]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - Documentation/userspace-api/seccomp_filter.rst
afs: Fix server rotation's handling of fileserver probe failure
[mirror_ubuntu-bionic-kernel.git] / Documentation / userspace-api / seccomp_filter.rst
CommitLineData
c061f33f
KC
1===========================================
2Seccomp BPF (SECure COMPuting with filters)
3===========================================
8ac270d1
WD
4
5Introduction
c061f33f 6============
8ac270d1
WD
7
8A large number of system calls are exposed to every userland process
9with many of them going unused for the entire lifetime of the process.
10As system calls change and mature, bugs are found and eradicated. A
11certain subset of userland applications benefit by having a reduced set
12of available system calls. The resulting set reduces the total kernel
13surface exposed to the application. System call filtering is meant for
14use with those applications.
15
16Seccomp filtering provides a means for a process to specify a filter for
17incoming system calls. The filter is expressed as a Berkeley Packet
18Filter (BPF) program, as with socket filters, except that the data
19operated on is related to the system call being made: system call
20number and the system call arguments. This allows for expressive
21filtering of system calls using a filter program language with a long
22history of being exposed to userland and a straightforward data set.
23
24Additionally, BPF makes it impossible for users of seccomp to fall prey
25to time-of-check-time-of-use (TOCTOU) attacks that are common in system
26call interposition frameworks. BPF programs may not dereference
27pointers which constrains all filters to solely evaluating the system
28call arguments directly.
29
30What it isn't
c061f33f 31=============
8ac270d1
WD
32
33System call filtering isn't a sandbox. It provides a clearly defined
34mechanism for minimizing the exposed kernel surface. It is meant to be
35a tool for sandbox developers to use. Beyond that, policy for logical
36behavior and information flow should be managed with a combination of
37other system hardening techniques and, potentially, an LSM of your
38choosing. Expressive, dynamic filters provide further options down this
39path (avoiding pathological sizes or selecting which of the multiplexed
40system calls in socketcall() is allowed, for instance) which could be
41construed, incorrectly, as a more complete sandboxing solution.
42
43Usage
c061f33f 44=====
8ac270d1
WD
45
46An additional seccomp mode is added and is enabled using the same
47prctl(2) call as the strict seccomp. If the architecture has
c061f33f 48``CONFIG_HAVE_ARCH_SECCOMP_FILTER``, then filters may be added as below:
8ac270d1 49
c061f33f 50``PR_SET_SECCOMP``:
8ac270d1
WD
51 Now takes an additional argument which specifies a new filter
52 using a BPF program.
53 The BPF program will be executed over struct seccomp_data
54 reflecting the system call number, arguments, and other
55 metadata. The BPF program must then return one of the
56 acceptable values to inform the kernel which action should be
57 taken.
58
c061f33f
KC
59 Usage::
60
8ac270d1
WD
61 prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, prog);
62
63 The 'prog' argument is a pointer to a struct sock_fprog which
64 will contain the filter program. If the program is invalid, the
c061f33f 65 call will return -1 and set errno to ``EINVAL``.
8ac270d1 66
c061f33f 67 If ``fork``/``clone`` and ``execve`` are allowed by @prog, any child
8ac270d1
WD
68 processes will be constrained to the same filters and system
69 call ABI as the parent.
70
c061f33f
KC
71 Prior to use, the task must call ``prctl(PR_SET_NO_NEW_PRIVS, 1)`` or
72 run with ``CAP_SYS_ADMIN`` privileges in its namespace. If these are not
73 true, ``-EACCES`` will be returned. This requirement ensures that filter
8ac270d1
WD
74 programs cannot be applied to child processes with greater privileges
75 than the task that installed them.
76
c061f33f 77 Additionally, if ``prctl(2)`` is allowed by the attached filter,
8ac270d1
WD
78 additional filters may be layered on which will increase evaluation
79 time, but allow for further decreasing the attack surface during
80 execution of a process.
81
82The above call returns 0 on success and non-zero on error.
83
84Return values
c061f33f
KC
85=============
86
8ac270d1
WD
87A seccomp filter may return any of the following values. If multiple
88filters exist, the return value for the evaluation of a given system
89call will always use the highest precedent value. (For example,
0466bdb9 90``SECCOMP_RET_KILL_PROCESS`` will always take precedence.)
8ac270d1
WD
91
92In precedence order, they are:
93
0466bdb9
KC
94``SECCOMP_RET_KILL_PROCESS``:
95 Results in the entire process exiting immediately without executing
96 the system call. The exit status of the task (``status & 0x7f``)
97 will be ``SIGSYS``, not ``SIGKILL``.
98
fd76875c 99``SECCOMP_RET_KILL_THREAD``:
8ac270d1 100 Results in the task exiting immediately without executing the
c061f33f
KC
101 system call. The exit status of the task (``status & 0x7f``) will
102 be ``SIGSYS``, not ``SIGKILL``.
8ac270d1 103
c061f33f
KC
104``SECCOMP_RET_TRAP``:
105 Results in the kernel sending a ``SIGSYS`` signal to the triggering
106 task without executing the system call. ``siginfo->si_call_addr``
87b526d3 107 will show the address of the system call instruction, and
c061f33f 108 ``siginfo->si_syscall`` and ``siginfo->si_arch`` will indicate which
87b526d3
AL
109 syscall was attempted. The program counter will be as though
110 the syscall happened (i.e. it will not point to the syscall
111 instruction). The return value register will contain an arch-
112 dependent value -- if resuming execution, set it to something
113 sensible. (The architecture dependency is because replacing
c061f33f 114 it with ``-ENOSYS`` could overwrite some useful information.)
8ac270d1 115
c061f33f
KC
116 The ``SECCOMP_RET_DATA`` portion of the return value will be passed
117 as ``si_errno``.
8ac270d1 118
c061f33f 119 ``SIGSYS`` triggered by seccomp will have a si_code of ``SYS_SECCOMP``.
8ac270d1 120
c061f33f 121``SECCOMP_RET_ERRNO``:
8ac270d1
WD
122 Results in the lower 16-bits of the return value being passed
123 to userland as the errno without executing the system call.
124
c061f33f 125``SECCOMP_RET_TRACE``:
8ac270d1 126 When returned, this value will cause the kernel to attempt to
c061f33f
KC
127 notify a ``ptrace()``-based tracer prior to executing the system
128 call. If there is no tracer present, ``-ENOSYS`` is returned to
8ac270d1
WD
129 userland and the system call is not executed.
130
c061f33f
KC
131 A tracer will be notified if it requests ``PTRACE_O_TRACESECCOM``P
132 using ``ptrace(PTRACE_SETOPTIONS)``. The tracer will be notified
133 of a ``PTRACE_EVENT_SECCOMP`` and the ``SECCOMP_RET_DATA`` portion of
8ac270d1 134 the BPF program return value will be available to the tracer
c061f33f 135 via ``PTRACE_GETEVENTMSG``.
8ac270d1 136
87b526d3
AL
137 The tracer can skip the system call by changing the syscall number
138 to -1. Alternatively, the tracer can change the system call
139 requested by changing the system call to a valid syscall number. If
140 the tracer asks to skip the system call, then the system call will
141 appear to return the value that the tracer puts in the return value
142 register.
143
144 The seccomp check will not be run again after the tracer is
145 notified. (This means that seccomp-based sandboxes MUST NOT
146 allow use of ptrace, even of other sandboxed processes, without
147 extreme care; ptracers can use this mechanism to escape.)
148
59f5cf44
TH
149``SECCOMP_RET_LOG``:
150 Results in the system call being executed after it is logged. This
151 should be used by application developers to learn which syscalls their
152 application needs without having to iterate through multiple test and
153 development cycles to build the list.
154
155 This action will only be logged if "log" is present in the
156 actions_logged sysctl string.
157
c061f33f 158``SECCOMP_RET_ALLOW``:
8ac270d1
WD
159 Results in the system call being executed.
160
161If multiple filters exist, the return value for the evaluation of a
162given system call will always use the highest precedent value.
163
c061f33f 164Precedence is only determined using the ``SECCOMP_RET_ACTION`` mask. When
8ac270d1 165multiple filters return values of the same precedence, only the
c061f33f 166``SECCOMP_RET_DATA`` from the most recently installed filter will be
8ac270d1
WD
167returned.
168
169Pitfalls
c061f33f 170========
8ac270d1
WD
171
172The biggest pitfall to avoid during use is filtering on system call
173number without checking the architecture value. Why? On any
174architecture that supports multiple system call invocation conventions,
175the system call numbers may vary based on the specific invocation. If
176the numbers in the different calling conventions overlap, then checks in
177the filters may be abused. Always check the arch value!
178
179Example
c061f33f 180=======
8ac270d1 181
c061f33f 182The ``samples/seccomp/`` directory contains both an x86-specific example
8ac270d1
WD
183and a more generic example of a higher level macro interface for BPF
184program generation.
185
8e5f1ad1
TH
186Sysctls
187=======
188
189Seccomp's sysctl files can be found in the ``/proc/sys/kernel/seccomp/``
190directory. Here's a description of each file in that directory:
191
192``actions_avail``:
193 A read-only ordered list of seccomp return values (refer to the
194 ``SECCOMP_RET_*`` macros above) in string form. The ordering, from
195 left-to-right, is the least permissive return value to the most
196 permissive return value.
8ac270d1 197
8e5f1ad1
TH
198 The list represents the set of seccomp return values supported
199 by the kernel. A userspace program may use this list to
200 determine if the actions found in the ``seccomp.h``, when the
201 program was built, differs from the set of actions actually
202 supported in the current running kernel.
8ac270d1 203
0ddec0fc
TH
204``actions_logged``:
205 A read-write ordered list of seccomp return values (refer to the
206 ``SECCOMP_RET_*`` macros above) that are allowed to be logged. Writes
207 to the file do not need to be in ordered form but reads from the file
208 will be ordered in the same way as the actions_avail sysctl.
209
210 It is important to note that the value of ``actions_logged`` does not
211 prevent certain actions from being logged when the audit subsystem is
212 configured to audit a task. If the action is not found in
213 ``actions_logged`` list, the final decision on whether to audit the
214 action for that task is ultimately left up to the audit subsystem to
215 decide for all seccomp return values other than ``SECCOMP_RET_ALLOW``.
216
217 The ``allow`` string is not accepted in the ``actions_logged`` sysctl
218 as it is not possible to log ``SECCOMP_RET_ALLOW`` actions. Attempting
219 to write ``allow`` to the sysctl will result in an EINVAL being
220 returned.
221
8ac270d1 222Adding architecture support
c061f33f 223===========================
8ac270d1 224
c061f33f 225See ``arch/Kconfig`` for the authoritative requirements. In general, if an
8ac270d1 226architecture supports both ptrace_event and seccomp, it will be able to
c061f33f
KC
227support seccomp filter with minor fixup: ``SIGSYS`` support and seccomp return
228value checking. Then it must just add ``CONFIG_HAVE_ARCH_SECCOMP_FILTER``
8ac270d1 229to its arch-specific Kconfig.
87b526d3
AL
230
231
232
233Caveats
c061f33f 234=======
87b526d3
AL
235
236The vDSO can cause some system calls to run entirely in userspace,
237leading to surprises when you run programs on different machines that
238fall back to real syscalls. To minimize these surprises on x86, make
239sure you test with
c061f33f
KC
240``/sys/devices/system/clocksource/clocksource0/current_clocksource`` set to
241something like ``acpi_pm``.
87b526d3
AL
242
243On x86-64, vsyscall emulation is enabled by default. (vsyscalls are
c061f33f
KC
244legacy variants on vDSO calls.) Currently, emulated vsyscalls will
245honor seccomp, with a few oddities:
87b526d3 246
c061f33f 247- A return value of ``SECCOMP_RET_TRAP`` will set a ``si_call_addr`` pointing to
87b526d3
AL
248 the vsyscall entry for the given call and not the address after the
249 'syscall' instruction. Any code which wants to restart the call
250 should be aware that (a) a ret instruction has been emulated and (b)
251 trying to resume the syscall will again trigger the standard vsyscall
252 emulation security checks, making resuming the syscall mostly
253 pointless.
254
c061f33f 255- A return value of ``SECCOMP_RET_TRACE`` will signal the tracer as usual,
87b526d3
AL
256 but the syscall may not be changed to another system call using the
257 orig_rax register. It may only be changed to -1 order to skip the
258 currently emulated call. Any other change MAY terminate the process.
259 The rip value seen by the tracer will be the syscall entry address;
260 this is different from normal behavior. The tracer MUST NOT modify
261 rip or rsp. (Do not rely on other changes terminating the process.
262 They might work. For example, on some kernels, choosing a syscall
263 that only exists in future kernels will be correctly emulated (by
c061f33f 264 returning ``-ENOSYS``).
87b526d3 265
c061f33f
KC
266To detect this quirky behavior, check for ``addr & ~0x0C00 ==
2670xFFFFFFFFFF600000``. (For ``SECCOMP_RET_TRACE``, use rip. For
268``SECCOMP_RET_TRAP``, use ``siginfo->si_call_addr``.) Do not check any other
87b526d3
AL
269condition: future kernels may improve vsyscall emulation and current
270kernels in vsyscall=native mode will behave differently, but the
c061f33f 271instructions at ``0xF...F600{0,4,8,C}00`` will not be system calls in these
87b526d3
AL
272cases.
273
274Note that modern systems are unlikely to use vsyscalls at all -- they
275are a legacy feature and they are considerably slower than standard
276syscalls. New code will use the vDSO, and vDSO-issued system calls
277are indistinguishable from normal system calls.