]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - Documentation/static-keys.txt
Merge branch 'for-4.12/asus' into for-linus
[mirror_ubuntu-artful-kernel.git] / Documentation / static-keys.txt
CommitLineData
1cfa60dc
JB
1 Static Keys
2 -----------
3
412758cb
JB
4DEPRECATED API:
5
6The use of 'struct static_key' directly, is now DEPRECATED. In addition
7static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following:
8
9struct static_key false = STATIC_KEY_INIT_FALSE;
10struct static_key true = STATIC_KEY_INIT_TRUE;
11static_key_true()
12static_key_false()
13
14The updated API replacements are:
15
16DEFINE_STATIC_KEY_TRUE(key);
17DEFINE_STATIC_KEY_FALSE(key);
ef0da55a
CM
18DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
19DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
1975dbc2
JC
20static_branch_likely()
21static_branch_unlikely()
1cfa60dc
JB
22
230) Abstract
24
25Static keys allows the inclusion of seldom used features in
26performance-sensitive fast-path kernel code, via a GCC feature and a code
27patching technique. A quick example:
28
412758cb 29 DEFINE_STATIC_KEY_FALSE(key);
1cfa60dc
JB
30
31 ...
32
412758cb 33 if (static_branch_unlikely(&key))
1cfa60dc
JB
34 do unlikely code
35 else
36 do likely code
37
38 ...
412758cb 39 static_branch_enable(&key);
1cfa60dc 40 ...
412758cb 41 static_branch_disable(&key);
1cfa60dc
JB
42 ...
43
412758cb 44The static_branch_unlikely() branch will be generated into the code with as little
1cfa60dc
JB
45impact to the likely code path as possible.
46
47
481) Motivation
49
50
51Currently, tracepoints are implemented using a conditional branch. The
52conditional check requires checking a global variable for each tracepoint.
53Although the overhead of this check is small, it increases when the memory
54cache comes under pressure (memory cache lines for these global variables may
55be shared with other memory accesses). As we increase the number of tracepoints
56in the kernel this overhead may become more of an issue. In addition,
57tracepoints are often dormant (disabled) and provide no direct kernel
58functionality. Thus, it is highly desirable to reduce their impact as much as
59possible. Although tracepoints are the original motivation for this work, other
60kernel code paths should be able to make use of the static keys facility.
61
62
632) Solution
64
65
66gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
67
68http://gcc.gnu.org/ml/gcc-patches/2009-07/msg01556.html
69
70Using the 'asm goto', we can create branches that are either taken or not taken
71by default, without the need to check memory. Then, at run-time, we can patch
72the branch site to change the branch direction.
73
74For example, if we have a simple branch that is disabled by default:
75
412758cb 76 if (static_branch_unlikely(&key))
1cfa60dc
JB
77 printk("I am the true branch\n");
78
79Thus, by default the 'printk' will not be emitted. And the code generated will
80consist of a single atomic 'no-op' instruction (5 bytes on x86), in the
81straight-line code path. When the branch is 'flipped', we will patch the
82'no-op' in the straight-line codepath with a 'jump' instruction to the
83out-of-line true branch. Thus, changing branch direction is expensive but
84branch selection is basically 'free'. That is the basic tradeoff of this
85optimization.
86
87This lowlevel patching mechanism is called 'jump label patching', and it gives
88the basis for the static keys facility.
89
903) Static key label API, usage and examples:
91
92
93In order to make use of this optimization you must first define a key:
94
412758cb 95 DEFINE_STATIC_KEY_TRUE(key);
1cfa60dc
JB
96
97or:
98
412758cb
JB
99 DEFINE_STATIC_KEY_FALSE(key);
100
1cfa60dc 101
412758cb 102The key must be global, that is, it can't be allocated on the stack or dynamically
1cfa60dc
JB
103allocated at run-time.
104
105The key is then used in code as:
106
412758cb 107 if (static_branch_unlikely(&key))
1cfa60dc
JB
108 do unlikely code
109 else
110 do likely code
111
112Or:
113
412758cb 114 if (static_branch_likely(&key))
1cfa60dc
JB
115 do likely code
116 else
117 do unlikely code
118
412758cb
JB
119Keys defined via DEFINE_STATIC_KEY_TRUE(), or DEFINE_STATIC_KEY_FALSE, may
120be used in either static_branch_likely() or static_branch_unlikely()
121statemnts.
1cfa60dc 122
412758cb 123Branch(es) can be set true via:
1cfa60dc 124
412758cb 125static_branch_enable(&key);
1cfa60dc 126
412758cb
JB
127or false via:
128
129static_branch_disable(&key);
1cfa60dc 130
412758cb 131The branch(es) can then be switched via reference counts:
1cfa60dc 132
412758cb
JB
133 static_branch_inc(&key);
134 ...
135 static_branch_dec(&key);
1cfa60dc 136
412758cb
JB
137Thus, 'static_branch_inc()' means 'make the branch true', and
138'static_branch_dec()' means 'make the branch false' with appropriate
139reference counting. For example, if the key is initialized true, a
140static_branch_dec(), will switch the branch to false. And a subsequent
141static_branch_inc(), will change the branch back to true. Likewise, if the
142key is initialized false, a 'static_branch_inc()', will change the branch to
143true. And then a 'static_branch_dec()', will again make the branch false.
1cfa60dc 144
ef0da55a
CM
145Where an array of keys is required, it can be defined as:
146
147 DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
148
149or:
150
151 DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
1cfa60dc
JB
152
1534) Architecture level code patching interface, 'jump labels'
154
155
156There are a few functions and macros that architectures must implement in order
157to take advantage of this optimization. If there is no architecture support, we
3821fd35
JB
158simply fall back to a traditional, load, test, and jump sequence. Also, the
159struct jump_entry table must be at least 4-byte aligned because the
160static_key->entry field makes use of the two least significant bits.
1cfa60dc
JB
161
162* select HAVE_ARCH_JUMP_LABEL, see: arch/x86/Kconfig
163
164* #define JUMP_LABEL_NOP_SIZE, see: arch/x86/include/asm/jump_label.h
165
412758cb 166* __always_inline bool arch_static_branch(struct static_key *key, bool branch), see:
1cfa60dc
JB
167 arch/x86/include/asm/jump_label.h
168
412758cb
JB
169* __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch),
170 see: arch/x86/include/asm/jump_label.h
171
1cfa60dc
JB
172* void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type),
173 see: arch/x86/kernel/jump_label.c
174
175* __init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type),
176 see: arch/x86/kernel/jump_label.c
177
178
179* struct jump_entry, see: arch/x86/include/asm/jump_label.h
180
181
1825) Static keys / jump label analysis, results (x86_64):
183
184
185As an example, let's add the following branch to 'getppid()', such that the
186system call now looks like:
187
188SYSCALL_DEFINE0(getppid)
189{
190 int pid;
191
412758cb 192+ if (static_branch_unlikely(&key))
1cfa60dc
JB
193+ printk("I am the true branch\n");
194
195 rcu_read_lock();
196 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
197 rcu_read_unlock();
198
199 return pid;
200}
201
202The resulting instructions with jump labels generated by GCC is:
203
204ffffffff81044290 <sys_getppid>:
205ffffffff81044290: 55 push %rbp
206ffffffff81044291: 48 89 e5 mov %rsp,%rbp
207ffffffff81044294: e9 00 00 00 00 jmpq ffffffff81044299 <sys_getppid+0x9>
208ffffffff81044299: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
209ffffffff810442a0: 00 00
210ffffffff810442a2: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
211ffffffff810442a9: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
212ffffffff810442b0: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
213ffffffff810442b7: e8 f4 d9 00 00 callq ffffffff81051cb0 <pid_vnr>
214ffffffff810442bc: 5d pop %rbp
215ffffffff810442bd: 48 98 cltq
216ffffffff810442bf: c3 retq
217ffffffff810442c0: 48 c7 c7 e3 54 98 81 mov $0xffffffff819854e3,%rdi
218ffffffff810442c7: 31 c0 xor %eax,%eax
219ffffffff810442c9: e8 71 13 6d 00 callq ffffffff8171563f <printk>
220ffffffff810442ce: eb c9 jmp ffffffff81044299 <sys_getppid+0x9>
221
222Without the jump label optimization it looks like:
223
224ffffffff810441f0 <sys_getppid>:
225ffffffff810441f0: 8b 05 8a 52 d8 00 mov 0xd8528a(%rip),%eax # ffffffff81dc9480 <key>
226ffffffff810441f6: 55 push %rbp
227ffffffff810441f7: 48 89 e5 mov %rsp,%rbp
228ffffffff810441fa: 85 c0 test %eax,%eax
229ffffffff810441fc: 75 27 jne ffffffff81044225 <sys_getppid+0x35>
230ffffffff810441fe: 65 48 8b 04 25 c0 b6 mov %gs:0xb6c0,%rax
231ffffffff81044205: 00 00
232ffffffff81044207: 48 8b 80 80 02 00 00 mov 0x280(%rax),%rax
233ffffffff8104420e: 48 8b 80 b0 02 00 00 mov 0x2b0(%rax),%rax
234ffffffff81044215: 48 8b b8 e8 02 00 00 mov 0x2e8(%rax),%rdi
235ffffffff8104421c: e8 2f da 00 00 callq ffffffff81051c50 <pid_vnr>
236ffffffff81044221: 5d pop %rbp
237ffffffff81044222: 48 98 cltq
238ffffffff81044224: c3 retq
239ffffffff81044225: 48 c7 c7 13 53 98 81 mov $0xffffffff81985313,%rdi
240ffffffff8104422c: 31 c0 xor %eax,%eax
241ffffffff8104422e: e8 60 0f 6d 00 callq ffffffff81715193 <printk>
242ffffffff81044233: eb c9 jmp ffffffff810441fe <sys_getppid+0xe>
243ffffffff81044235: 66 66 2e 0f 1f 84 00 data32 nopw %cs:0x0(%rax,%rax,1)
244ffffffff8104423c: 00 00 00 00
245
246Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
247vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
248to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
249label case adds:
250
2516 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
252
253If we then include the padding bytes, the jump label code saves, 16 total bytes
c94bed8e 254of instruction memory for this small function. In this case the non-jump label
c79a8d85 255function is 80 bytes long. Thus, we have saved 20% of the instruction
1cfa60dc
JB
256footprint. We can in fact improve this even further, since the 5-byte no-op
257really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
258However, we have not yet implemented optimal no-op sizes (they are currently
259hard-coded).
260
261Since there are a number of static key API uses in the scheduler paths,
262'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
263performance improvement. Testing done on 3.3.0-rc2:
264
265jump label disabled:
266
267 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
268
269 855.700314 task-clock # 0.534 CPUs utilized ( +- 0.11% )
270 200,003 context-switches # 0.234 M/sec ( +- 0.00% )
271 0 CPU-migrations # 0.000 M/sec ( +- 39.58% )
272 487 page-faults # 0.001 M/sec ( +- 0.02% )
273 1,474,374,262 cycles # 1.723 GHz ( +- 0.17% )
274 <not supported> stalled-cycles-frontend
275 <not supported> stalled-cycles-backend
276 1,178,049,567 instructions # 0.80 insns per cycle ( +- 0.06% )
277 208,368,926 branches # 243.507 M/sec ( +- 0.06% )
278 5,569,188 branch-misses # 2.67% of all branches ( +- 0.54% )
279
280 1.601607384 seconds time elapsed ( +- 0.07% )
281
282jump label enabled:
283
284 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
285
286 841.043185 task-clock # 0.533 CPUs utilized ( +- 0.12% )
287 200,004 context-switches # 0.238 M/sec ( +- 0.00% )
288 0 CPU-migrations # 0.000 M/sec ( +- 40.87% )
289 487 page-faults # 0.001 M/sec ( +- 0.05% )
290 1,432,559,428 cycles # 1.703 GHz ( +- 0.18% )
291 <not supported> stalled-cycles-frontend
292 <not supported> stalled-cycles-backend
293 1,175,363,994 instructions # 0.82 insns per cycle ( +- 0.04% )
294 206,859,359 branches # 245.956 M/sec ( +- 0.04% )
295 4,884,119 branch-misses # 2.36% of all branches ( +- 0.85% )
296
297 1.579384366 seconds time elapsed
298
299The percentage of saved branches is .7%, and we've saved 12% on
300'branch-misses'. This is where we would expect to get the most savings, since
301this optimization is about reducing the number of branches. In addition, we've
302saved .2% on instructions, and 2.8% on cycles and 1.4% on elapsed time.