]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - Documentation/nvdimm/nvdimm.rst
docs: nvdimm: convert to ReST
[mirror_ubuntu-hirsute-kernel.git] / Documentation / nvdimm / nvdimm.rst
CommitLineData
b0a4aa95
MCC
1===============================
2LIBNVDIMM: Non-Volatile Devices
3===============================
bc30196f 4
b0a4aa95
MCC
5libnvdimm - kernel / libndctl - userspace helper library
6
7linux-nvdimm@lists.01.org
8
9Version 13
10
11.. contents:
bc30196f
DW
12
13 Glossary
14 Overview
15 Supporting Documents
16 Git Trees
17 LIBNVDIMM PMEM and BLK
18 Why BLK?
19 PMEM vs BLK
20 BLK-REGIONs, PMEM-REGIONs, Atomic Sectors, and DAX
21 Example NVDIMM Platform
22 LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace API
23 LIBNDCTL: Context
24 libndctl: instantiate a new library context example
25 LIBNVDIMM/LIBNDCTL: Bus
26 libnvdimm: control class device in /sys/class
27 libnvdimm: bus
28 libndctl: bus enumeration example
29 LIBNVDIMM/LIBNDCTL: DIMM (NMEM)
30 libnvdimm: DIMM (NMEM)
31 libndctl: DIMM enumeration example
32 LIBNVDIMM/LIBNDCTL: Region
33 libnvdimm: region
34 libndctl: region enumeration example
35 Why Not Encode the Region Type into the Region Name?
36 How Do I Determine the Major Type of a Region?
37 LIBNVDIMM/LIBNDCTL: Namespace
38 libnvdimm: namespace
39 libndctl: namespace enumeration example
40 libndctl: namespace creation example
41 Why the Term "namespace"?
42 LIBNVDIMM/LIBNDCTL: Block Translation Table "btt"
43 libnvdimm: btt layout
44 libndctl: btt creation example
45 Summary LIBNDCTL Diagram
46
47
48Glossary
b0a4aa95
MCC
49========
50
51PMEM:
52 A system-physical-address range where writes are persistent. A
53 block device composed of PMEM is capable of DAX. A PMEM address range
54 may span an interleave of several DIMMs.
55
56BLK:
57 A set of one or more programmable memory mapped apertures provided
58 by a DIMM to access its media. This indirection precludes the
59 performance benefit of interleaving, but enables DIMM-bounded failure
60 modes.
61
62DPA:
63 DIMM Physical Address, is a DIMM-relative offset. With one DIMM in
64 the system there would be a 1:1 system-physical-address:DPA association.
65 Once more DIMMs are added a memory controller interleave must be
66 decoded to determine the DPA associated with a given
67 system-physical-address. BLK capacity always has a 1:1 relationship
68 with a single-DIMM's DPA range.
69
70DAX:
71 File system extensions to bypass the page cache and block layer to
72 mmap persistent memory, from a PMEM block device, directly into a
73 process address space.
74
75DSM:
76 Device Specific Method: ACPI method to to control specific
77 device - in this case the firmware.
78
79DCR:
80 NVDIMM Control Region Structure defined in ACPI 6 Section 5.2.25.5.
81 It defines a vendor-id, device-id, and interface format for a given DIMM.
82
83BTT:
84 Block Translation Table: Persistent memory is byte addressable.
85 Existing software may have an expectation that the power-fail-atomicity
86 of writes is at least one sector, 512 bytes. The BTT is an indirection
87 table with atomic update semantics to front a PMEM/BLK block device
88 driver and present arbitrary atomic sector sizes.
89
90LABEL:
91 Metadata stored on a DIMM device that partitions and identifies
92 (persistently names) storage between PMEM and BLK. It also partitions
93 BLK storage to host BTTs with different parameters per BLK-partition.
94 Note that traditional partition tables, GPT/MBR, are layered on top of a
95 BLK or PMEM device.
bc30196f
DW
96
97
98Overview
b0a4aa95 99========
bc30196f
DW
100
101The LIBNVDIMM subsystem provides support for three types of NVDIMMs, namely,
102PMEM, BLK, and NVDIMM devices that can simultaneously support both PMEM
103and BLK mode access. These three modes of operation are described by
104the "NVDIMM Firmware Interface Table" (NFIT) in ACPI 6. While the LIBNVDIMM
105implementation is generic and supports pre-NFIT platforms, it was guided
106by the superset of capabilities need to support this ACPI 6 definition
107for NVDIMM resources. The bulk of the kernel implementation is in place
108to handle the case where DPA accessible via PMEM is aliased with DPA
109accessible via BLK. When that occurs a LABEL is needed to reserve DPA
110for exclusive access via one mode a time.
111
112Supporting Documents
b0a4aa95
MCC
113--------------------
114
115ACPI 6:
116 http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
117NVDIMM Namespace:
118 http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
119DSM Interface Example:
120 http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
121Driver Writer's Guide:
122 http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
bc30196f
DW
123
124Git Trees
b0a4aa95
MCC
125---------
126
127LIBNVDIMM:
128 https://git.kernel.org/cgit/linux/kernel/git/djbw/nvdimm.git
129LIBNDCTL:
130 https://github.com/pmem/ndctl.git
131PMEM:
132 https://github.com/01org/prd
bc30196f
DW
133
134
135LIBNVDIMM PMEM and BLK
b0a4aa95 136======================
bc30196f
DW
137
138Prior to the arrival of the NFIT, non-volatile memory was described to a
139system in various ad-hoc ways. Usually only the bare minimum was
140provided, namely, a single system-physical-address range where writes
141are expected to be durable after a system power loss. Now, the NFIT
142specification standardizes not only the description of PMEM, but also
143BLK and platform message-passing entry points for control and
144configuration.
145
146For each NVDIMM access method (PMEM, BLK), LIBNVDIMM provides a block
147device driver:
148
149 1. PMEM (nd_pmem.ko): Drives a system-physical-address range. This
b0a4aa95
MCC
150 range is contiguous in system memory and may be interleaved (hardware
151 memory controller striped) across multiple DIMMs. When interleaved the
152 platform may optionally provide details of which DIMMs are participating
153 in the interleave.
154
155 Note that while LIBNVDIMM describes system-physical-address ranges that may
156 alias with BLK access as ND_NAMESPACE_PMEM ranges and those without
157 alias as ND_NAMESPACE_IO ranges, to the nd_pmem driver there is no
158 distinction. The different device-types are an implementation detail
159 that userspace can exploit to implement policies like "only interface
160 with address ranges from certain DIMMs". It is worth noting that when
161 aliasing is present and a DIMM lacks a label, then no block device can
162 be created by default as userspace needs to do at least one allocation
163 of DPA to the PMEM range. In contrast ND_NAMESPACE_IO ranges, once
164 registered, can be immediately attached to nd_pmem.
bc30196f
DW
165
166 2. BLK (nd_blk.ko): This driver performs I/O using a set of platform
b0a4aa95
MCC
167 defined apertures. A set of apertures will access just one DIMM.
168 Multiple windows (apertures) allow multiple concurrent accesses, much like
169 tagged-command-queuing, and would likely be used by different threads or
170 different CPUs.
171
172 The NFIT specification defines a standard format for a BLK-aperture, but
173 the spec also allows for vendor specific layouts, and non-NFIT BLK
174 implementations may have other designs for BLK I/O. For this reason
175 "nd_blk" calls back into platform-specific code to perform the I/O.
bc30196f 176
b0a4aa95
MCC
177 One such implementation is defined in the "Driver Writer's Guide" and "DSM
178 Interface Example".
bc30196f
DW
179
180
181Why BLK?
b0a4aa95 182========
bc30196f
DW
183
184While PMEM provides direct byte-addressable CPU-load/store access to
185NVDIMM storage, it does not provide the best system RAS (recovery,
186availability, and serviceability) model. An access to a corrupted
8de5dff8 187system-physical-address address causes a CPU exception while an access
bc30196f
DW
188to a corrupted address through an BLK-aperture causes that block window
189to raise an error status in a register. The latter is more aligned with
190the standard error model that host-bus-adapter attached disks present.
b0a4aa95 191
bc30196f
DW
192Also, if an administrator ever wants to replace a memory it is easier to
193service a system at DIMM module boundaries. Compare this to PMEM where
194data could be interleaved in an opaque hardware specific manner across
195several DIMMs.
196
197PMEM vs BLK
b0a4aa95
MCC
198-----------
199
8de5dff8 200BLK-apertures solve these RAS problems, but their presence is also the
bc30196f
DW
201major contributing factor to the complexity of the ND subsystem. They
202complicate the implementation because PMEM and BLK alias in DPA space.
203Any given DIMM's DPA-range may contribute to one or more
204system-physical-address sets of interleaved DIMMs, *and* may also be
205accessed in its entirety through its BLK-aperture. Accessing a DPA
206through a system-physical-address while simultaneously accessing the
207same DPA through a BLK-aperture has undefined results. For this reason,
208DIMMs with this dual interface configuration include a DSM function to
209store/retrieve a LABEL. The LABEL effectively partitions the DPA-space
210into exclusive system-physical-address and BLK-aperture accessible
211regions. For simplicity a DIMM is allowed a PMEM "region" per each
212interleave set in which it is a member. The remaining DPA space can be
213carved into an arbitrary number of BLK devices with discontiguous
214extents.
215
216BLK-REGIONs, PMEM-REGIONs, Atomic Sectors, and DAX
b0a4aa95 217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
bc30196f
DW
218
219One of the few
220reasons to allow multiple BLK namespaces per REGION is so that each
221BLK-namespace can be configured with a BTT with unique atomic sector
222sizes. While a PMEM device can host a BTT the LABEL specification does
223not provide for a sector size to be specified for a PMEM namespace.
b0a4aa95 224
bc30196f
DW
225This is due to the expectation that the primary usage model for PMEM is
226via DAX, and the BTT is incompatible with DAX. However, for the cases
227where an application or filesystem still needs atomic sector update
228guarantees it can register a BTT on a PMEM device or partition. See
229LIBNVDIMM/NDCTL: Block Translation Table "btt"
230
231
232Example NVDIMM Platform
b0a4aa95 233=======================
bc30196f
DW
234
235For the remainder of this document the following diagram will be
b0a4aa95
MCC
236referenced for any example sysfs layouts::
237
238
239 (a) (b) DIMM BLK-REGION
240 +-------------------+--------+--------+--------+
241 +------+ | pm0.0 | blk2.0 | pm1.0 | blk2.1 | 0 region2
242 | imc0 +--+- - - region0- - - +--------+ +--------+
243 +--+---+ | pm0.0 | blk3.0 | pm1.0 | blk3.1 | 1 region3
244 | +-------------------+--------v v--------+
245 +--+---+ | |
246 | cpu0 | region1
247 +--+---+ | |
248 | +----------------------------^ ^--------+
249 +--+---+ | blk4.0 | pm1.0 | blk4.0 | 2 region4
250 | imc1 +--+----------------------------| +--------+
251 +------+ | blk5.0 | pm1.0 | blk5.0 | 3 region5
252 +----------------------------+--------+--------+
bc30196f
DW
253
254In this platform we have four DIMMs and two memory controllers in one
255socket. Each unique interface (BLK or PMEM) to DPA space is identified
256by a region device with a dynamically assigned id (REGION0 - REGION5).
257
258 1. The first portion of DIMM0 and DIMM1 are interleaved as REGION0. A
b0a4aa95
MCC
259 single PMEM namespace is created in the REGION0-SPA-range that spans most
260 of DIMM0 and DIMM1 with a user-specified name of "pm0.0". Some of that
261 interleaved system-physical-address range is reclaimed as BLK-aperture
262 accessed space starting at DPA-offset (a) into each DIMM. In that
263 reclaimed space we create two BLK-aperture "namespaces" from REGION2 and
264 REGION3 where "blk2.0" and "blk3.0" are just human readable names that
265 could be set to any user-desired name in the LABEL.
bc30196f
DW
266
267 2. In the last portion of DIMM0 and DIMM1 we have an interleaved
b0a4aa95
MCC
268 system-physical-address range, REGION1, that spans those two DIMMs as
269 well as DIMM2 and DIMM3. Some of REGION1 is allocated to a PMEM namespace
270 named "pm1.0", the rest is reclaimed in 4 BLK-aperture namespaces (for
271 each DIMM in the interleave set), "blk2.1", "blk3.1", "blk4.0", and
272 "blk5.0".
bc30196f
DW
273
274 3. The portion of DIMM2 and DIMM3 that do not participate in the REGION1
b0a4aa95
MCC
275 interleaved system-physical-address range (i.e. the DPA address past
276 offset (b) are also included in the "blk4.0" and "blk5.0" namespaces.
277 Note, that this example shows that BLK-aperture namespaces don't need to
278 be contiguous in DPA-space.
bc30196f
DW
279
280 This bus is provided by the kernel under the device
281 /sys/devices/platform/nfit_test.0 when CONFIG_NFIT_TEST is enabled and
282 the nfit_test.ko module is loaded. This not only test LIBNVDIMM but the
283 acpi_nfit.ko driver as well.
284
285
286LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace API
b0a4aa95 287========================================================
bc30196f
DW
288
289What follows is a description of the LIBNVDIMM sysfs layout and a
290corresponding object hierarchy diagram as viewed through the LIBNDCTL
8de5dff8 291API. The example sysfs paths and diagrams are relative to the Example
bc30196f
DW
292NVDIMM Platform which is also the LIBNVDIMM bus used in the LIBNDCTL unit
293test.
294
295LIBNDCTL: Context
b0a4aa95
MCC
296-----------------
297
8de5dff8 298Every API call in the LIBNDCTL library requires a context that holds the
bc30196f
DW
299logging parameters and other library instance state. The library is
300based on the libabc template:
b0a4aa95
MCC
301
302 https://git.kernel.org/cgit/linux/kernel/git/kay/libabc.git
bc30196f
DW
303
304LIBNDCTL: instantiate a new library context example
b0a4aa95
MCC
305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
306
307::
bc30196f
DW
308
309 struct ndctl_ctx *ctx;
310
311 if (ndctl_new(&ctx) == 0)
312 return ctx;
313 else
314 return NULL;
315
316LIBNVDIMM/LIBNDCTL: Bus
b0a4aa95 317-----------------------
bc30196f
DW
318
319A bus has a 1:1 relationship with an NFIT. The current expectation for
320ACPI based systems is that there is only ever one platform-global NFIT.
321That said, it is trivial to register multiple NFITs, the specification
322does not preclude it. The infrastructure supports multiple busses and
3d9cf48b
SR
323we use this capability to test multiple NFIT configurations in the unit
324test.
bc30196f
DW
325
326LIBNVDIMM: control class device in /sys/class
b0a4aa95 327---------------------------------------------
bc30196f
DW
328
329This character device accepts DSM messages to be passed to DIMM
b0a4aa95 330identified by its NFIT handle::
bc30196f
DW
331
332 /sys/class/nd/ndctl0
333 |-- dev
334 |-- device -> ../../../ndbus0
335 |-- subsystem -> ../../../../../../../class/nd
336
337
338
339LIBNVDIMM: bus
b0a4aa95
MCC
340--------------
341
342::
bc30196f
DW
343
344 struct nvdimm_bus *nvdimm_bus_register(struct device *parent,
345 struct nvdimm_bus_descriptor *nfit_desc);
346
b0a4aa95
MCC
347::
348
bc30196f
DW
349 /sys/devices/platform/nfit_test.0/ndbus0
350 |-- commands
351 |-- nd
352 |-- nfit
353 |-- nmem0
354 |-- nmem1
355 |-- nmem2
356 |-- nmem3
357 |-- power
358 |-- provider
359 |-- region0
360 |-- region1
361 |-- region2
362 |-- region3
363 |-- region4
364 |-- region5
365 |-- uevent
366 `-- wait_probe
367
368LIBNDCTL: bus enumeration example
b0a4aa95
MCC
369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
370
371Find the bus handle that describes the bus from Example NVDIMM Platform::
bc30196f
DW
372
373 static struct ndctl_bus *get_bus_by_provider(struct ndctl_ctx *ctx,
374 const char *provider)
375 {
376 struct ndctl_bus *bus;
377
378 ndctl_bus_foreach(ctx, bus)
379 if (strcmp(provider, ndctl_bus_get_provider(bus)) == 0)
380 return bus;
381
382 return NULL;
383 }
384
385 bus = get_bus_by_provider(ctx, "nfit_test.0");
386
387
388LIBNVDIMM/LIBNDCTL: DIMM (NMEM)
b0a4aa95 389-------------------------------
bc30196f
DW
390
391The DIMM device provides a character device for sending commands to
392hardware, and it is a container for LABELs. If the DIMM is defined by
393NFIT then an optional 'nfit' attribute sub-directory is available to add
394NFIT-specifics.
395
396Note that the kernel device name for "DIMMs" is "nmemX". The NFIT
397describes these devices via "Memory Device to System Physical Address
398Range Mapping Structure", and there is no requirement that they actually
399be physical DIMMs, so we use a more generic name.
400
401LIBNVDIMM: DIMM (NMEM)
b0a4aa95
MCC
402^^^^^^^^^^^^^^^^^^^^^^
403
404::
bc30196f
DW
405
406 struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data,
407 const struct attribute_group **groups, unsigned long flags,
408 unsigned long *dsm_mask);
409
b0a4aa95
MCC
410::
411
bc30196f
DW
412 /sys/devices/platform/nfit_test.0/ndbus0
413 |-- nmem0
414 | |-- available_slots
415 | |-- commands
416 | |-- dev
417 | |-- devtype
418 | |-- driver -> ../../../../../bus/nd/drivers/nvdimm
419 | |-- modalias
420 | |-- nfit
421 | | |-- device
422 | | |-- format
423 | | |-- handle
424 | | |-- phys_id
425 | | |-- rev_id
426 | | |-- serial
427 | | `-- vendor
428 | |-- state
429 | |-- subsystem -> ../../../../../bus/nd
430 | `-- uevent
431 |-- nmem1
432 [..]
433
434
435LIBNDCTL: DIMM enumeration example
b0a4aa95 436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
bc30196f
DW
437
438Note, in this example we are assuming NFIT-defined DIMMs which are
439identified by an "nfit_handle" a 32-bit value where:
b0a4aa95
MCC
440
441 - Bit 3:0 DIMM number within the memory channel
442 - Bit 7:4 memory channel number
443 - Bit 11:8 memory controller ID
444 - Bit 15:12 socket ID (within scope of a Node controller if node
445 controller is present)
446 - Bit 27:16 Node Controller ID
447 - Bit 31:28 Reserved
448
449::
bc30196f
DW
450
451 static struct ndctl_dimm *get_dimm_by_handle(struct ndctl_bus *bus,
452 unsigned int handle)
453 {
454 struct ndctl_dimm *dimm;
455
456 ndctl_dimm_foreach(bus, dimm)
457 if (ndctl_dimm_get_handle(dimm) == handle)
458 return dimm;
459
460 return NULL;
461 }
462
463 #define DIMM_HANDLE(n, s, i, c, d) \
464 (((n & 0xfff) << 16) | ((s & 0xf) << 12) | ((i & 0xf) << 8) \
465 | ((c & 0xf) << 4) | (d & 0xf))
466
467 dimm = get_dimm_by_handle(bus, DIMM_HANDLE(0, 0, 0, 0, 0));
468
469LIBNVDIMM/LIBNDCTL: Region
b0a4aa95 470--------------------------
bc30196f 471
8de5dff8 472A generic REGION device is registered for each PMEM range or BLK-aperture
bc30196f
DW
473set. Per the example there are 6 regions: 2 PMEM and 4 BLK-aperture
474sets on the "nfit_test.0" bus. The primary role of regions are to be a
475container of "mappings". A mapping is a tuple of <DIMM,
476DPA-start-offset, length>.
477
478LIBNVDIMM provides a built-in driver for these REGION devices. This driver
479is responsible for reconciling the aliased DPA mappings across all
480regions, parsing the LABEL, if present, and then emitting NAMESPACE
481devices with the resolved/exclusive DPA-boundaries for the nd_pmem or
482nd_blk device driver to consume.
483
484In addition to the generic attributes of "mapping"s, "interleave_ways"
485and "size" the REGION device also exports some convenience attributes.
486"nstype" indicates the integer type of namespace-device this region
487emits, "devtype" duplicates the DEVTYPE variable stored by udev at the
488'add' event, "modalias" duplicates the MODALIAS variable stored by udev
489at the 'add' event, and finally, the optional "spa_index" is provided in
490the case where the region is defined by a SPA.
491
b0a4aa95 492LIBNVDIMM: region::
bc30196f
DW
493
494 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
495 struct nd_region_desc *ndr_desc);
496 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
497 struct nd_region_desc *ndr_desc);
498
b0a4aa95
MCC
499::
500
bc30196f
DW
501 /sys/devices/platform/nfit_test.0/ndbus0
502 |-- region0
503 | |-- available_size
504 | |-- btt0
505 | |-- btt_seed
506 | |-- devtype
507 | |-- driver -> ../../../../../bus/nd/drivers/nd_region
508 | |-- init_namespaces
509 | |-- mapping0
510 | |-- mapping1
511 | |-- mappings
512 | |-- modalias
513 | |-- namespace0.0
514 | |-- namespace_seed
515 | |-- numa_node
516 | |-- nfit
517 | | `-- spa_index
518 | |-- nstype
519 | |-- set_cookie
520 | |-- size
521 | |-- subsystem -> ../../../../../bus/nd
522 | `-- uevent
523 |-- region1
524 [..]
525
526LIBNDCTL: region enumeration example
b0a4aa95 527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
bc30196f
DW
528
529Sample region retrieval routines based on NFIT-unique data like
530"spa_index" (interleave set id) for PMEM and "nfit_handle" (dimm id) for
b0a4aa95 531BLK::
bc30196f
DW
532
533 static struct ndctl_region *get_pmem_region_by_spa_index(struct ndctl_bus *bus,
534 unsigned int spa_index)
535 {
536 struct ndctl_region *region;
537
538 ndctl_region_foreach(bus, region) {
539 if (ndctl_region_get_type(region) != ND_DEVICE_REGION_PMEM)
540 continue;
541 if (ndctl_region_get_spa_index(region) == spa_index)
542 return region;
543 }
544 return NULL;
545 }
546
547 static struct ndctl_region *get_blk_region_by_dimm_handle(struct ndctl_bus *bus,
548 unsigned int handle)
549 {
550 struct ndctl_region *region;
551
552 ndctl_region_foreach(bus, region) {
553 struct ndctl_mapping *map;
554
555 if (ndctl_region_get_type(region) != ND_DEVICE_REGION_BLOCK)
556 continue;
557 ndctl_mapping_foreach(region, map) {
558 struct ndctl_dimm *dimm = ndctl_mapping_get_dimm(map);
559
560 if (ndctl_dimm_get_handle(dimm) == handle)
561 return region;
562 }
563 }
564 return NULL;
565 }
566
567
568Why Not Encode the Region Type into the Region Name?
569----------------------------------------------------
570
571At first glance it seems since NFIT defines just PMEM and BLK interface
572types that we should simply name REGION devices with something derived
573from those type names. However, the ND subsystem explicitly keeps the
574REGION name generic and expects userspace to always consider the
8de5dff8 575region-attributes for four reasons:
bc30196f
DW
576
577 1. There are already more than two REGION and "namespace" types. For
b0a4aa95
MCC
578 PMEM there are two subtypes. As mentioned previously we have PMEM where
579 the constituent DIMM devices are known and anonymous PMEM. For BLK
580 regions the NFIT specification already anticipates vendor specific
581 implementations. The exact distinction of what a region contains is in
582 the region-attributes not the region-name or the region-devtype.
bc30196f
DW
583
584 2. A region with zero child-namespaces is a possible configuration. For
b0a4aa95
MCC
585 example, the NFIT allows for a DCR to be published without a
586 corresponding BLK-aperture. This equates to a DIMM that can only accept
587 control/configuration messages, but no i/o through a descendant block
588 device. Again, this "type" is advertised in the attributes ('mappings'
589 == 0) and the name does not tell you much.
bc30196f
DW
590
591 3. What if a third major interface type arises in the future? Outside
b0a4aa95
MCC
592 of vendor specific implementations, it's not difficult to envision a
593 third class of interface type beyond BLK and PMEM. With a generic name
594 for the REGION level of the device-hierarchy old userspace
595 implementations can still make sense of new kernel advertised
596 region-types. Userspace can always rely on the generic region
597 attributes like "mappings", "size", etc and the expected child devices
598 named "namespace". This generic format of the device-model hierarchy
599 allows the LIBNVDIMM and LIBNDCTL implementations to be more uniform and
600 future-proof.
bc30196f
DW
601
602 4. There are more robust mechanisms for determining the major type of a
b0a4aa95
MCC
603 region than a device name. See the next section, How Do I Determine the
604 Major Type of a Region?
bc30196f
DW
605
606How Do I Determine the Major Type of a Region?
607----------------------------------------------
608
609Outside of the blanket recommendation of "use libndctl", or simply
610looking at the kernel header (/usr/include/linux/ndctl.h) to decode the
611"nstype" integer attribute, here are some other options.
612
b0a4aa95
MCC
6131. module alias lookup
614^^^^^^^^^^^^^^^^^^^^^^
bc30196f
DW
615
616 The whole point of region/namespace device type differentiation is to
617 decide which block-device driver will attach to a given LIBNVDIMM namespace.
618 One can simply use the modalias to lookup the resulting module. It's
619 important to note that this method is robust in the presence of a
620 vendor-specific driver down the road. If a vendor-specific
621 implementation wants to supplant the standard nd_blk driver it can with
622 minimal impact to the rest of LIBNVDIMM.
623
624 In fact, a vendor may also want to have a vendor-specific region-driver
625 (outside of nd_region). For example, if a vendor defined its own LABEL
626 format it would need its own region driver to parse that LABEL and emit
627 the resulting namespaces. The output from module resolution is more
628 accurate than a region-name or region-devtype.
629
b0a4aa95
MCC
6302. udev
631^^^^^^^
632
633 The kernel "devtype" is registered in the udev database::
bc30196f 634
b0a4aa95
MCC
635 # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region0
636 P: /devices/platform/nfit_test.0/ndbus0/region0
637 E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region0
638 E: DEVTYPE=nd_pmem
639 E: MODALIAS=nd:t2
640 E: SUBSYSTEM=nd
bc30196f 641
b0a4aa95
MCC
642 # udevadm info --path=/devices/platform/nfit_test.0/ndbus0/region4
643 P: /devices/platform/nfit_test.0/ndbus0/region4
644 E: DEVPATH=/devices/platform/nfit_test.0/ndbus0/region4
645 E: DEVTYPE=nd_blk
646 E: MODALIAS=nd:t3
647 E: SUBSYSTEM=nd
bc30196f
DW
648
649 ...and is available as a region attribute, but keep in mind that the
650 "devtype" does not indicate sub-type variations and scripts should
651 really be understanding the other attributes.
652
b0a4aa95
MCC
6533. type specific attributes
654^^^^^^^^^^^^^^^^^^^^^^^^^^^
bc30196f
DW
655
656 As it currently stands a BLK-aperture region will never have a
657 "nfit/spa_index" attribute, but neither will a non-NFIT PMEM region. A
658 BLK region with a "mappings" value of 0 is, as mentioned above, a DIMM
659 that does not allow I/O. A PMEM region with a "mappings" value of zero
660 is a simple system-physical-address range.
661
662
663LIBNVDIMM/LIBNDCTL: Namespace
b0a4aa95 664-----------------------------
bc30196f
DW
665
666A REGION, after resolving DPA aliasing and LABEL specified boundaries,
667surfaces one or more "namespace" devices. The arrival of a "namespace"
668device currently triggers either the nd_blk or nd_pmem driver to load
669and register a disk/block device.
670
671LIBNVDIMM: namespace
b0a4aa95
MCC
672^^^^^^^^^^^^^^^^^^^^
673
bc30196f
DW
674Here is a sample layout from the three major types of NAMESPACE where
675namespace0.0 represents DIMM-info-backed PMEM (note that it has a 'uuid'
676attribute), namespace2.0 represents a BLK namespace (note it has a
677'sector_size' attribute) that, and namespace6.0 represents an anonymous
678PMEM namespace (note that has no 'uuid' attribute due to not support a
b0a4aa95 679LABEL)::
bc30196f
DW
680
681 /sys/devices/platform/nfit_test.0/ndbus0/region0/namespace0.0
682 |-- alt_name
683 |-- devtype
684 |-- dpa_extents
685 |-- force_raw
686 |-- modalias
687 |-- numa_node
688 |-- resource
689 |-- size
690 |-- subsystem -> ../../../../../../bus/nd
691 |-- type
692 |-- uevent
693 `-- uuid
694 /sys/devices/platform/nfit_test.0/ndbus0/region2/namespace2.0
695 |-- alt_name
696 |-- devtype
697 |-- dpa_extents
698 |-- force_raw
699 |-- modalias
700 |-- numa_node
701 |-- sector_size
702 |-- size
703 |-- subsystem -> ../../../../../../bus/nd
704 |-- type
705 |-- uevent
706 `-- uuid
707 /sys/devices/platform/nfit_test.1/ndbus1/region6/namespace6.0
708 |-- block
709 | `-- pmem0
710 |-- devtype
711 |-- driver -> ../../../../../../bus/nd/drivers/pmem
712 |-- force_raw
713 |-- modalias
714 |-- numa_node
715 |-- resource
716 |-- size
717 |-- subsystem -> ../../../../../../bus/nd
718 |-- type
719 `-- uevent
720
721LIBNDCTL: namespace enumeration example
b0a4aa95 722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
bc30196f
DW
723Namespaces are indexed relative to their parent region, example below.
724These indexes are mostly static from boot to boot, but subsystem makes
725no guarantees in this regard. For a static namespace identifier use its
726'uuid' attribute.
727
b0a4aa95 728::
bc30196f 729
b0a4aa95
MCC
730 static struct ndctl_namespace
731 *get_namespace_by_id(struct ndctl_region *region, unsigned int id)
732 {
733 struct ndctl_namespace *ndns;
bc30196f 734
b0a4aa95
MCC
735 ndctl_namespace_foreach(region, ndns)
736 if (ndctl_namespace_get_id(ndns) == id)
737 return ndns;
738
739 return NULL;
740 }
bc30196f
DW
741
742LIBNDCTL: namespace creation example
b0a4aa95
MCC
743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
744
bc30196f
DW
745Idle namespaces are automatically created by the kernel if a given
746region has enough available capacity to create a new namespace.
747Namespace instantiation involves finding an idle namespace and
748configuring it. For the most part the setting of namespace attributes
749can occur in any order, the only constraint is that 'uuid' must be set
750before 'size'. This enables the kernel to track DPA allocations
b0a4aa95 751internally with a static identifier::
bc30196f 752
b0a4aa95
MCC
753 static int configure_namespace(struct ndctl_region *region,
754 struct ndctl_namespace *ndns,
755 struct namespace_parameters *parameters)
756 {
757 char devname[50];
bc30196f 758
b0a4aa95
MCC
759 snprintf(devname, sizeof(devname), "namespace%d.%d",
760 ndctl_region_get_id(region), paramaters->id);
bc30196f 761
b0a4aa95
MCC
762 ndctl_namespace_set_alt_name(ndns, devname);
763 /* 'uuid' must be set prior to setting size! */
764 ndctl_namespace_set_uuid(ndns, paramaters->uuid);
765 ndctl_namespace_set_size(ndns, paramaters->size);
766 /* unlike pmem namespaces, blk namespaces have a sector size */
767 if (parameters->lbasize)
768 ndctl_namespace_set_sector_size(ndns, parameters->lbasize);
769 ndctl_namespace_enable(ndns);
770 }
bc30196f
DW
771
772
773Why the Term "namespace"?
b0a4aa95 774^^^^^^^^^^^^^^^^^^^^^^^^^
bc30196f 775
8de5dff8 776 1. Why not "volume" for instance? "volume" ran the risk of confusing
b0a4aa95 777 ND (libnvdimm subsystem) to a volume manager like device-mapper.
bc30196f
DW
778
779 2. The term originated to describe the sub-devices that can be created
b0a4aa95
MCC
780 within a NVME controller (see the nvme specification:
781 http://www.nvmexpress.org/specifications/), and NFIT namespaces are
782 meant to parallel the capabilities and configurability of
783 NVME-namespaces.
bc30196f
DW
784
785
786LIBNVDIMM/LIBNDCTL: Block Translation Table "btt"
b0a4aa95 787-------------------------------------------------
bc30196f
DW
788
789A BTT (design document: http://pmem.io/2014/09/23/btt.html) is a stacked
790block device driver that fronts either the whole block device or a
791partition of a block device emitted by either a PMEM or BLK NAMESPACE.
792
793LIBNVDIMM: btt layout
b0a4aa95
MCC
794^^^^^^^^^^^^^^^^^^^^^
795
bc30196f
DW
796Every region will start out with at least one BTT device which is the
797seed device. To activate it set the "namespace", "uuid", and
798"sector_size" attributes and then bind the device to the nd_pmem or
b0a4aa95 799nd_blk driver depending on the region type::
bc30196f
DW
800
801 /sys/devices/platform/nfit_test.1/ndbus0/region0/btt0/
802 |-- namespace
803 |-- delete
804 |-- devtype
805 |-- modalias
806 |-- numa_node
807 |-- sector_size
808 |-- subsystem -> ../../../../../bus/nd
809 |-- uevent
810 `-- uuid
811
812LIBNDCTL: btt creation example
b0a4aa95
MCC
813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
814
bc30196f
DW
815Similar to namespaces an idle BTT device is automatically created per
816region. Each time this "seed" btt device is configured and enabled a new
817seed is created. Creating a BTT configuration involves two steps of
b0a4aa95 818finding and idle BTT and assigning it to consume a PMEM or BLK namespace::
bc30196f
DW
819
820 static struct ndctl_btt *get_idle_btt(struct ndctl_region *region)
821 {
822 struct ndctl_btt *btt;
823
824 ndctl_btt_foreach(region, btt)
825 if (!ndctl_btt_is_enabled(btt)
826 && !ndctl_btt_is_configured(btt))
827 return btt;
828
829 return NULL;
830 }
831
832 static int configure_btt(struct ndctl_region *region,
833 struct btt_parameters *parameters)
834 {
835 btt = get_idle_btt(region);
836
837 ndctl_btt_set_uuid(btt, parameters->uuid);
838 ndctl_btt_set_sector_size(btt, parameters->sector_size);
839 ndctl_btt_set_namespace(btt, parameters->ndns);
840 /* turn off raw mode device */
841 ndctl_namespace_disable(parameters->ndns);
842 /* turn on btt access */
843 ndctl_btt_enable(btt);
844 }
845
846Once instantiated a new inactive btt seed device will appear underneath
847the region.
848
849Once a "namespace" is removed from a BTT that instance of the BTT device
850will be deleted or otherwise reset to default values. This deletion is
851only at the device model level. In order to destroy a BTT the "info
852block" needs to be destroyed. Note, that to destroy a BTT the media
853needs to be written in raw mode. By default, the kernel will autodetect
854the presence of a BTT and disable raw mode. This autodetect behavior
855can be suppressed by enabling raw mode for the namespace via the
8de5dff8 856ndctl_namespace_set_raw_mode() API.
bc30196f
DW
857
858
859Summary LIBNDCTL Diagram
860------------------------
861
8de5dff8 862For the given example above, here is the view of the objects as seen by the
b0a4aa95
MCC
863LIBNDCTL API::
864
865 +---+
866 |CTX| +---------+ +--------------+ +---------------+
867 +-+-+ +-> REGION0 +---> NAMESPACE0.0 +--> PMEM8 "pm0.0" |
868 | | +---------+ +--------------+ +---------------+
869 +-------+ | | +---------+ +--------------+ +---------------+
870 | DIMM0 <-+ | +-> REGION1 +---> NAMESPACE1.0 +--> PMEM6 "pm1.0" |
871 +-------+ | | | +---------+ +--------------+ +---------------+
872 | DIMM1 <-+ +-v--+ | +---------+ +--------------+ +---------------+
873 +-------+ +-+BUS0+---> REGION2 +-+-> NAMESPACE2.0 +--> ND6 "blk2.0" |
874 | DIMM2 <-+ +----+ | +---------+ | +--------------+ +----------------------+
875 +-------+ | | +-> NAMESPACE2.1 +--> ND5 "blk2.1" | BTT2 |
876 | DIMM3 <-+ | +--------------+ +----------------------+
877 +-------+ | +---------+ +--------------+ +---------------+
878 +-> REGION3 +-+-> NAMESPACE3.0 +--> ND4 "blk3.0" |
879 | +---------+ | +--------------+ +----------------------+
880 | +-> NAMESPACE3.1 +--> ND3 "blk3.1" | BTT1 |
881 | +--------------+ +----------------------+
882 | +---------+ +--------------+ +---------------+
883 +-> REGION4 +---> NAMESPACE4.0 +--> ND2 "blk4.0" |
884 | +---------+ +--------------+ +---------------+
885 | +---------+ +--------------+ +----------------------+
886 +-> REGION5 +---> NAMESPACE5.0 +--> ND1 "blk5.0" | BTT0 |
887 +---------+ +--------------+ +---------------+------+