]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - Documentation/networking/stmmac.txt
MIPS: Refactor load/entry address calculations
[mirror_ubuntu-zesty-kernel.git] / Documentation / networking / stmmac.txt
CommitLineData
a1d6f3f6
GC
1 STMicroelectronics 10/100/1000 Synopsys Ethernet driver
2
49cfbf67 3Copyright (C) 2007-2013 STMicroelectronics Ltd
a1d6f3f6
GC
4Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
5
6This is the driver for the MAC 10/100/1000 on-chip Ethernet controllers
5b993268 7(Synopsys IP blocks).
a1d6f3f6
GC
8
9Currently this network device driver is for all STM embedded MAC/GMAC
5b993268
GC
10(i.e. 7xxx/5xxx SoCs), SPEAr (arm), Loongson1B (mips) and XLINX XC2V3000
11FF1152AMT0221 D1215994A VIRTEX FPGA board.
a1d6f3f6 12
49cfbf67 13DWC Ether MAC 10/100/1000 Universal version 3.70a (and older) and DWC Ether
3d237714 14MAC 10/100 Universal version 4.0 have been used for developing this driver.
5b993268
GC
15
16This driver supports both the platform bus and PCI.
a1d6f3f6
GC
17
18Please, for more information also visit: www.stlinux.com
19
201) Kernel Configuration
21The kernel configuration option is STMMAC_ETH:
22 Device Drivers ---> Network device support ---> Ethernet (1000 Mbit) --->
23 STMicroelectronics 10/100/1000 Ethernet driver (STMMAC_ETH)
24
252) Driver parameters list:
26 debug: message level (0: no output, 16: all);
27 phyaddr: to manually provide the physical address to the PHY device;
28 dma_rxsize: DMA rx ring size;
29 dma_txsize: DMA tx ring size;
30 buf_sz: DMA buffer size;
31 tc: control the HW FIFO threshold;
a1d6f3f6
GC
32 watchdog: transmit timeout (in milliseconds);
33 flow_ctrl: Flow control ability [on/off];
34 pause: Flow Control Pause Time;
49cfbf67
GC
35 eee_timer: tx EEE timer;
36 chain_mode: select chain mode instead of ring.
a1d6f3f6
GC
37
383) Command line options
39Driver parameters can be also passed in command line by using:
40 stmmaceth=dma_rxsize:128,dma_txsize:512
41
424) Driver information and notes
43
444.1) Transmit process
45The xmit method is invoked when the kernel needs to transmit a packet; it sets
46the descriptors in the ring and informs the DMA engine that there is a packet
47ready to be transmitted.
48Once the controller has finished transmitting the packet, an interrupt is
49triggered; So the driver will be able to release the socket buffers.
50By default, the driver sets the NETIF_F_SG bit in the features field of the
51net_device structure enabling the scatter/gather feature.
52
534.2) Receive process
54When one or more packets are received, an interrupt happens. The interrupts
55are not queued so the driver has to scan all the descriptors in the ring during
56the receive process.
3d237714
GC
57This is based on NAPI so the interrupt handler signals only if there is work
58to be done, and it exits.
a1d6f3f6
GC
59Then the poll method will be scheduled at some future point.
60The incoming packets are stored, by the DMA, in a list of pre-allocated socket
61buffers in order to avoid the memcpy (Zero-copy).
62
f9e01b55
GC
634.3) Interrupt Mitigation
64The driver is able to mitigate the number of its DMA interrupts
65using NAPI for the reception on chips older than the 3.50.
66New chips have an HW RX-Watchdog used for this mitigation.
67
68On Tx-side, the mitigation schema is based on a SW timer that calls the
69tx function (stmmac_tx) to reclaim the resource after transmitting the
70frames.
71Also there is another parameter (like a threshold) used to program
72the descriptors avoiding to set the interrupt on completion bit in
73when the frame is sent (xmit).
74
75Mitigation parameters can be tuned by ethtool.
a1d6f3f6
GC
76
774.4) WOL
3d237714
GC
78Wake up on Lan feature through Magic and Unicast frames are supported for the
79GMAC core.
a1d6f3f6
GC
80
814.5) DMA descriptors
82Driver handles both normal and enhanced descriptors. The latter has been only
51e3137b
GC
83tested on DWC Ether MAC 10/100/1000 Universal version 3.41a and later.
84
85STMMAC supports DMA descriptor to operate both in dual buffer (RING)
86and linked-list(CHAINED) mode. In RING each descriptor points to two
87data buffer pointers whereas in CHAINED mode they point to only one data
88buffer pointer. RING mode is the default.
89
90In CHAINED mode each descriptor will have pointer to next descriptor in
91the list, hence creating the explicit chaining in the descriptor itself,
92whereas such explicit chaining is not possible in RING mode.
a1d6f3f6
GC
93
944.6) Ethtool support
95Ethtool is supported. Driver statistics and internal errors can be taken using:
96ethtool -S ethX command. It is possible to dump registers etc.
97
984.7) Jumbo and Segmentation Offloading
99Jumbo frames are supported and tested for the GMAC.
100The GSO has been also added but it's performed in software.
101LRO is not supported.
102
1034.8) Physical
104The driver is compatible with PAL to work with PHY and GPHY devices.
105
1064.9) Platform information
557e2a39
GC
107Several driver's information can be passed through the platform
108These are included in the include/linux/stmmac.h header file
109and detailed below as well:
a1d6f3f6 110
3d237714
GC
111struct plat_stmmacenet_data {
112 char *phy_bus_name;
f5539b5b 113 int bus_id;
557e2a39
GC
114 int phy_addr;
115 int interface;
116 struct stmmac_mdio_bus_data *mdio_bus_data;
8327eb65 117 struct stmmac_dma_cfg *dma_cfg;
f5539b5b
GC
118 int clk_csr;
119 int has_gmac;
120 int enh_desc;
121 int tx_coe;
55f9a4d6 122 int rx_coe;
f5539b5b
GC
123 int bugged_jumbo;
124 int pmt;
557e2a39 125 int force_sf_dma_mode;
f9e01b55 126 int riwt_off;
557e2a39
GC
127 void (*fix_mac_speed)(void *priv, unsigned int speed);
128 void (*bus_setup)(void __iomem *ioaddr);
129 int (*init)(struct platform_device *pdev);
130 void (*exit)(struct platform_device *pdev);
3d237714
GC
131 void *custom_cfg;
132 void *custom_data;
557e2a39
GC
133 void *bsp_priv;
134 };
a1d6f3f6
GC
135
136Where:
3d237714 137 o phy_bus_name: phy bus name to attach to the stmmac.
557e2a39
GC
138 o bus_id: bus identifier.
139 o phy_addr: the physical address can be passed from the platform.
140 If it is set to -1 the driver will automatically
141 detect it at run-time by probing all the 32 addresses.
142 o interface: PHY device's interface.
143 o mdio_bus_data: specific platform fields for the MDIO bus.
3d237714
GC
144 o dma_cfg: internal DMA parameters
145 o pbl: the Programmable Burst Length is maximum number of beats to
557e2a39
GC
146 be transferred in one DMA transaction.
147 GMAC also enables the 4xPBL by default.
3d237714 148 o fixed_burst/mixed_burst/burst_len
cd7201f4 149 o clk_csr: fixed CSR Clock range selection.
557e2a39
GC
150 o has_gmac: uses the GMAC core.
151 o enh_desc: if sets the MAC will use the enhanced descriptor structure.
152 o tx_coe: core is able to perform the tx csum in HW.
55f9a4d6
DS
153 o rx_coe: the supports three check sum offloading engine types:
154 type_1, type_2 (full csum) and no RX coe.
557e2a39
GC
155 o bugged_jumbo: some HWs are not able to perform the csum in HW for
156 over-sized frames due to limited buffer sizes.
157 Setting this flag the csum will be done in SW on
158 JUMBO frames.
159 o pmt: core has the embedded power module (optional).
160 o force_sf_dma_mode: force DMA to use the Store and Forward mode
161 instead of the Threshold.
f9e01b55 162 o riwt_off: force to disable the RX watchdog feature and switch to NAPI mode.
557e2a39
GC
163 o fix_mac_speed: this callback is used for modifying some syscfg registers
164 (on ST SoCs) according to the link speed negotiated by the
165 physical layer .
166 o bus_setup: perform HW setup of the bus. For example, on some ST platforms
167 this field is used to configure the AMBA bridge to generate more
168 efficient STBus traffic.
49cfbf67 169 o init/exit: callbacks used for calling a custom initialization;
557e2a39
GC
170 this is sometime necessary on some platforms (e.g. ST boxes)
171 where the HW needs to have set some PIO lines or system cfg
172 registers.
3d237714 173 o custom_cfg/custom_data: this is a custom configuration that can be passed
49cfbf67 174 while initializing the resources.
3d237714 175 o bsp_priv: another private poiter.
557e2a39 176
8327eb65 177For MDIO bus The we have:
557e2a39
GC
178
179 struct stmmac_mdio_bus_data {
557e2a39
GC
180 int (*phy_reset)(void *priv);
181 unsigned int phy_mask;
182 int *irqs;
183 int probed_phy_irq;
184 };
a1d6f3f6
GC
185
186Where:
557e2a39
GC
187 o phy_reset: hook to reset the phy device attached to the bus.
188 o phy_mask: phy mask passed when register the MDIO bus within the driver.
189 o irqs: list of IRQs, one per PHY.
190 o probed_phy_irq: if irqs is NULL, use this for probed PHY.
191
8327eb65
DS
192For DMA engine we have the following internal fields that should be
193tuned according to the HW capabilities.
194
195struct stmmac_dma_cfg {
196 int pbl;
197 int fixed_burst;
198 int burst_len_supported;
199};
200
201Where:
202 o pbl: Programmable Burst Length
203 o fixed_burst: program the DMA to use the fixed burst mode
204 o burst_len: this is the value we put in the register
205 supported values are provided as macros in
206 linux/stmmac.h header file.
207
208---
209
557e2a39
GC
210Below an example how the structures above are using on ST platforms.
211
212 static struct plat_stmmacenet_data stxYYY_ethernet_platform_data = {
557e2a39
GC
213 .has_gmac = 0,
214 .enh_desc = 0,
215 .fix_mac_speed = stxYYY_ethernet_fix_mac_speed,
216 |
217 |-> to write an internal syscfg
218 | on this platform when the
219 | link speed changes from 10 to
220 | 100 and viceversa
221 .init = &stmmac_claim_resource,
222 |
223 |-> On ST SoC this calls own "PAD"
224 | manager framework to claim
225 | all the resources necessary
226 | (GPIO ...). The .custom_cfg field
227 | is used to pass a custom config.
228};
229
230Below the usage of the stmmac_mdio_bus_data: on this SoC, in fact,
231there are two MAC cores: one MAC is for MDIO Bus/PHY emulation
232with fixed_link support.
233
234static struct stmmac_mdio_bus_data stmmac1_mdio_bus = {
557e2a39
GC
235 .phy_reset = phy_reset;
236 |
237 |-> function to provide the phy_reset on this board
238 .phy_mask = 0,
239};
240
241static struct fixed_phy_status stmmac0_fixed_phy_status = {
242 .link = 1,
243 .speed = 100,
244 .duplex = 1,
245};
246
247During the board's device_init we can configure the first
248MAC for fixed_link by calling:
249 fixed_phy_add(PHY_POLL, 1, &stmmac0_fixed_phy_status));)
250and the second one, with a real PHY device attached to the bus,
251by using the stmmac_mdio_bus_data structure (to provide the id, the
252reset procedure etc).
253
2544.10) List of source files:
255 o Kconfig
256 o Makefile
257 o stmmac_main.c: main network device driver;
258 o stmmac_mdio.c: mdio functions;
0ec2ccd0
GC
259 o stmmac_pci: PCI driver;
260 o stmmac_platform.c: platform driver
557e2a39
GC
261 o stmmac_ethtool.c: ethtool support;
262 o stmmac_timer.[ch]: timer code used for mitigating the driver dma interrupts
0ec2ccd0 263 (only tested on ST40 platforms based);
557e2a39
GC
264 o stmmac.h: private driver structure;
265 o common.h: common definitions and VFTs;
266 o descs.h: descriptor structure definitions;
267 o dwmac1000_core.c: GMAC core functions;
268 o dwmac1000_dma.c: dma functions for the GMAC chip;
269 o dwmac1000.h: specific header file for the GMAC;
270 o dwmac100_core: MAC 100 core and dma code;
271 o dwmac100_dma.c: dma funtions for the MAC chip;
272 o dwmac1000.h: specific header file for the MAC;
0ec2ccd0
GC
273 o dwmac_lib.c: generic DMA functions shared among chips;
274 o enh_desc.c: functions for handling enhanced descriptors;
275 o norm_desc.c: functions for handling normal descriptors;
276 o chain_mode.c/ring_mode.c:: functions to manage RING/CHAINED modes;
277 o mmc_core.c/mmc.h: Management MAC Counters;
49cfbf67
GC
278 o stmmac_hwtstamp.c: HW timestamp support for PTP
279 o stmmac_ptp.c: PTP 1588 clock
557e2a39 280
4f2f25f9
GC
2815) Debug Information
282
283The driver exports many information i.e. internal statistics,
284debug information, MAC and DMA registers etc.
285
286These can be read in several ways depending on the
287type of the information actually needed.
288
289For example a user can be use the ethtool support
290to get statistics: e.g. using: ethtool -S ethX
291(that shows the Management counters (MMC) if supported)
292or sees the MAC/DMA registers: e.g. using: ethtool -d ethX
293
294Compiling the Kernel with CONFIG_DEBUG_FS and enabling the
295STMMAC_DEBUG_FS option the driver will export the following
296debugfs entries:
297
298/sys/kernel/debug/stmmaceth/descriptors_status
299 To show the DMA TX/RX descriptor rings
300
301Developer can also use the "debug" module parameter to get
302further debug information.
303
304In the end, there are other macros (that cannot be enabled
305via menuconfig) to turn-on the RX/TX DMA debugging,
306specific MAC core debug printk etc. Others to enable the
307debug in the TX and RX processes.
308All these are only useful during the developing stage
309and should never enabled inside the code for general usage.
310In fact, these can generate an huge amount of debug messages.
311
0ec2ccd0
GC
3126) Energy Efficient Ethernet
313
314Energy Efficient Ethernet(EEE) enables IEEE 802.3 MAC sublayer along
315with a family of Physical layer to operate in the Low power Idle(LPI)
316mode. The EEE mode supports the IEEE 802.3 MAC operation at 100Mbps,
3171000Mbps & 10Gbps.
318
319The LPI mode allows power saving by switching off parts of the
320communication device functionality when there is no data to be
321transmitted & received. The system on both the side of the link can
322disable some functionalities & save power during the period of low-link
323utilization. The MAC controls whether the system should enter or exit
324the LPI mode & communicate this to PHY.
325
326As soon as the interface is opened, the driver verifies if the EEE can
327be supported. This is done by looking at both the DMA HW capability
328register and the PHY devices MCD registers.
329To enter in Tx LPI mode the driver needs to have a software timer
330that enable and disable the LPI mode when there is nothing to be
331transmitted.
332
94fbbbf8
GC
3337) Extended descriptors
334The extended descriptors give us information about the receive Ethernet payload
335when it is carrying PTP packets or TCP/UDP/ICMP over IP.
336These are not available on GMAC Synopsys chips older than the 3.50.
337At probe time the driver will decide if these can be actually used.
338This support also is mandatory for PTPv2 because the extra descriptors 6 and 7
339are used for saving the hardware timestamps.
340
3418) Precision Time Protocol (PTP)
342The driver supports the IEEE 1588-2002, Precision Time Protocol (PTP),
343which enables precise synchronization of clocks in measurement and
344control systems implemented with technologies such as network
345communication.
346
347In addition to the basic timestamp features mentioned in IEEE 1588-2002
348Timestamps, new GMAC cores support the advanced timestamp features.
349IEEE 1588-2008 that can be enabled when configure the Kernel.
350
3519) SGMII/RGMII supports
352New GMAC devices provide own way to manage RGMII/SGMII.
353This information is available at run-time by looking at the
354HW capability register. This means that the stmmac can manage
355auto-negotiation and link status w/o using the PHYLIB stuff
356In fact, the HW provides a subset of extended registers to
357restart the ANE, verify Full/Half duplex mode and Speed.
358Also thanks to these registers it is possible to look at the
359Auto-negotiated Link Parter Ability.
360
36110) TODO:
557e2a39 362 o XGMAC is not supported.
94fbbbf8
GC
363 o Complete the TBI & RTBI support.
364 o extened VLAN support for 3.70a SYNP GMAC.