
2268 <note><para>
2269 Note that the <methodname>mode_valid</methodname> helper operation is
2270 only called for modes detected by the device, and
2271 <emphasis>not</emphasis> for modes set by the user through the CRTC
2272 <methodname>set_config</methodname> operation.
2273 </para></note>
2274 </listitem>
2275 </itemizedlist>
2276 </sect2>
0d4ed4c8
DV
2277 <sect2>
2278 <title>Modeset Helper Functions Reference</title>
2279!Edrivers/gpu/drm/drm_crtc_helper.c
8d754544
DV
2280 </sect2>
2281 <sect2>
2282 <title>Output Probing Helper Functions Reference</title>
2283!Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview
2284!Edrivers/gpu/drm/drm_probe_helper.c
0d4ed4c8 2285 </sect2>
d0ddc033
DV
2286 <sect2>
2287 <title>fbdev Helper Functions Reference</title>
2288!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
2289!Edrivers/gpu/drm/drm_fb_helper.c
207fd329 2290!Iinclude/drm/drm_fb_helper.h
d0ddc033 2291 </sect2>
28164fda
DV
2292 <sect2>
2293 <title>Display Port Helper Functions Reference</title>
2294!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
2295!Iinclude/drm/drm_dp_helper.h
2296!Edrivers/gpu/drm/drm_dp_helper.c
2297 </sect2>
5e308591
TR
2298 <sect2>
2299 <title>EDID Helper Functions Reference</title>
2300!Edrivers/gpu/drm/drm_edid.c
2301 </sect2>
03973536
VS
2302 <sect2>
2303 <title>Rectangle Utilities Reference</title>
2304!Pinclude/drm/drm_rect.h rect utils
2305!Iinclude/drm/drm_rect.h
2306!Edrivers/gpu/drm/drm_rect.c
cabaafc7
RC
2307 </sect2>
2308 <sect2>
2309 <title>Flip-work Helper Reference</title>
2310!Pinclude/drm/drm_flip_work.h flip utils
2311!Iinclude/drm/drm_flip_work.h
2312!Edrivers/gpu/drm/drm_flip_work.c
03973536 2313 </sect2>
2d123f46
DV
2314 <sect2>
2315 <title>HDMI Infoframes Helper Reference</title>
2316 <para>
2317 Strictly speaking this is not a DRM helper library but generally useable
2318 by any driver interfacing with HDMI outputs like v4l or alsa drivers.
2319 But it nicely fits into the overall topic of mode setting helper
2320 libraries and hence is also included here.
2321 </para>
2322!Iinclude/linux/hdmi.h
2323!Edrivers/video/hdmi.c
2324 </sect2>
6efa1f2f
MR
2325 <sect2>
2326 <title id="drm-kms-planehelpers">Plane Helper Reference</title>
2327!Edrivers/gpu/drm/drm_plane_helper.c Plane Helpers
2328 </sect2>
2d2ef822
JB
2329 </sect1>
2330
421cda3e
LP
2331 <!-- Internals: kms properties -->
2332
2333 <sect1 id="drm-kms-properties">
2334 <title>KMS Properties</title>
2335 <para>
2336 Drivers may need to expose additional parameters to applications than
2337 those described in the previous sections. KMS supports attaching
2338 properties to CRTCs, connectors and planes and offers a userspace API to
2339 list, get and set the property values.
2340 </para>
2341 <para>
2342 Properties are identified by a name that uniquely defines the property
2343 purpose, and store an associated value. For all property types except blob
2344 properties the value is a 64-bit unsigned integer.
2345 </para>
2346 <para>
2347 KMS differentiates between properties and property instances. Drivers
2348 first create properties and then create and associate individual instances
2349 of those properties to objects. A property can be instantiated multiple
2350 times and associated with different objects. Values are stored in property
9a6594fc 2351 instances, and all other property information are stored in the property
421cda3e
LP
2352 and shared between all instances of the property.
2353 </para>
2354 <para>
2355 Every property is created with a type that influences how the KMS core
2356 handles the property. Supported property types are
2357 <variablelist>
2358 <varlistentry>
2359 <term>DRM_MODE_PROP_RANGE</term>
2360 <listitem><para>Range properties report their minimum and maximum
2361 admissible values. The KMS core verifies that values set by
2362 application fit in that range.</para></listitem>
2363 </varlistentry>
2364 <varlistentry>
2365 <term>DRM_MODE_PROP_ENUM</term>
2366 <listitem><para>Enumerated properties take a numerical value that
2367 ranges from 0 to the number of enumerated values defined by the
2368 property minus one, and associate a free-formed string name to each
2369 value. Applications can retrieve the list of defined value-name pairs
2370 and use the numerical value to get and set property instance values.
2371 </para></listitem>
2372 </varlistentry>
2373 <varlistentry>
2374 <term>DRM_MODE_PROP_BITMASK</term>
2375 <listitem><para>Bitmask properties are enumeration properties that
2376 additionally restrict all enumerated values to the 0..63 range.
2377 Bitmask property instance values combine one or more of the
2378 enumerated bits defined by the property.</para></listitem>
2379 </varlistentry>
2380 <varlistentry>
2381 <term>DRM_MODE_PROP_BLOB</term>
2382 <listitem><para>Blob properties store a binary blob without any format
2383 restriction. The binary blobs are created as KMS standalone objects,
2384 and blob property instance values store the ID of their associated
2385 blob object.</para>
2386 <para>Blob properties are only used for the connector EDID property
2387 and cannot be created by drivers.</para></listitem>
2388 </varlistentry>
2389 </variablelist>
2390 </para>
2391 <para>
2392 To create a property drivers call one of the following functions depending
2393 on the property type. All property creation functions take property flags
2394 and name, as well as type-specific arguments.
2395 <itemizedlist>
2396 <listitem>
2397 <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
2398 const char *name,
2399 uint64_t min, uint64_t max);</synopsis>
2400 <para>Create a range property with the given minimum and maximum
2401 values.</para>
2402 </listitem>
2403 <listitem>
2404 <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
2405 const char *name,
2406 const struct drm_prop_enum_list *props,
2407 int num_values);</synopsis>
2408 <para>Create an enumerated property. The <parameter>props</parameter>
2409 argument points to an array of <parameter>num_values</parameter>
2410 value-name pairs.</para>
2411 </listitem>
2412 <listitem>
2413 <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
2414 int flags, const char *name,
2415 const struct drm_prop_enum_list *props,
2416 int num_values);</synopsis>
2417 <para>Create a bitmask property. The <parameter>props</parameter>
2418 argument points to an array of <parameter>num_values</parameter>
2419 value-name pairs.</para>
2420 </listitem>
2421 </itemizedlist>
2422 </para>
2423 <para>
2424 Properties can additionally be created as immutable, in which case they
2425 will be read-only for applications but can be modified by the driver. To
2426 create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE
2427 flag at property creation time.
2428 </para>
2429 <para>
2430 When no array of value-name pairs is readily available at property
2431 creation time for enumerated or range properties, drivers can create
2432 the property using the <function>drm_property_create</function> function
2433 and manually add enumeration value-name pairs by calling the
2434 <function>drm_property_add_enum</function> function. Care must be taken to
2435 properly specify the property type through the <parameter>flags</parameter>
2436 argument.
2437 </para>
2438 <para>
2439 After creating properties drivers can attach property instances to CRTC,
2440 connector and plane objects by calling the
2441 <function>drm_object_attach_property</function>. The function takes a
2442 pointer to the target object, a pointer to the previously created property
2443 and an initial instance value.
2444 </para>
6c6a3996
SK
2445 <sect2>
2446 <title>Existing KMS Properties</title>
2447 <para>
2448 The following table gives description of drm properties exposed by various
2449 modules/drivers.
2450 </para>
2451 <table border="1" cellpadding="0" cellspacing="0">
2452 <tbody>
2453 <tr style="font-weight: bold;">
2454 <td valign="top" >Owner Module/Drivers</td>
2455 <td valign="top" >Group</td>
2456 <td valign="top" >Property Name</td>
2457 <td valign="top" >Type</td>
2458 <td valign="top" >Property Values</td>
2459 <td valign="top" >Object attached</td>
2460 <td valign="top" >Description/Restrictions</td>
2461 </tr>
2462 <tr>
2463 <td rowspan="19" valign="top" >DRM</td>
2464 <td rowspan="2" valign="top" >Generic</td>
2465 <td valign="top" >“EDID”</td>
2466 <td valign="top" >BLOB | IMMUTABLE</td>
2467 <td valign="top" >0</td>
2468 <td valign="top" >Connector</td>
2469 <td valign="top" >Contains id of edid blob ptr object.</td>
2470 </tr>
2471 <tr>
2472 <td valign="top" >“DPMS”</td>
2473 <td valign="top" >ENUM</td>
2474 <td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td>
2475 <td valign="top" >Connector</td>
2476 <td valign="top" >Contains DPMS operation mode value.</td>
2477 </tr>
2478 <tr>
2479 <td rowspan="2" valign="top" >DVI-I</td>
2480 <td valign="top" >“subconnector”</td>
2481 <td valign="top" >ENUM</td>
2482 <td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td>
2483 <td valign="top" >Connector</td>
2484 <td valign="top" >TBD</td>
2485 </tr>
2486 <tr>
2487 <td valign="top" >“select subconnector”</td>
2488 <td valign="top" >ENUM</td>
2489 <td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td>
2490 <td valign="top" >Connector</td>
2491 <td valign="top" >TBD</td>
2492 </tr>
2493 <tr>
2494 <td rowspan="13" valign="top" >TV</td>
2495 <td valign="top" >“subconnector”</td>
2496 <td valign="top" >ENUM</td>
2497 <td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td>
2498 <td valign="top" >Connector</td>
2499 <td valign="top" >TBD</td>
2500 </tr>
2501 <tr>
2502 <td valign="top" >“select subconnector”</td>
2503 <td valign="top" >ENUM</td>
2504 <td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td>
2505 <td valign="top" >Connector</td>
2506 <td valign="top" >TBD</td>
2507 </tr>
2508 <tr>
2509 <td valign="top" >“mode”</td>
2510 <td valign="top" >ENUM</td>
2511 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2512 <td valign="top" >Connector</td>
2513 <td valign="top" >TBD</td>
2514 </tr>
2515 <tr>
2516 <td valign="top" >“left margin”</td>
2517 <td valign="top" >RANGE</td>
2518 <td valign="top" >Min=0, Max=100</td>
2519 <td valign="top" >Connector</td>
2520 <td valign="top" >TBD</td>
2521 </tr>
2522 <tr>
2523 <td valign="top" >“right margin”</td>
2524 <td valign="top" >RANGE</td>
2525 <td valign="top" >Min=0, Max=100</td>
2526 <td valign="top" >Connector</td>
2527 <td valign="top" >TBD</td>
2528 </tr>
2529 <tr>
2530 <td valign="top" >“top margin”</td>
2531 <td valign="top" >RANGE</td>
2532 <td valign="top" >Min=0, Max=100</td>
2533 <td valign="top" >Connector</td>
2534 <td valign="top" >TBD</td>
2535 </tr>
2536 <tr>
2537 <td valign="top" >“bottom margin”</td>
2538 <td valign="top" >RANGE</td>
2539 <td valign="top" >Min=0, Max=100</td>
2540 <td valign="top" >Connector</td>
2541 <td valign="top" >TBD</td>
2542 </tr>
2543 <tr>
2544 <td valign="top" >“brightness”</td>
2545 <td valign="top" >RANGE</td>
2546 <td valign="top" >Min=0, Max=100</td>
2547 <td valign="top" >Connector</td>
2548 <td valign="top" >TBD</td>
2549 </tr>
2550 <tr>
2551 <td valign="top" >“contrast”</td>
2552 <td valign="top" >RANGE</td>
2553 <td valign="top" >Min=0, Max=100</td>
2554 <td valign="top" >Connector</td>
2555 <td valign="top" >TBD</td>
2556 </tr>
2557 <tr>
2558 <td valign="top" >“flicker reduction”</td>
2559 <td valign="top" >RANGE</td>
2560 <td valign="top" >Min=0, Max=100</td>
2561 <td valign="top" >Connector</td>
2562 <td valign="top" >TBD</td>
2563 </tr>
2564 <tr>
2565 <td valign="top" >“overscan”</td>
2566 <td valign="top" >RANGE</td>
2567 <td valign="top" >Min=0, Max=100</td>
2568 <td valign="top" >Connector</td>
2569 <td valign="top" >TBD</td>
2570 </tr>
2571 <tr>
2572 <td valign="top" >“saturation”</td>
2573 <td valign="top" >RANGE</td>
2574 <td valign="top" >Min=0, Max=100</td>
2575 <td valign="top" >Connector</td>
2576 <td valign="top" >TBD</td>
2577 </tr>
2578 <tr>
2579 <td valign="top" >“hue”</td>
2580 <td valign="top" >RANGE</td>
2581 <td valign="top" >Min=0, Max=100</td>
2582 <td valign="top" >Connector</td>
2583 <td valign="top" >TBD</td>
2584 </tr>
2585 <tr>
2586 <td rowspan="2" valign="top" >Optional</td>
2587 <td valign="top" >“scaling mode”</td>
2588 <td valign="top" >ENUM</td>
2589 <td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td>
2590 <td valign="top" >Connector</td>
2591 <td valign="top" >TBD</td>
2592 </tr>
2593 <tr>
2594 <td valign="top" >“dirty”</td>
2595 <td valign="top" >ENUM | IMMUTABLE</td>
2596 <td valign="top" >{ "Off", "On", "Annotate" }</td>
2597 <td valign="top" >Connector</td>
2598 <td valign="top" >TBD</td>
2599 </tr>
2600 <tr>
2601 <td rowspan="21" valign="top" >i915</td>
2602 <td rowspan="3" valign="top" >Generic</td>
2603 <td valign="top" >"Broadcast RGB"</td>
2604 <td valign="top" >ENUM</td>
2605 <td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
2606 <td valign="top" >Connector</td>
2607 <td valign="top" >TBD</td>
2608 </tr>
2609 <tr>
2610 <td valign="top" >“audio”</td>
2611 <td valign="top" >ENUM</td>
2612 <td valign="top" >{ "force-dvi", "off", "auto", "on" }</td>
2613 <td valign="top" >Connector</td>
2614 <td valign="top" >TBD</td>
2615 </tr>
2616 <tr>
2617 <td valign="top" >Standard name as in DRM</td>
2618 <td valign="top" >Standard type as in DRM</td>
2619 <td valign="top" >Standard value as in DRM</td>
2620 <td valign="top" >Standard Object as in DRM</td>
2621 <td valign="top" >TBD</td>
2622 </tr>
2623 <tr>
2624 <td rowspan="17" valign="top" >SDVO-TV</td>
2625 <td valign="top" >“mode”</td>
2626 <td valign="top" >ENUM</td>
2627 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2628 <td valign="top" >Connector</td>
2629 <td valign="top" >TBD</td>
2630 </tr>
2631 <tr>
2632 <td valign="top" >"left_margin"</td>
2633 <td valign="top" >RANGE</td>
2634 <td valign="top" >Min=0, Max= SDVO dependent</td>
2635 <td valign="top" >Connector</td>
2636 <td valign="top" >TBD</td>
2637 </tr>
2638 <tr>
2639 <td valign="top" >"right_margin"</td>
2640 <td valign="top" >RANGE</td>
2641 <td valign="top" >Min=0, Max= SDVO dependent</td>
2642 <td valign="top" >Connector</td>
2643 <td valign="top" >TBD</td>
2644 </tr>
2645 <tr>
2646 <td valign="top" >"top_margin"</td>
2647 <td valign="top" >RANGE</td>
2648 <td valign="top" >Min=0, Max= SDVO dependent</td>
2649 <td valign="top" >Connector</td>
2650 <td valign="top" >TBD</td>
2651 </tr>
2652 <tr>
2653 <td valign="top" >"bottom_margin"</td>
2654 <td valign="top" >RANGE</td>
2655 <td valign="top" >Min=0, Max= SDVO dependent</td>
2656 <td valign="top" >Connector</td>
2657 <td valign="top" >TBD</td>
2658 </tr>
2659 <tr>
2660 <td valign="top" >“hpos”</td>
2661 <td valign="top" >RANGE</td>
2662 <td valign="top" >Min=0, Max= SDVO dependent</td>
2663 <td valign="top" >Connector</td>
2664 <td valign="top" >TBD</td>
2665 </tr>
2666 <tr>
2667 <td valign="top" >“vpos”</td>
2668 <td valign="top" >RANGE</td>
2669 <td valign="top" >Min=0, Max= SDVO dependent</td>
2670 <td valign="top" >Connector</td>
2671 <td valign="top" >TBD</td>
2672 </tr>
2673 <tr>
2674 <td valign="top" >“contrast”</td>
2675 <td valign="top" >RANGE</td>
2676 <td valign="top" >Min=0, Max= SDVO dependent</td>
2677 <td valign="top" >Connector</td>
2678 <td valign="top" >TBD</td>
2679 </tr>
2680 <tr>
2681 <td valign="top" >“saturation”</td>
2682 <td valign="top" >RANGE</td>
2683 <td valign="top" >Min=0, Max= SDVO dependent</td>
2684 <td valign="top" >Connector</td>
2685 <td valign="top" >TBD</td>
2686 </tr>
2687 <tr>
2688 <td valign="top" >“hue”</td>
2689 <td valign="top" >RANGE</td>
2690 <td valign="top" >Min=0, Max= SDVO dependent</td>
2691 <td valign="top" >Connector</td>
2692 <td valign="top" >TBD</td>
2693 </tr>
2694 <tr>
2695 <td valign="top" >“sharpness”</td>
2696 <td valign="top" >RANGE</td>
2697 <td valign="top" >Min=0, Max= SDVO dependent</td>
2698 <td valign="top" >Connector</td>
2699 <td valign="top" >TBD</td>
2700 </tr>
2701 <tr>
2702 <td valign="top" >“flicker_filter”</td>
2703 <td valign="top" >RANGE</td>
2704 <td valign="top" >Min=0, Max= SDVO dependent</td>
2705 <td valign="top" >Connector</td>
2706 <td valign="top" >TBD</td>
2707 </tr>
2708 <tr>
2709 <td valign="top" >“flicker_filter_adaptive”</td>
2710 <td valign="top" >RANGE</td>
2711 <td valign="top" >Min=0, Max= SDVO dependent</td>
2712 <td valign="top" >Connector</td>
2713 <td valign="top" >TBD</td>
2714 </tr>
2715 <tr>
2716 <td valign="top" >“flicker_filter_2d”</td>
2717 <td valign="top" >RANGE</td>
2718 <td valign="top" >Min=0, Max= SDVO dependent</td>
2719 <td valign="top" >Connector</td>
2720 <td valign="top" >TBD</td>
2721 </tr>
2722 <tr>
2723 <td valign="top" >“tv_chroma_filter”</td>
2724 <td valign="top" >RANGE</td>
2725 <td valign="top" >Min=0, Max= SDVO dependent</td>
2726 <td valign="top" >Connector</td>
2727 <td valign="top" >TBD</td>
2728 </tr>
2729 <tr>
2730 <td valign="top" >“tv_luma_filter”</td>
2731 <td valign="top" >RANGE</td>
2732 <td valign="top" >Min=0, Max= SDVO dependent</td>
2733 <td valign="top" >Connector</td>
2734 <td valign="top" >TBD</td>
2735 </tr>
2736 <tr>
2737 <td valign="top" >“dot_crawl”</td>
2738 <td valign="top" >RANGE</td>
2739 <td valign="top" >Min=0, Max=1</td>
2740 <td valign="top" >Connector</td>
2741 <td valign="top" >TBD</td>
2742 </tr>
2743 <tr>
2744 <td valign="top" >SDVO-TV/LVDS</td>
2745 <td valign="top" >“brightness”</td>
2746 <td valign="top" >RANGE</td>
2747 <td valign="top" >Min=0, Max= SDVO dependent</td>
2748 <td valign="top" >Connector</td>
2749 <td valign="top" >TBD</td>
2750 </tr>
2751 <tr>
2752 <td rowspan="3" valign="top" >CDV gma-500</td>
2753 <td rowspan="3" valign="top" >Generic</td>
2754 <td valign="top" >"Broadcast RGB"</td>
2755 <td valign="top" >ENUM</td>
2756 <td valign="top" >{ “Full”, “Limited 16:235” }</td>
2757 <td valign="top" >Connector</td>
2758 <td valign="top" >TBD</td>
2759 </tr>
2760 <tr>
2761 <td valign="top" >"Broadcast RGB"</td>
2762 <td valign="top" >ENUM</td>
2763 <td valign="top" >{ “off”, “auto”, “on” }</td>
2764 <td valign="top" >Connector</td>
2765 <td valign="top" >TBD</td>
2766 </tr>
2767 <tr>
2768 <td valign="top" >Standard name as in DRM</td>
2769 <td valign="top" >Standard type as in DRM</td>
2770 <td valign="top" >Standard value as in DRM</td>
2771 <td valign="top" >Standard Object as in DRM</td>
2772 <td valign="top" >TBD</td>
2773 </tr>
2774 <tr>
2775 <td rowspan="20" valign="top" >Poulsbo</td>
2776 <td rowspan="2" valign="top" >Generic</td>
2777 <td valign="top" >“backlight”</td>
2778 <td valign="top" >RANGE</td>
2779 <td valign="top" >Min=0, Max=100</td>
2780 <td valign="top" >Connector</td>
2781 <td valign="top" >TBD</td>
2782 </tr>
2783 <tr>
2784 <td valign="top" >Standard name as in DRM</td>
2785 <td valign="top" >Standard type as in DRM</td>
2786 <td valign="top" >Standard value as in DRM</td>
2787 <td valign="top" >Standard Object as in DRM</td>
2788 <td valign="top" >TBD</td>
2789 </tr>
2790 <tr>
2791 <td rowspan="17" valign="top" >SDVO-TV</td>
2792 <td valign="top" >“mode”</td>
2793 <td valign="top" >ENUM</td>
2794 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2795 <td valign="top" >Connector</td>
2796 <td valign="top" >TBD</td>
2797 </tr>
2798 <tr>
2799 <td valign="top" >"left_margin"</td>
2800 <td valign="top" >RANGE</td>
2801 <td valign="top" >Min=0, Max= SDVO dependent</td>
2802 <td valign="top" >Connector</td>
2803 <td valign="top" >TBD</td>
2804 </tr>
2805 <tr>
2806 <td valign="top" >"right_margin"</td>
2807 <td valign="top" >RANGE</td>
2808 <td valign="top" >Min=0, Max= SDVO dependent</td>
2809 <td valign="top" >Connector</td>
2810 <td valign="top" >TBD</td>
2811 </tr>
2812 <tr>
2813 <td valign="top" >"top_margin"</td>
2814 <td valign="top" >RANGE</td>
2815 <td valign="top" >Min=0, Max= SDVO dependent</td>
2816 <td valign="top" >Connector</td>
2817 <td valign="top" >TBD</td>
2818 </tr>
2819 <tr>
2820 <td valign="top" >"bottom_margin"</td>
2821 <td valign="top" >RANGE</td>
2822 <td valign="top" >Min=0, Max= SDVO dependent</td>
2823 <td valign="top" >Connector</td>
2824 <td valign="top" >TBD</td>
2825 </tr>
2826 <tr>
2827 <td valign="top" >“hpos”</td>
2828 <td valign="top" >RANGE</td>
2829 <td valign="top" >Min=0, Max= SDVO dependent</td>
2830 <td valign="top" >Connector</td>
2831 <td valign="top" >TBD</td>
2832 </tr>
2833 <tr>
2834 <td valign="top" >“vpos”</td>
2835 <td valign="top" >RANGE</td>
2836 <td valign="top" >Min=0, Max= SDVO dependent</td>
2837 <td valign="top" >Connector</td>
2838 <td valign="top" >TBD</td>
2839 </tr>
2840 <tr>
2841 <td valign="top" >“contrast”</td>
2842 <td valign="top" >RANGE</td>
2843 <td valign="top" >Min=0, Max= SDVO dependent</td>
2844 <td valign="top" >Connector</td>
2845 <td valign="top" >TBD</td>
2846 </tr>
2847 <tr>
2848 <td valign="top" >“saturation”</td>
2849 <td valign="top" >RANGE</td>
2850 <td valign="top" >Min=0, Max= SDVO dependent</td>
2851 <td valign="top" >Connector</td>
2852 <td valign="top" >TBD</td>
2853 </tr>
2854 <tr>
2855 <td valign="top" >“hue”</td>
2856 <td valign="top" >RANGE</td>
2857 <td valign="top" >Min=0, Max= SDVO dependent</td>
2858 <td valign="top" >Connector</td>
2859 <td valign="top" >TBD</td>
2860 </tr>
2861 <tr>
2862 <td valign="top" >“sharpness”</td>
2863 <td valign="top" >RANGE</td>
2864 <td valign="top" >Min=0, Max= SDVO dependent</td>
2865 <td valign="top" >Connector</td>
2866 <td valign="top" >TBD</td>
2867 </tr>
2868 <tr>
2869 <td valign="top" >“flicker_filter”</td>
2870 <td valign="top" >RANGE</td>
2871 <td valign="top" >Min=0, Max= SDVO dependent</td>
2872 <td valign="top" >Connector</td>
2873 <td valign="top" >TBD</td>
2874 </tr>
2875 <tr>
2876 <td valign="top" >“flicker_filter_adaptive”</td>
2877 <td valign="top" >RANGE</td>
2878 <td valign="top" >Min=0, Max= SDVO dependent</td>
2879 <td valign="top" >Connector</td>
2880 <td valign="top" >TBD</td>
2881 </tr>
2882 <tr>
2883 <td valign="top" >“flicker_filter_2d”</td>
2884 <td valign="top" >RANGE</td>
2885 <td valign="top" >Min=0, Max= SDVO dependent</td>
2886 <td valign="top" >Connector</td>
2887 <td valign="top" >TBD</td>
2888 </tr>
2889 <tr>
2890 <td valign="top" >“tv_chroma_filter”</td>
2891 <td valign="top" >RANGE</td>
2892 <td valign="top" >Min=0, Max= SDVO dependent</td>
2893 <td valign="top" >Connector</td>
2894 <td valign="top" >TBD</td>
2895 </tr>
2896 <tr>
2897 <td valign="top" >“tv_luma_filter”</td>
2898 <td valign="top" >RANGE</td>
2899 <td valign="top" >Min=0, Max= SDVO dependent</td>
2900 <td valign="top" >Connector</td>
2901 <td valign="top" >TBD</td>
2902 </tr>
2903 <tr>
2904 <td valign="top" >“dot_crawl”</td>
2905 <td valign="top" >RANGE</td>
2906 <td valign="top" >Min=0, Max=1</td>
2907 <td valign="top" >Connector</td>
2908 <td valign="top" >TBD</td>
2909 </tr>
2910 <tr>
2911 <td valign="top" >SDVO-TV/LVDS</td>
2912 <td valign="top" >“brightness”</td>
2913 <td valign="top" >RANGE</td>
2914 <td valign="top" >Min=0, Max= SDVO dependent</td>
2915 <td valign="top" >Connector</td>
2916 <td valign="top" >TBD</td>
2917 </tr>
2918 <tr>
2919 <td rowspan="11" valign="top" >armada</td>
2920 <td rowspan="2" valign="top" >CRTC</td>
2921 <td valign="top" >"CSC_YUV"</td>
2922 <td valign="top" >ENUM</td>
2923 <td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td>
2924 <td valign="top" >CRTC</td>
2925 <td valign="top" >TBD</td>
2926 </tr>
2927 <tr>
2928 <td valign="top" >"CSC_RGB"</td>
2929 <td valign="top" >ENUM</td>
2930 <td valign="top" >{ "Auto", "Computer system", "Studio" }</td>
2931 <td valign="top" >CRTC</td>
2932 <td valign="top" >TBD</td>
2933 </tr>
2934 <tr>
2935 <td rowspan="9" valign="top" >Overlay</td>
2936 <td valign="top" >"colorkey"</td>
2937 <td valign="top" >RANGE</td>
2938 <td valign="top" >Min=0, Max=0xffffff</td>
2939 <td valign="top" >Plane</td>
2940 <td valign="top" >TBD</td>
2941 </tr>
2942 <tr>
2943 <td valign="top" >"colorkey_min"</td>
2944 <td valign="top" >RANGE</td>
2945 <td valign="top" >Min=0, Max=0xffffff</td>
2946 <td valign="top" >Plane</td>
2947 <td valign="top" >TBD</td>
2948 </tr>
2949 <tr>
2950 <td valign="top" >"colorkey_max"</td>
2951 <td valign="top" >RANGE</td>
2952 <td valign="top" >Min=0, Max=0xffffff</td>
2953 <td valign="top" >Plane</td>
2954 <td valign="top" >TBD</td>
2955 </tr>
2956 <tr>
2957 <td valign="top" >"colorkey_val"</td>
2958 <td valign="top" >RANGE</td>
2959 <td valign="top" >Min=0, Max=0xffffff</td>
2960 <td valign="top" >Plane</td>
2961 <td valign="top" >TBD</td>
2962 </tr>
2963 <tr>
2964 <td valign="top" >"colorkey_alpha"</td>
2965 <td valign="top" >RANGE</td>
2966 <td valign="top" >Min=0, Max=0xffffff</td>
2967 <td valign="top" >Plane</td>
2968 <td valign="top" >TBD</td>
2969 </tr>
2970 <tr>
2971 <td valign="top" >"colorkey_mode"</td>
2972 <td valign="top" >ENUM</td>
2973 <td valign="top" >{ "disabled", "Y component", "U component"
2974 , "V component", "RGB", “R component", "G component", "B component" }</td>
2975 <td valign="top" >Plane</td>
2976 <td valign="top" >TBD</td>
2977 </tr>
2978 <tr>
2979 <td valign="top" >"brightness"</td>
2980 <td valign="top" >RANGE</td>
2981 <td valign="top" >Min=0, Max=256 + 255</td>
2982 <td valign="top" >Plane</td>
2983 <td valign="top" >TBD</td>
2984 </tr>
2985 <tr>
2986 <td valign="top" >"contrast"</td>
2987 <td valign="top" >RANGE</td>
2988 <td valign="top" >Min=0, Max=0x7fff</td>
2989 <td valign="top" >Plane</td>
2990 <td valign="top" >TBD</td>
2991 </tr>
2992 <tr>
2993 <td valign="top" >"saturation"</td>
2994 <td valign="top" >RANGE</td>
2995 <td valign="top" >Min=0, Max=0x7fff</td>
2996 <td valign="top" >Plane</td>
2997 <td valign="top" >TBD</td>
2998 </tr>
2999 <tr>
3000 <td rowspan="2" valign="top" >exynos</td>
3001 <td valign="top" >CRTC</td>
3002 <td valign="top" >“mode”</td>
3003 <td valign="top" >ENUM</td>
3004 <td valign="top" >{ "normal", "blank" }</td>
3005 <td valign="top" >CRTC</td>
3006 <td valign="top" >TBD</td>
3007 </tr>
3008 <tr>
3009 <td valign="top" >Overlay</td>
3010 <td valign="top" >“zpos”</td>
3011 <td valign="top" >RANGE</td>
3012 <td valign="top" >Min=0, Max=MAX_PLANE-1</td>
3013 <td valign="top" >Plane</td>
3014 <td valign="top" >TBD</td>
3015 </tr>
3016 <tr>
3017 <td rowspan="3" valign="top" >i2c/ch7006_drv</td>
3018 <td valign="top" >Generic</td>
3019 <td valign="top" >“scale”</td>
3020 <td valign="top" >RANGE</td>
3021 <td valign="top" >Min=0, Max=2</td>
3022 <td valign="top" >Connector</td>
3023 <td valign="top" >TBD</td>
3024 </tr>
3025 <tr>
3026 <td rowspan="2" valign="top" >TV</td>
3027 <td valign="top" >Standard names as in DRM</td>
3028 <td valign="top" >Standard types as in DRM</td>
3029 <td valign="top" >Standard Values as in DRM</td>
3030 <td valign="top" >Standard object as in DRM</td>
3031 <td valign="top" >TBD</td>
3032 </tr>
3033 <tr>
3034 <td valign="top" >“mode”</td>
3035 <td valign="top" >ENUM</td>
3036 <td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc"
3037 , "PAL-60", "NTSC-M", "NTSC-J" }</td>
3038 <td valign="top" >Connector</td>
3039 <td valign="top" >TBD</td>
3040 </tr>
3041 <tr>
3042 <td rowspan="16" valign="top" >noveau</td>
3043 <td rowspan="6" valign="top" >NV10 Overlay</td>
3044 <td valign="top" >"colorkey"</td>
3045 <td valign="top" >RANGE</td>
3046 <td valign="top" >Min=0, Max=0x01ffffff</td>
3047 <td valign="top" >Plane</td>
3048 <td valign="top" >TBD</td>
3049 </tr>
3050 <tr>
3051 <td valign="top" >“contrast”</td>
3052 <td valign="top" >RANGE</td>
3053 <td valign="top" >Min=0, Max=8192-1</td>
3054 <td valign="top" >Plane</td>
3055 <td valign="top" >TBD</td>
3056 </tr>
3057 <tr>
3058 <td valign="top" >“brightness”</td>
3059 <td valign="top" >RANGE</td>
3060 <td valign="top" >Min=0, Max=1024</td>
3061 <td valign="top" >Plane</td>
3062 <td valign="top" >TBD</td>
3063 </tr>
3064 <tr>
3065 <td valign="top" >“hue”</td>
3066 <td valign="top" >RANGE</td>
3067 <td valign="top" >Min=0, Max=359</td>
3068 <td valign="top" >Plane</td>
3069 <td valign="top" >TBD</td>
3070 </tr>
3071 <tr>
3072 <td valign="top" >“saturation”</td>
3073 <td valign="top" >RANGE</td>
3074 <td valign="top" >Min=0, Max=8192-1</td>
3075 <td valign="top" >Plane</td>
3076 <td valign="top" >TBD</td>
3077 </tr>
3078 <tr>
3079 <td valign="top" >“iturbt_709”</td>
3080 <td valign="top" >RANGE</td>
3081 <td valign="top" >Min=0, Max=1</td>
3082 <td valign="top" >Plane</td>
3083 <td valign="top" >TBD</td>
3084 </tr>
3085 <tr>
3086 <td rowspan="2" valign="top" >Nv04 Overlay</td>
3087 <td valign="top" >“colorkey”</td>
3088 <td valign="top" >RANGE</td>
3089 <td valign="top" >Min=0, Max=0x01ffffff</td>
3090 <td valign="top" >Plane</td>
3091 <td valign="top" >TBD</td>
3092 </tr>
3093 <tr>
3094 <td valign="top" >“brightness”</td>
3095 <td valign="top" >RANGE</td>
3096 <td valign="top" >Min=0, Max=1024</td>
3097 <td valign="top" >Plane</td>
3098 <td valign="top" >TBD</td>
3099 </tr>
3100 <tr>
3101 <td rowspan="7" valign="top" >Display</td>
3102 <td valign="top" >“dithering mode”</td>
3103 <td valign="top" >ENUM</td>
3104 <td valign="top" >{ "auto", "off", "on" }</td>
3105 <td valign="top" >Connector</td>
3106 <td valign="top" >TBD</td>
3107 </tr>
3108 <tr>
3109 <td valign="top" >“dithering depth”</td>
3110 <td valign="top" >ENUM</td>
3111 <td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td>
3112 <td valign="top" >Connector</td>
3113 <td valign="top" >TBD</td>
3114 </tr>
3115 <tr>
3116 <td valign="top" >“underscan”</td>
3117 <td valign="top" >ENUM</td>
3118 <td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td>
3119 <td valign="top" >Connector</td>
3120 <td valign="top" >TBD</td>
3121 </tr>
3122 <tr>
3123 <td valign="top" >“underscan hborder”</td>
3124 <td valign="top" >RANGE</td>
3125 <td valign="top" >Min=0, Max=128</td>
3126 <td valign="top" >Connector</td>
3127 <td valign="top" >TBD</td>
3128 </tr>
3129 <tr>
3130 <td valign="top" >“underscan vborder”</td>
3131 <td valign="top" >RANGE</td>
3132 <td valign="top" >Min=0, Max=128</td>
3133 <td valign="top" >Connector</td>
3134 <td valign="top" >TBD</td>
3135 </tr>
3136 <tr>
3137 <td valign="top" >“vibrant hue”</td>
3138 <td valign="top" >RANGE</td>
3139 <td valign="top" >Min=0, Max=180</td>
3140 <td valign="top" >Connector</td>
3141 <td valign="top" >TBD</td>
3142 </tr>
3143 <tr>
3144 <td valign="top" >“color vibrance”</td>
3145 <td valign="top" >RANGE</td>
3146 <td valign="top" >Min=0, Max=200</td>
3147 <td valign="top" >Connector</td>
3148 <td valign="top" >TBD</td>
3149 </tr>
3150 <tr>
3151 <td valign="top" >Generic</td>
3152 <td valign="top" >Standard name as in DRM</td>
3153 <td valign="top" >Standard type as in DRM</td>
3154 <td valign="top" >Standard value as in DRM</td>
3155 <td valign="top" >Standard Object as in DRM</td>
3156 <td valign="top" >TBD</td>
3157 </tr>
3158 <tr>
3159 <td rowspan="2" valign="top" >omap</td>
3160 <td rowspan="2" valign="top" >Generic</td>
3161 <td valign="top" >“rotation”</td>
3162 <td valign="top" >BITMASK</td>
3163 <td valign="top" >{ 0, "rotate-0" },
3164 { 1, "rotate-90" },
3165 { 2, "rotate-180" },
3166 { 3, "rotate-270" },
3167 { 4, "reflect-x" },
3168 { 5, "reflect-y" }</td>
3169 <td valign="top" >CRTC, Plane</td>
3170 <td valign="top" >TBD</td>
3171 </tr>
3172 <tr>
3173 <td valign="top" >“zorder”</td>
3174 <td valign="top" >RANGE</td>
3175 <td valign="top" >Min=0, Max=3</td>
3176 <td valign="top" >CRTC, Plane</td>
3177 <td valign="top" >TBD</td>
3178 </tr>
3179 <tr>
3180 <td valign="top" >qxl</td>
3181 <td valign="top" >Generic</td>
3182 <td valign="top" >“hotplug_mode_update"</td>
3183 <td valign="top" >RANGE</td>
3184 <td valign="top" >Min=0, Max=1</td>
3185 <td valign="top" >Connector</td>
3186 <td valign="top" >TBD</td>
3187 </tr>
3188 <tr>
3189 <td rowspan="10" valign="top" >radeon</td>
3190 <td valign="top" >DVI-I</td>
3191 <td valign="top" >“coherent”</td>
3192 <td valign="top" >RANGE</td>
3193 <td valign="top" >Min=0, Max=1</td>
3194 <td valign="top" >Connector</td>
3195 <td valign="top" >TBD</td>
3196 </tr>
3197 <tr>
3198 <td valign="top" >DAC enable load detect</td>
3199 <td valign="top" >“load detection”</td>
3200 <td valign="top" >RANGE</td>
3201 <td valign="top" >Min=0, Max=1</td>
3202 <td valign="top" >Connector</td>
3203 <td valign="top" >TBD</td>
3204 </tr>
3205 <tr>
3206 <td valign="top" >TV Standard</td>
3207 <td valign="top" >"tv standard"</td>
3208 <td valign="top" >ENUM</td>
3209 <td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j"
3210 , "scart-pal", "pal-cn", "secam" }</td>
3211 <td valign="top" >Connector</td>
3212 <td valign="top" >TBD</td>
3213 </tr>
3214 <tr>
3215 <td valign="top" >legacy TMDS PLL detect</td>
3216 <td valign="top" >"tmds_pll"</td>
3217 <td valign="top" >ENUM</td>
3218 <td valign="top" >{ "driver", "bios" }</td>
3219 <td valign="top" >-</td>
3220 <td valign="top" >TBD</td>
3221 </tr>
3222 <tr>
3223 <td rowspan="3" valign="top" >Underscan</td>
3224 <td valign="top" >"underscan"</td>
3225 <td valign="top" >ENUM</td>
3226 <td valign="top" >{ "off", "on", "auto" }</td>
3227 <td valign="top" >Connector</td>
3228 <td valign="top" >TBD</td>
3229 </tr>
3230 <tr>
3231 <td valign="top" >"underscan hborder"</td>
3232 <td valign="top" >RANGE</td>
3233 <td valign="top" >Min=0, Max=128</td>
3234 <td valign="top" >Connector</td>
3235 <td valign="top" >TBD</td>
3236 </tr>
3237 <tr>
3238 <td valign="top" >"underscan vborder"</td>
3239 <td valign="top" >RANGE</td>
3240 <td valign="top" >Min=0, Max=128</td>
3241 <td valign="top" >Connector</td>
3242 <td valign="top" >TBD</td>
3243 </tr>
3244 <tr>
3245 <td valign="top" >Audio</td>
3246 <td valign="top" >“audio”</td>
3247 <td valign="top" >ENUM</td>
3248 <td valign="top" >{ "off", "on", "auto" }</td>
3249 <td valign="top" >Connector</td>
3250 <td valign="top" >TBD</td>
3251 </tr>
3252 <tr>
3253 <td valign="top" >FMT Dithering</td>
3254 <td valign="top" >“dither”</td>
3255 <td valign="top" >ENUM</td>
3256 <td valign="top" >{ "off", "on" }</td>
3257 <td valign="top" >Connector</td>
3258 <td valign="top" >TBD</td>
3259 </tr>
3260 <tr>
3261 <td valign="top" >Generic</td>
3262 <td valign="top" >Standard name as in DRM</td>
3263 <td valign="top" >Standard type as in DRM</td>
3264 <td valign="top" >Standard value as in DRM</td>
3265 <td valign="top" >Standard Object as in DRM</td>
3266 <td valign="top" >TBD</td>
3267 </tr>
3268 <tr>
3269 <td rowspan="3" valign="top" >rcar-du</td>
3270 <td rowspan="3" valign="top" >Generic</td>
3271 <td valign="top" >"alpha"</td>
3272 <td valign="top" >RANGE</td>
3273 <td valign="top" >Min=0, Max=255</td>
3274 <td valign="top" >Plane</td>
3275 <td valign="top" >TBD</td>
3276 </tr>
3277 <tr>
3278 <td valign="top" >"colorkey"</td>
3279 <td valign="top" >RANGE</td>
3280 <td valign="top" >Min=0, Max=0x01ffffff</td>
3281 <td valign="top" >Plane</td>
3282 <td valign="top" >TBD</td>
3283 </tr>
3284 <tr>
3285 <td valign="top" >"zpos"</td>
3286 <td valign="top" >RANGE</td>
3287 <td valign="top" >Min=1, Max=7</td>
3288 <td valign="top" >Plane</td>
3289 <td valign="top" >TBD</td>
3290 </tr>
3291 </tbody>
3292 </table>
3293 </sect2>
2d2ef822
JB
3294 </sect1>
3295
9cad9c95
LP
3296 <!-- Internals: vertical blanking -->
3297
3298 <sect1 id="drm-vertical-blank">
3299 <title>Vertical Blanking</title>
3300 <para>
3301 Vertical blanking plays a major role in graphics rendering. To achieve
3302 tear-free display, users must synchronize page flips and/or rendering to
3303 vertical blanking. The DRM API offers ioctls to perform page flips
3304 synchronized to vertical blanking and wait for vertical blanking.
3305 </para>
3306 <para>
3307 The DRM core handles most of the vertical blanking management logic, which
3308 involves filtering out spurious interrupts, keeping race-free blanking
3309 counters, coping with counter wrap-around and resets and keeping use
3310 counts. It relies on the driver to generate vertical blanking interrupts
3311 and optionally provide a hardware vertical blanking counter. Drivers must
3312 implement the following operations.
3313 </para>
3314 <itemizedlist>
3315 <listitem>
3316 <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
3317void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
3318 <para>
3319 Enable or disable vertical blanking interrupts for the given CRTC.
3320 </para>
3321 </listitem>
3322 <listitem>
3323 <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
3324 <para>
3325 Retrieve the value of the vertical blanking counter for the given
3326 CRTC. If the hardware maintains a vertical blanking counter its value
3327 should be returned. Otherwise drivers can use the
3328 <function>drm_vblank_count</function> helper function to handle this
3329 operation.
3330 </para>
3331 </listitem>
3332 </itemizedlist>
2d2ef822 3333 <para>
9cad9c95
LP
3334 Drivers must initialize the vertical blanking handling core with a call to
3335 <function>drm_vblank_init</function> in their
3336 <methodname>load</methodname> operation. The function will set the struct
3337 <structname>drm_device</structname>
3338 <structfield>vblank_disable_allowed</structfield> field to 0. This will
3339 keep vertical blanking interrupts enabled permanently until the first mode
3340 set operation, where <structfield>vblank_disable_allowed</structfield> is
3341 set to 1. The reason behind this is not clear. Drivers can set the field
3342 to 1 after <function>calling drm_vblank_init</function> to make vertical
3343 blanking interrupts dynamically managed from the beginning.
2d2ef822 3344 </para>
9cad9c95
LP
3345 <para>
3346 Vertical blanking interrupts can be enabled by the DRM core or by drivers
3347 themselves (for instance to handle page flipping operations). The DRM core
3348 maintains a vertical blanking use count to ensure that the interrupts are
3349 not disabled while a user still needs them. To increment the use count,
3350 drivers call <function>drm_vblank_get</function>. Upon return vertical
3351 blanking interrupts are guaranteed to be enabled.
3352 </para>
3353 <para>
3354 To decrement the use count drivers call
3355 <function>drm_vblank_put</function>. Only when the use count drops to zero
3356 will the DRM core disable the vertical blanking interrupts after a delay
3357 by scheduling a timer. The delay is accessible through the vblankoffdelay
3358 module parameter or the <varname>drm_vblank_offdelay</varname> global
3359 variable and expressed in milliseconds. Its default value is 5000 ms.
3360 </para>
3361 <para>
3362 When a vertical blanking interrupt occurs drivers only need to call the
3363 <function>drm_handle_vblank</function> function to account for the
3364 interrupt.
3365 </para>
3366 <para>
3367 Resources allocated by <function>drm_vblank_init</function> must be freed
3368 with a call to <function>drm_vblank_cleanup</function> in the driver
3369 <methodname>unload</methodname> operation handler.
3370 </para>
f5752b38
DV
3371 <sect2>
3372 <title>Vertical Blanking and Interrupt Handling Functions Reference</title>
3373!Edrivers/gpu/drm/drm_irq.c
3374 </sect2>
9cad9c95
LP
3375 </sect1>
3376
3377 <!-- Internals: open/close, file operations and ioctls -->
2d2ef822 3378
9cad9c95
LP
3379 <sect1>
3380 <title>Open/Close, File Operations and IOCTLs</title>
2d2ef822 3381 <sect2>
9cad9c95
LP
3382 <title>Open and Close</title>
3383 <synopsis>int (*firstopen) (struct drm_device *);
3384void (*lastclose) (struct drm_device *);
3385int (*open) (struct drm_device *, struct drm_file *);
3386void (*preclose) (struct drm_device *, struct drm_file *);
3387void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
3388 <abstract>Open and close handlers. None of those methods are mandatory.
3389 </abstract>
2d2ef822 3390 <para>
9cad9c95 3391 The <methodname>firstopen</methodname> method is called by the DRM core
7d14bb6b
DV
3392 for legacy UMS (User Mode Setting) drivers only when an application
3393 opens a device that has no other opened file handle. UMS drivers can
3394 implement it to acquire device resources. KMS drivers can't use the
3395 method and must acquire resources in the <methodname>load</methodname>
3396 method instead.
2d2ef822
JB
3397 </para>
3398 <para>
7d14bb6b
DV
3399 Similarly the <methodname>lastclose</methodname> method is called when
3400 the last application holding a file handle opened on the device closes
3401 it, for both UMS and KMS drivers. Additionally, the method is also
3402 called at module unload time or, for hot-pluggable devices, when the
3403 device is unplugged. The <methodname>firstopen</methodname> and
9cad9c95 3404 <methodname>lastclose</methodname> calls can thus be unbalanced.
2d2ef822
JB
3405 </para>
3406 <para>
9cad9c95
LP
3407 The <methodname>open</methodname> method is called every time the device
3408 is opened by an application. Drivers can allocate per-file private data
3409 in this method and store them in the struct
3410 <structname>drm_file</structname> <structfield>driver_priv</structfield>
3411 field. Note that the <methodname>open</methodname> method is called
3412 before <methodname>firstopen</methodname>.
3413 </para>
3414 <para>
3415 The close operation is split into <methodname>preclose</methodname> and
3416 <methodname>postclose</methodname> methods. Drivers must stop and
3417 cleanup all per-file operations in the <methodname>preclose</methodname>
3418 method. For instance pending vertical blanking and page flip events must
3419 be cancelled. No per-file operation is allowed on the file handle after
3420 returning from the <methodname>preclose</methodname> method.
3421 </para>
3422 <para>
3423 Finally the <methodname>postclose</methodname> method is called as the
3424 last step of the close operation, right before calling the
3425 <methodname>lastclose</methodname> method if no other open file handle
3426 exists for the device. Drivers that have allocated per-file private data
3427 in the <methodname>open</methodname> method should free it here.
3428 </para>
3429 <para>
3430 The <methodname>lastclose</methodname> method should restore CRTC and
3431 plane properties to default value, so that a subsequent open of the
7d14bb6b
DV
3432 device will not inherit state from the previous user. It can also be
3433 used to execute delayed power switching state changes, e.g. in
3434 conjunction with the vga-switcheroo infrastructure. Beyond that KMS
3435 drivers should not do any further cleanup. Only legacy UMS drivers might
3436 need to clean up device state so that the vga console or an independent
3437 fbdev driver could take over.
2d2ef822
JB
3438 </para>
3439 </sect2>
2d2ef822 3440 <sect2>
9cad9c95
LP
3441 <title>File Operations</title>
3442 <synopsis>const struct file_operations *fops</synopsis>
3443 <abstract>File operations for the DRM device node.</abstract>
2d2ef822 3444 <para>
9cad9c95
LP
3445 Drivers must define the file operations structure that forms the DRM
3446 userspace API entry point, even though most of those operations are
3447 implemented in the DRM core. The <methodname>open</methodname>,
3448 <methodname>release</methodname> and <methodname>ioctl</methodname>
3449 operations are handled by
3450 <programlisting>
3451 .owner = THIS_MODULE,
3452 .open = drm_open,
3453 .release = drm_release,
3454 .unlocked_ioctl = drm_ioctl,
3455 #ifdef CONFIG_COMPAT
3456 .compat_ioctl = drm_compat_ioctl,
3457 #endif
3458 </programlisting>
2d2ef822
JB
3459 </para>
3460 <para>
9cad9c95
LP
3461 Drivers that implement private ioctls that requires 32/64bit
3462 compatibility support must provide their own
3463 <methodname>compat_ioctl</methodname> handler that processes private
3464 ioctls and calls <function>drm_compat_ioctl</function> for core ioctls.
2d2ef822
JB
3465 </para>
3466 <para>
9cad9c95
LP
3467 The <methodname>read</methodname> and <methodname>poll</methodname>
3468 operations provide support for reading DRM events and polling them. They
3469 are implemented by
3470 <programlisting>
3471 .poll = drm_poll,
3472 .read = drm_read,
9cad9c95
LP
3473 .llseek = no_llseek,
3474 </programlisting>
3475 </para>
3476 <para>
3477 The memory mapping implementation varies depending on how the driver
3478 manages memory. Pre-GEM drivers will use <function>drm_mmap</function>,
3479 while GEM-aware drivers will use <function>drm_gem_mmap</function>. See
3480 <xref linkend="drm-gem"/>.
3481 <programlisting>
3482 .mmap = drm_gem_mmap,
3483 </programlisting>
3484 </para>
3485 <para>
3486 No other file operation is supported by the DRM API.
3487 </para>
3488 </sect2>
3489 <sect2>
3490 <title>IOCTLs</title>
3491 <synopsis>struct drm_ioctl_desc *ioctls;
3492int num_ioctls;</synopsis>
3493 <abstract>Driver-specific ioctls descriptors table.</abstract>
3494 <para>
3495 Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
3496 descriptors table is indexed by the ioctl number offset from the base
3497 value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
3498 table entries.
3499 </para>
3500 <para>
3501 <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
3502 <para>
3503 <parameter>ioctl</parameter> is the ioctl name. Drivers must define
3504 the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
3505 offset from DRM_COMMAND_BASE and the ioctl number respectively. The
3506 first macro is private to the device while the second must be exposed
3507 to userspace in a public header.
3508 </para>
3509 <para>
3510 <parameter>func</parameter> is a pointer to the ioctl handler function
3511 compatible with the <type>drm_ioctl_t</type> type.
3512 <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
3513 struct drm_file *file_priv);</programlisting>
3514 </para>
3515 <para>
3516 <parameter>flags</parameter> is a bitmask combination of the following
3517 values. It restricts how the ioctl is allowed to be called.
3518 <itemizedlist>
3519 <listitem><para>
3520 DRM_AUTH - Only authenticated callers allowed
3521 </para></listitem>
3522 <listitem><para>
3523 DRM_MASTER - The ioctl can only be called on the master file
3524 handle
3525 </para></listitem>
3526 <listitem><para>
3527 DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
3528 </para></listitem>
3529 <listitem><para>
3530 DRM_CONTROL_ALLOW - The ioctl can only be called on a control
3531 device
3532 </para></listitem>
3533 <listitem><para>
3534 DRM_UNLOCKED - The ioctl handler will be called without locking
3535 the DRM global mutex
3536 </para></listitem>
3537 </itemizedlist>
3538 </para>
2d2ef822
JB
3539 </para>
3540 </sect2>
2d2ef822 3541 </sect1>
2d2ef822 3542 <sect1>
4c6e2dfe 3543 <title>Legacy Support Code</title>
2d2ef822 3544 <para>
9a6594fc 3545 The section very briefly covers some of the old legacy support code which
4c6e2dfe
DV
3546 is only used by old DRM drivers which have done a so-called shadow-attach
3547 to the underlying device instead of registering as a real driver. This
9a6594fc 3548 also includes some of the old generic buffer management and command
4c6e2dfe 3549 submission code. Do not use any of this in new and modern drivers.
2d2ef822 3550 </para>
2d2ef822 3551
4c6e2dfe
DV
3552 <sect2>
3553 <title>Legacy Suspend/Resume</title>
3554 <para>
3555 The DRM core provides some suspend/resume code, but drivers wanting full
3556 suspend/resume support should provide save() and restore() functions.
3557 These are called at suspend, hibernate, or resume time, and should perform
3558 any state save or restore required by your device across suspend or
3559 hibernate states.
3560 </para>
3561 <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
3562 int (*resume) (struct drm_device *);</synopsis>
3563 <para>
3564 Those are legacy suspend and resume methods which
3565 <emphasis>only</emphasis> work with the legacy shadow-attach driver
3566 registration functions. New driver should use the power management
3567 interface provided by their bus type (usually through
3568 the struct <structname>device_driver</structname> dev_pm_ops) and set
3569 these methods to NULL.
3570 </para>
3571 </sect2>
3572
3573 <sect2>
3574 <title>Legacy DMA Services</title>
3575 <para>
3576 This should cover how DMA mapping etc. is supported by the core.
3577 These functions are deprecated and should not be used.
3578 </para>
3579 </sect2>
2d2ef822
JB
3580 </sect1>
3581 </chapter>
3582
9cad9c95
LP
3583<!-- TODO
3584
3585- Add a glossary
3586- Document the struct_mutex catch-all lock
3587- Document connector properties
3588
3589- Why is the load method optional?
3590- What are drivers supposed to set the initial display state to, and how?
3591 Connector's DPMS states are not initialized and are thus equal to
3592 DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
3593 drm_helper_disable_unused_functions(), which disables unused encoders and
3594 CRTCs, but doesn't touch the connectors' DPMS state, and
3595 drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
3596 that don't implement (or just don't use) fbcon compatibility need to call
3597 those functions themselves?
3598- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
3599 around mode setting. Should this be done in the DRM core?
3600- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
3601 call and never set back to 0. It seems to be safe to permanently set it to 1
3602 in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
3603 well. This should be investigated.
3604- crtc and connector .save and .restore operations are only used internally in
3605 drivers, should they be removed from the core?
3606- encoder mid-layer .save and .restore operations are only used internally in
3607 drivers, should they be removed from the core?
3608- encoder mid-layer .detect operation is only used internally in drivers,
3609 should it be removed from the core?
3610-->
3611
2d2ef822
JB
3612 <!-- External interfaces -->
3613
3614 <chapter id="drmExternals">
3615 <title>Userland interfaces</title>
3616 <para>
3617 The DRM core exports several interfaces to applications,
3618 generally intended to be used through corresponding libdrm
a5294e01 3619 wrapper functions. In addition, drivers export device-specific
7f0925ac 3620 interfaces for use by userspace drivers &amp; device-aware
2d2ef822
JB
3621 applications through ioctls and sysfs files.
3622 </para>
3623 <para>
3624 External interfaces include: memory mapping, context management,
3625 DMA operations, AGP management, vblank control, fence
3626 management, memory management, and output management.
3627 </para>
3628 <para>
bcd3cfc1
MW
3629 Cover generic ioctls and sysfs layout here. We only need high-level
3630 info, since man pages should cover the rest.
2d2ef822 3631 </para>
9cad9c95 3632
1793126f
DH
3633 <!-- External: render nodes -->
3634
3635 <sect1>
3636 <title>Render nodes</title>
3637 <para>
3638 DRM core provides multiple character-devices for user-space to use.
3639 Depending on which device is opened, user-space can perform a different
3640 set of operations (mainly ioctls). The primary node is always created
00153aeb
DV
3641 and called card&lt;num&gt;. Additionally, a currently
3642 unused control node, called controlD&lt;num&gt; is also
1793126f
DH
3643 created. The primary node provides all legacy operations and
3644 historically was the only interface used by userspace. With KMS, the
3645 control node was introduced. However, the planned KMS control interface
3646 has never been written and so the control node stays unused to date.
3647 </para>
3648 <para>
3649 With the increased use of offscreen renderers and GPGPU applications,
3650 clients no longer require running compositors or graphics servers to
3651 make use of a GPU. But the DRM API required unprivileged clients to
3652 authenticate to a DRM-Master prior to getting GPU access. To avoid this
3653 step and to grant clients GPU access without authenticating, render
3654 nodes were introduced. Render nodes solely serve render clients, that
3655 is, no modesetting or privileged ioctls can be issued on render nodes.
3656 Only non-global rendering commands are allowed. If a driver supports
00153aeb 3657 render nodes, it must advertise it via the DRIVER_RENDER
1793126f
DH
3658 DRM driver capability. If not supported, the primary node must be used
3659 for render clients together with the legacy drmAuth authentication
3660 procedure.
3661 </para>
3662 <para>
3663 If a driver advertises render node support, DRM core will create a
00153aeb 3664 separate render node called renderD&lt;num&gt;. There will
1793126f 3665 be one render node per device. No ioctls except PRIME-related ioctls
00153aeb 3666 will be allowed on this node. Especially GEM_OPEN will be
1793126f
DH
3667 explicitly prohibited. Render nodes are designed to avoid the
3668 buffer-leaks, which occur if clients guess the flink names or mmap
3669 offsets on the legacy interface. Additionally to this basic interface,
3670 drivers must mark their driver-dependent render-only ioctls as
00153aeb 3671 DRM_RENDER_ALLOW so render clients can use them. Driver
1793126f
DH
3672 authors must be careful not to allow any privileged ioctls on render
3673 nodes.
3674 </para>
3675 <para>
3676 With render nodes, user-space can now control access to the render node
3677 via basic file-system access-modes. A running graphics server which
3678 authenticates clients on the privileged primary/legacy node is no longer
3679 required. Instead, a client can open the render node and is immediately
3680 granted GPU access. Communication between clients (or servers) is done
3681 via PRIME. FLINK from render node to legacy node is not supported. New
3682 clients must not use the insecure FLINK interface.
3683 </para>
3684 <para>
3685 Besides dropping all modeset/global ioctls, render nodes also drop the
3686 DRM-Master concept. There is no reason to associate render clients with
3687 a DRM-Master as they are independent of any graphics server. Besides,
3688 they must work without any running master, anyway.
3689 Drivers must be able to run without a master object if they support
3690 render nodes. If, on the other hand, a driver requires shared state
3691 between clients which is visible to user-space and accessible beyond
3692 open-file boundaries, they cannot support render nodes.
3693 </para>
3694 </sect1>
3695
9cad9c95
LP
3696 <!-- External: vblank handling -->
3697
3698 <sect1>
3699 <title>VBlank event handling</title>
3700 <para>
3701 The DRM core exposes two vertical blank related ioctls:
3702 <variablelist>
3703 <varlistentry>
3704 <term>DRM_IOCTL_WAIT_VBLANK</term>
3705 <listitem>
3706 <para>
3707 This takes a struct drm_wait_vblank structure as its argument,
3708 and it is used to block or request a signal when a specified
3709 vblank event occurs.
3710 </para>
3711 </listitem>
3712 </varlistentry>
3713 <varlistentry>
3714 <term>DRM_IOCTL_MODESET_CTL</term>
3715 <listitem>
3716 <para>
8edffbb9
DV
3717 This was only used for user-mode-settind drivers around
3718 modesetting changes to allow the kernel to update the vblank
3719 interrupt after mode setting, since on many devices the vertical
3720 blank counter is reset to 0 at some point during modeset. Modern
3721 drivers should not call this any more since with kernel mode
3722 setting it is a no-op.
9cad9c95
LP
3723 </para>
3724 </listitem>
3725 </varlistentry>
3726 </variablelist>
9cad9c95
LP
3727 </para>
3728 </sect1>
3729
2d2ef822 3730 </chapter>
3519f70e
DV
3731</part>
3732<part id="drmDrivers">
3733 <title>DRM Drivers</title>
2d2ef822 3734
3519f70e
DV
3735 <partintro>
3736 <para>
3737 This second part of the DRM Developer's Guide documents driver code,
3738 implementation details and also all the driver-specific userspace
3739 interfaces. Especially since all hardware-acceleration interfaces to
3740 userspace are driver specific for efficiency and other reasons these
3741 interfaces can be rather substantial. Hence every driver has its own
3742 chapter.
3743 </para>
3744 </partintro>
2d2ef822 3745
3519f70e
DV
3746 <chapter id="drmI915">
3747 <title>drm/i915 Intel GFX Driver</title>
2d2ef822 3748 <para>
3519f70e
DV
3749 The drm/i915 driver supports all (with the exception of some very early
3750 models) integrated GFX chipsets with both Intel display and rendering
3751 blocks. This excludes a set of SoC platforms with an SGX rendering unit,
3752 those have basic support through the gma500 drm driver.
2d2ef822 3753 </para>
3519f70e
DV
3754 <sect1>
3755 <title>Display Hardware Handling</title>
3756 <para>
3757 This section covers everything related to the display hardware including
3758 the mode setting infrastructure, plane, sprite and cursor handling and
3759 display, output probing and related topics.
3760 </para>
3761 <sect2>
3762 <title>Mode Setting Infrastructure</title>
3763 <para>
3764 The i915 driver is thus far the only DRM driver which doesn't use the
3765 common DRM helper code to implement mode setting sequences. Thus it
3766 has its own tailor-made infrastructure for executing a display
3767 configuration change.
3768 </para>
3769 </sect2>
3770 <sect2>
3771 <title>Plane Configuration</title>
3772 <para>
3773 This section covers plane configuration and composition with the
3774 primary plane, sprites, cursors and overlays. This includes the
3775 infrastructure to do atomic vsync'ed updates of all this state and
3776 also tightly coupled topics like watermark setup and computation,
3777 framebuffer compression and panel self refresh.
3778 </para>
3779 </sect2>
3780 <sect2>
3781 <title>Output Probing</title>
3782 <para>
3783 This section covers output probing and related infrastructure like the
3784 hotplug interrupt storm detection and mitigation code. Note that the
3785 i915 driver still uses most of the common DRM helper code for output
3786 probing, so those sections fully apply.
3787 </para>
3788 </sect2>
0e767189
VS
3789 <sect2>
3790 <title>DPIO</title>
3791!Pdrivers/gpu/drm/i915/i915_reg.h DPIO
111a9c14
VS
3792 <table id="dpiox2">
3793 <title>Dual channel PHY (VLV/CHV)</title>
3794 <tgroup cols="8">
3795 <colspec colname="c0" />
3796 <colspec colname="c1" />
3797 <colspec colname="c2" />
3798 <colspec colname="c3" />
3799 <colspec colname="c4" />
3800 <colspec colname="c5" />
3801 <colspec colname="c6" />
3802 <colspec colname="c7" />
3803 <spanspec spanname="ch0" namest="c0" nameend="c3" />
3804 <spanspec spanname="ch1" namest="c4" nameend="c7" />
3805 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" />
3806 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" />
3807 <spanspec spanname="ch1pcs01" namest="c4" nameend="c5" />
3808 <spanspec spanname="ch1pcs23" namest="c6" nameend="c7" />
3809 <thead>
3810 <row>
3811 <entry spanname="ch0">CH0</entry>
3812 <entry spanname="ch1">CH1</entry>
3813 </row>
3814 </thead>
3815 <tbody valign="top" align="center">
3816 <row>
3817 <entry spanname="ch0">CMN/PLL/REF</entry>
3818 <entry spanname="ch1">CMN/PLL/REF</entry>
3819 </row>
3820 <row>
3821 <entry spanname="ch0pcs01">PCS01</entry>
3822 <entry spanname="ch0pcs23">PCS23</entry>
3823 <entry spanname="ch1pcs01">PCS01</entry>
3824 <entry spanname="ch1pcs23">PCS23</entry>
3825 </row>
3826 <row>
3827 <entry>TX0</entry>
3828 <entry>TX1</entry>
3829 <entry>TX2</entry>
3830 <entry>TX3</entry>
3831 <entry>TX0</entry>
3832 <entry>TX1</entry>
3833 <entry>TX2</entry>
3834 <entry>TX3</entry>
3835 </row>
3836 <row>
3837 <entry spanname="ch0">DDI0</entry>
3838 <entry spanname="ch1">DDI1</entry>
3839 </row>
3840 </tbody>
3841 </tgroup>
3842 </table>
3843 <table id="dpiox1">
3844 <title>Single channel PHY (CHV)</title>
3845 <tgroup cols="4">
3846 <colspec colname="c0" />
3847 <colspec colname="c1" />
3848 <colspec colname="c2" />
3849 <colspec colname="c3" />
3850 <spanspec spanname="ch0" namest="c0" nameend="c3" />
3851 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" />
3852 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" />
3853 <thead>
3854 <row>
3855 <entry spanname="ch0">CH0</entry>
3856 </row>
3857 </thead>
3858 <tbody valign="top" align="center">
3859 <row>
3860 <entry spanname="ch0">CMN/PLL/REF</entry>
3861 </row>
3862 <row>
3863 <entry spanname="ch0pcs01">PCS01</entry>
3864 <entry spanname="ch0pcs23">PCS23</entry>
3865 </row>
3866 <row>
3867 <entry>TX0</entry>
3868 <entry>TX1</entry>
3869 <entry>TX2</entry>
3870 <entry>TX3</entry>
3871 </row>
3872 <row>
3873 <entry spanname="ch0">DDI2</entry>
3874 </row>
3875 </tbody>
3876 </tgroup>
3877 </table>
0e767189 3878 </sect2>
3519f70e 3879 </sect1>
2d2ef822 3880
3519f70e
DV
3881 <sect1>
3882 <title>Memory Management and Command Submission</title>
3883 <para>
3884 This sections covers all things related to the GEM implementation in the
3885 i915 driver.
3886 </para>
122b2505
DV
3887 <sect2>
3888 <title>Batchbuffer Parsing</title>
3889!Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
3890!Idrivers/gpu/drm/i915/i915_cmd_parser.c
3891 </sect2>
3519f70e
DV
3892 </sect1>
3893 </chapter>
3894</part>
2d2ef822 3895</book>