]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - Documentation/gpu/drm-kms.rst
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[mirror_ubuntu-jammy-kernel.git] / Documentation / gpu / drm-kms.rst
CommitLineData
2fa91d15
JN
1=========================
2Kernel Mode Setting (KMS)
3=========================
4
2fa91d15
JN
5Drivers must initialize the mode setting core by calling
6:c:func:`drm_mode_config_init()` on the DRM device. The function
7initializes the :c:type:`struct drm_device <drm_device>`
8mode_config field and never fails. Once done, mode configuration must
9be setup by initializing the following fields.
10
11- int min_width, min_height; int max_width, max_height;
12 Minimum and maximum width and height of the frame buffers in pixel
13 units.
14
15- struct drm_mode_config_funcs \*funcs;
16 Mode setting functions.
17
2564d0b0
DV
18Overview
19========
20
21.. kernel-render:: DOT
22 :alt: KMS Display Pipeline
23 :caption: KMS Display Pipeline Overview
24
25 digraph "KMS" {
26 node [shape=box]
27
28 subgraph cluster_static {
29 style=dashed
30 label="Static Objects"
31
32 node [bgcolor=grey style=filled]
33 "drm_plane A" -> "drm_crtc"
34 "drm_plane B" -> "drm_crtc"
35 "drm_crtc" -> "drm_encoder A"
36 "drm_crtc" -> "drm_encoder B"
37 }
38
39 subgraph cluster_user_created {
40 style=dashed
41 label="Userspace-Created"
42
43 node [shape=oval]
44 "drm_framebuffer 1" -> "drm_plane A"
45 "drm_framebuffer 2" -> "drm_plane B"
46 }
47
48 subgraph cluster_connector {
49 style=dashed
50 label="Hotpluggable"
51
52 "drm_encoder A" -> "drm_connector A"
53 "drm_encoder B" -> "drm_connector B"
54 }
55 }
56
57The basic object structure KMS presents to userspace is fairly simple.
58Framebuffers (represented by :c:type:`struct drm_framebuffer <drm_framebuffer>`,
59see `Frame Buffer Abstraction`_) feed into planes. One or more (or even no)
60planes feed their pixel data into a CRTC (represented by :c:type:`struct
61drm_crtc <drm_crtc>`, see `CRTC Abstraction`_) for blending. The precise
62blending step is explained in more detail in `Plane Composition Properties`_ and
63related chapters.
64
65For the output routing the first step is encoders (represented by
66:c:type:`struct drm_encoder <drm_encoder>`, see `Encoder Abstraction`_). Those
67are really just internal artifacts of the helper libraries used to implement KMS
68drivers. Besides that they make it unecessarily more complicated for userspace
69to figure out which connections between a CRTC and a connector are possible, and
70what kind of cloning is supported, they serve no purpose in the userspace API.
71Unfortunately encoders have been exposed to userspace, hence can't remove them
72at this point. Futhermore the exposed restrictions are often wrongly set by
73drivers, and in many cases not powerful enough to express the real restrictions.
74A CRTC can be connected to multiple encoders, and for an active CRTC there must
75be at least one encoder.
76
77The final, and real, endpoint in the display chain is the connector (represented
78by :c:type:`struct drm_connector <drm_connector>`, see `Connector
79Abstraction`_). Connectors can have different possible encoders, but the kernel
80driver selects which encoder to use for each connector. The use case is DVI,
81which could switch between an analog and a digital encoder. Encoders can also
82drive multiple different connectors. There is exactly one active connector for
83every active encoder.
84
85Internally the output pipeline is a bit more complex and matches today's
86hardware more closely:
87
88.. kernel-render:: DOT
89 :alt: KMS Output Pipeline
90 :caption: KMS Output Pipeline
91
92 digraph "Output Pipeline" {
93 node [shape=box]
94
95 subgraph {
96 "drm_crtc" [bgcolor=grey style=filled]
97 }
98
99 subgraph cluster_internal {
100 style=dashed
101 label="Internal Pipeline"
102 {
103 node [bgcolor=grey style=filled]
104 "drm_encoder A";
105 "drm_encoder B";
106 "drm_encoder C";
107 }
108
109 {
110 node [bgcolor=grey style=filled]
111 "drm_encoder B" -> "drm_bridge B"
112 "drm_encoder C" -> "drm_bridge C1"
113 "drm_bridge C1" -> "drm_bridge C2";
114 }
115 }
116
117 "drm_crtc" -> "drm_encoder A"
118 "drm_crtc" -> "drm_encoder B"
119 "drm_crtc" -> "drm_encoder C"
120
121
122 subgraph cluster_output {
123 style=dashed
124 label="Outputs"
125
126 "drm_encoder A" -> "drm_connector A";
127 "drm_bridge B" -> "drm_connector B";
128 "drm_bridge C2" -> "drm_connector C";
129
130 "drm_panel"
131 }
132 }
133
134Internally two additional helper objects come into play. First, to be able to
135share code for encoders (sometimes on the same SoC, sometimes off-chip) one or
136more :ref:`drm_bridges` (represented by :c:type:`struct drm_bridge
137<drm_bridge>`) can be linked to an encoder. This link is static and cannot be
138changed, which means the cross-bar (if there is any) needs to be mapped between
139the CRTC and any encoders. Often for drivers with bridges there's no code left
140at the encoder level. Atomic drivers can leave out all the encoder callbacks to
141essentially only leave a dummy routing object behind, which is needed for
142backwards compatibility since encoders are exposed to userspace.
143
144The second object is for panels, represented by :c:type:`struct drm_panel
145<drm_panel>`, see :ref:`drm_panel_helper`. Panels do not have a fixed binding
146point, but are generally linked to the driver private structure that embeds
147:c:type:`struct drm_connector <drm_connector>`.
148
149Note that currently the bridge chaining and interactions with connectors and
150panels are still in-flux and not really fully sorted out yet.
949619f3 151
28575f16
DV
152KMS Core Structures and Functions
153=================================
949619f3 154
28575f16 155.. kernel-doc:: include/drm/drm_mode_config.h
2fa91d15
JN
156 :internal:
157
1ea35768
DV
158.. kernel-doc:: drivers/gpu/drm/drm_mode_config.c
159 :export:
160
28575f16
DV
161Modeset Base Object Abstraction
162===============================
311b62d9 163
b2b82c26
DV
164.. kernel-render:: DOT
165 :alt: Mode Objects and Properties
166 :caption: Mode Objects and Properties
167
168 digraph {
169 node [shape=box]
170
171 "drm_property A" -> "drm_mode_object A"
172 "drm_property A" -> "drm_mode_object B"
173 "drm_property B" -> "drm_mode_object A"
174 }
175
176The base structure for all KMS objects is :c:type:`struct drm_mode_object
177<drm_mode_object>`. One of the base services it provides is tracking properties,
178which are especially important for the atomic IOCTL (see `Atomic Mode
179Setting`_). The somewhat surprising part here is that properties are not
180directly instantiated on each object, but free-standing mode objects themselves,
181represented by :c:type:`struct drm_property <drm_property>`, which only specify
182the type and value range of a property. Any given property can be attached
183multiple times to different objects using :c:func:`drm_object_attach_property()
184<drm_object_attach_property>`.
185
28575f16
DV
186.. kernel-doc:: include/drm/drm_mode_object.h
187 :internal:
188
189.. kernel-doc:: drivers/gpu/drm/drm_mode_object.c
2fa91d15
JN
190 :export:
191
4a8e2292
DV
192Atomic Mode Setting
193===================
194
195
196.. kernel-render:: DOT
197 :alt: Mode Objects and Properties
198 :caption: Mode Objects and Properties
199
200 digraph {
201 node [shape=box]
202
203 subgraph cluster_state {
204 style=dashed
205 label="Free-standing state"
206
207 "drm_atomic_state" -> "duplicated drm_plane_state A"
208 "drm_atomic_state" -> "duplicated drm_plane_state B"
209 "drm_atomic_state" -> "duplicated drm_crtc_state"
210 "drm_atomic_state" -> "duplicated drm_connector_state"
211 "drm_atomic_state" -> "duplicated driver private state"
212 }
213
214 subgraph cluster_current {
215 style=dashed
216 label="Current state"
217
218 "drm_device" -> "drm_plane A"
219 "drm_device" -> "drm_plane B"
220 "drm_device" -> "drm_crtc"
221 "drm_device" -> "drm_connector"
222 "drm_device" -> "driver private object"
223
224 "drm_plane A" -> "drm_plane_state A"
225 "drm_plane B" -> "drm_plane_state B"
226 "drm_crtc" -> "drm_crtc_state"
227 "drm_connector" -> "drm_connector_state"
228 "driver private object" -> "driver private state"
229 }
230
231 "drm_atomic_state" -> "drm_device" [label="atomic_commit"]
232 "duplicated drm_plane_state A" -> "drm_device"[style=invis]
233 }
234
235Atomic provides transactional modeset (including planes) updates, but a
236bit differently from the usual transactional approach of try-commit and
237rollback:
238
239- Firstly, no hardware changes are allowed when the commit would fail. This
240 allows us to implement the DRM_MODE_ATOMIC_TEST_ONLY mode, which allows
241 userspace to explore whether certain configurations would work or not.
242
243- This would still allow setting and rollback of just the software state,
244 simplifying conversion of existing drivers. But auditing drivers for
245 correctness of the atomic_check code becomes really hard with that: Rolling
246 back changes in data structures all over the place is hard to get right.
247
248- Lastly, for backwards compatibility and to support all use-cases, atomic
249 updates need to be incremental and be able to execute in parallel. Hardware
250 doesn't always allow it, but where possible plane updates on different CRTCs
251 should not interfere, and not get stalled due to output routing changing on
252 different CRTCs.
253
254Taken all together there's two consequences for the atomic design:
255
256- The overall state is split up into per-object state structures:
257 :c:type:`struct drm_plane_state <drm_plane_state>` for planes, :c:type:`struct
258 drm_crtc_state <drm_crtc_state>` for CRTCs and :c:type:`struct
259 drm_connector_state <drm_connector_state>` for connectors. These are the only
260 objects with userspace-visible and settable state. For internal state drivers
261 can subclass these structures through embeddeding, or add entirely new state
262 structures for their globally shared hardware functions.
263
264- An atomic update is assembled and validated as an entirely free-standing pile
265 of structures within the :c:type:`drm_atomic_state <drm_atomic_state>`
5fca5ece
DV
266 container. Driver private state structures are also tracked in the same
267 structure; see the next chapter. Only when a state is committed is it applied
268 to the driver and modeset objects. This way rolling back an update boils down
269 to releasing memory and unreferencing objects like framebuffers.
4a8e2292
DV
270
271Read on in this chapter, and also in :ref:`drm_atomic_helper` for more detailed
272coverage of specific topics.
273
da6c0596
DV
274Handling Driver Private State
275-----------------------------
276
277.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
278 :doc: handling driver private state
279
2fa91d15 280Atomic Mode Setting Function Reference
4a8e2292 281--------------------------------------
2fa91d15 282
5d070be6 283.. kernel-doc:: include/drm/drm_atomic.h
2fa91d15
JN
284 :internal:
285
1ea35768
DV
286.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
287 :export:
288
28575f16
DV
289CRTC Abstraction
290================
291
292.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
d5d487eb
DV
293 :doc: overview
294
295CRTC Functions Reference
296--------------------------------
28575f16
DV
297
298.. kernel-doc:: include/drm/drm_crtc.h
299 :internal:
300
d5d487eb
DV
301.. kernel-doc:: drivers/gpu/drm/drm_crtc.c
302 :export:
303
2fa91d15 304Frame Buffer Abstraction
311b62d9 305========================
2fa91d15 306
750fb8c4
DV
307.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
308 :doc: overview
2fa91d15 309
7520a277
DV
310Frame Buffer Functions Reference
311--------------------------------
312
7520a277
DV
313.. kernel-doc:: include/drm/drm_framebuffer.h
314 :internal:
315
1ea35768
DV
316.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c
317 :export:
318
2fa91d15 319DRM Format Handling
311b62d9 320===================
2fa91d15 321
84770cc2
LP
322.. kernel-doc:: include/drm/drm_fourcc.h
323 :internal:
324
2fa91d15
JN
325.. kernel-doc:: drivers/gpu/drm/drm_fourcc.c
326 :export:
327
328Dumb Buffer Objects
311b62d9 329===================
2fa91d15 330
4f93624e
DV
331.. kernel-doc:: drivers/gpu/drm/drm_dumb_buffers.c
332 :doc: overview
2fa91d15 333
43968d7b
DV
334Plane Abstraction
335=================
336
532b3671
DV
337.. kernel-doc:: drivers/gpu/drm/drm_plane.c
338 :doc: overview
339
43968d7b
DV
340Plane Functions Reference
341-------------------------
342
343.. kernel-doc:: include/drm/drm_plane.h
344 :internal:
345
346.. kernel-doc:: drivers/gpu/drm/drm_plane.c
347 :export:
348
311b62d9
DV
349Display Modes Function Reference
350================================
2fa91d15 351
311b62d9
DV
352.. kernel-doc:: include/drm/drm_modes.h
353 :internal:
354
355.. kernel-doc:: drivers/gpu/drm/drm_modes.c
356 :export:
2fa91d15 357
ae2a6da8
DV
358Connector Abstraction
359=====================
360
361.. kernel-doc:: drivers/gpu/drm/drm_connector.c
362 :doc: overview
363
364Connector Functions Reference
365-----------------------------
52217195
DV
366
367.. kernel-doc:: include/drm/drm_connector.h
368 :internal:
369
370.. kernel-doc:: drivers/gpu/drm/drm_connector.c
371 :export:
372
321a95ae
DV
373Encoder Abstraction
374===================
375
e03e6de0
DV
376.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
377 :doc: overview
378
379Encoder Functions Reference
380---------------------------
381
321a95ae
DV
382.. kernel-doc:: include/drm/drm_encoder.h
383 :internal:
384
385.. kernel-doc:: drivers/gpu/drm/drm_encoder.c
386 :export:
387
2fa91d15
JN
388KMS Initialization and Cleanup
389==============================
390
391A KMS device is abstracted and exposed as a set of planes, CRTCs,
392encoders and connectors. KMS drivers must thus create and initialize all
393those objects at load time after initializing mode setting.
394
395CRTCs (:c:type:`struct drm_crtc <drm_crtc>`)
396--------------------------------------------
397
398A CRTC is an abstraction representing a part of the chip that contains a
399pointer to a scanout buffer. Therefore, the number of CRTCs available
400determines how many independent scanout buffers can be active at any
401given time. The CRTC structure contains several fields to support this:
402a pointer to some video memory (abstracted as a frame buffer object), a
403display mode, and an (x, y) offset into the video memory to support
404panning or configurations where one piece of video memory spans multiple
405CRTCs.
406
407CRTC Initialization
408~~~~~~~~~~~~~~~~~~~
409
410A KMS device must create and register at least one struct
411:c:type:`struct drm_crtc <drm_crtc>` instance. The instance is
412allocated and zeroed by the driver, possibly as part of a larger
413structure, and registered with a call to :c:func:`drm_crtc_init()`
414with a pointer to CRTC functions.
415
2fa91d15 416
2fa91d15
JN
417Cleanup
418-------
419
420The DRM core manages its objects' lifetime. When an object is not needed
421anymore the core calls its destroy function, which must clean up and
422free every resource allocated for the object. Every
423:c:func:`drm_\*_init()` call must be matched with a corresponding
424:c:func:`drm_\*_cleanup()` call to cleanup CRTCs
425(:c:func:`drm_crtc_cleanup()`), planes
426(:c:func:`drm_plane_cleanup()`), encoders
427(:c:func:`drm_encoder_cleanup()`) and connectors
428(:c:func:`drm_connector_cleanup()`). Furthermore, connectors that
429have been added to sysfs must be removed by a call to
430:c:func:`drm_connector_unregister()` before calling
431:c:func:`drm_connector_cleanup()`.
432
433Connectors state change detection must be cleanup up with a call to
434:c:func:`drm_kms_helper_poll_fini()`.
435
436Output discovery and initialization example
437-------------------------------------------
438
29849a69 439.. code-block:: c
2fa91d15
JN
440
441 void intel_crt_init(struct drm_device *dev)
442 {
443 struct drm_connector *connector;
444 struct intel_output *intel_output;
445
446 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
447 if (!intel_output)
448 return;
449
450 connector = &intel_output->base;
451 drm_connector_init(dev, &intel_output->base,
452 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
453
454 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
455 DRM_MODE_ENCODER_DAC);
456
457 drm_mode_connector_attach_encoder(&intel_output->base,
458 &intel_output->enc);
459
460 /* Set up the DDC bus. */
461 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
462 if (!intel_output->ddc_bus) {
463 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
464 "failed.\n");
465 return;
466 }
467
468 intel_output->type = INTEL_OUTPUT_ANALOG;
469 connector->interlace_allowed = 0;
470 connector->doublescan_allowed = 0;
471
472 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
473 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
474
475 drm_connector_register(connector);
476 }
477
478In the example above (taken from the i915 driver), a CRTC, connector and
479encoder combination is created. A device-specific i2c bus is also
480created for fetching EDID data and performing monitor detection. Once
481the process is complete, the new connector is registered with sysfs to
482make its properties available to applications.
483
2fa91d15 484KMS Locking
311b62d9 485===========
2fa91d15
JN
486
487.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
488 :doc: kms locking
489
490.. kernel-doc:: include/drm/drm_modeset_lock.h
491 :internal:
492
493.. kernel-doc:: drivers/gpu/drm/drm_modeset_lock.c
494 :export:
495
496KMS Properties
497==============
498
59e71ee7
DV
499Property Types and Blob Property Support
500----------------------------------------
501
c8458c7e
DV
502.. kernel-doc:: drivers/gpu/drm/drm_property.c
503 :doc: overview
504
59e71ee7
DV
505.. kernel-doc:: include/drm/drm_property.h
506 :internal:
507
508.. kernel-doc:: drivers/gpu/drm/drm_property.c
509 :export:
510
4ada6f22
DV
511Standard Connector Properties
512-----------------------------
513
514.. kernel-doc:: drivers/gpu/drm/drm_connector.c
515 :doc: standard connector properties
516
1e4d84c6
DV
517Plane Composition Properties
518----------------------------
519
520.. kernel-doc:: drivers/gpu/drm/drm_blend.c
521 :doc: overview
52a9fcda
DV
522
523.. kernel-doc:: drivers/gpu/drm/drm_blend.c
524 :export:
525
a6acccf8
DV
526Color Management Properties
527---------------------------
528
529.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
530 :doc: overview
531
a6acccf8
DV
532.. kernel-doc:: drivers/gpu/drm/drm_color_mgmt.c
533 :export:
534
9498c19b
DV
535Tile Group Property
536-------------------
537
538.. kernel-doc:: drivers/gpu/drm/drm_connector.c
539 :doc: Tile group
540
9a83a71a
GP
541Explicit Fencing Properties
542---------------------------
543
544.. kernel-doc:: drivers/gpu/drm/drm_atomic.c
545 :doc: explicit fencing properties
546
2fa91d15
JN
547Existing KMS Properties
548-----------------------
549
550The following table gives description of drm properties exposed by
551various modules/drivers.
552
553.. csv-table::
554 :header-rows: 1
555 :file: kms-properties.csv
556
557Vertical Blanking
558=================
559
57d30230
DV
560.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
561 :doc: vblank handling
2fa91d15
JN
562
563Vertical Blanking and Interrupt Handling Functions Reference
564------------------------------------------------------------
565
3ed4351a 566.. kernel-doc:: include/drm/drm_vblank.h
34a67dd7 567 :internal:
1ea35768 568
3ed4351a 569.. kernel-doc:: drivers/gpu/drm/drm_vblank.c
1ea35768 570 :export: