]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - Documentation/mm/slub.rst
Merge tag 'for-6.2-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-kernels.git] / Documentation / mm / slub.rst
CommitLineData
0c14398b
MR
1.. _slub:
2
3==========================
35243421 4Short users guide for SLUB
0c14398b 5==========================
35243421 6
35243421
CL
7The basic philosophy of SLUB is very different from SLAB. SLAB
8requires rebuilding the kernel to activate debug options for all
c1aee215 9slab caches. SLUB always includes full debugging but it is off by default.
35243421
CL
10SLUB can enable debugging only for selected slabs in order to avoid
11an impact on overall system performance which may make a bug more
12difficult to find.
13
0c14398b 14In order to switch debugging on one can add an option ``slub_debug``
35243421
CL
15to the kernel command line. That will enable full debugging for
16all slabs.
17
0c14398b
MR
18Typically one would then use the ``slabinfo`` command to get statistical
19data and perform operation on the slabs. By default ``slabinfo`` only lists
35243421 20slabs that have data in them. See "slabinfo -h" for more options when
0c14398b
MR
21running the command. ``slabinfo`` can be compiled with
22::
35243421 23
0c14398b 24 gcc -o slabinfo tools/vm/slabinfo.c
35243421 25
0c14398b 26Some of the modes of operation of ``slabinfo`` require that slub debugging
35243421
CL
27be enabled on the command line. F.e. no tracking information will be
28available without debugging on and validation can only partially
29be performed if debugging was not switched on.
30
31Some more sophisticated uses of slub_debug:
32-------------------------------------------
33
0c14398b 34Parameters may be given to ``slub_debug``. If none is specified then full
35243421
CL
35debugging is enabled. Format:
36
0c14398b
MR
37slub_debug=<Debug-Options>
38 Enable options for all slabs
0c14398b 39
c5fd3ca0
AT
40slub_debug=<Debug-Options>,<slab name1>,<slab name2>,...
41 Enable options only for select slabs (no spaces
42 after a comma)
0c14398b 43
e17f1dfb
VB
44Multiple blocks of options for all slabs or selected slabs can be given, with
45blocks of options delimited by ';'. The last of "all slabs" blocks is applied
46to all slabs except those that match one of the "select slabs" block. Options
47of the first "select slabs" blocks that matches the slab's name are applied.
48
0c14398b 49Possible debug options are::
35243421 50
becfda68
LA
51 F Sanity checks on (enables SLAB_DEBUG_CONSISTENCY_CHECKS
52 Sorry SLAB legacy issues)
35243421
CL
53 Z Red zoning
54 P Poisoning (object and padding)
55 U User tracking (free and alloc)
56 T Trace (please only use on single slabs)
a3df6927 57 A Enable failslab filter mark for the cache
fa5ec8a1
DR
58 O Switch debugging off for caches that would have
59 caused higher minimum slab orders
f0630fff
CL
60 - Switch all debugging off (useful if the kernel is
61 configured with CONFIG_SLUB_DEBUG_ON)
35243421 62
0c14398b 63F.e. in order to boot just with sanity checks and red zoning one would specify::
35243421
CL
64
65 slub_debug=FZ
66
0c14398b 67Trying to find an issue in the dentry cache? Try::
35243421 68
989a7241 69 slub_debug=,dentry
35243421 70
c5fd3ca0
AT
71to only enable debugging on the dentry cache. You may use an asterisk at the
72end of the slab name, in order to cover all slabs with the same prefix. For
73example, here's how you can poison the dentry cache as well as all kmalloc
11ede500 74slabs::
c5fd3ca0
AT
75
76 slub_debug=P,kmalloc-*,dentry
35243421
CL
77
78Red zoning and tracking may realign the slab. We can just apply sanity checks
0c14398b 79to the dentry cache with::
35243421 80
989a7241 81 slub_debug=F,dentry
35243421 82
fa5ec8a1
DR
83Debugging options may require the minimum possible slab order to increase as
84a result of storing the metadata (for example, caches with PAGE_SIZE object
85sizes). This has a higher liklihood of resulting in slab allocation errors
86in low memory situations or if there's high fragmentation of memory. To
0c14398b 87switch off debugging for such caches by default, use::
fa5ec8a1
DR
88
89 slub_debug=O
90
e17f1dfb
VB
91You can apply different options to different list of slab names, using blocks
92of options. This will enable red zoning for dentry and user tracking for
93kmalloc. All other slabs will not get any debugging enabled::
94
95 slub_debug=Z,dentry;U,kmalloc-*
96
97You can also enable options (e.g. sanity checks and poisoning) for all caches
98except some that are deemed too performance critical and don't need to be
99debugged by specifying global debug options followed by a list of slab names
100with "-" as options::
101
102 slub_debug=FZ;-,zs_handle,zspage
103
ad38b5b1
VB
104The state of each debug option for a slab can be found in the respective files
105under::
35243421 106
0c14398b 107 /sys/kernel/slab/<slab name>/
35243421 108
ad38b5b1
VB
109If the file contains 1, the option is enabled, 0 means disabled. The debug
110options from the ``slub_debug`` parameter translate to the following files::
111
112 F sanity_checks
113 Z red_zone
114 P poison
115 U store_user
116 T trace
117 A failslab
118
7c82b3b3
AA
119failslab file is writable, so writing 1 or 0 will enable or disable
120the option at runtime. Write returns -EINVAL if cache is an alias.
060807f8
VB
121Careful with tracing: It may spew out lots of information and never stop if
122used on the wrong slab.
35243421 123
c1aee215 124Slab merging
0c14398b 125============
35243421 126
c1aee215 127If no debug options are specified then SLUB may merge similar slabs together
35243421 128in order to reduce overhead and increase cache hotness of objects.
0c14398b 129``slabinfo -a`` displays which slabs were merged together.
35243421 130
c1aee215 131Slab validation
0c14398b 132===============
c1aee215
CL
133
134SLUB can validate all object if the kernel was booted with slub_debug. In
0c14398b
MR
135order to do so you must have the ``slabinfo`` tool. Then you can do
136::
c1aee215 137
0c14398b 138 slabinfo -v
c1aee215
CL
139
140which will test all objects. Output will be generated to the syslog.
141
142This also works in a more limited way if boot was without slab debug.
0c14398b 143In that case ``slabinfo -v`` simply tests all reachable objects. Usually
c1aee215
CL
144these are in the cpu slabs and the partial slabs. Full slabs are not
145tracked by SLUB in a non debug situation.
146
35243421 147Getting more performance
0c14398b 148========================
35243421
CL
149
150To some degree SLUB's performance is limited by the need to take the
151list_lock once in a while to deal with partial slabs. That overhead is
152governed by the order of the allocation for each slab. The allocations
153can be influenced by kernel parameters:
154
0c14398b
MR
155.. slub_min_objects=x (default 4)
156.. slub_min_order=x (default 0)
157.. slub_max_order=x (default 3 (PAGE_ALLOC_COSTLY_ORDER))
158
159``slub_min_objects``
160 allows to specify how many objects must at least fit into one
161 slab in order for the allocation order to be acceptable. In
162 general slub will be able to perform this number of
163 allocations on a slab without consulting centralized resources
164 (list_lock) where contention may occur.
165
166``slub_min_order``
358b6ba9 167 specifies a minimum order of slabs. A similar effect like
0c14398b
MR
168 ``slub_min_objects``.
169
170``slub_max_order``
171 specified the order at which ``slub_min_objects`` should no
172 longer be checked. This is useful to avoid SLUB trying to
173 generate super large order pages to fit ``slub_min_objects``
174 of a slab cache with large object sizes into one high order
175 page. Setting command line parameter
176 ``debug_guardpage_minorder=N`` (N > 0), forces setting
177 ``slub_max_order`` to 0, what cause minimum possible order of
178 slabs allocation.
35243421 179
c1aee215 180SLUB Debug output
0c14398b
MR
181=================
182
183Here is a sample of slub debug output::
184
185 ====================================================================
8669dbab 186 BUG kmalloc-8: Right Redzone overwritten
0c14398b
MR
187 --------------------------------------------------------------------
188
189 INFO: 0xc90f6d28-0xc90f6d2b. First byte 0x00 instead of 0xcc
190 INFO: Slab 0xc528c530 flags=0x400000c3 inuse=61 fp=0xc90f6d58
191 INFO: Object 0xc90f6d20 @offset=3360 fp=0xc90f6d58
192 INFO: Allocated in get_modalias+0x61/0xf5 age=53 cpu=1 pid=554
193
8669dbab
KC
194 Bytes b4 (0xc90f6d10): 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
195 Object (0xc90f6d20): 31 30 31 39 2e 30 30 35 1019.005
196 Redzone (0xc90f6d28): 00 cc cc cc .
197 Padding (0xc90f6d50): 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
0c14398b
MR
198
199 [<c010523d>] dump_trace+0x63/0x1eb
200 [<c01053df>] show_trace_log_lvl+0x1a/0x2f
201 [<c010601d>] show_trace+0x12/0x14
202 [<c0106035>] dump_stack+0x16/0x18
203 [<c017e0fa>] object_err+0x143/0x14b
204 [<c017e2cc>] check_object+0x66/0x234
205 [<c017eb43>] __slab_free+0x239/0x384
206 [<c017f446>] kfree+0xa6/0xc6
207 [<c02e2335>] get_modalias+0xb9/0xf5
208 [<c02e23b7>] dmi_dev_uevent+0x27/0x3c
209 [<c027866a>] dev_uevent+0x1ad/0x1da
210 [<c0205024>] kobject_uevent_env+0x20a/0x45b
211 [<c020527f>] kobject_uevent+0xa/0xf
212 [<c02779f1>] store_uevent+0x4f/0x58
213 [<c027758e>] dev_attr_store+0x29/0x2f
214 [<c01bec4f>] sysfs_write_file+0x16e/0x19c
215 [<c0183ba7>] vfs_write+0xd1/0x15a
216 [<c01841d7>] sys_write+0x3d/0x72
217 [<c0104112>] sysenter_past_esp+0x5f/0x99
218 [<b7f7b410>] 0xb7f7b410
219 =======================
220
221 FIX kmalloc-8: Restoring Redzone 0xc90f6d28-0xc90f6d2b=0xcc
c1aee215 222
24922684
CL
223If SLUB encounters a corrupted object (full detection requires the kernel
224to be booted with slub_debug) then the following output will be dumped
225into the syslog:
c1aee215 226
24922684 2271. Description of the problem encountered
c1aee215 228
0c14398b 229 This will be a message in the system log starting with::
c1aee215 230
0c14398b
MR
231 ===============================================
232 BUG <slab cache affected>: <What went wrong>
233 -----------------------------------------------
c1aee215 234
0c14398b
MR
235 INFO: <corruption start>-<corruption_end> <more info>
236 INFO: Slab <address> <slab information>
237 INFO: Object <address> <object information>
238 INFO: Allocated in <kernel function> age=<jiffies since alloc> cpu=<allocated by
24922684 239 cpu> pid=<pid of the process>
0c14398b
MR
240 INFO: Freed in <kernel function> age=<jiffies since free> cpu=<freed by cpu>
241 pid=<pid of the process>
c1aee215 242
0c14398b
MR
243 (Object allocation / free information is only available if SLAB_STORE_USER is
244 set for the slab. slub_debug sets that option)
c1aee215 245
24922684 2462. The object contents if an object was involved.
c1aee215 247
0c14398b 248 Various types of lines can follow the BUG SLUB line:
c1aee215 249
0c14398b 250 Bytes b4 <address> : <bytes>
24922684 251 Shows a few bytes before the object where the problem was detected.
c1aee215
CL
252 Can be useful if the corruption does not stop with the start of the
253 object.
254
0c14398b 255 Object <address> : <bytes>
c1aee215 256 The bytes of the object. If the object is inactive then the bytes
24922684 257 typically contain poison values. Any non-poison value shows a
c1aee215
CL
258 corruption by a write after free.
259
0c14398b 260 Redzone <address> : <bytes>
24922684 261 The Redzone following the object. The Redzone is used to detect
c1aee215
CL
262 writes after the object. All bytes should always have the same
263 value. If there is any deviation then it is due to a write after
264 the object boundary.
265
24922684
CL
266 (Redzone information is only available if SLAB_RED_ZONE is set.
267 slub_debug sets that option)
c1aee215 268
0c14398b 269 Padding <address> : <bytes>
c1aee215
CL
270 Unused data to fill up the space in order to get the next object
271 properly aligned. In the debug case we make sure that there are
24922684 272 at least 4 bytes of padding. This allows the detection of writes
c1aee215
CL
273 before the object.
274
24922684
CL
2753. A stackdump
276
0c14398b
MR
277 The stackdump describes the location where the error was detected. The cause
278 of the corruption is may be more likely found by looking at the function that
279 allocated or freed the object.
24922684
CL
280
2814. Report on how the problem was dealt with in order to ensure the continued
0c14398b 282 operation of the system.
24922684 283
0c14398b 284 These are messages in the system log beginning with::
24922684 285
0c14398b 286 FIX <slab cache affected>: <corrective action taken>
24922684 287
0c14398b
MR
288 In the above sample SLUB found that the Redzone of an active object has
289 been overwritten. Here a string of 8 characters was written into a slab that
290 has the length of 8 characters. However, a 8 character string needs a
291 terminating 0. That zero has overwritten the first byte of the Redzone field.
292 After reporting the details of the issue encountered the FIX SLUB message
293 tells us that SLUB has restored the Redzone to its proper value and then
294 system operations continue.
24922684 295
0c14398b
MR
296Emergency operations
297====================
24922684 298
0c14398b 299Minimal debugging (sanity checks alone) can be enabled by booting with::
24922684
CL
300
301 slub_debug=F
302
303This will be generally be enough to enable the resiliency features of slub
304which will keep the system running even if a bad kernel component will
305keep corrupting objects. This may be important for production systems.
306Performance will be impacted by the sanity checks and there will be a
307continual stream of error messages to the syslog but no additional memory
308will be used (unlike full debugging).
309
310No guarantees. The kernel component still needs to be fixed. Performance
311may be optimized further by locating the slab that experiences corruption
312and enabling debugging only for that cache
313
0c14398b 314I.e.::
24922684
CL
315
316 slub_debug=F,dentry
317
318If the corruption occurs by writing after the end of the object then it
319may be advisable to enable a Redzone to avoid corrupting the beginning
0c14398b 320of other objects::
24922684
CL
321
322 slub_debug=FZ,dentry
c1aee215 323
05be9617 324Extended slabinfo mode and plotting
0c14398b 325===================================
05be9617 326
0c14398b 327The ``slabinfo`` tool has a special 'extended' ('-X') mode that includes:
05be9617
SS
328 - Slabcache Totals
329 - Slabs sorted by size (up to -N <num> slabs, default 1)
330 - Slabs sorted by loss (up to -N <num> slabs, default 1)
331
0c14398b
MR
332Additionally, in this mode ``slabinfo`` does not dynamically scale
333sizes (G/M/K) and reports everything in bytes (this functionality is
334also available to other slabinfo modes via '-B' option) which makes
335reporting more precise and accurate. Moreover, in some sense the `-X'
336mode also simplifies the analysis of slabs' behaviour, because its
337output can be plotted using the ``slabinfo-gnuplot.sh`` script. So it
338pushes the analysis from looking through the numbers (tons of numbers)
339to something easier -- visual analysis.
05be9617
SS
340
341To generate plots:
0c14398b
MR
342
343a) collect slabinfo extended records, for example::
344
345 while [ 1 ]; do slabinfo -X >> FOO_STATS; sleep 1; done
346
347b) pass stats file(-s) to ``slabinfo-gnuplot.sh`` script::
348
349 slabinfo-gnuplot.sh FOO_STATS [FOO_STATS2 .. FOO_STATSN]
350
351 The ``slabinfo-gnuplot.sh`` script will pre-processes the collected records
352 and generates 3 png files (and 3 pre-processing cache files) per STATS
353 file:
354 - Slabcache Totals: FOO_STATS-totals.png
355 - Slabs sorted by size: FOO_STATS-slabs-by-size.png
356 - Slabs sorted by loss: FOO_STATS-slabs-by-loss.png
357
358Another use case, when ``slabinfo-gnuplot.sh`` can be useful, is when you
359need to compare slabs' behaviour "prior to" and "after" some code
360modification. To help you out there, ``slabinfo-gnuplot.sh`` script
361can 'merge' the `Slabcache Totals` sections from different
362measurements. To visually compare N plots:
363
364a) Collect as many STATS1, STATS2, .. STATSN files as you need::
365
366 while [ 1 ]; do slabinfo -X >> STATS<X>; sleep 1; done
367
368b) Pre-process those STATS files::
369
370 slabinfo-gnuplot.sh STATS1 STATS2 .. STATSN
371
372c) Execute ``slabinfo-gnuplot.sh`` in '-t' mode, passing all of the
373 generated pre-processed \*-totals::
374
375 slabinfo-gnuplot.sh -t STATS1-totals STATS2-totals .. STATSN-totals
376
377 This will produce a single plot (png file).
378
379 Plots, expectedly, can be large so some fluctuations or small spikes
380 can go unnoticed. To deal with that, ``slabinfo-gnuplot.sh`` has two
381 options to 'zoom-in'/'zoom-out':
382
94ebdd28 383 a) ``-s %d,%d`` -- overwrites the default image width and height
0c14398b
MR
384 b) ``-r %d,%d`` -- specifies a range of samples to use (for example,
385 in ``slabinfo -X >> FOO_STATS; sleep 1;`` case, using a ``-r
386 40,60`` range will plot only samples collected between 40th and
387 60th seconds).
05be9617 388
9f04b55f
OG
389
390DebugFS files for SLUB
391======================
392
393For more information about current state of SLUB caches with the user tracking
394debug option enabled, debugfs files are available, typically under
395/sys/kernel/debug/slab/<cache>/ (created only for caches with enabled user
396tracking). There are 2 types of these files with the following debug
397information:
398
3991. alloc_traces::
400
401 Prints information about unique allocation traces of the currently
402 allocated objects. The output is sorted by frequency of each trace.
403
404 Information in the output:
6edf2576
FT
405 Number of objects, allocating function, possible memory wastage of
406 kmalloc objects(total/per-object), minimal/average/maximal jiffies
407 since alloc, pid range of the allocating processes, cpu mask of
408 allocating cpus, numa node mask of origins of memory, and stack trace.
9f04b55f
OG
409
410 Example:::
411
6edf2576
FT
412 338 pci_alloc_dev+0x2c/0xa0 waste=521872/1544 age=290837/291891/293509 pid=1 cpus=106 nodes=0-1
413 __kmem_cache_alloc_node+0x11f/0x4e0
414 kmalloc_trace+0x26/0xa0
415 pci_alloc_dev+0x2c/0xa0
416 pci_scan_single_device+0xd2/0x150
417 pci_scan_slot+0xf7/0x2d0
418 pci_scan_child_bus_extend+0x4e/0x360
419 acpi_pci_root_create+0x32e/0x3b0
420 pci_acpi_scan_root+0x2b9/0x2d0
421 acpi_pci_root_add.cold.11+0x110/0xb0a
422 acpi_bus_attach+0x262/0x3f0
423 device_for_each_child+0xb7/0x110
424 acpi_dev_for_each_child+0x77/0xa0
425 acpi_bus_attach+0x108/0x3f0
426 device_for_each_child+0xb7/0x110
427 acpi_dev_for_each_child+0x77/0xa0
428 acpi_bus_attach+0x108/0x3f0
9f04b55f
OG
429
4302. free_traces::
431
432 Prints information about unique freeing traces of the currently allocated
433 objects. The freeing traces thus come from the previous life-cycle of the
434 objects and are reported as not available for objects allocated for the first
435 time. The output is sorted by frequency of each trace.
436
437 Information in the output:
438 Number of objects, freeing function, minimal/average/maximal jiffies since free,
439 pid range of the freeing processes, cpu mask of freeing cpus, and stack trace.
440
441 Example:::
442
443 1980 <not-available> age=4294912290 pid=0 cpus=0
444 51 acpi_ut_update_ref_count+0x6a6/0x782 age=236886/237027/237772 pid=1 cpus=1
445 kfree+0x2db/0x420
446 acpi_ut_update_ref_count+0x6a6/0x782
447 acpi_ut_update_object_reference+0x1ad/0x234
448 acpi_ut_remove_reference+0x7d/0x84
449 acpi_rs_get_prt_method_data+0x97/0xd6
450 acpi_get_irq_routing_table+0x82/0xc4
451 acpi_pci_irq_find_prt_entry+0x8e/0x2e0
452 acpi_pci_irq_lookup+0x3a/0x1e0
453 acpi_pci_irq_enable+0x77/0x240
454 pcibios_enable_device+0x39/0x40
455 do_pci_enable_device.part.0+0x5d/0xe0
456 pci_enable_device_flags+0xfc/0x120
457 pci_enable_device+0x13/0x20
458 virtio_pci_probe+0x9e/0x170
459 local_pci_probe+0x48/0x80
460 pci_device_probe+0x105/0x1c0
461
cde53535 462Christoph Lameter, May 30, 2007
05be9617 463Sergey Senozhatsky, October 23, 2015