]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - Documentation/networking/vrf.txt
powerpc/numa: document topology_updates_enabled, disable by default
[mirror_ubuntu-bionic-kernel.git] / Documentation / networking / vrf.txt
CommitLineData
562d897d
DA
1Virtual Routing and Forwarding (VRF)
2====================================
3The VRF device combined with ip rules provides the ability to create virtual
4routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
5Linux network stack. One use case is the multi-tenancy problem where each
6tenant has their own unique routing tables and in the very least need
7different default gateways.
8
9Processes can be "VRF aware" by binding a socket to the VRF device. Packets
10through the socket then use the routing table associated with the VRF
11device. An important feature of the VRF device implementation is that it
12impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
13(ie., they do not need to be run in each VRF). The design also allows
14the use of higher priority ip rules (Policy Based Routing, PBR) to take
15precedence over the VRF device rules directing specific traffic as desired.
16
17In addition, VRF devices allow VRFs to be nested within namespaces. For
6e076537
DA
18example network namespaces provide separation of network interfaces at the
19device layer, VLANs on the interfaces within a namespace provide L2 separation
20and then VRF devices provide L3 separation.
562d897d
DA
21
22Design
23------
24A VRF device is created with an associated route table. Network interfaces
25are then enslaved to a VRF device:
26
27 +-----------------------------+
28 | vrf-blue | ===> route table 10
29 +-----------------------------+
30 | | |
31 +------+ +------+ +-------------+
32 | eth1 | | eth2 | ... | bond1 |
33 +------+ +------+ +-------------+
34 | |
35 +------+ +------+
36 | eth8 | | eth9 |
37 +------+ +------+
38
39Packets received on an enslaved device and are switched to the VRF device
6e076537
DA
40in the IPv4 and IPv6 processing stacks giving the impression that packets
41flow through the VRF device. Similarly on egress routing rules are used to
42send packets to the VRF device driver before getting sent out the actual
43interface. This allows tcpdump on a VRF device to capture all packets into
44and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
45applied using the VRF device to specify rules that apply to the VRF domain
46as a whole.
562d897d
DA
47
48[1] Packets in the forwarded state do not flow through the device, so those
49 packets are not seen by tcpdump. Will revisit this limitation in a
50 future release.
51
6e076537
DA
52[2] Iptables on ingress supports PREROUTING with skb->dev set to the real
53 ingress device and both INPUT and PREROUTING rules with skb->dev set to
54 the VRF device. For egress POSTROUTING and OUTPUT rules can be written
55 using either the VRF device or real egress device.
562d897d
DA
56
57Setup
58-----
591. VRF device is created with an association to a FIB table.
60 e.g, ip link add vrf-blue type vrf table 10
61 ip link set dev vrf-blue up
62
6e076537
DA
632. An l3mdev FIB rule directs lookups to the table associated with the device.
64 A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
65 l3mdev rule for IPv4 and IPv6 when the first device is created with a
66 default preference of 1000. Users may delete the rule if desired and add
67 with a different priority or install per-VRF rules.
68
69 Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
562d897d
DA
70 ip ru add oif vrf-blue table 10
71 ip ru add iif vrf-blue table 10
72
6e076537 733. Set the default route for the table (and hence default route for the VRF).
17c91884
DS
74 ip route add table 10 unreachable default metric 4278198272
75
76 This high metric value ensures that the default unreachable route can
77 be overridden by a routing protocol suite. FRRouting interprets
78 kernel metrics as a combined admin distance (upper byte) and priority
79 (lower 3 bytes). Thus the above metric translates to [255/8192].
562d897d 80
6e076537
DA
814. Enslave L3 interfaces to a VRF device.
82 ip link set dev eth1 master vrf-blue
562d897d
DA
83
84 Local and connected routes for enslaved devices are automatically moved to
85 the table associated with VRF device. Any additional routes depending on
6e076537
DA
86 the enslaved device are dropped and will need to be reinserted to the VRF
87 FIB table following the enslavement.
88
89 The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
90 addresses as VRF enslavement changes.
91 sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
562d897d 92
6e076537
DA
935. Additional VRF routes are added to associated table.
94 ip route add table 10 ...
562d897d
DA
95
96
97Applications
98------------
99Applications that are to work within a VRF need to bind their socket to the
100VRF device:
101
102 setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
103
104or to specify the output device using cmsg and IP_PKTINFO.
105
63a6fff3
RS
106TCP & UDP services running in the default VRF context (ie., not bound
107to any VRF device) can work across all VRF domains by enabling the
108tcp_l3mdev_accept and udp_l3mdev_accept sysctl options:
6e076537 109 sysctl -w net.ipv4.tcp_l3mdev_accept=1
63a6fff3 110 sysctl -w net.ipv4.udp_l3mdev_accept=1
562d897d 111
6e076537
DA
112netfilter rules on the VRF device can be used to limit access to services
113running in the default VRF context as well.
114
115The default VRF does not have limited scope with respect to port bindings.
116That is, if a process does a wildcard bind to a port in the default VRF it
117owns the port across all VRF domains within the network namespace.
4b418bff
DA
118
119################################################################################
120
121Using iproute2 for VRFs
122=======================
6e076537
DA
123iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
124section lists both commands where appropriate -- with the vrf keyword and the
125older form without it.
4b418bff
DA
126
1271. Create a VRF
128
129 To instantiate a VRF device and associate it with a table:
130 $ ip link add dev NAME type vrf table ID
131
6e076537
DA
132 As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
133 covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
134 device create.
4b418bff
DA
135
1362. List VRFs
137
138 To list VRFs that have been created:
139 $ ip [-d] link show type vrf
140 NOTE: The -d option is needed to show the table id
141
142 For example:
143 $ ip -d link show type vrf
6e076537 144 11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
4b418bff
DA
145 link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
146 vrf table 1 addrgenmode eui64
6e076537 147 12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
4b418bff
DA
148 link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
149 vrf table 10 addrgenmode eui64
6e076537 150 13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
4b418bff
DA
151 link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
152 vrf table 66 addrgenmode eui64
6e076537 153 14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
4b418bff
DA
154 link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
155 vrf table 81 addrgenmode eui64
156
157
158 Or in brief output:
159
160 $ ip -br link show type vrf
6e076537
DA
161 mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
162 red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
163 blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
164 green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
4b418bff
DA
165
166
1673. Assign a Network Interface to a VRF
168
169 Network interfaces are assigned to a VRF by enslaving the netdevice to a
170 VRF device:
6e076537 171 $ ip link set dev NAME master NAME
4b418bff
DA
172
173 On enslavement connected and local routes are automatically moved to the
174 table associated with the VRF device.
175
176 For example:
6e076537 177 $ ip link set dev eth0 master mgmt
4b418bff
DA
178
179
1804. Show Devices Assigned to a VRF
181
182 To show devices that have been assigned to a specific VRF add the master
183 option to the ip command:
6e076537
DA
184 $ ip link show vrf NAME
185 $ ip link show master NAME
4b418bff
DA
186
187 For example:
6e076537
DA
188 $ ip link show vrf red
189 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
4b418bff 190 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
6e076537 191 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
4b418bff 192 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
6e076537 193 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
4b418bff
DA
194 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
195
196
197 Or using the brief output:
484f674b 198 $ ip -br link show vrf red
4b418bff
DA
199 eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
200 eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
201 eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
202
203
2045. Show Neighbor Entries for a VRF
205
206 To list neighbor entries associated with devices enslaved to a VRF device
207 add the master option to the ip command:
6e076537
DA
208 $ ip [-6] neigh show vrf NAME
209 $ ip [-6] neigh show master NAME
4b418bff
DA
210
211 For example:
6e076537 212 $ ip neigh show vrf red
4b418bff
DA
213 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
214 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
215
484f674b
DA
216 $ ip -6 neigh show vrf red
217 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
4b418bff
DA
218
219
2206. Show Addresses for a VRF
221
222 To show addresses for interfaces associated with a VRF add the master
223 option to the ip command:
6e076537
DA
224 $ ip addr show vrf NAME
225 $ ip addr show master NAME
4b418bff
DA
226
227 For example:
6e076537
DA
228 $ ip addr show vrf red
229 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
4b418bff
DA
230 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
231 inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
232 valid_lft forever preferred_lft forever
233 inet6 2002:1::2/120 scope global
234 valid_lft forever preferred_lft forever
235 inet6 fe80::ff:fe00:202/64 scope link
236 valid_lft forever preferred_lft forever
6e076537 237 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
4b418bff
DA
238 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
239 inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
240 valid_lft forever preferred_lft forever
241 inet6 2002:2::2/120 scope global
242 valid_lft forever preferred_lft forever
243 inet6 fe80::ff:fe00:203/64 scope link
244 valid_lft forever preferred_lft forever
6e076537 245 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
4b418bff
DA
246 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
247
248 Or in brief format:
6e076537 249 $ ip -br addr show vrf red
4b418bff
DA
250 eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
251 eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
252 eth5 DOWN
253
254
2557. Show Routes for a VRF
256
257 To show routes for a VRF use the ip command to display the table associated
258 with the VRF device:
6e076537 259 $ ip [-6] route show vrf NAME
4b418bff
DA
260 $ ip [-6] route show table ID
261
262 For example:
6e076537 263 $ ip route show vrf red
17c91884 264 unreachable default metric 4278198272
4b418bff
DA
265 broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
266 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
267 local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2
268 broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2
269 broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2
270 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2
271 local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
272 broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
273
6e076537 274 $ ip -6 route show vrf red
4b418bff
DA
275 local 2002:1:: dev lo proto none metric 0 pref medium
276 local 2002:1::2 dev lo proto none metric 0 pref medium
277 2002:1::/120 dev eth1 proto kernel metric 256 pref medium
278 local 2002:2:: dev lo proto none metric 0 pref medium
279 local 2002:2::2 dev lo proto none metric 0 pref medium
280 2002:2::/120 dev eth2 proto kernel metric 256 pref medium
281 local fe80:: dev lo proto none metric 0 pref medium
282 local fe80:: dev lo proto none metric 0 pref medium
283 local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium
284 local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
285 fe80::/64 dev eth1 proto kernel metric 256 pref medium
286 fe80::/64 dev eth2 proto kernel metric 256 pref medium
6e076537 287 ff00::/8 dev red metric 256 pref medium
4b418bff
DA
288 ff00::/8 dev eth1 metric 256 pref medium
289 ff00::/8 dev eth2 metric 256 pref medium
17c91884 290 unreachable default dev lo metric 4278198272 error -101 pref medium
4b418bff
DA
291
2928. Route Lookup for a VRF
293
6e076537
DA
294 A test route lookup can be done for a VRF:
295 $ ip [-6] route get vrf NAME ADDRESS
296 $ ip [-6] route get oif NAME ADDRESS
4b418bff
DA
297
298 For example:
6e076537
DA
299 $ ip route get 10.2.1.40 vrf red
300 10.2.1.40 dev eth1 table red src 10.2.1.2
4b418bff
DA
301 cache
302
6e076537
DA
303 $ ip -6 route get 2002:1::32 vrf red
304 2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium
4b418bff
DA
305
306
3079. Removing Network Interface from a VRF
308
309 Network interfaces are removed from a VRF by breaking the enslavement to
310 the VRF device:
311 $ ip link set dev NAME nomaster
312
313 Connected routes are moved back to the default table and local entries are
314 moved to the local table.
315
316 For example:
317 $ ip link set dev eth0 nomaster
318
319--------------------------------------------------------------------------------
320
321Commands used in this example:
322
6e076537
DA
323cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
3241 mgmt
32510 red
32666 blue
32781 green
4b418bff
DA
328EOF
329
330function vrf_create
331{
332 VRF=$1
333 TBID=$2
4b418bff 334
6e076537
DA
335 # create VRF device
336 ip link add ${VRF} type vrf table ${TBID}
4b418bff
DA
337
338 if [ "${VRF}" != "mgmt" ]; then
17c91884 339 ip route add table ${TBID} unreachable default metric 4278198272
4b418bff 340 fi
6e076537 341 ip link set dev ${VRF} up
4b418bff
DA
342}
343
344vrf_create mgmt 1
6e076537 345ip link set dev eth0 master mgmt
4b418bff
DA
346
347vrf_create red 10
6e076537
DA
348ip link set dev eth1 master red
349ip link set dev eth2 master red
350ip link set dev eth5 master red
4b418bff
DA
351
352vrf_create blue 66
6e076537 353ip link set dev eth3 master blue
4b418bff
DA
354
355vrf_create green 81
6e076537 356ip link set dev eth4 master green
4b418bff
DA
357
358
359Interface addresses from /etc/network/interfaces:
360auto eth0
361iface eth0 inet static
362 address 10.0.0.2
363 netmask 255.255.255.0
364 gateway 10.0.0.254
365
366iface eth0 inet6 static
367 address 2000:1::2
368 netmask 120
369
370auto eth1
371iface eth1 inet static
372 address 10.2.1.2
373 netmask 255.255.255.0
374
375iface eth1 inet6 static
376 address 2002:1::2
377 netmask 120
378
379auto eth2
380iface eth2 inet static
381 address 10.2.2.2
382 netmask 255.255.255.0
383
384iface eth2 inet6 static
385 address 2002:2::2
386 netmask 120
387
388auto eth3
389iface eth3 inet static
390 address 10.2.3.2
391 netmask 255.255.255.0
392
393iface eth3 inet6 static
394 address 2002:3::2
395 netmask 120
396
397auto eth4
398iface eth4 inet static
399 address 10.2.4.2
400 netmask 255.255.255.0
401
402iface eth4 inet6 static
403 address 2002:4::2
404 netmask 120